
 

Berezinskii-Kosterlitz-Thouless Paired Phase in Coupled XY Models

Giacomo Bighin,1,* Nicolò Defenu,2,* István Nándori,3,4,5 Luca Salasnich,6,7 and Andrea Trombettoni8,9
1IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria

2Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg, Germany
3MTA-DE Particle Physics Research Group, P.O.Box 51, H-4001 Debrecen, Hungary

4MTA Atomki, P.O.Box 51, H-4001 Debrecen, Hungary
5University of Debrecen, P.O.Box 105, H-4010 Debrecen, Hungary

6Dipartimento di Fisica e Astronomia “Galileo Galilei,” Università di Padova, Via Marzolo 8, 35131 Padova, Italy
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We study the effect of a linear tunneling coupling between two-dimensional systems, each separately
exhibiting the topological Berezinskii-Kosterlitz-Thouless (BKT) transition. In the uncoupled limit, there
are two phases: one where the one-body correlation functions are algebraically decaying and the other with
exponential decay. When the linear coupling is turned on, a third BKT-paired phase emerges, in which one-
body correlations are exponentially decaying, while two-body correlation functions exhibit power-law
decay. We perform numerical simulations in the paradigmatic case of two coupled XY models at finite
temperature, finding evidences that for any finite value of the interlayer coupling, the BKT-paired phase is
present. We provide a picture of the phase diagram using a renormalization group approach.
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An ample variety of physical properties and phenomena
emerge when two many-body systems are coupled. There
are, of course, different ways of coupling interacting
systems, depending on the geometry of the uncoupled
systems, on the relevant degrees of freedom and on the way
in which the coupling is established. One of them is the so-
called weak coupling, when the Hamiltonian term model-
ing the coupling is a perturbation with respect to the
uncoupled Hamiltonians. In this case, if the two systems
are separately described by a macroscopic wave function—
such as superfluids or superconductors—a relative phase
between them emerges, as one can see in the Josephson
effect between superconductors [1,2], Helium containers
[3,4], Bose-Einstein condensates [5,6], and ultracold
fermions [7]. In these cases, the microscopic details of
the coupling enter only in the Josephson energy ruling the
maximum current that can flow through the junction.
coupling two superfluids generally gives rise to a dissipa-
tionless drag current that is often referred to as the Andreev-
Bashkin effect [8]. Previous investigations [9–11] have
mainly focused on the three-dimensional (3D) case, where
strong enough drag densities have been found to modify the
order of the symmetry breaking transition [12].
When the coupling is no longer a perturbation, one can

expect that the bulk properties of the uncoupled systems are
significantly altered and that new phases may emerge. A
typical phenomenon induced by a strong coupling is that

the order in the systems is substituted by a phase between
them, therefore giving rise to an order parameter expressed
in terms of operators of both systems. Several different
examples of couplings exist. Among the simplest instances,
one can imagine taking two one-dimensional systems and
couple them lengthwise, thus creating a ladder geometry.
Examples of this kind of coupling include magnetic spin
ladders, where two quantum spin chains are put in a ladder
geometry; see, e.g., Refs. [13,14]. The bilayer structure, in
which two two-dimensional (2D) systems are coupled, is
also a paradigmatic configuration, which has been studied
in numerous physical systems, ranging from graphene [15]
to quantum Hall systems [16] and dipolar models [17]. The
bilayer configuration is of particular relevance because it
may refer to two quantum or classical systems at finite
temperature, or—via the quantum-classical correspondence
—to the ladder geometry in which two quantum one-
dimensional models at zero temperature are coupled.
In this Letter, we address the emergence of a paired

phase when two models exhibiting a topological phase
transition are coupled. We will refer to the Berezinskii-
Kosterlitz-Thouless (BKT) universality class [18] and
study the effect of the coupling of two BKT systems.
We have two main motivations for our study. First, the BKT
transition is not characterized by a local order parameter
and by the conventional spontaneous symmetry breaking.
Rather, one can locate the critical point in which the system
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becomes superfluid by looking at the correlation functions,
exhibiting a power law (exponential) decay in (outside) the
superfluid phase. BKT transitions have been observed in
several different 2D physical systems, including superfluid
Helium [19], superconducting films and arrays [20,21],
as well as bosonic [22,23] and fermionic [24] ultracold
systems.
The second motivation is related to the presence and

relevance of the coupling between 2D systems in a variety
of experimental systems, ranging from layered supercon-
ductors [25,26] 2D two-component mixtures [11] and 2D
ultracold gases [27]. In the latter case, a single 2D ultracold
system is obtained by means of a suitably large transverse
confinement: for instance, one can realize a 2D geometry
by confining the atoms in a well of an optical lattice along
the transverse direction, the transverse confinement fre-
quency increasing with the power laser, with ≳1–10 kHz
[28]. When only two adjacent minima of the vertical lattice
are left significantly populated, one would have two 2D
ultracold gases with tunable interlayer coupling. In this
way, one would study the effect of the bilayer coupling on
the 2D physics already observed in single layers [22–24].
Notice that in this case, the coupling is (for bosons) of the
form b†1b2 (where bα creates a particle in the α layer),
thereby corresponding to what we refer to as linear
coupling.
Despite the rising interest of the theoretical community

in low dimensional binary mixtures [29–32], the influence
of interspecies coupling on universal behavior remains
largely unknown. In this context, a compelling question is
(i) “What is the fate of the quasi-long-range order in the
presence of a strong coupling between two BKT systems?”.
One may as well ask (ii) “Does quasi order occur in the
mixed correlators of the coupled system? If so, does it
appear already at small couplings?” Previous attempts to
answer these questions mainly focused on the study of
effective models for coupled topological excitations, such
as the coupled sine-Gordon models [33] and the coupled
Coulomb gases [34], evidencing the emergence of a
composite vortex gas phase as well as a second-order
phase transition at strong coupling. However, the results of
these investigations cannot be directly applied to our case,
since the low energy equivalence between coupled two-
dimensional superfluids and coupled topological defect
gases may be by the presence of the bilayer coupling term.
To address the questions above, we consider the para-

digmatic case of two coupled XY models at finite temper-
ature, based on the expectation that similar features emerge
for other classical and quantum models in the XY univer-
sality class when linearly coupled. The paradigmatic nature
of the XY model results in longly certified numerical tools,
which allow us to reliably investigate the bilayer case.
The model.—The bilayer XY Hamiltonian can be

written as

H ¼ −J
X
hiji

cos ðϕi − ϕjÞ − J
X
hiji

cos ðψ i − ψ jÞþ

− K
X
i

cos ðϕi − ψ iÞ; ð1Þ

where Si ¼ ðcosϕi; sinϕiÞ and Ti ¼ ðcosψ i; sinψ iÞ are
the XY spins with n ¼ 2 components defined on the first
and the second layer, respectively, each being a 2D system.
We will also use the notation Si ¼ eiϕi and Ti ¼ eiψ i .
Notice that we are considering the symmetric case where
the intralayer coupling takes the same value J on both
layers. The critical line separating the region with power
law correlations from the one with exponential correlations
in model (1) has been studied in literature [35]. Moreover,
several properties of coupled and layered XY models and
two-component systems have also been investigated
[29,36–40], as well as coupled 3D XY models [41,42].
Here our focus is on the quasiorder for pairs of spins on
different layers arising in a 2D bilayer system.
When K ¼ 0, the two layers are decoupled and the

behavior of the model is that of the standard 2D XY model
[11,18]: a superfluid phase and the normal state are
separated by the BKT transition occurring at TBKT ≈
0.893J [43–47]. The normal state is characterized by the
exponential decay of the phase-phase correlator; in the
superfluid phase, on the other hand, one finds the peculiar
algebraic decay of correlations functions.
In the other limiting case, K → ∞, the spins on the upper

and lower layers are constrained to be parallel, i.e.,
ϕi ¼ ψ i ∀ i, so that the effective Hamiltonian reduces,
up to additive constants, to

H ¼ −2J
X
hiji

cos ðϕi − ϕjÞ; ð2Þ

i.e., that of a 2D XY model with coupling constant J0 ¼ 2J,
therefore with critical temperature T 0

BKT ≈ 1.786J.
Results for the phase diagram.—We want to study the

full phase diagram of the model, away from the two
limiting cases just analyzed. From the theory of bilayer
systems and two-component mixtures [11,48] one may
expect that, apart from the normal and superfluid phases of
the BKT transition, a phase involving variables (operators
in the quantum case) of both layers can emerge. The
question is whether it emerges only for large values of the
couplingK or not. To make a comparison with a similar, yet
different, analytically solvable case, let us consider the
square lattice Ashkin-Teller model [49]. The Hamiltonian
has a form similar to Eq. (1), HAT ¼ −J

P
hijisisj−

J
P

hijititj − K
P

hijisisjtitj, with si, ti ¼ �1. The model
has indeed a phase whose order parameter is hsti [49].
However, apart from the fact that spin variables are discrete
in the Askhin-Teller model and continuous in the bilayer
XY model, there are two remarkable differences: first, the
coupling is quartic for the former; second, the bilayer XY
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model exhibits quasiorder and no spontaneous symmetry
breaking at finite temperature.
To determine the full phase diagram of the bilayer XY

model, we perform Monte Carlo (MC) simulations of the
Hamiltonian of Eq. (1) on a 2 × L × L lattice, L being the
linear dimension of each layer. We vary βJ and βK, where
as usual β ¼ ðkBTÞ−1. Monte Carlo updates use the
Swendsen-Wang algorithm [45,50] after embedded cluster
decomposition [51]. We sample the following correlation
functions

c↑ðkÞ ¼
X

ji−jj¼k

expðiϕi − iϕjÞ; ð3Þ

c↓ðkÞ ¼
X

ji−jj¼k

expðiψ i − iψ jÞ; ð4Þ

zðkÞ ¼
X

ji−jj¼k

expðiϕi þ iψ i − iϕj − iψ jÞ; ð5Þ

where the summations extend over all i, j pairs separated
by k lattice sites along the x or y direction. Because of the
symmetry of the system upon exchange between the
upper and lower layers, c↑ðkÞ and c↓ðkÞ coincide across
the whole phase diagram, let us call them cðkÞ. All
correlation functions are well fitted by the function
QðrÞ ¼ ðr=ralgÞα expð−r=rexpÞ, where ralg is the character-
istic length associated to the algebraic decay and rexp is the
characteristic length associated to the exponential decay.
To tell apart the exponential and algebraic behavior, we

compare rexp with L, the linear system size used in the MC
simulation, using the following qualitative criterion: if rexp
is smaller than L=10, then we mark the decay as expo-
nential, otherwise it is marked as algebraic, since the
exponential characteristic length rexp is neglectable when
compared to the dimensions of the system being studied.

This allows us to obtain the phase diagram shown in
Fig. 1(a), identifying the three phases. We denote by A the
usual superfluid BKT phase, characterized by the algebraic
decay of cðkÞ [52]. The correlation function zðkÞ is also
found to be algebraically decaying in the A phase. The
normal phase, denoted by B, is characterized, as usual, by
the exponential decay of cðkÞ. We checked that in the B
phase zðkÞ is exponentially decaying, as well. Finally, we
observe a third C phase, that is instead characterized by the
exponential decay of cðkÞ and the algebraic decay of zðkÞ.
Notice that, within the precision we can achieve, for small
values of K one always has a range of values of J for which
there is the C phase. In other words, the C phase extends up
to vanishing values of K.
We dub the C phase BKT-paired phase, since each layer

has the one-body correlation function cðkÞ decaying
exponentially, while the two-body correlation function
zðkÞ has an algebraic behavior. Since zðkÞ is the correlation
function between SiTi and SjTj for i and j far apart from
each other, this is related to a quasi-long-range order for the
pair variables SiTi in the different sites of the bilayer
system. The phase transition between A andC appears to be
a conventional BKT line and in agreement with Ref. [35]. It
is worth noting that despite some similarities between the
phase diagram presented in Fig. 1 and the one discussed in
Ref. [33], we find no trace of any actual symmetry breaking
while our paired BKT phase appears also at infinitely small
coupling strength. Moreover, to the best of our knowledge,
the presence of power law four point correlations was not
investigated in previous studies.
To further numerically investigate these two transition

lines, we resort to probability-changing cluster (PCC)
algorithm, introduced in Ref. [45] for the single-layer
BKT transition. Following the approach therein, at first
the XY variables are mapped onto two Ising models, using
Wolff’s embedded cluster formalism [51]. Subsequently, the

FIG. 1. βJ-βK phase diagram, showing the paired phase C appearing for finite values of βK. Left panel: Monte Carlo results (L ¼ 64)
obtained from the fit of correlation functions cðkÞ and zðkÞ as described in the text. The lower line has been obtained using the PCC
technique, as in the next panel, while the upper line guides the eye. Middle panel: Monte Carlo results (L ¼ 64) obtained through the
PCC technique, allowing the Kasteleyn-Fortuin clusters to extend on a single layer only (upper red line) or on both layers (lower red
line). Right panel: RG phase diagram; see main text.
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temperature of the system is tuned in progressively smaller
increments, looking for the ½ percolation threshold of the
Kasteleyn-Fortuin clusters defined from each Ising model
[45], signaling the BKT transition. It can in fact be shown
[53,54] that the spin-spin correlation function hSiSji equals
pij, the probability that the site i and j belong to the
Kasteleyn-Fortuin same cluster, effectively linking the pres-
ence of a percolating cluster spanning thewhole system to the
onset of quasi-long-range order. In the present case, one can
identify two different critical lines through the ½ percolation
threshold criterion, depending on whether the clusters by
which percolation is identified are allowed to extend on a
single layer or on both layers, respectively. The results we
obtain, shown in Fig. 1(b), are compatible with the identi-
fication of the A, B, and C phases obtained by the study of
correlation functions. We now supplement this analysis by a
RG calculation.
RG approach.—Mermin-Wagner theorem [55] forbids

spontaneous breaking of continuous symmetries in two
dimensions and, thus, only quasi-order, characterized by
power law correlations, can arise in our model. Such effect
can be described by RG theory via the explicit introduction
of topological defects [18,56]. Even the functional RG
approach [57,58], which overcomes the traditional pertur-
bative methods [59–61], does not completely describe the
BKT transition [62]. Nevertheless, a novel technique has
been recently devised in order to allow nonperturbative
treatment of quasi-order [63].
We shall now employ a simplified version of this

approach to the bilayer case, showing how it is possible
to provide an estimate for the MC phase diagram. First of
all, we are going to derive the mean field solution of our
problem; then we are going to use it to compute the
effective spin stiffness in the low temperature phase, which
will serve as the initial condition of the traditional BKT
flow equations [64,65]. Finally, solving the BKT flow
equations with the MF initial condition, we will be able to
locate the vortex unbinding transition.
Within our framework, it is convenient to employ a

Hubbard-Stratonovich transformation [20,66,67], in order
to introduce the continuous field representation of the
bilayer model under study. Following this procedure, the
bilayer XY model can be mapped into two coupled
complex jφj4 theories, whose action reads,

S½ϕ� ¼ 1

2

X
σ;q

φσðqÞφσðqÞ
KσðqÞ þ

X
l

Z
UðjφljÞd2x; ð6Þ

where UðjφjÞ ¼ logðI0ðjφjÞÞ is the local potential of the
model, written in terms of the zeroth order Bessel function
I0, and KσðqÞ ¼ 2Jε0ðqÞ þ 2μþ σ2K the momentum
space couplings, apart for a multiplicative β factor. The
index l ∈ f1; 2g labels two different complex fields, which
represent the spin variables in the two different layers,
while σ ∈ þ;− labels the symmetric and antisymmetric

combinations of these fields φ�ðqÞ¼ ½φ1ðqÞ�φ2ðqÞ�=
ffiffiffi
2

p
.

The coefficient μ has to be introduced in order to have a
positively defined exchange matrix, as needed in the
Hubbard-Stratonovich transformation [66].
In the following, we are going to only consider the

continuum limit of the action in Eq. (6), discarding lattice
effects. This leads to a spurious μ dependence in our
treatment [63,66,68], which is solved by fixing μ ¼ K in
agreement with the optimal choice discussed in [63].
Imposing the vanishing of each of the two effective modes
φ� masses μ� ¼ ½1=K�ð0Þ − 1=2�, one obtains, respec-
tively, the lower and the upper phase boundaries in
Fig. 1(c).
Above each boundary one of the effective modes

acquires a finite expectation value which can be obtained
solving the saddle point equation

0 ¼ ∂S½φ�
∂φ�

����
φ¼const

; ð7Þ

where S½φ� is defined in Eq. (6). The field density is defined
according to ρMF;σ ¼ jφMF;σj2, where φMF;σ is the constant
solution of the saddle point expression in Eq. (7).
As anticipated, the low energy behavior of the model

cannot be described simply considering the static MF
solution, which provides an unphysical symmetry breaking
scenario. In order to account for vortex fluctuations, we
consider the continuum limit expression of the action in
Eq. (6),

Sc½φ� ¼
X
σ

Z
d2x

j∇φσðxÞj2
2mσ

þ local terms; ð8Þ

where m−1
� ¼ ½J=K�ð0Þ2�. Introducing the Madelung rep-

resentation φσ ¼ ffiffiffiffiffi
ρσ

p
eiθσðxÞ and assuming that the field

density remains frozen at the MF expectation ρσ ¼ ρMF;σ,
we obtain the phase only action [63]

S½θ� ¼
X
σ

Z
d2x

ρσ
2mσ

∂μθσ∂μθσ; ð9Þ

which features two independent BKT transitions, one for
each phase variable [69].
The physics of these transitions only depends on the

effective phase stiffness ρσ=2mσ which remains finite above
the MF phase boundaries, where ρσ > 0. Therefore, in the
trivial MF phase J < 1 both the effective phase stiffnesses
vanish, leading to exponentially decaying correlations, while
for 1 < J < 1þ 2K (J > 1þ 2K) the effective stiffness of
the θþ (θ−) phase becomes finite and its renormalization by
vortex fluctuations shall be described by the BKT flow
equations

k∂kKk ¼ −πg2kK2
k; ð10Þ
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k∂kgk ¼ π

�
2

π
− Kk

�
gk; ð11Þ

where the RG scale k denotes the maximum wavelength of
the fluctuations integrated by the flow and one has to assume
a UV regularization at a microscopic scale k ¼ Λ [64]. At
k ¼ Λ one has to use the MF expectations obtained solving
the saddle point Eq. (7) to compute the initial conditions
KΛ ¼ Jσeff , and gΛ ¼ 2πe−π

2KΛ=2 where Jσeff ¼ ρMF;σ=2mσ.
The theoretical prediction for the twoBKT transition linewas
reported in panel (b) of Fig. 1. The upper transition line,
which corresponds to the conventional BKT transition,
comes from the unbinding of the θ− vortices. Such phase
boundary appears to be flat at our approximation level since
we solve Eq. (7) separately for φMF;− posing φMF;þ ¼ 0, due
to the difficulties encountered in solving the two coupled
equations for the expectationvalues.On the other hand, theK
dependence of the lower transition line is only due to the
explicit K dependence in the mþ factor and it is in good
agreement with the MC prediction.
Finally, we should compare our results with the corre-

sponding results for two linearly coupled Ising models.
Denoting by Si and Ti the spins in the two layers, a phase
with order parameter hSTi ≠ 0 cannot exist (in the para-
magnetic phase with hSi ¼ hTi ¼ 0). The same is occur-
ring for the two linear coupled XY models treated in this
Letter; i.e., there is no phase with order parameter
hcosðϕþ ψÞi, in agreement with the Mermin-Wagner
theorem. What is present is indeed a BKT of the pairs,
specific of coupled two-dimensional systems with Oð2Þ
symmetry, not contradicting the previous result.
Conclusions.—We investigated the occurrence of a BKT-

paired phase in coupled XY models, corresponding to an
exponential (algebraic) decay for the one-body (two-body)
correlation functions. We found that the third phase is
present even for very small linear couplings between the
layers, within the precision of our simulations. Further-
more, we presented an RG treatment which was found to be
in agreement with the aforementioned results. Our inves-
tigation calls for a more systematic study of finite size-
scaling effects in the J − K phase diagram such as, e.g.,
precision studies [46,47] at larger lattice sizes of points
belonging to the C phase of Fig. 1(a). Experiments with
coupled 2D ultracold gases are performed on lattices with a
linear size of tens up to a few hundreds of lattices sites,
therefore motivating the study of the presence of the BKT-
paired phase in realistic setups.
Furthermore, an exciting perspective is represented by a

comparison of the present results with the ones obtained for
other types of couplings, such as quartic ones, and to
consider the case of different J’s in the layer. A systematic
analysis for small K done at larger sizes would also be
important in clarifying whether the critical value for the
presence of the BKT transition is zero as the RG approach
seems to suggest. Moreover, we think as well that it would

be a deserving subject of future investigations to further
analyze the order to quasi-order transition between phases
B and C of Fig. 1. Finally, we mention that an interesting
perspective is represented by the comparison of our results
with analytical findings from suitably derived theories
where two sine-Gordon models are coupled in a way fixed
by the microscopic coupling.
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