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Abstract

Single-cell RNA and ATAC sequencing technologies enable the examination of gene

expression and chromatin accessibility in individual cells, providing insights into cellular phe-

notypes. In cancer research, it is important to consistently analyze these states within an

evolutionary context on genetic clones. Here we present CONGAS+, a Bayesian model to

map single-cell RNA and ATAC profiles onto the latent space of copy number clones. CON-

GAS+ clusters cells into tumour subclones with similar ploidy, rendering straightforward to

compare their expression and chromatin profiles. The framework, implemented on GPU

and tested on real and simulated data, scales to analyse seamlessly thousands of cells,

demonstrating better performance than single-molecule models, and supporting new multi-

omics assays. In prostate cancer, lymphoma and basal cell carcinoma, CONGAS+ suc-

cessfully identifies complex subclonal architectures while providing a coherent mapping

between ATAC and RNA, facilitating the study of genotype-phenotype maps and their con-

nection to genomic instability.

Author summary

Cancer cells, compared to normal ones, often acquire or lose chromosomes and, in the

context of cancer progression and treatment response, copy number alterations can drive

subclonal cancer dynamics. Here, we seek to use single-cell sequencing data from both

RNA and ATAC data to determine tumour subclones associated with copy number alter-

ations. We develop a Bayesian model that links a latent copy number state per subclone

with transcript abundance (RNA) and chromatin accessibility (ATAC), and can cluster

cells into subclones with similar copy number profiles. Our model works when input cells

are sequenced independently, or with modern multi-omics protocols. By linking
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aneuploidy to gene expression and chromatin conformation, our approach provides a

novel way to map genotypes with phenotypes to study the molecular basis of cancer

heterogeneity.

Introduction

Cancer is a disease where multiple sub-clones evolve under positive, neutral and negative selec-

tion forces, with the complex molecular configuration of each sub-clone determining selection

dynamics [1–3]. We can probe a number of such configurations using modern sequencing

assays—from DNA-seq we measure the genome, from RNA-seq the transcriptome and from

ATAC-seq the epigenome—which, in these days, are increasingly applied at the single-cell

level. Moreover, with the recent adoption of multiomics assays, we can also probe different

molecules (e.g., RNA and ATAC) from the same cell [4–6]. Single-cell data, combined with the

development of patient-derived model systems [7], opens the possibility of studying complex

subclonal configurations across different molecules, with key translational repercussions [8].

From a computational perspective, this type of analysis has sparkled a number number of

important data integration challenges (see the review in [9]). Extending earlier works of [10],

in this paper we approach a problem of unsupervised diagonal integration [11], mapping sin-

gle-cell RNA (scRNA-seq) and ATAC (scATAC-seq) data of independent or multiomics assays

in a biologically-interpretable latent space. Contrary to biology-unaware models such as varia-

tional autoencoders or factor analysis [12–15], we link RNA and ATAC on the same DNA

configuration because RNAs are produced by transcription of a DNA template, and ATAC is

an assessment of chromatin conformation, a physical feature of the molecule. Reasoning that

both the transcriptional activity of a gene, as well as the amount of open chromatin are influ-

enced by the number of DNA copies of a gene, we attempt at determining the latent copy

number profile of a cell as a DNA feature [10]. Therefore, we map RNA and ATAC measure-

ments on a common latent space reflecting the number of DNA copies, a proxy for total copy

numbers, while clustering cells into subclones with similar profiles.

Copy number inference algorithms for scRNA-seq or scATAC-seq have been indepen-

dently investigated for both molecules [16–22]. For scRNA-seq, we recently introduced

CONGAS [10], a probabilistic method to infer copy number subclones. CONGAS improved

over competing methods that decoupled copy number inference from clustering and, in this

work, we follow a similar rationale to develop CONGAS+, which augments scRNA-seq with

scATAC-seq data in order to resist statistical confounders such as allele-specific expression

and post-transcriptional regulation [23–25]. CONGAS+ can integrate independent/multiomics

scRNA-seq/scATAC-seq measurements using a biology-informed latent space model. Using

probabilistic programming on GPUs [26] as in CONGAS, stochastic variational inference and

gradient descent allow CONGAS+ to analyse tens of thousands of cells seamlessly. In this

paper, we prove this by analysing a B-cell lymphoma (*6400), a basal cell carcinoma (*2400

cells), a prostate cancer cell line (*16000 cells) and a gastric cell line (*7000 cells) in various

combinations of scRNA-seq and scATAC-seq assays.

Materials and methods

The CONGAS+ statistical model

CONGAS+ is a Bayesian model to infer and cluster, from scRNA-seq and scATAC-seq of inde-

pendents or multiomics assays, phylogenetically related clones with distinct Copy Number
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of CONGAS+ substitutes the earlier CONGAS, and

is provided as 1) a Python implementation for the

inference models, available at https://github.com/

caravagnalab/CONGASp 2) an R implementation

for data processing and visualisation functions,

available at https://github.com/caravagnalab/

rcongas The tool comes with example data,

vignettes for basic analyses and an online manual

reachable from https://caravagnalab.github.io/

rcongas/. The BCC scRNA and scATAC dataset

were downloaded from Gene Expression Omnibus

(GEO), under accession numbers GSE123814 and

GSE129785 respectively. BCC whole exome

sequencing data was downloaded from SRA under

accession number PRJNA533341. scRNA data for

the gastric cell line was obtained from GEO under

accession GSE142750, and scATAC was

downloaded from SRA under accession

PRJNA674903. 10x multiome data for the B-cell

lymphoma was accessed from the 10x genomics

website. scRNA and scATAC data for the prostate

cancer cell line was downloaded from GEO

(GSE168669). The code to reproduce the analyses

in the text, as well as the data, is available at the

GitHub repository https://github.com/caravagnalab/

CONGASp_supplementary_data.

Funding: This work was funded by the CRUK/AIRC

Accelerator Award #22790 to (MA, AG and GC),

“Single-cell Cancer Evolution in the Clinic”, by AIRC

under MFAG 2020 - ID. 24913 project – P.I.

Caravagna Giulio to (GC), by the European

Commission Program PPPA2027, PPPA-2021-

AIPC #LC-01815952/101052609 to (MA) and by

the 2021 FAQC program of the Universitá degli
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Alterations (CNAs, Fig 1A). Clones distinguished by point mutations, which are often those

used to determine clonal evolution patterns, cannot be identified by this approach. However,

CNA-associated clones can still be linked to selection and associated to clonal expansions (Fig

1B). In cancer (Fig 1C), this means to either i) separate tumours from normal cells, ii) or detect

distinct tumour subclones. Importantly, this deconvolution unravels the composition of a

sample (Fig 1D) making it easier to follow up clone-specific downstream analyses (e.g., cell

type identification, differential expression or chromatin). By default, CONGAS+ scans for chro-

mosome arms CNAs, but a custom segmentation can also be used; the idea is to search for

multimodalities (i.e., peaks) in the RNA/ATAC data distributions. One caveat to detect peaks

from RNA compared to ATAC is overdispersion, as transcript counts might be more difficult

to separate for peak detection (Fig 1E). The Bayesian model however encodes a customisable

categorical prior for discrete CNAs in each segment and cluster, and pools segment-level data

to strenghten the signals (Fig 1F). Compared to its predecessor CONGAS, this model leverages

a far stronger statistical signal by joining ATAC/RNA to determine discrete CNAs, whereas

the original model was continuous, which made it difficult to compare copy number profiles.

The model is a parametric Dirichlet mixture for K� 1 clusters, determined from counts

data X = (XR, XA) of N 2 N RNA and M 2 N ATAC cells, mapped to I 2 N segments (Fig 2).

Input X can be either discrete raw counts, i.e. XR 2 NN�I
0

and XA 2 NM�I
0

, or continuous values

normalised by library size, i.e., XR 2 RN�I
and XA 2 RM�I

. The distinction among a multio-

mics CONGAS+ (Fig 2C), and a flat CONGAS+ where cells are independent (Fig 2B) reflects in

the model latent variables z used to determine cell assignments to clusters, summarised from a

set of K-dimensional mixing proportions p 2 RK
. For the flat CONGAS+ the z are independent

with dimensions N and M (z = (zR, zA)), for the multiomics the z are shared across RNA and

Fig 1. The CONGAS+ approach. A,B. Two CNA-associated tumour subclones C1 and C2, evolutionary nested (C2 descend from C1), together with a

normal population N. Subclone C1 is associated with a loss of heterozygosity (LOH), C2 with an amplification (AMP). C. CNA profile for C1, C2 and N.

In the first segment all the populations are diploid, in the second both C1 and C2 have a single-copy genome and in the third segment C2 has a triploid

genome. D. Clone proportions in a sequencing assay. E. The inference from RNA and ATAC distributions pose different challenges. One of the two

(here RNA) might show weaker multimodal signals, making clustering a more challenging task. A joint assay has the advantage to gain the best of the

two data types. Here we figure a stronger bimodal signal in ATAC. F. On top, cartoon ATAC/RNA signal for each segment. In the first, all clones have

similar signals; in the second, normal cells have more ATAC/RNA; in the third, C2 has more ATAC/RNA. RNA signals are more overdispersed, as in

panel (E). On bottom, Bayesian categorical priors for the segment values with most mass at 2 (diploid).

https://doi.org/10.1371/journal.pcbi.1011557.g001
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ATAC and have a unique dimension N. In the flat model it is however possible to share the

mixing proportions of among the two types of data, so to ensure that the same proportion of

cells in the two data types are assigned to each cluster.

As in other methods [10, 18], the DNA copies of a segment is a linear predictor of X, i.e., if

the latent number of DNA copies of a segment i 2 {1, . . ., I} is c, we predict r> 0 RNA tran-

scripts and a> 0 chromatin peaks in the segment as r / c yRi and a / c yAi , where each y
t
i 2

Rþ (t = R or A) is a segment-specific rate to observe RNA transcripts and ATAC peaks. The

generic CONGAS+ likelihood, for either RNA or ATAC after marginalizing the local latent var-

iable z, is defined as

pðXjθ; π;ΦÞ ¼
YN

n¼1

XK

k¼1

πk

YI

i¼1

fkðxn;ijθi;Φk;iÞ ð1Þ

Fig 2. CONGAS+ graphical models. A Design of CONGAS+, which can be applied to experimental settings where scRNA-seq and scATAC-seq data are

obtained from independent cell splits, or from a multiomics assay (i.e., both measures come from the same set of cells). The input segmentation for

CONGAS+ can follow arm-level CNAs, or the profile obtained from an optional bulk sequencing assay. B, C Probabilistic graphical models represent

observed and latent (i.e., inferred) variables for the flat CONGAS+ (B) and the multiomics (C) extension. Colours encode the ATAC and RNA specific

variables, while variables in black are shared. Parameters are learnt via stochastic variational inference in Pyro [26].

https://doi.org/10.1371/journal.pcbi.1011557.g002
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where p 2 RK are K-dimensional mixing proportions, xn,i the counts for the n-th cell and the

i-th segment, and F is a K × I ×H tensor for the probability distribution over latent CNAs,

which here have h = {1, 2, . . ., H} possible states (H maximum copies). This assumption is jus-

tified by the resolution of current single-cell technologies. To map independent scRNA-seq/

scATAC-seq on the same set of clusters, Φ is shared across data types, and f is a generic obser-

vational model that depends on X.

For scRNA-seq/scATAC-seq integer counts xn,i mapped to the i-th segment of the n-th cell,

the function f associated with the k-th mixture component is a Negative Binomial parameter-

ized by mean and overdispersion, i.e.,

fkðxn;ijθi;Φk;iÞ ¼ NegBin xn;i

�
�
�
�

mk;i;n

mk;i;n þ ri
; ri

 !

ð2Þ

The mean depends on the expected counts per allele (θi, learnt from data), the library size

factor of the cell (rn 2 R
þ

, observed), and the linear combination (dot product) of the latent

CNAs, i.e.,

mk;i;n ¼ ðrn �yiÞ|fflfflffl{zfflfflffl}
Normalization

�

�
X

h

Fk;i;h � h
�

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
CNA mixture

ð3Þ

where we are using a nested mixture of CNAs with value h weighted by their probability Fk,i,

h—i.e., the probability to detect CNA value h, in segment i and cluster k. The overdispersion of

this segment is instead learnt from data. At the level of priors, the probability for each CNA

Fk,i,h is a Dirichlet distribution with parameter an |H|-dimensional vector α, which can be set

to any input predefined CNA profile. By default, if we expect p copies for a segment, we assign

to the p-th entry value 0.6, and to the remaining 0.1 to skew the Dirichlet (the sensistivity to

these values is discussed in S1 Text). Let data be X = (XR, XA) the joint RNA/ATAC CONGAS+
log-likelihood has a shrinkage form

pðXjθ; π;ΦÞ ¼ l � pðXRjθR
; πR

|fflffl{zfflffl}
OR

;ΦÞ þ ð1 � lÞ � pðXAjθA
; πA;

|fflfflffl{zfflfflffl}
OA

ΦÞ
ð4Þ

where 0� λ� 1 (l 2 R) is a fixed hyperparameter to weight the likelihood of both data types,

and OR and OA are the set of parameters for RNA/ ATAC. Please see S2 Text for the full model

formulation. The parameters are learnt via stochastic variational inference in Pyro [26], where

we reparameterize the categorical Φ with a Gumbel-Softmax (S2 Text). The Gumbel-Softmax

is a continuous approximation to the discrete distribution, and offers an advantage for stochas-

tic variational inference. This continuous relaxation in fact enables the application of gradient-

based optimization such as backpropagation, making the training of models with discrete vari-

ables more efficient and scalable, avoiding high-variance samplings from the categorical [27].

The inference returns the full posterior distribution over CNAs, cell clustering assignments

and a Maximum A Posteriori (MAP) for all other parameters. The number of clusters K> 0 is

optimised using standard score functions [28] such as the Bayesian (default) or Akaike Infor-

mation Criteria (BIC, AIC), as well as the Integrated Completed Likelihood (ICL) [28]. Given

the complete log-likelihood

LðXÞ ¼ ln pðXjy; p;FÞ ð5Þ
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and the number of parameters v for a model with n samples, the scores are

BICðXÞ ¼ v lnðnÞ � 2LðXÞ

AICðXÞ ¼ 2 v � 2LðXÞ

ICLðXÞ ¼ BICðXÞ þHðzÞ

ð6Þ

where z are the latent variables for cell assignments, and H(z) their entropy [29]. When the

number of data points is greater than the number of model parameters, we use BIC as default

for model selection. The full formulation of our model, which is implemented in 2 open-

source R and Python packages, allows the user to customise the inference (e.g., select specific

score functions or pre-filter segments that contain multi-modal signals).

Results

Model validation and parameterization

Comparison to alternative methods. We tested the plain CONGAS+ using synthetic sim-

ulations parameterised from two 10x genomics datasets of human peripheral blood mononu-

clear cells (PBMC) [30, 31]. After quality check and clustering we isolated PBMC monocytes

(for scRNA-seq) and neutrophils (for scATAC-seq) using MAESTRO [32], and obtained

parameters to simulate RNA (with SPARsim [33]) and ATAC (with simATAC [34]) profiles

for putative normal cells. We simulated CNA segments and a clonal architecture for trees

with 2� K� 10 clones, adding n� 3 new segments per clone following the tree structure.

We generated clusters mixing proportions from a uniform Dirichlet, and RNA and ATAC

counts mapped to CNAs were corrected assuming a linear model. With 10 replicas for each

K, we created 90 datasets with 1500 scRNA-seq and 1500 scATAC-seq cells each. Please see

S3 Text for additional details on synthetic data simulations). We applied CONGAS+ with

K� 10, BIC for model selection and a shrinkage parameter λ = 0.5, since the same multi-

modal signals were simulated for ATAC and RNA. We measured i) the Adjusted Rand Index

(ARI), i.e. the similarity between the known and inferred cluster memberships, and ii) the

mean absolute error (MAE) between simulated and inferred CNAs. We reported in Fig 3A–

3C the CNAs and low dimensionality representation of ATAC and RNA counts for an exam-

ple dataset with K = 3. For the same cells, Fig 3D and 3E show the count distributions for a

segment located on chromosome 3 and 8, characterised by an LOH and an amplification in

distinct subclones. CONGAS+ did identify the simulated clones, with density plots mimicking

the trends in the data perfectly (Fig 3F and 3G).

Across all tests we observed a very good performance (median ARI> 0.7 and MAE< 1)

suggesting that we can retrieve clones assignments and their CNAs (Fig 4A and 4B). We also

measured (Fig 4C) run times scaling up to 100.000 cells, observing that CONGAS+ on GPUs is

extremely fast.

The same test has been carried out against alternative tools for scRNA-sq or scATAC-seq

data (Fig 4A). In particular, we measured ARI for the RNA-based tool copyKAT [19], and the

ATAC-based tool copy-scAT [22]. Since these tools require normal cells to infer CNAs, we

included a cluster of normal cells in each dataset. For copyKAT, which can only classify nor-

mal and tumour cells, we also constructed dendrograms from the inferred copy number

matrix, and clustered cells with dynamicTreeCut [35]. The performance of the competing

tools was however quite disappointing, and one limitation is the lack of synthetic tests in the

corresponding publications that we could use. While we relied on external tools to generate

baseline ATAC/RNA signals ([33, 34]), the explicit definition of simulations that can model
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CNAs in scRNA-seq and scATAC-seq is needed to obtain better performance comparison

estimates across all these tools.

Shrinkage to correct uneven ATAC/RNA data quality. RNA signal quality can be more

dispersed (Fig 1E) than ATAC one due to differences in sample preparation, library size, gene

expression variability, and sequence-specific biases [36, 37]. Overdispersion is therefore a sta-

tistical confounder to separate clusters from scRNA-seq data alone. We selected a dataset with

this feature, gathering *1800 scRNA-seq and *600 scATAC-seq profiles from the Basal Cell

Carcinoma (BCC) sample SU008 [38, 39]. We created a dataset of tumour and normal cells in

even proportions, restricting the genome to two diploid areas (tumour equal to normal), and

two aneuploid (tumour different from normal) areas with bimodal signal poorly evident in

RNA (Fig 4D). We bootstrapped the genes in each segment, and compared 30 inferences with

Fig 3. Simulated scATAC-seq/ scRNA-seq data. A. Segments breakpoints and copy number values of a synthetic dataset with K = 3 clusters. Only

chromosomes with one or more CNAs are displayed in the plot. B,C. Low dimensional representation of the scATAC-seq and scRNA-seq profiles in

panel (A); cells are colored by simulated clone. D,E. Data distributions for a segment of chromosome 3, with a loss of heterozygosity in one clone, and

for a segment of chromosome 8, with an amplification in a different clone. F,G. Probability density functions estimated by CONGAS+ (F) and data

histogram (G) for the chromosome 8 segment in panel (E).

https://doi.org/10.1371/journal.pcbi.1011557.g003
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CONGAS+ (RNA/ATAC), CONGAS (RNA) and copyKAT (RNA). Using a joint ATAC-RNA

assay, CONGAS with λ = 0.1—i.e., weighting 90% the ATAC more than the RNA—detected

CNAs that distinguish tumour from normal cells, obtaining a median ARI *0.7 on ATAC but

a lower ARI on RNA (Fig 4E). In general, due to the weaker RNA signal, all RNA-based tools

struggled separating tumour and normal cells, with copyKAT and CONGAS unable to detect

the split (Fig 4E), and copy-scAT failing to execute with standard parameters. Overall, this

shows that with a joint assay we can detect the latent clone composition even if one of the two

data types has weak signal quality.

The shrinkage hyperparameter λ can therefore be used to weigh the evidence across data

types, to correct for uneven signal quality. This serves as a natural hyperprior, which we opti-

mised—via simulations—to select a default value reasonable for most cases. First, we collected

BCC data from samples SU008 and SU006 [38, 39]; SU008 shows a multimodal signal in

ATAC while SU006 in both ATAC and RNA. For SU006, we selected two diploid segments

and two loss of heterozygosity (LOH) segments (Fig 5F and 5G), and scanned λ = 0.05, 0.15,

. . ., 0.95. Using K = 2 (known true value), we performed 10 runs to compare the ARI for clus-

ter assignments against tumour/normal labels [38, 39]. For SU006, we observed RNA/ATAC

inferences stable against λ, with tumour and normal cells always separated (Fig 5C and 5H).

For SU008, instead, only ATAC exhibits a neat bimodal distribution (Fig 5B), while we

observed (Fig 5C) that for λ< 0.5 the ATAC ARI is stable at� 0.75, whereas it decreases as λ
� 0.95. Inferences for the best/ worst ARI (Fig 5D and 5E) show discordant tumour and

Fig 4. Results on simulated data. A. Adjusted Rand Index (ARI) among simulated cells and CONGAS+ clustering assignments, for 90 datasets with

1500 cells for scRNA-seq and 1500 for scATAC-seq. CONGAS+ performance is compared with copyKAT [19] and copy-scAT [22]. B Mean Absolute

Error (MAE) among simulated and inferred copy number profiles. C. Computation times (in seconds) for CONGAS+ with up to 100, 000 cells, on CPU

and GPU. D. Example counts of a bootstrap sample for an amplified segment with bimodal ATAC signal, and unimodal RNA signal (see Fig 1E). E.

ARI boxplot for copyKAT, CONGAS and CONGAS+ (computed on scRNA and scATAC separately) in a test simulated as in panel (D).

https://doi.org/10.1371/journal.pcbi.1011557.g004
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normal assignments. With λ� 0.25 CONGAS+ did not fit the ATAC bimodality, merging 63%

of tumour and 90% of normal cells together. Instead, for λ< 0.25—more weight assigned to

ATAC—assignments retrieved are perfect. As expected, the model is never able to separate

tumour and normal cells from RNA, due to its unimodal distribution. Overall, these tests show

that if the quality of ATAC/ RNA are different λ can indeed act as a shrinkage effect, and

CONGAS+ offers a principled approach based on likelihoods to inspect the optimal λ, which is

set by default to 0.5. We provide a guideline to tune its value based on the results of the default

run, that considers how well the the inferred distributions fit the data in both modalities (See

S4 Text).

Matching RNA and ATAC subclones against single-cell DNA

The most effective technology to detect single-cell CNAs is certainly single-cell DNA sequenc-

ing (scDNA-seq) because it directly accesses DNA. This technology is however expensive and

laborious, and it is therefore interesting to assess how much we can retrieve from scRNA/scA-

TAC sequencing of a sample with matched scDNA-seq because, as alternative technologies,

they have the advantage of measuring cellular phenotypes.

For the gastric cancer cell line SNU601, we collected scDNA-seq and scRNA-seq from [40],

and scATAC-seq from [20]. In [20], 6 subclones (labeled 1 to 6) were determined from 10

copy number segments using scDNA-seq, and they were matched against scATAC-seq data.

From these subclones, we merged clones 3 and 6 (still labeled 6) that were associated with

Fig 5. CONGAS+ shrinkage effect. A,B. Segments with bimodal signal (tumour versus normal) in both scRNA-seq and scATAC-seq of the Basal Cell

Carcinoma (BCC) sample SU008 [38, 39]. C. Adjusted Rand Index (ARI) for CONGAS+ inference as a function of different values of the shrinkage

coefficient λ. Higher values of λ favour RNA over ATAC, and viceversa. The maximum ARI is achieved for low λ and ATAC. D,E. ATAC and RNA

profiles on the segments in panel (C) show that for low λ cells are split into 2 ATAC clusters. In RNA, instead, regardless of λ the cells can be split, as

suggested in Fig 1E. F-H. From sample SU006 [38, 39], instead, we obtain a good clustering both in RNA and ATAC data.

https://doi.org/10.1371/journal.pcbi.1011557.g005

PLOS COMPUTATIONAL BIOLOGY A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011557 November 2, 2023 9 / 19

https://doi.org/10.1371/journal.pcbi.1011557.g005
https://doi.org/10.1371/journal.pcbi.1011557


segments with less than 5 genes. We ran the plain CONGAS+ on scATAC-seq and scRNA-seq

using the segmentation and CNA-priors determined from the most abundant scDNA-seq sub-

clone in [20] (subclone 2). Our analysis (λ = 0.5, scored by BIC) identified 4 subclones which

we used to verify that CONGAS+ (i) maps RNA/ATAC cells to the corresponding scDNA-seq

clones and (ii) infers the correct integer copy number values for each clone.

First, we computed the overlap between each CONGAS+ cluster and scDNA-seq clone and

observed that the majority of cells in each cluster belong to one scDNA-seq clone (Fig 6A).

The same cluster-clone correspondence was obtained by the mean absolute deviation between

the integer copy number profiles (Fig 6B), which shows that CONGAS+ did retrieve very simi-

lar clone assignments and CNAs (full profiles in Fig 6C). ATAC counts projection on a low-

dimensional manifold shows that cells in a CONGAS+ cluster are close in the embedding,

implying a correlation between genotype and phenotype in the cell line (Fig 6D and 6E). As an

example of the clones identified by CONGAS+, in Fig 6F and 6G we show the counts distribu-

tions of ATAC clusters on the q-arm of chromosome 11, which are also present in RNA data

(Fig 6H).

The advantage of ATAC/RNA over DNA is the possibility of performing phenotype-level

differential analyses. We tested for differential gene expression (Wilcoxon test) among

CONGAS+ clusters C3 and C4, which shared less markers and therefore seemed more distinct

in terms of phenotypes. This analysis revealed processes active in each subclone (Fig 6I),

such as the de-regulation of CLDN18, previously reported in gastric cancer [41], and

DHRS2, also associated with gastric carcinogenesis [42]. Among the top de-regulated genes

(absolute log fold change above 0.5 and Wilcoxon test p-values below 0.01) we found CCNI,

which is involved in the induction of angiogenesis and whose up-regulation was correlated

with lymph-node metastases in gastric cancer [43]. Moreover, we fond REG4, a gene known

to be up-regulated in gastric cancer [44]. At the ATAC level, we identified binding motifs

related to differentially expressed ATAC peaks (Fig 6J), identifying Krüppel-like factors,

DNA-binding transcriptional regulators with multiple functions regarding proliferation,

migration, inflammation and angiogenesis [45], which are essential for tumour development

[46]. These results suggest that different mechanisms promote tumour growth in different

clones, and our phenotype-level characterisation is a major improvement of a plain DNA-

based analysis from scDNA-seq.

Tumour-normal deconvolution from ATAC/RNA multiomics

Multiomics ATAC/RNA assays represent the ideal test-bed for CONGAS+, as cells are

phased against the input measurements. While this type of assay are yet to become common

practice, we sought to test our model against B-cell lymphoma data [47] sequenced with the

10x multiome kit [6]. We carried out two types of tests on *6400 cells with annotated cell

types provided by [47]. One test used the multiomics version of CONGAS+ which shares the

latent variables across RNA and ATAC, and the other exploits the plain version where the

variables are independent. We aimed at measuring, besides the composition at the subclonal

level with the multiomics CONGAS+, if the plain model splits cells consistently with the joint

assay.

First, we observed that cell types were distinguishable in a joint ATAC/RNA low-dimen-

sional representation [48] (Fig 7A). In particular, we noticed two tumour subclones (B and B-

cycling cells), and normal cells split into Monocytes, T, T-cycling and B cells. Biologically,

while copy numbers could tell apart normal from tumour cells, the distinction among B and

B-cycling cells is more likely linked to cell cycle, a byproduct of transcriptional regulation not

necessarily linked to CNAs [49].
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Fig 6. ATAC/RNA CONGAS+ analysis versus scDNA-seq. A,B. Mapping among scDNA-seq clones (ground truth) detected from a gastric cancer cell

line (SNU601 [20]), and clusters inferred by CONGAS+ (λ = 0.5) from independent ATAC/RNA data, using the segmentation of the most prevalent

clone from scDNA-seq. The largest cluster per mapping is highlighted to denote that there is almost a one-to-one mapping between the analyses, as is

also suggested by the absolute mean absolute deviation between copy number profiles of the two analyses. C. CNA profiles for the matched analyses are

in large agreement, excluding small segments on chromosomes 3, 4 and 20. D,E. A UMAP low-dimensionality representation shows good overlap

between analyses. F,G. Comparison between the ATAC count distribution on the p-arm of chromosome 20, coloured by ground truth clones and

CONGAS+ clusters. H. RNA distribution on the p-arm of chromosome 20 as in panels F-G shows concordance among ATAC and RNA. I,J. Differential

gene expression volcano plot (Wilcoxon test) for two CONGAS+ clusters. and binding motifs associated with differently expressed ATAC peaks in both

clusters.

https://doi.org/10.1371/journal.pcbi.1011557.g006
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The multiomics CONGAS+ (λ = 0.2, scored by BIC) splits tumour and normal cells (Fig 7B

and 7C) with K = 2 with arm-level segments. As Bayesian priors, we specified vague diploid

values with slightly higher concentration mass for the diploid cluster, which encoded our

knowledge of normal cells in the assay. The profiles inferred (Fig 7D) for normal cells are

Fig 7. Application of CONGAS+ to B-cell lymphoma multimodal data. A. Cell types annotated in a low-dimensionality UMAP representation of

*6400 RNA and ATAC single-cell data from a 10x multiomics assay [47]. B,C. UMAP coloured according to the two clusters inferred by CONGAS+
(multiomics model) from RNA/ATAC data, using an arm-level segmentation. The analysis separates perfectly tumour and normal cells. D. Copy

number profiles for the two clusters identified by CONGAS+; segments with no lines have the same segments in all clusters. E-F. Normalised counts for

the q-arm of chromosome 3, where the tumour is amplified, and the p-arm of chromosome 6, where the tumour has a loss. G-H. Differential testing for

RNA counts (G) and ATAC peaks (H) across the two clusters. I. Comparison among clustering assignments the multiomics and flat CONGAS+.

https://doi.org/10.1371/journal.pcbi.1011557.g007
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consistently diploid, while the tumour have an amplification (trisomy) on the p-arm of chro-

mosomes 7, 9, and the q-arm of chromosomes 3, 9, 18. Moreover, tumour cells have a loss of

one allele, and henceforth of heterozygosity, in the p-arm of chromosome 17 and the q-arm of

chromosome 22. In all other chromosomes tumour and normal cells are diploid heterozygous.

The statistical signals of some of these chromosomes were quite unequivocal (Fig 7E and 7F).

We performed differential analysis for both RNA and ATAC, comparing tumour and nor-

mal cells for RNA transcripts (Fig 7G) and open chromatin peaks (Fig 7H). We identified,

from RNA, differences in the expression of genes that distinguish normal from lymphoma

cells (absolute log fold change above 0.5 and Wilcoxon test p-values below 0.01). The strongest

signals were for INPP4B, a tumour suppressor gene [50] which we find down-regulated in

tumour cells, LCP2, a prognostic gene for metastatic melanoma-infiltrating CD8+ T cells [51],

MEF2C, a gene linked with lymphoma pathogenesis [52], and FOXP1, a gene that has been

linked with worse survival in of diffuse large B-cell lymphomas [53]. From ATAC, we found

most signals on chromosomes 3, 7 and 9 Fig 7H, which are also affected by CNAs. We ranked

chromosomes by deferentially-opened peaks and find also chromosomes 1, 6 and 11 immedi-

ately following the segments linked with CNAs, suggesting differences in chromatin accessibil-

ity not directly linked to copy number events. Interestingly, clustering assignments of

multiomics and plain CONGAS+ were consistent (Fig 7I), suggesting that even when we do not

treat cells as paired observations, we can still retrieve good clone assignments. Overall, even if

we did not detect CNA-associated tumour subclones in this lymphoma, this case study shows

the combined power of ATAC and RNA, a joint assay that, to the best of our extent, has not

yet been exploited before to study CNAs in single cells.

Drug-resistance associated with copy number subclones

Phenotypes associated with CNAs and chromosomal instability can sometimes confer resis-

tance against anticancer drugs [54]. Using data of the prostate cancer cell line LNCaP gener-

ated from [55], we tested if CONGAS+ could identify CNA-associated subclones in a drug-

screening assay. In the experimental design of [55], single-cell ATAC/RNA data were gener-

ated for LNCaP (parental), and then for one line treated 48 hours with androgen receptor

antagonist enzalutamide (ENZ), and two resistant lines (RES-A and RES-B) derived after

long-term exposure to ENZ and diarylthiohydantoin RD-162, respectively (Fig 8A). To define

segments and priors we used LNCaP cytogenetics data from the DepMap portal [56]. Then we

merged the 4 samples (parental, ENZ-48, RES-A, RES-B), and filtered out segments with more

than 10% of cells showing zero counts.

The plain CONGAS+ (λ = 0.5, scored by BIC) identified 5 clusters, with parental and ENZ-

48 cell lines clustered together, and the two resistant cell lines split in 4 clusters Fig 8B. This is

consistent with the experimental design: ENZ-48 has not yet acquired resistance due to its

short-term exposure to ENZ and clusters with parental cells, whereas cells from the other two

lines are fully resistant thanks to multiple CNAs. CONGAS+ inferred CNAs private to each

resistant line, such as an amplification on the p-arm of chromosome 1 (Fig 8D), as well as an

amplification on the p-arm of chromosome 6 that is private to clusters C3 and C5 (Fig 8E).

Interestingly, among the inferred clusters C3 and C5 have the same CNAs, apart from an

amplification on arm p of chromsome 1 (private to C3). We performed differential expression

testing to found that cluster C3 over-expresses ENO1, BNIP3, PGK1 and LDHA, 4 genes asso-

ciated with hypoxia (absolute log fold change above 0.5 and Wilcoxon test p-values below

0.01), that have been previously associated with cancer progression. From the same analysis

comparing sensitive cells in C1 to resistant cells in the remaining clusters (Fig 8F), we detected

NEAT1 up-regulation, a gene that promotes gastric cancer angiogenesis [57]. We also
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Fig 8. CNA-associated drug resistance with CONGAS+. CONGAS+ application to a prostate cancer dataset from [55], composed of

a mixture of four cell lines with 7600 scRNA-seq cells and 8800 scATAC-seq cells. A. Cartoon representing the design of the drug

resistance experiment. B. Distribution of the 5 clusters inferred by CONGAS+ across the original cell lines. C. copy number profiles

inferred by CONGAS+ for each cluster. D,E. density plot and histogram of normalised counts coloured according to cluster

assignments for chromosome 1p (D) where an amplification event is private to cluster C3, and chromosome 6p (E) where an

amplification is shared by clusters C3 and C5. F,G. Volcano plot showing differentially expressed genes between C1 and the rest of

the cells (F) and between cells in C3 and cells in C2 and C4. H. Phylogenetic tree inferred with MEDICC2 [60], using CNAs inferred

by CONGAS+. Tips are labeled according to the inferred cluster, and edges are labeled with the number of events that accumulate in

the corresponding branch.

https://doi.org/10.1371/journal.pcbi.1011557.g008
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compared the resistant subclone C3 to C2 and C4 (Fig 8G), identifying LMO4 upregulated in

C3, a marker of cell proliferation and invasion [58], and EFNA5 up-regulated in C2 and C4, a

gene regulating cancer cells invasion [59]. As in other datasets, this suggests different mecha-

nisms of tumour progression active in different clones.

Finally, we performed a phylogenetic tree reconstruction among the 5 clusters using MED-

ICC2 [60]. The evolutionary relationships between clones (Fig 8H), and the number of CNAs

that distinguish parent from child nodes, reveals the expected architecture. Cluster C1 (sensi-

tive cells) is the closest—in terms of evolutionary distance—to the root, and has 3 copy number

events, two of which are shared with all other clusters. Next, we find that 8 additional alter-

ations are shared among resistant clones, and then there is a subset of CNAs which distinguish

between the different subclones identified by CONGAS+. Overall, this analysis shows that line-

age relations associated with CNA-associated subclones can be effectively detected by

CONGAS+ and longitudinal data, posing the bases for more systematic investigations on the

causal roles of CNAs in promoting therapy resistance.

Discussion

In cancer, the relation between genotypes and phenotypes is extremely complex and inti-

mately related to the underlying evolutionary dynamics of cancer cells and the environment.

To understand this mapping, single-cell technologies can be adopted to achieve a fine-

grained resolution of the measurements, but methods are required to resolve signals in high-

dimensional noisy data. In this paper, we approached this problem from RNA and ATAC

single-cell sequencing, inferring latent tumour subclones associated with CNAs, a specific

type of complex genomic mutation that can determine the outcome of cancer dynamics.

CONGAS+ is the first Bayesian model that can jointly analyse RNA and ATAC to infer CNAs

while clustering cells, and contains a formulation that explicitly supports multiomics assays.

The model, in general, has a shrinkage formulation to weigh the evidence between the two

data types, a feature motivated by our experience. In fact, in real-world analyses, we often

observed scRNA-seq associated with quite dispersed signal, a phenomenon that cannot be

fully resolved by just using negative binomial distributions with overdispersion. While we do

not have a final explanation on the difference among the data types, one consideration could

be that ATAC is a direct measurement of DNA, and therefore is more faithful to genome

copy numbers, while RNA is a byproduct of genome composition. Regardless, the tool is

designed to support custom parametrisation that can be used to get the best of the data at

hand.

Using simulations, in fact, we assessed that CONGAS+ is robust and accurate in retrieving

both the clonal composition and corresponding CNAs. This was further confirmed with real

data, where the method was able to extract evolutionary relations that are difficult to retrieve

with tools that analyse just RNA or ATAC. Moreover, our model could also run seamlessly on

multiomics data where RNA and ATAC are measured from the same cell, a scenario that will

likely become more common in the future. In general, the deployment of GPUs also allowed

to analyse over 100.000 cells in matters of seconds, a feature that will become crucial when

datasets become larger.

Following our stream of works, as next steps we plan to introduce further data types, e.g.,

methylations [61], as well as finer-resolution information such as B-Allelic frequencies and

depth ratios commonly used to detect CNAs from bulk [62]. This would allow one to infer

allele-specific CNAs, opening also the possibility to perform a de novo genome segmentation

of the input single-cell data, lifting the current limitation of CONGAS+ which requires a prede-

fined input genome segmentation.
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