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Confinement properties of the 1þ 1 Schwinger model can be studied by computing the string tension
between two charges. It is finite (vanishing) if the fermions are massive (massless), corresponding to the
occurrence of confinement (screening). Motivated by the possibility of experimentally simulating the
Schwinger model, we investigate here the robustness of its screened and confined phases. First, we analyze
the effect of nearest-neighbor density-density interaction terms, which—in the absence of the gauge
fields—give rise to the Thirring model. The resulting Schwinger-Thirring model (very often also referred to
as the gauged Thirring model) is studied, also in presence of a topological θ-term, showing that the
massless (massive) model remains screened (confined) and that there is deconfinement only for θ ¼ �π in
the massive case. Estimates of the parameters of the Schwinger-Thirring model are provided with a
discussion of a possible experimental setup for its realization with ultracold atoms. The possibility that the
gauge fields live in higher dimensions while the fermions remain in 1þ 1 is also considered. One may refer
to this model as the pseudo-Schwinger-Thirring model. It is shown that the screening of external charges
occurs for 2þ 1 and 3þ 1 gauge fields, exactly as it occurs in 1þ 1 dimensions, with a radical change of
the long distance interaction induced by the gauge fields. The massive (massless) model continues to
exhibit confinement (screening), signaling that it is the dimensionality of the matter fields, and not of the
gauge fields, to determine confinement properties. A computation for the string tension is presented in
perturbation theory. Our conclusion is that 1þ 1models exhibiting confinement or screening—massless or
massive, in the presence of a topological term or not—retain their main properties when the Thirring
interaction is added or the gauge fields live in a higher dimension.
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I. INTRODUCTION

The study of confinement properties in gauge theories is
a long-lasting subject of research, with applications in a
variety of physical systems ranging from quantum chromo-
dynamics (QCD) [1] to effective gauge theories emerging
in strongly correlated systems [2]. The origin of the concept
of confinement is associated to the fact that no quarks
appear as asymptotic particle states. Instead, they seem to

be confined inside hadrons and mesons. At present, there is
not yet a final and detailed description of confinement in
QCD. Such difficulties are due to the complexity of QCD, a
strongly coupled non-Abelian gauge theory with symmetry
group SUð3Þ. Because of this reason, historically, an
important role in the understanding of confinement was
played by solvable theories in 1þ 1 dimensions—an
archetypical example being the Schwinger model [3].
This is a well-studied field theory [4], where relativistic
fermions are coupled to a Uð1Þ gauge field. It exhibits
confinement of the fermions and from this point of view
can be seen as a toy model for QCD [5].
The Schwinger model and its multiflavor generalization

can be mapped by bosonization [6] onto massive sine-
Gordon models, having a mass proportional to the fermion
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charge, but with frequency β fixed to
ffiffiffiffiffiffi
4π

p
[7,8] (see more

references in [9]). In the regime of vanishing charge, and
upon addition of an interaction term between the fermions,
one obtains a (massless) sine-Gordon model with variable
frequency [10]. This model is the Thirring model [11]. In
the massless limit its correlation functions are known
[12,13]. In the massive case it is solvable by the Bethe
ansatz [14].
Both Schwinger and Thirring models separately have

been heavily investigated for their relevance as a toy model
for phenomena occurring in higher dimensions and for the
appealing possibility to study solvable/integrable interact-
ing models which may exhibit confinement. Also, models
in which 1þ 1 fermions are both charged and locally self-
interacting have been investigated as well. Typically, the
so-called gauged Thirring model can be obtained by
reformulating the Thirring model as a gauge theory and
attributing dynamics to the gauge field (see, e.g., [15–19]).
The case where the gauge interaction is present jointly
with the four-fermion local interaction is sometimes
referred to by the same name [20]. The analysis of both
classes of models follows common ground and shares
similar properties, including confinement [20–27]. The
model we are going to mostly consider is the one in which
local four-fermion interactions and gauge interactions are
both present, since it is more suited to be simulated with
ultracold atomic platforms. For the sake of simplicity and to
make a connection with previous results in the literature of
quantum simulations with cold atoms, we refer to it as the
Schwinger-Thirring model, although we alert the reader
that several results for it are present in the literature under
the name gauged Thirring model. Recently, the massless
case for this model has also been reported as an effective
field theory defined in high-temperature domain walls [28].
In spite of the fact that, to the best of our knowledge, the
Schwinger-Thirring model is not integrable, rigorous
results on the mapping on the massive sine-Gordon model
have been established [20].
An important way to characterize the confinement

properties of models such as the Schwinger and the
Thirring one is provided by the study of the string tension
via the determination of the energy of the configuration
of two probe charges [4]—for a general introduction on
the confinement problem see, e.g., [29]. In the 1þ 1
Schwinger model, one can compute the string tension by
placing two external charges on the system. It is found to be
finite if the fermions are massive and vanishing if they are
massless [7,30] (see also [4,5,31]). It is therefore concluded
that for massive fermions one has confinement, and for
massless fermions there is the occurrence of screening [31].
We anticipate that in Sec. III we recall and define how
confinement and screening can be extracted and distin-
guished from the determination of the string tension.
This paper focuses on the confinement properties of the

Schwinger-Thirring model in order to investigate their

robustness and the role played by the one dimensionality
of the fermions. By studying the string tension, the effect
of the Thirring interactions is addressed first. Second,
the system where the fermions live in one spatial dimen-
sion and the gauge fields are defined in D ¼ 2, 3
dimensions is explored. This work is directly motivated
by the following two reasons. From one side it is intended
to determine whether a 1þ 1 model exhibiting confine-
ment or screening—massless or massive, in the presence
of a topological term or not—maintains its properties
when interaction is added and especially when the gauge
fields are allowed to live in a higher dimension. The latter
question is especially relevant since the confinement
property of the Schwinger model could be intuitively
explained by the fact that, at the classical level, the energy
between two-point particles grows linearly with the
distance for a gauge field in 1þ 1 dimensions. When
naïvely applied, this argument would lead us to conclude
that there should be deconfinement when the gauge fields
are living in three dimensions. Therefore, to test the
robustness of the confined phase, the case where gauge
fields are living in higher dimensions (2þ 1 and 3þ 1)
while the fermions remain in 1þ 1 is studied. This is the
equivalent for the Schwinger model of the pseudo-QED,
in which the fermions are confined in a 2D plane while
interacting with the electromagnetic field living in the 3D
space [32,33]. The Schwinger-Thirring model in which
the gauge fields live in a higher dimension is referred to as
the pseudo-Schwinger-Thirring model (to which we could
also refer as a pseudogauged Thirring model).
The second motivation for our study comes from recent

theoretical [34–47] and experimental [48] progress on the
emulation of gauge theories with ultracold atoms and
trapped ions. In general, quantum simulators [49,50] are
built up to emulate quantum mechanical systems by
properly shaping the system dynamics using external fields.
Because of the general complexity of the many problem of
quantum mechanics, a quantum simulator could provide
answers to long-standing problems in physics. The reali-
zation of quantum simulations of interacting theories could
help the understanding of target models, the validation of
analytical or numerical techniques, and the exploration of
physical phenomena which are not currently reachable by
other approaches. Ultracold atoms and trapped-ion setups
provide a variety of reliable different tools to perform
simulations of different many-body phenomena [51,52].
One of the most challenging goals certainly concerns the

implementation of gauge theories where nonperturbative
phenomena, such as confinement [53], occur. This moti-
vates the study of simpler models which may exhibit such
phenomena. As mentioned earlier, the Schwinger model is
probably the simplest, nontrivial gauge theory involving
fermions one can think of, and, more relevantly, it also
exhibits confinement. It was also the target of the first
quantum simulation of a lattice gauge theory addressing the
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real-time dynamics on a few-qubit trapped-ion quantum
computer [48].
Departing from the original model Hamiltonian, two

variations are experimentally accessible (if not unavoid-
able) according to recent implementation schemes: the
addition of tunable Thirring interactions, and the engineer-
ing of a gauge field living in D ¼ 2, 3. As mentioned
above, these are exactly the two scenarios focused here.
A further interesting ingredient, the topological θ-term, can
be added as well. In the presence of this extra term, for
D ¼ 1, deconfinement is possible for θ ¼ �π, while the
system retains its confining character for any other angle in
between [8,54].
As previously recalled, it is well known that the massless

Schwinger model is in the screened phase, while the
massive one exhibits confinement [5]. This still holds
under Thirring interactions.
When the gauge fields are allowed to live in higher

dimensions (2þ 1 or 3þ 1), giving rise to the pseudo-
Schwinger-Thirring model, the massless (massive) model
will be shown to remain screened (confined). In particular,
it is shown that in leading order on the mass, the string
tension for gauge fields in 1þ 1 and 2þ 1 dimensions is
the same. Our results shows that both Thirring interactions
and gauge fields living in higher dimensions do not alter the
confinement properties of the Schwinger model.
The paper is organized as follows. In Sec. II, the

continuum and lattice formulations of the Schwinger model
are introduced, briefly discussing the quantum link formu-
lation. The generation of a Thirring-like interaction based
on nearest-neighbor density-density interactions between
nonrelativistic tight binding is presented. In Sec. III the
definition of the string tension is recalled and the criterion
that will be used to determine confinement properties is
stated. It is also discussed how the confinement properties
of the Schwinger model are retained under the presence of
a Thirring-like interaction. In Sec. IV an estimate of the
parameters of the simulated quantum system is provided.
This is done using, as a reference, the proposal in [37],
where a Thirring-like interaction appears naturally as a
byproduct of the scheme. The difficulties arising in such
an implementation are discussed and the achievable range
of parameters as a function of the amplitude of the external
superlattice potential is explored. Finally, in Sec. V, the
pseudo-Schwinger-Thirring model featuring the gauge
fields in higher dimensions is addressed, analyzing both
the massless and massive theories. The conclusions are
drawn in Sec. VI, while additional, more technical material
is presented in the Appendixes.

II. IMPLEMENTATION AND DEVIATIONS
FROM THE SCHWINGER MODEL

The Hamiltonian for the Schwinger model in the axial
gauge A0 ¼ 0 is given by

H ¼
Z

dx

�
ψ̄ð−i∂ þ e=AþmÞψ þ 1

2
E2

�
: ð1Þ

In lattice field theories, it is possible to provide a
regularization of their continuum counterpart by introduc-
ing a lattice spacing as. As a consequence, different
lattice formulations may correspond to the same model
in the continuum limit as → 0. An example is given by
the Kogut-Susskind (KS) Hamiltonian [55] which, in
the continuum limit for the Uð1Þ gauge theories, gives the
QED Hamiltonian in the axial gauge. For the case of one
spatial dimension, the KS Hamiltonian is given by

HKS ¼ −
i

2as

X
n

ðc†nUncnþ1 − H:c:Þ

þm
X
n

ð−1Þnc†ncn þ
as
2

X
n

E2
n; ð2Þ

where cn annihilates a fermion in the lattice site n. In the
KS model, the spinor degrees of freedom are encoded in
the spatial coordinates (staggered fermions) [56] and the
continuum limit is taken by sending the lattice spacing to
zero as → 0. More precisely, the continuum variables are
identified through cn=

ffiffiffiffiffi
as

p
→ ψupðxÞ for n even and

cn=
ffiffiffiffiffi
as

p
→ ψdownðxÞ for n odd, to form the two dimen-

sional spinors. EðxÞ denotes the electric field. Furthermore,
the representation of the gamma matrices is fixed to be
γ0 ¼ σz and γ1 ¼ iσy where the σ’s are the Pauli matrices.
The gauge operators obey the commutation relations
½Um; En� ¼ eδmn and ½U†

m; Ln� ¼ −eδmn, with the remain-
ing commutation relations vanishing. The parameter e is
the gauge coupling. The lattice model, besides regularizing
the continuum theory, provides also a bridge towards the
experimental implementation.
One of the first and well-documented difficulties in

implementing such a model consists in reproducing the
infinite dimensional space spanned by the gauge fields
present on the links (the electric field in each link varies
from −∞ to þ∞). An alternative approach consists in
truncating the Hilbert space making it finite and more
suitable for quantum simulation. Such models are known as
quantum link models [57–59]. In a quantum link model, the
link algebra described above is replaced by the algebra of
angular momentum ½Li;m; Lj;n� ¼ iδnmεijkLk;n. Each repre-
sentation of this algebra, identified by the spin magnitude
S, provides a finite Hilbert space. In the limit of S → þ∞,
the KS Hamiltonian should be recovered. The commutation
relations between theUm’s and Em’s are exactly realized by
identifying En → eLn and iUn → Lþ;n=SðSþ 1Þ (where
Lþ;n ¼ Lx;n þ iLy;n). However, there are now extra nonzero
commutation relations: ½Um;U

†
n� ¼ 2δmnEm=½eSðSþ 1Þ�,

reflecting the request that HKS is recovered when
S → þ∞. This could constitute a possible drawback on
the experimental implementation of these models. This
subject was extensively studied in [45] where it was shown
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how the finite dimension of the corresponding Hilbert
space may deviate from the infinite dimensional case.
Qualitatively, the finiteness of the quantum links plays a
small role and, as expected, the results converge to the QED
result as the value of the total spin is increased.
Another problem that may emerge is the possibility of

nearest-neighbor density-density interaction. In fact, as in
[37], such a term may be present as a byproduct of the
implementation scheme. In more general cases, terms of this
type may appear quite naturally in implementation schemes
where gauge invariance is imposed via energetic constraints,
due to the fact that such terms are indeed gauge invariant.
From a different perspective, the Schwinger-Thirring

model can also host interesting physics which may motivate
direct implementations of it in its own. In the scheme of
Ref. [37], the four-Fermi interaction is repulsive and it is not
possible to reverse the sign of interaction. The reason for
such a contribution directly comes from the Fermi statistics.
For this reason a possible path towards an implementation
where such interactions are tunable may include, for
example, an extra species of bosons with correlated hopping
with the fermions through all the lattice, producing an
analogous term with opposite sign. This term could give
extra control on the sign and strength of this interaction.
Building on this intuition, the consequences of the

presence of such a term in the gauge theory are inves-
tigated. This is done in a general setting where a θ-term on
the Lagrangian is admitted. The lattice Hamiltonian is then
modified to be

Hlattice ¼ −
i

2as

X
n

ðc†ne−iaseA1
ncnþ1 − H:c:Þ

þm
X
n

ð−1Þnnn þ
e2as
2

X
n

ðLn − l0Þ2

þ 2g
as

X
n

nnnnþ1 ð3Þ

where nn ¼ c†ncn. The presence of l0 corresponds to a
background electric field which, in the continuum limit,
gives rise to the θ-term with l0 ¼ θ=2π. The other extra
term is a nearest-neighbor density-density interaction. This
term, which is of the form λ

P
nnnnþ1, scales with as to get

a finite contribution in the continuum limit, as it can be seen
by taking into consideration that

P
n →

1
2as

R
dx and the

four operators cx bring a factor of a2s forcing a prefactor
∼a−1s . The inclusion of the l0-term, and equivalently of the
θ-term, corresponds in turn to a shift of the background
electric field of the vacuum.

III. CONFINEMENT AND SCREENING IN
1 + 1 GAUGE THEORIES

In this paper the presence of confinement is character-
ized by computing the string tension σ between two
external charges added to the system. Since such

characterization of confinement properties in Schwinger-
Thirring models is the main subject of the present paper, a
pause is made here to relate confinement, deconfinement,
and screening to the string tension σ. This quantity is
defined as the constant of proportionality between
the energy T of two added external charges and their
distance L:

T ¼ σL: ð4Þ

When, for large L, σ is positive one has confinement, while
for σ < 0 one has a deconfined phase. In the case in which
σ ¼ 0, one then studies the limit for large L of the energy T:
if it is infinite and positive/negative then one has, respec-
tively, confinement/deconfinement. When σ tends to 0 and
jTj is not diverging, then the ratio Twith=Twithout can be
considered, where Twith (Twithout) is the energy with (with-
out) the fermionic fields. If this ratio is vanishing, one has a
screened phase, while in the other cases it is not possible to
conclude about confinement, deconfinement, or screening
just by looking at the energy T. Instead one should look at
the behavior (and the poles) of correlation functions in
order to determine the presence/absence of charged asymp-
totic states [4]. This way of characterizing confinement
properties covers the cases to be considered in the follow-
ing, including the pseudo-Schwinger-Thirring model.
We recall that the problem of confinement in the

Schwinger and Thirring models in 1þ 1 dimensions can
be addressed through bosonization [6,7,30,60,61]. The
procedure used in the Sec. V, where the gauge fields are
living in higher dimensions, follows closely [23]. To set the
notation and briefly recall the results that we are going to
use in the following, we write the continuum Lagrangian in
Euclidean time for the Schwinger-Thirring model reading

L ¼ −ψ̄ð∂ þ ie=AþmÞψ þ g
2
ðψ̄γμψÞ2 þ

1

4
F2
μν

þ i
eθ
4π

εμνFμν ð5Þ

(until differently stated, one uses units where ℏ ¼ c ¼ 1).
For g ¼ 0, the model (5) is the Schwinger model with the

θ-term, which is known to exhibit (partial) deconfinement
only for θ ¼ �π [8,54]. In turn, for e ¼ 0 one has the
Thirring model. Such a theory makes sense only for
g > −π, as discussed below, and it can mapped order by
order in the mass m to a sine-Gordon model [10].
This remains valid when both parameters e and g are finite
in the Schwinger-Thirring model; see (6). In particular, the
Thirring term does not play any role on confined/decon-
fined phases of the model.
The quartic fermionic interaction in (5) can be reex-

pressed via an Hubbard-Stratonovich transformation.
This amounts to replace in the Lagrangian g

2
ðψ̄γμψÞ2 →

−ieBμJμ þ e2
2g B

2
μ, with now the integration being performed
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over Bμ as well. The bosonization procedure can be carried
out by a suitable chiral transformation, taking advantage of
the chiral anomaly. After this, and integrating out the vector
fields, the Lagragian reads

L ¼ 1

2

�
1þ g

π

�
ð∂μϑÞ2 þ

e2

2π
ϑ2 − μ cos ð

ffiffiffiffiffiffi
4π

p
ϑþ θÞ: ð6Þ

The Lagrangian (6) shows the contribution of both the
Schwinger and the Thirring models. No mixing between
the g and e couplings occur. It is worth noting that the
above Lagrangian corresponds exactly to the Lagrangian
obtained from (5) if one applies the mapping obtained from
bosonization of the free massless Dirac fermions integrat-
ing out the gauge field.
From the bosonized Lagrangian (6) it follows that, as in

the Thirring model, it is required g > −π for the model
itself to make sense.
Regarding the screening and confinement properties of

the model, the simplest case corresponds to the massless
theory where μ ¼ 0. From the propagator of the bosonic
theory, one can see that no charged fermions appear on the
spectrum [30]. For the massive case, the string tension can
be computed in the small mass limit [7,60,61]. We recall
that the propagator is given by

ΔϑðpÞ ¼
1

ð1þ g
πÞp2 þ e2

π

: ð7Þ

As reviewed in Appendix A, from (7) one can compute the
two-point functions showing that there are no charged
fermions in the spectrum. We refer to Appendix B for a
perturbative analysis in the massive case.
The computation of the string tension is treated in Sec. V

as a particular case of the general construction with gauge
fields in Dþ 1 dimensions. This will show the robustness
of confining properties under Thirring interactions.

IV. ESTIMATES OF LATTICE PARAMETERS
FOR ULTRACOLD ATOM SETUPS

A number of proposals have been put forward to simulate
the Schwinger model. These include both proposals in which
the gauge symmetry emerges as a symmetry of the low
energy effective theory [37,42,62] or as an exact symmetry
of the system [35,45]. An important point to be stressed is
that the fine-tuning of parameters should be neither required
or crucial since small inaccuracies in the experimental
implementation could be spoil the validity of the quantum
simulation. In this section the issue of the deviations from the
desired Hamiltonian due to the presence of a nearest-
neighbor density-density interaction is discussed. It is argued
that the presence of such a four-fermion interaction term
corresponds to a Thirring interaction. A scheme for simu-
lating the Thirring model was also put forward in [63].

This section also provides an estimate of the values of
different parameters in a possible implementation with
optical lattices [64]. The main goal here is to provide a
quantitative estimate of the energy scales in the system and,
in particular, of the role of Thirring terms. To this end, and
in order to have a specific example at hand, the model
described in [37] was chosen. There, the density-density
interaction appears explicitly. This model makes use of one
species of fermions and two species of bosons and it builds
the quantum links using the Schwinger representation. The
fermions are hopping between all lattice sites while odd
links are associated with one species of bosons, and even
links with the other. Each boson is then only allowed to hop
between its designated link. In concrete, at any lattice site n,
one can have bosons of both species. If n is odd then
species 1 can only hop to nþ 1 and species 2 to site n − 1.
The opposite happens for n even. This is illustrated in Fig. 1
where both species of bosons and fermions are represented
around an even site.
The quantum links are realized through the Schwinger

representation where

Lz;n ¼
1

2
ðbðσÞ†nþ1b

ðσÞ
nþ1 − bðσÞ†n bðσÞn Þ;

with σ indicating the bosonic species (1 or 2) that has to be
consistent with the parity of the link in question. In this
language the generator of gauge transformations can be
written as

FIG. 1. Superlattice configurations for two boson species and
the fermionic one. Bosons of the species 1 at an even site 2j
can only hop to 2j − 1 while a boson of species 2 has only
access to the site 2jþ 1. The figure presents an example of a
gauge invariant state configuration (on these three sites) where
Gnjψi ¼ 0.
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Gn ¼ nFn þ n1n þ n2n − 2Sþ 1

2
½ð−1Þn − 1�;

where nFn indicates the number of fermions and nσn the
number of bosons of species σ in the site n. Therefore, if
writing a Hamiltonian of the form H ¼ H0 þ U

P
G2

n
where the energy scale U is much larger than the energy
scale of H0, one always obtains, in perturbation theory, a
gauge invariant low energy Hamiltonian. When consider-
ing H0 to be the sum of single particle Hamiltonians of the
three considered species, the effective Hamiltonian is of
the form (3).
Adopting the typical notation used for ultracold atoms

[64], one has to evaluate the hopping parameters tα of the
(nonrelativistic) ultracold atom mixture and the parameters
of the lattice Hamiltonian (3). The index α is here used to
denote the fermions or one of the two bosonic species:
α ∈ fF; 1; 2g. To establish the connections between the
parameters tα and the lattice Hamiltonian (3), one has to
restore ℏ and c in the Hamiltonian, which corresponds to
add ℏc to all terms except the mass term which gets a c2.
The parameters of the KS Hamiltonian are as (which is not
the lattice spacing of the cold atomic optical lattices), the
electric charge e and the Thirring term g. The kinetic term is
characterized by tBtF=U, the pure bosonic term by t2B=U,
and the nearest-neighbor density-density term by t2F=U.
The connection with the parameters of the KS Hamiltonian
is given by

4g ¼ −
tF
tB

ð8Þ

and

e2a2s ¼
tB
2tF

: ð9Þ

One sees from Eqs. (8) and (9) that not all the parameters
can be varied independently. However, varying the tunnel-
ing parameters tB and tF one can control the charge of the
effective Schwinger model, which, in view of the discus-
sion on the robustness under Thirring interactions, is the
main parameter to be controlled.
A key and challenging aspect of this implementation

scheme is that the interactions between the different atomic
species shall satisfy the conditions U11 ¼ U22 ≡U and
2U12 ¼ 2U1F ¼ 2U2F ¼ U [37], where Uαβ is the on-site
interaction parameter between species α and β [64]. The
related problem is that the proposal requires the bosons
sitting in asymmetric minima. This asymmetry may change
the Wannier functions entering the evaluation of the U
parameters [64]. This may lead to interactions of the form
Uþ=−

αβ where the labels þ=− indicate the relative (þ) and
absolute (−) minima of the optical lattices involved in the
experimental implementation. However, the existence of
different parameters Uþ=− is not crucial. Gauge invariance
at low energies is obtained in perturbation theory for large

U so as long as both Uþ=− remain larger than the other
parameters of the model the condition Gxjψi ¼ 0 still
holds. Since the goal of this section is to provide an
estimate of the parameters of the underlying lattice
Hamiltonian, this asymmetry is disregarded, since it can
be made small. Details about this point are given in
Appendix C. Furthermore, to satisfy the conditions U11 ¼
U22 ≡U and 2U12 ¼ 2U1F ¼ 2U2F ¼ U one still has to
match the different interactions between atomic species.
Again, the system can be shown to be robust under small
enough deviations from these conditions. Possible devia-
tions lead to UG2

x → UG2
x þ U

P
ΔUαβnαxn

β
x, where ΔUαβ

is the deviation of the interaction between species α and β
from the desired value. The fundamental requirement to
obtain a gauge invariant theory is still valid as long as
ΔUαβ=U ≪ 1.
To estimate the lattice parameter, a mixture of 52Cr is

used as a reference. This particular choice is related to the
fact, as explained below, that their scattering lengths
approximately have the required interaction strength
between the two bosonic species foreseen by the proposal.
The scattering length between pairs with total angular
momentum equal to 0 is ab0ð≃30–50Þa0 and for pairs with
total angular momentum equal to 4 is ðab4 ≃ 58� 6Þa0,
with a0 the Bohr radius [65,66]. With ab0 ¼ 30a0 (different
species) and ab4 ¼ 60a0 (same species) one has the required
relations between U11, U22, and U12. For the fermionic
species it is assumed that a tuning of the interaction is
possible in such a way that the remaining conditions can be
obeyed. For the present calculation it is assumed, as well,
that a1F ¼ a2F ¼ 30a0. Notice that the presence of bosonic-
bosonic interactions does not have the fermionic-fermionic
counterpart and that fermionic and bosonic densities are
different; see the difference between the two equations in
(C10). However, as long as S is not very large, it is expected
that the effect is not significant. Here the calculations will
be performed for S ¼ 1 and this assumption proves to be
enough. In order to increase S one should carefully adjust
a1F and a2F. Mixtures involving alkaline-earth-like atoms
may prove to be even more convenient, due to the possibility
of easily engineering species dependent lattices there.
The Wannier functions are assumed to be Gaussian

with a width σiα, depending, also, on the direction i and
determined variationally by minimizing the Gross-
Pitaevskii energy (see more details in [67,68]). The width
of the Gaussians in the directions perpendicular to the
optical lattices is considered to be σ⊥, assumed here to be
the same for all the species (fermions and bosons). The
potential felt by the particles is characterized by an
amplitude V0α, which controls the height of the barrier,
and by V0αΔα, the offset controlling the difference of
energy between minima (with lattice spacing a).
It is assumed S ¼ 1, V0F¼V0B¼V0, and ΔF ¼ ΔB ¼ 0.

For the lattice spacing it is taken as a ∼ 0.5 μm. The
process is detailed in Appendix C. In the following, we
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specifically address the case of a 1D optical lattice, where
transverse confinement in the direction perpendicular to the
wire is shallow. Similar ideas are applicable in the 3D
optical lattice case. Two different choices for σ⊥ were
considered: σ⊥ ¼ 2a and σ⊥ ¼ 5a. For smaller values, the
variational approach is not expected to be accurate while,
for larger values, very large potential depths are required to
enter in the necessary perturbative regime. The main result
is illustrated in Fig. 2, where the effective parameters
tBtF=U, tBtF=U and tBtF=U are plotted in a single curve
(one for each σ⊥). This is because, at this scale, they are
indistinguishable. Furthermore, with these parameters,
tα=U becomes approximately 10−1 at V0 ¼ 130Eref and
V0 ¼ 180Eref , respectively. Note that, when compared
to the usual recoiled energy, Eref is π2 times larger.
By adjusting some parameters, other choices are of course
possible. Such values were chosen in order to give an
illustrative example. For these ranges of parameters, one
finds that the relation 2U1F ¼ 2U2F ¼ U is satisfied very
accurately with an error inferior to 10−2%. At the same
time, the ratio tF=tB remains always very close to 1.
In conclusion, the range of parameters one may reason-

ably have access to corresponds to −g ∼ 0.25 and e2a2s ∼
0.5 bounded by the condition −8=g ¼ e2a2s . The typical
energy of the processes of the effective cold atomic system

is of the order tαtβ=U; VΔ ∼ 10−3Eref. Moreover, in this
regime the value of the three terms tαtβ=U becomes
indistinguishable. Finally, it is observed that the strength
of the mass parameter is less constrained and it can be
changed via the quantity Δ. This parameter was set to zero
during the parameter estimation but, as long as it is not too
large, the approximation remains valid.

V. SCREENING WITH GAUGE FIELDS
IN D+ 1 DIMENSIONS

In this section the Schwinger-Thirring model in the
presence of a gauge field living in a higher dimension is
considered. As briefly mentioned in the Introduction,
naïvely one would expect to find deconfinement is in
D ¼ 3 spatial dimensions, and one may anticipate finding
features of normal QED with the particularity of the
“electrons” being restricted to one spatial dimension.
Here it is showed that the situation is more subtle.
Models exhibiting dimensional mismatch between rela-

tivistic fermions and gauge fields have been studied and
applied in a variety of situations: in the context of graphene
[33,69,70] and transition-metal dichalcogenides [71,72],
for topological insulators both for 2þ 1 [73] and 1þ 1
fermions [74], for 1þ 1 fermionic models [74–76], and as a
source to generate effective short-range [77] and long-range
[76] interactions via the dimensional mismatch. Besides the
direct relevance of these models to experimental systems,
such as graphene in a 3D electromagnetic field [32],
these models are also promising from the points of view
of theoretical study and of experimental implementation
perspectives. The most immediate application is given by
the realization of an intermediate step towards the simu-
lation of increasingly complicated gauge theories. For this,
the necessary correlated hopping of bosons and fermions is
restricted to the line, while the gauge fields still live in
higher dimensions. In terms of implementation complexity,
these models are expected to be more complicated to
implement than the Schwinger model but still simpler than
QED. The same applies if the gauge fields are non-Abelian.
2In the following the basic construction of theories in

which the gauge fields live in Dþ 1 dimensions is revised.
The general form of the Lagrangian is given, in Euclidean
time, by

L ¼ Ldþ1
M − iejμDþ1Aμ þ

1

4
F2
μν þ LGF: ð10Þ

The fermions are considered to live in the lower dimen-
sionality dþ 1, which is made explicit in the matter
Lagrangian Ldþ1

M . The gauge field lives in the higher
dimensionality Dþ 1. The Dþ 1 current is taken to be

jμDþ1ðxαÞ ¼
�
jμdþ1ðx0;…; xdÞδðxdþ1Þ…δðxDÞ; if μ ¼ 0;…; d

0 otherwise
: ð11Þ

FIG. 2. Values of the energy scales of the effective Hamiltonian
parameters, which collapse in a single curve at this scale, as the
amplitude V0 of the external potential is varied. Two cases,
corresponding to σ⊥ ¼ 2a and σ⊥ ¼ 5a, are presented. The
energies are measured in units of Eref ≡ ℏ2=2ma2, where a is
the lattice spacing. A zoom of the plot is also presented,
highlighting a range of values where one enters the desired
perturbative regime.
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In (10) the term LGF corresponds to the Fadeev-Popov
gauge fixing term which is given by LGF ¼ 1

2ξ ð∂μAμÞ2,
where different choices of ξ correspond to different gauges.
The Feynman gauge, where ξ ¼ 1 and one has a diagonal
propagator Gμν ¼ 1

−∂2 δμν, is adopted.
The theory (10) can be suitably formulated only in the

lower dimension d without explicitly invoking the higher
dimension. The effect of the higher dimensionality is
encoded in a modified kinetic term for the gauge fields.
For the case of d ¼ 2 and D ¼ 3 it goes under the name of
pseudo-QED [32]. Details on the general construction can
be found in [76]. The general form of the Lagrangian is
given by

Ld ¼ Ldþ1
M − iejμdþ1Aμ þ

1

4
FμνM̂DFμν; ð12Þ

where the operator M̂D is given in terms of the propagator
ĜD of the gauge fields according to the relation
M̂D ¼ ð−∂2ĜDÞ−1. In the previous expression ∂2 is the
Laplacian in dþ 1 dimensions. The explicit expression for
M̂D (or ĜD) depends on the higher dimension D but all the
fields are now exclusively in dþ 1 dimensions. The
calculation of the effect of external charges on the system
can be done as for the Schwinger case. This amounts to
introducing an extra contribution −iQAμj

μ
ext where Q is the

absolute value of the two opposite external charges. This
external current can be written in the form jμext ≡ εμν∂νK
and it can be eliminated by a chiral transformation. The
variable change corresponds to ψ ¼ eiQKφγ5ψ 0 where,
again, one should take into account the chiral anomaly.
Notice that the modified kinetic term of the gauge field has
no effect on the procedure. Once the gauge fields are
integrated out, the resulting bosonic theory is given by

L≡ 1

2
ϕ

�
−∂2 þ e2

π
M−1

D

�
ϕ − μ cos ð

ffiffiffiffiffiffi
4π

p
ϕÞ

þ eQffiffiffi
π

p ϕM−1K þQ2

2
KM−1K; ð13Þ

where MD is an operator acting on ϕ. We are using the
notation introduced in [76], with ĜD ≡GDð−∂2Þ and
similarly for F̂D, FD and M̂D, MD.
With the field transformation

ϕ0 ¼ ϕþ eQffiffiffi
π

p KM−1 1

−∂2 þ e2
π M

−1
;

the coupling between the field K and the bosonic field is
translated to a sine-Gordon form. The resulting Lagrangian
reads

L ¼ 1

2
ϕ2

�
−∂2 þ e2

π
M−1

D

�
ϕ

þ −μ cos ð
ffiffiffiffiffiffi
4π

p
ϕþQαDÞ þQ2KD; ð14Þ

with αD an operator acting on ϕ and KD a space-time
function. After some algebra, one finds αD ¼ 2eFDK
and KD ¼ 1

2
∂μKF̂D∂μK, with FD ¼ GD=ð1þ e2

π GDÞ.
The unperturbed theory, i.e., the theory with no external
charges, can be easily recovered by setting Q ¼ 0.
Despite the nonlocality, the above Lagrange is still

translational invariant in space and in time. The latter gives
rise to the conservation of energy. The total energy can be
computed through the energy-momentum tensor. This will
be, in general, rather complicated. Nonetheless it is still
possible to compute the difference of energies, since the
more complicated terms cancel out (for the massive case
one can also do it in first order in perturbation on the mass).
In Appendix D, the construction of the energy-

momentum tensor for theories with higher derivatives is
revised. In the present case there is an arbitrarily high
number of derivatives. The energy is given by the integral
in space of the T00 component of the energy-momentum
tensor, Eq. (D7). When quantized the fields are promoted to
operators and take T00 in normal order so the total energy is
given by E ¼ hR dx∶T00ðxÞ∶i.
The difference of energy as a result of introducing

external charges can be written as

ΔE ¼
�Z

dx∶T00
Q ðxÞ − T00

Q¼0ðxÞ∶
	

ð15Þ

where it was denoted by T00
Q ðxÞ the energy-momentum

tensor when external charges are also present according
to Eq. (14).
The analysis starts in the massless case and then we

move to the small mass limit.

A. Massless fermions

Formassless fermions μ ¼ 0. This case ismuch simpler to
analyze since the effect of external charges is only in the term
Q2KD, completely decoupled from the fields. However
complicated, the energy-momentum tensor obtained from
the system without external charges is, the same tensor
results from the presence of external charges with an addi-
tional space-time function independent of the fields. In other
words, the first term of the tensor in (D7) is not affected by
the external chargeswhile the second is just “translated”with
no operator content [see Q2KD in (14)]. Therefore, for the
massless case one obtains ΔEm¼0 ¼ Q2

R
dxKDðt ¼ 0; xÞ.

Recall that KD ¼ 1
2
∂μKF̂D∂μK. Each ∂μK encodes two

Dirac deltas corresponding to two different external charges
as described above. Therefore, in this expression there are
included interactions between the charges, corresponding
to pick the Dirac deltas at different points, and “self-
interactions,” corresponding to pick the same Dirac delta
in both K’s. The latter ones are independent of L and
therefore do not account for actual interactions between
different charges. In the following they are then neglected.
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By performing the implicit integrals on the definition of
KD and making use of the fact that ∂μK is time independent,
the energy can be then written as

ΔEm¼0 ¼ Q2

Z
dk1
2π

FDðk0 ¼ 0; k1Þ exp ðik1LÞ ð16Þ

where FDðk0; k1Þ are the Fourier components of FD.
In the following these integrals are computed explicitly

for D ¼ 1, 2, 3.

1. Massless D = 1

This case corresponds to have Ĝ1 ¼ 1= − ∂2 and
F1ð0; kÞ ¼ 1=ðe2=π þ k2Þ. The integral results in

ΔEm¼0 ¼
ffiffiffi
π

p
Q2

4e
exp

�
−
eLffiffiffi
π

p
�
: ð17Þ

Without the presence of the fermion field (or turning off
the coupling e ¼ 0), the resulting energy would exhibit a
linear growth with the distance. The exponential decay
present here is a result of pair production that screens the
external charges. This shows explicitly the charge screen-
ing known for the massless Schwinger model. As discussed
in Sec. III, the same happens in the presence of the Thirring
interactions between fermions.

2. Massless D = 2

The function F2 is given by F2ð0; kÞ ¼ 1=ðe2=π þ 2jkjÞ.
Again the integral can be performed explicitly:

ΔEm¼0 ¼
Q2

2π

�
π

2
sin

�
e2L
2π

�
:

− cos

�
e2L
2π

�
Ci

�
e2L
2π

�
− sin

�
e2L
2π

�
Si

�
e2L
2π

��
:

ð18Þ

The functions Ci (cosine integral) and Si (sine integral)
are, respectively, given by CiðxÞ ¼ −

Rþ∞
−x dt cos t=t and

SiðxÞ ¼ R
x
0 dt sin t=t. In the limit of L → ∞ the cosine

integral goes to zero and the sine integral converges to π=2.
As a result also here the energy goes to zero (as 1=L2) as the
distance L increases despite the pure gauge theory exhibit-
ing a logarithm increase of the energy with the distance.

3. Massless D = 3

For the three-dimensional case one has to introduce an
UV cutoffΛ in order to regularize the integral over the extra
dimensions where the gauge field lives. The resulting
function F will be dependent on this cutoff: it is found that

Fð0; kÞ ¼ log ð1þ ðΛ=kÞ2Þ
4π þ e2

π log ð1þ ðΛ=kÞ2Þ :

The integral (16) requires a careful study. Within a
change of variables it can be written as

ΔEm¼0 ¼
Q2

4πL
Λ̃
Zþ∞

0

dq
2π

log ð1þ q−2Þ
1þ ðe2=4πÞ log ð1þ q−2Þ cos Λ̃q:

ð19Þ
The dependence on the distance is now isolated in the

prefactor 1=L, since the remaining was absorbed into the
cutoff Λ̃ ¼ LΛ. In this expression, the screening due to pair
creation is evident: setting e ¼ 0 the integral (19) simply
gives Λ̃−1 (in the large cutoff limit) and what remains is the
expected Coulomb energy: Q2=4πL. When e acquires a
finite value, one is coupling the gauge fields to the fermion
fields and the pair production starts. This is made explicit in
the integral since this extra positive term in the denominator
will decrease the absolute value of the integrand.
We now show that for any finite charge e total screening

occurs and actually ΔEm¼0 ¼ 0 in the large cutoff
limit. The integral can be broken into pieces:

Rþ∞
0 ¼P

n

R 2πðnþ1Þ=Λ
2πn=Λ . Let us denote the nonoscillatory part by

fðqÞ ¼ log ð1þ q−2Þ=ð1þ ðe2=4πÞ log ð1þ q−2ÞÞ. Since
this function is not singular except for q ¼ 0, most of
the integrals to be computed vanish in the large cutoff limit.
This can be seen by integrating by parts which will bring
powers of Λ̃ to the denominator. At lowest order, if the
functions f has finite derivatives, the leading term goes like
Λ̃−3. After the above procedure, the only part that remains
is the case n ¼ 0. This is treated by observing that f is
strictly decreasing in the interval of integration. Therefore,

Λ̃
Z2π=Λ̃

0

dq
2π

fðqÞ cos Λ̃q ≤ 2

�
4π

e2
− f

�
2π

Λ̃

��
ð20Þ

as one can see by replacing the value of the function f by its
maximum value in the interval (4π=e2) when the cosine is
positive and by its minimum value when the cosine is
negative. Since the function is continuous, one can make
fð2π=Λ̃Þ as close as desired to 4π=e2 by increasing Λ̃;
therefore, the bound goes to zero. Since the integral is
positive, this shows that the energy goes to zero. One can
finally write

ΔEm¼0 ¼
� Q2

4πL e ¼ 0

0 e ≠ 0
: ð21Þ

When the coupling between the gauge fields and the
fermions is turned on, the fermionic fields react to the
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presence of external charges by starting pair production.
Remarkably, they are able to completely screen the external
charges. This suggests that when the gauge field is in 3þ 1
dimensions, the fermions become more effective at screen-
ing external charges than at 2þ 1 or even 1þ 1. For the
latter case the energy decreases exponentially with the
distance while here it is zero for any distance.

B. The massive case

The massive case is more complicated and the effect of
the external charges is no longer decoupled from the fields.
Without the external charges, the interaction is still local
and all the nonlocality is on the kinetic term. When the
external charges are introduced, the nonlocality is carried
over to the interaction via αD. This means that the insertion
of external charges will modify both terms present in (D7).
Let us start when the system has no external charges.

By performing first order perturbation theory in the mass of
the fermionic theory, the ground state has the structure:
jΩ0i ¼ j0i þ μj1i. The state j0i is the vacuum of the
massless theory, which is still a quadratic theory. The
normal ordering is taken with respect to this state. When
going to the system with external charges, even though
the quadratic term is modified, the modification is of order
μ so that the ground state of such theory is, at the lowest
order in perturbation theory, given by jΩQi ¼ j0i þ μj10i,
where j0i is the same vacuum state of the massless theory
and the first order correction was modified due to the
presence of external charges. The normal ordering is then
taken with respect to the same state in both theories.
One can now analyze the energy-momentum tensor (D7).

With no external charges T00 ¼ T0 − μ cos ð ffiffiffiffiffiffi
4π

p
ϕÞ, where

all the contributions independent of μ were inserted in T0.
In the presence of external charges, this is modified to T00 ¼
T0 þ μT̃0 − μ cos ð ffiffiffiffiffiffi

4π
p

ϕþQαDÞ þQ2KD where μT̃0 is
the order-μ-term obtained from the first part of (D7).
Explicitly one has

T̃0 ¼
Xþ∞

n¼0

Xn
i¼0

ð−1Þi∂μ1…∂μi

∂ cos ð ffiffiffiffiffiffi
4π

p
ϕþQαDÞ

∂ð∂0∂μ1…∂μnϕÞ
· ∂μiþ1

…∂μn∂0ϕ: ð22Þ

The presence of this term is due to the fact that the
nonlocality is carried over to the interacting part, propor-
tional to μ, by the presence of external charges. As a result
one has at first order of perturbation theory:

ΔEm ¼ ΔEm¼0 þ μh0j
Z

dx∶½T̃0

þ cos ð
ffiffiffiffiffiffi
4π

p
ϕÞ − cos ð

ffiffiffiffiffiffi
4π

p
ϕþQαDÞ�∶j0i: ð23Þ

Because of the normal ordering, the only nonvanishing
term from the Taylor expansion of the first cosine is 1.

All the others average to zero in the ground state. The same
kind of argument holds for cos ð ffiffiffiffiffiffi

4π
p

ϕþQαDÞ, where only
cos ðQαDÞ is nonvanishing. Finally, it is observed that, by
construction, any term of T̃0 has always at least one ϕ, as it
is clear from 22. Therefore, it averages to zero in the ground
state in the presence of normal ordering. The result is then

ΔEm ¼ ΔEm¼0 þ μ

Zþ∞

−∞

dx½1 − cos ðQαDÞ�: ð24Þ

Intuitively, from the above expression one expects a
finite string tension when QαD is “mostly” a nonmultiple
of 2π between −L=2 and L=2 and mostly a multiple of
2π outside this interval. This, as it will be seen explicitly
in the following, is what happens for the derived αD in
the different dimensions. From the definition of αD, and
following the same path used for KD when deriving (16),
one can write

αDð0; xÞ ¼ 8e
Zþ∞

0

dk
2π

FDðk0 ¼ 0; kÞ sin ðkL=2Þ cos ðkxÞ
k

:

ð25Þ

Again, the different dimensions are considered sepa-
rately in order to compute the increment to the energy due
to the presence of the mass. From this point on the notation
αDðxÞ≡ αDð0; xÞ is adopted.

1. Massive D= 1

This is the well-known case studied in detail in the
literature [4]. In this section the computation to retrieve the
expected results in the present formalism is performed,
serving also to set the scene and the notation for the
subsequent computations in D ¼ 2 and D ¼ 3. One has

α1ðxÞ ¼ 8e
Zþ∞

0

dk
2π

sin ðkL=2Þ cos ðkxÞ
kðk2 þ e2

π Þ
: ð26Þ

This integral can be calculated explicitly giving

α1ðxÞ¼
π

e

�
signðL−2xÞð1− cosh

�
e

2
ffiffiffi
π

p ðL−2xÞ
�

þsinh

�
e

2
ffiffiffi
π

p jL−2xj
��

þ signðLþ2xÞð1

−cosh

�
e

2
ffiffiffi
π

p ðLþ2xÞ
�
þ sinh

�
e

2
ffiffiffi
π

p jLþ2xj
���

:

ð27Þ

It turns out that, in order to compute the string tension, it is
enough to work out the limits jxj ≪ L=2 and jxj ≫ L=2, as
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it is shown below. By inspecting directly the function (27)
one finds

α1ðxÞ ¼
� 2π

e if jxj ≪ L=2

0 if jxj ≫ L=2
: ð28Þ

This is enough to compute the string tension from (24)
even without computing exactly the integral (24) itself.
Indeed, making use of the fact that the integrand is
symmetric over x → −x, the integral can be broken in
three parts:

Zþ∞

0

¼
ZL=2−x0

0

þ
ZL=2þx0

L=2−x0

þ
Zþ∞

L=2þx0

:

The value of x0 is fixed to guarantee that exp ð− effiffi
π

p

ðL=2 − x0ÞÞ ≪ 1. Within this limit one can compute the
first and the third integrals using the asymptotic expres-
sions in (28) obtaining

ΔEm ¼ ΔEm¼0 þ
�
1 − cos

�
2πQ
e

��
ðL − 2x0Þ

þ 2

ZL=2þx0

L=2−x0

dxf1 − cos ½Qα1ðxÞ�g; ð29Þ

where one can explicitly see the linear growth in L. Note
that x0 can be chosen independent of L for large enough
values of L, and the corresponding term ∝ x0 in ΔEm
actually does not grow with L. This reflects the contri-
bution arising for the two regions close to the charges
which is independent of their distance (if large enough).
Furthermore, the remaining integral is bounded by values
independent of L. Explicitly, substituting the cosine by
−1, one has an upper bound of 4x0 and substituting the
cosine by 1, one has a lower bound of 0.
One can therefore conclude that the linear behavior in L

is exclusive of the term ∝ L and one can finally write

ΔEm ¼ ΔEm¼0 þ μ

�
1 − cos

�
2πQ
e

��
Lþ… ð30Þ

where the dots indicate some bounded dependence on L.
The string tension reads explicitly

σ1 ¼ μ

�
1 − cos

�
2πQ
e

��
: ð31Þ

This is the well-known result [4], reviewed also in
Appendix B, obtained here by a careful analysis of the
energy excess due to the presence of external charges.

For higher dimensions the same procedure shall be fol-
lowed in the next sections.

2. Massive D= 2

For this case one has

α2ðxÞ ¼ 4e
Zþ∞

0

dk
2π

sin ðkL=2Þ cos ðkLÞ
kðkþ e2

2πÞ
ð32Þ

which again can be computed explicitly. For brevity it was
denoted X� ¼ L� 2x and for x ∈ ½−L=2; L=2� one obtains

α2ðxÞ¼
2

e

�
π−

π

2
cos

�
e2X−

4π

�
−
π

2
cos

�
e2Xþ

4π

�

−Ci

�
e2Xþ

4π

�
sin

�
e2Xþ

4π

�
−Ci

�
e2X−

4π

�
sin

�
e2X−

4π

�

þSi

�
e2Xþ

4π

�
cos

�
e2Xþ

4π

�

þSi
�
e2X−

4π

�
cos

�
e2X−

4π

��
: ð33Þ

For jxj > L=2:

α2ðxÞ ¼
2

e

�
π

2
cos

�
e2X−

4π

�
−
π

2
cos

�
e2Xþ

4π

�

þ π

2
sin

�
e2x
2π

�
− Ci

�
e2Xþ

4π

�
sin

�
e2Xþ

4π

�

þ Si

�
e2X−

4π

�
cos

�
e2X−

4π

�

þ Si

�
e2Xþ

4π

�
cos

�
e2Xþ

4π

��
: ð34Þ

The same procedure from before is followed, studying the
limits of jxj ≪ L=2 and jxj ≫ L=2. The result obtained is
actually the same here. For jxj ≪ L=2, this is seen by
noticing that inside the cosine and sine integrals one can
replace X� by L and take the large L limit. Then one can
replace the cosine integral by zero and the sine integral by
π=2. For the second case X� is replaced by �2x inside the
cosine and sine integrals [note also that Sið−yÞ ¼ −SiðyÞ].
Then one finds the same result as for (28) and the results for
the 1þ 1 case translate directly to 2þ 1. In particular, the
string tension is the same at this order in the perturbation
theory in the mass:

σ2 ¼ μ

�
1 − cos

�
2πQ
e

��
¼ σ1: ð35Þ

Even though the presence of confinement in itself is not a
surprise for this case, it is interesting to observe that the
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resulting string tension, at this order in perturbation theory,
is independent of the gauge fields living in 1þ 1 or 2þ 1
dimensions.

3. Massive D= 3

Finally, the case in which the gauge field lives in 3þ 1
dimensions is considered. The function α reads

α3ðxÞ ¼
2e
π

Zþ∞

0

dk
2π

logðΛ2þk2

k2 Þ sin ðkL=2Þ cos ðkxÞ
kð1þ e2

4π2
logðΛ2þk2

k2 ÞÞ : ð36Þ

The same kind of analysis, that was done for the other
two cases, can be followed here. This consists in looking
at the two limits where x is much smaller or much larger
than L. The three main steps consist on writing
2sinðkL=2ÞcosðkxÞ¼ sinðkðL=2þxÞÞþ sinðkðL=2−xÞÞ,
breaking the integral in two contributions and performing
the substitution q ¼ k=Λ. A factor is absorbed in the cutoff
Λ̃ ¼ ΛjL=2� xj choosing� depending on the argument of
the sign in each piece. Since the limit of interest is where x
is far away from L=2, this rescaling is well defined and the
limit Λ̃ → þ∞ still makes sense. The integral reads

α3ðxÞ ¼
e
π
½signðL=2þ xÞ þ signðL=2 − xÞ�

·
Zþ∞

0

dq
2π

log ð1þ q−2Þ sin ðΛ̃qÞ
qð1þ e2

4π2
log ð1þ q−2ÞÞ : ð37Þ

Each of the “sign” terms comes, respectively, from
sin ðkðL=2þ xÞÞ and sin ðkðL=2 − xÞÞ factors in order to
take care of the correct sign. One immediately sees that if
the signs of L=2� x are different, as they are in one of the
relevant cases jxj ≫ L=2, α3 is zero.
For the other case of jxj ≪ L=2, the integral bears

similarities to (19) and part of the approach can be
followed. Namely, one can divide the integral in small

pieces
Rþ∞
0 ¼ P

n

R 2πðnþ1Þ=Λ̃
2πn=Λ̃ and observe that several of

them converge to zero as the limit of the large cutoff is
taken. This is due to the rapid oscillation of the sine [or
cosine as in Eq. (19)]. Then the only remaining part is

α3ðxÞ ¼
2e
π

Z2π=Λ̃

0

dq
2π

log ð1þ q−2Þ sin ðΛ̃qÞ
qð1þ e2

4π2
log ð1þ q−2ÞÞ ; jxj < L=2:

ð38Þ

In (19) the part analogous to this last piece was also
zero as long as e was finite. Now this is no longer correct
due to the 1=q factor which picks a large contribution
near q ¼ 0. To see this explicitly, one takes the leading
order of log ð1þ q−2Þ=ð1þ e2

4π2
log ð1þ q−2ÞÞ for small q

which is simply 4π2

e2 . Then the result is independent of the
cutoff Λ̃:

α3ðxÞ ¼
4

e

Z2π=Λ̃

0

dq
sin ðΛ̃qÞ

q
¼ 4Sið2πÞ

e
; jxj < L=2:

ð39Þ
Summing up then the result reads

α3ðxÞ ¼
� 4Sið2πÞ

e if jxj < L=2

0 if jxj > L=2
ð40Þ

which again corresponds to the expected behavior for a
confined phase. The string tension is given by

σ3 ¼ μ

�
1 − cos

�
4Sið2πÞQ

e

��
ð41Þ

which is finite in general. It is interesting to observe that
even though σ1 ¼ σ2, both still differ from σ3.
Furthermore, in the two previous cases, if the external
charge Q is a multiple integer of e, the string tension
vanished. For D ¼ 3, that is no longer the case. The string
tension remains finite when Q is a multiple integer of e
with the factor of 2π in the argument of the cosine
replaced in (41) by 4Sið2πÞ ≃ 5.67 < 2π. Total screening
is obtained instead for Q ¼ π

2Sið2πÞ e.

VI. CONCLUSIONS

In this work, the robustness of the confined phase for
1þ 1 fermions was studied by determining the string
tension between two probe static charges. The robustness
of the confinement properties, when a Thirring interaction
term is added to the Schwinger model, was investigated as a
particular case of the pseudo-Schwinger-Thirring models.
Through bosonization, it was shown that the known results
for both models (i.e., when different types of interactions
are separately considered) still hold. The theory only makes
sense when the Thirring coupling is g > −π (as in the
Thirring model) and most importantly, the system only
deconfines for θ ¼ �π (as in the Schwinger model).
Through a Hubbard-Stratonovich transformation, this
model can be regarded as a fermionic field interacting
with a massless gauge field which in turn interacts with a
massive vector field. It is possible that general interactions
of this form may break confinement. This can be an
interesting problem to address in the future since, in
principle, such interactions may be experimentally avail-
able in the context of quantum simulations. However, the
terms obtained from the Thirring interaction induce can-
cellations which would not appear under a general coupling
between the gauge fields. The Thirring parameter does not
allow us to vary the interaction between the bosonic fields
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but only the mass of one of them. This result shows that,
with respect to confinement, a possible nearest-neighbor
density-density interaction plays no role and therefore the
phase is stable. In the case considered here the static
charges coupled directly to the gauge fields (through
−iQAμj

μ
ext), but not directly to the fermion current, even

in the presence of the Thirring term. Such a term would take
the form 1

2
gextψ̄γμψj

μ
ext and, therefore, has the appearance

of an external field. The study of such systems is beyond
the scope of the present work, but it may also be
theoretically and experimentally relevant. Estimates of
the parameters for a possible experimental implementation
with ultracold atoms in optical lattices have been also
presented.
The case of gauge fields living in more than one spatial

dimension while the fermions remain in 1þ 1 dimensions
was also considered. It was found that in themassless case, as
for the Schwinger model, there is a strong screening when
static charges are introduced on the system. In the Schwinger
case, the linear growth of the energy with the distance is
replaced by an exponential decay. In the case of a 2þ 1
dimensional gauge field, the logarithm is replaced by
oscillatory functions (which go to zero as power laws).
Finally, in 3þ 1 dimensions the 1=L decay is replaced by
zero: external charges are completely screened.When a small
mass is considered, a linear growth of the energy with the
distance is observed and therefore a finite string tension is
obtained for all 1þ 1, 2þ 1, or 3þ 1 dimensions.
Furthermore, at this order in perturbation theory, the string
tension is the same for the first two cases and smaller for
the latter one: σ1 ¼ σ2 > σ3. The last inequality only holds
for small enough external charges (notice anyway that the
string tensions are periodic functions of the external charges).
This result is somewhat counterintuitive since the con-

finement in the Schwinger model is usually attributed to
the fact that the Gauss law in 1þ 1 dimensions imposes a
constant electric field (rather than 1=r2 of the 3þ 1
system). Our results suggest that this feature is not
necessary to obtain confinement and, instead, it is the
dimensionality of the space-time available to the fermion
fields that is, rather, dictating confinement. In order to
better test this hypothesis it would be interesting to study
how far can one extend the space-time allowed for the
fermion fields before leaving the confined phase (for gauge
fields in 3þ 1 dimensions, for example). Given that it
is known that when the fermion fields span the full
3þ 1 dimensions the theory is deconfined (corresponding
to regular QED), this point of transition does exist.
Furthermore, with the advent of quantum simulation of
gauge theories, one can hope that an experiment with
tunable fermion dimensionality [78] could probe directly
interesting phenomena like this transition.
We finally observe that the case of the gauge fields living

in 3þ 1 dimensions exhibits a quantitative difference with
respect to the other two in which the gauge fields are

defined in 1þ 1 and 2þ 1. It would be interesting to
understand in detail how the models differ. A quantity of
interest would be the expected fermion distribution in the
presence of external charges. In the 3þ 1 case, the matter-
gauge system generates, dynamically, a linear growth of the
energy from a static 1=r2 energy interaction. The way this
happens is expected to be quantitatively different from the
case of 1þ 1 dimensions, where the static energy inter-
action is already linear.
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APPENDIX A: PARTICLE SPECTRUM FOR THE
MASSLESS SCHWINGER-THIRRING MODEL

As in the case of the Schwinger model [4], the diver-
gences of the correlation functions ψ̄ψ and ψ̄γSψ are of the
form ð1þ g

πÞp2 ¼ −n2e2=π. The case n ¼ 1 is the only
simple pole and comes from the pseudoscalar two-point
function. The connection between the four-fermion corre-
lators and the propagator can be studied using the approach
for the Schwinger model described in [4] in the presence of
the Thirring term.
From the bosonization procedure, one has ψ̄ 0ψ 0∝

cosð ffiffiffiffiffiffi
4π

p
ϑ0Þ and ψ̄ 0γSψ 0 ∝ i sin ð ffiffiffiffiffiffi

4π
p

ϑ0Þ, where the ψ 0 and
ϑ0 are the fermionic and bosonic intermediate fields used
in the calculation. The relations with the initial fermionic
bosonic variables are ψ̄ψ cos 2eφ − iψ̄γSψ sin 2eφ ∝ cos
ð ffiffiffiffiffiffi

4π
p

ϑ − 2eφÞ and ψ̄γSψ cos 2eφ − iψ̄ψ sin 2eφ ∝ i sin
ð ffiffiffiffiffiffi

4π
p

ϑ − 2eφÞ. From these relations one obtains ψ̄ψ ∝
cos ð ffiffiffiffiffiffi

4π
p

ϑÞ and ψ̄γSψ ∝ sin ð ffiffiffiffiffiffi
4π

p
ϑÞ. Therefore, the rela-

tions between the initial fermionic and final bosonic fields are
the same as the free theory:

hψ̄ðxÞψðxÞψ̄ð0Þψð0Þi ¼ hψ̄ψi cosh ð4πΔðxÞÞ
hψ̄ðxÞγsψðxÞψ̄ð0Þγsψð0Þi

¼ hψ̄γsψi sinh ð4πΔðxÞÞ: ðA1Þ

The singularities can be determined by expanding the cosh
and the sinh in power series and analyzing them termby term.
Let us consider the termof ordernwhich corresponds to cosh
if even or sinh if odd. By doing the Fourier transform of (7),
exponentiating it and then Fourier transforming again, one

STRING TENSION AND ROBUSTNESS OF CONFINEMENT … PHYS. REV. D 100, 036009 (2019)

036009-13



can compute the Fourier transform of (A1) in terms of the
momentum p. The result is given by

Z
d2q1
ð2πÞ2 � � �

d2qn
ð2πÞ2

1

ð1þ g
πÞq21 þ e2

π

� � � 1

ð1þ g
πÞq2n þ e2

π

δðp − q1 − � � � − qnÞ ðA2Þ

The integration of one of the variables, say qn, can be
performedusing theDiracdelta. Then − 1 integrations of the
zeroth component of qi can be then carried out putting them
on shell. This results in

Z
dðq1Þ1
2π

ffiffiffiffiffiffiffiffi
2E1

p ���dðqn−1Þn−1
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
2En−1

p

·
1

ð1þ g
πÞðp−q1− � ��−qn−1Þ2þ e2

π






qi¼1;…;n−1

on−shell:

; ðA3Þ

where it was abbreviated Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2i þm2

p
. Using the nota-

tionQ ¼ q1 þ � � � þ qn−1, one can write the denominator of
(A3) in the form λðp − qÞ2 þm2. The momenta part can
be written as ðp − qÞ2 → p2

0 − 2p0Q0 þQ2, where it was
used that it is possible to eliminate the dependence on the
spatial component of p by a suitable translation of the
spatial variable of integration. The poles then obey

ffiffiffi
λ

p
p0 ¼ffiffiffi

λ
p

Q0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

1 −m2
p

. Because the particles qi are on shell,
the maximum value of the total for momenta is λQ2 ¼
−ðn − 1Þ2m2 corresponding to the situation where all the
n − 1 particles are at rest in a given frame and therefore
Q1 ¼ 0. For this case one finds a pole at λp2

0 ¼ −n2m2.
By increasing the total momentum of Q one finds a branch
cut along the axis starting at −n2m2 corresponding to
multiparticle states. This holds for any n > 1. For the special
case n ¼ 1 there is an isolated pole at λp2

0 ¼ −m2 and
therefore the theory does not contain further states.

APPENDIX B: STRING TENSION FOR THE
PERTURBATIVE MASSIVE CASE

Since the external charges are placed at a finite distance
L, terms with an external current of the form Jext0 ¼
δðx − L=2Þ − δðxþ L=2Þ and Jext1 ¼ 0 should be added
to the Lagrangian. The Thirring term will produce no extra
contribution for the string tension as ðJextμ Þ2 contains no
element involving the two different charges together (it is
purely local) and, therefore, will give an L independent
contribution for the final energy. The effect of the external
charges enters through the coupling with an external field
−iQJextμ Aμ, with Q being the absolute value of the external
charges placed on the system. After the variable trans-
formation, this coupling is transformed into −iQJextμ

ðCμ − BμÞ. As in [79], the effect of the external charges

is easily seen if one writes Jextμ ¼ εμν∂νK. This term takes
then the form QKð∂2φ − ∂2φ0Þ. The function K is mostly
constant being 1 for jxj < L and 0 for jxj > L. This extra
term has the form of the θ-term with the difference that K
is actually space dependent. Therefore, when one does the
transformation ϑ → ϑ −

ffiffiffi
π

p
QK=e, there is a kinetic term

corresponding to the points jxj ¼ L. Again, such a con-
tribution is independent of L and it is not important to
compute the string tension. Since when K ¼ 0 the con-
tribution for the energy from both systems is the same, the
difference of energy corresponds to take simply K ¼ 1 and
multiply the energy density by L.
In lowest order in perturbation theory in the mass, the

energy corresponds simply to the expectation value of
the cosine term. One then finds the known result for the
Schwinger model [4]

σ ¼ −μ
�
cos

�
θ −

2πQ
e

�
− cosðθÞ

�
: ðB1Þ

APPENDIX C: DETAILS ON PARAMETERS
ESTIMATE

This appendix provides further details on the estimation
of the parameters of the lattice model. The hopping
parameter of species α between nearest-neighbor sites of

the optical lattices is denoted by tr⃗
0
r⃗
00

α and the interaction
parameter between species α and β (assumed site indepen-
dent) is denoted by Uαβ. One has

tα ¼ −
Z

ddr⃗

�
ℏ2

2mα
∇ϕα;nðr⃗Þ ·∇ϕα;n0 ðr⃗Þ

þ ϕα;nðr⃗ÞVextðr⃗Þϕα;n0 ðr⃗Þ
�

ðC1Þ

and

Uαβ ¼ gαβ

Z
ddr⃗ϕα;nðr⃗Þ2ϕβ;nðr⃗Þ2 ðC2Þ

where ϕα;n is the Wannier function for the α-species
centered in the site n of the optical lattice [80,81].

Furthermore gαβ ¼ 4πℏ2aαβ
mαβ

where aαβ is the scattering length

between species α and β and mαβ, the corresponding
reduced mass. In the following it is assumed that the ϕ’s

are Gaussian: ϕα;nðr⃗Þ ¼ Cα

Q
3
j¼1 e

−ðrj−rn;α;jÞ2=2σ2α;j , where
r⃗ ¼ ðr1; r2; r3Þ and r⃗n;α is the position of the nth minimum
of the lattice for the species α (the constants Cα enforcing
the normalization). These functions are characterized by the
σα;j which may depend on the direction and that are fixed
by energy minimization. For the present case, the shape
of the function in directions y and z is fixed through a
parameter σ⊥α while the value of the longitudinal compo-
nent, which is called simply σα, can be fixed variationally.
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The relevant potentials, which can be realized experimen-
tally, take a form that can be written as

VðxÞ ¼ V0½sin ðkxÞ2 þ λ sin ð2kxþ αÞ2�: ðC3Þ

To simplify the subsequent computation a quartic poly-
nomial potential is considered. It is constructed by
expanding the expression above in powers of kx and
having two minima, one at −a=2 and the other at a=2, with
an offset between them of ΔV0. In order to derive the
potential one can require that its first derivative is of the
form ðA=aÞð2x=aþ 1Þðx=a − x0=aÞð2x=a − 1Þ where x0
corresponds to the position of the maxima between the
two minima. The potential depth will be proportional to A.
By integrating, one obtains the form of the potential and
an extra parameter c as a constant of integration. This
parameter is fixed by requiring that the absolute minima,
chosen arbitrarily to be the one at x ¼ −a=2, corresponds
to zero energy. The potential depth, V0, is the height of
the barrier at x0 (position of the maximum). With this
definition one can replace A by V0 according to
A ¼ 192V0=ð3 − 2x0=aÞð1þ 2x0=aÞ3. The offset between
the minima is V0Δ where Δ ¼ 32x0=að3 − 2x0=aÞ
ð1þ 2x0=aÞ3. The potential considered for, say, the boson
species 1 is then

VB1ðxÞ ¼ AB

�
x4

4a4
−
x3xB
3a4

−
x2

8a2
þ xx0B

4a2
þ x0B

12
þ 1

64

�
;

ðC4Þ

while for the boson species 2 is VB2ðxÞ ¼ VB1ð−xÞ. For
the fermions the potential VFðxÞ has the same structure
with an amplitude AF0:

V0FðxÞ ¼ AF

�
x4

4a4
−
x3x0F
3a4

−
x2

8a2
þ xx0F

4a2
þ x0F

12
þ 1

64

�
:

ðC5Þ

It is important to observe, however, that only bosons—
unlike the fermions—should feel a double well potential
according to the proposal. For this reason the polynomial
double well potential approximation for the fermions is
not as good as an approximation as it is for the bosons.
Nonetheless, as one is interested in the strong coupling
regime of the model, this provide a reasonable approxi-
mation, as we verified.
The difference between the energies of the minima, V0Δ,

should be small when compared to V0 or, equivalently,
x0=a should be small. Consequently, their influence on the
parameter determination is small, which was checked
explicitly. In what follows it will then be taken x0=a ¼
Δ ¼ 0 avoiding unnecessary complicated formulas. This
results in

tα ¼
ℏ2

2mαa2

�
1

4

�
a
σα

�
4

−
1

2

�
a
σα

�
2

−
1

σ2⊥

�
e
− a2

4σ2α

− V0

�
12

�
σα
a

�
4

− 4

�
σα
a

�
2

þ 1

�
e
− a2

4σ2α ðC6Þ

and

Uαβ ¼
gαβ
2π3=2

1

σ2⊥
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2α þ σ2β

q : ðC7Þ

For the considered scheme it is required that U ¼ U11 ¼
U22 and U12 ¼ U1F ¼ U2F ¼ 2U. The fine-tuning of this
condition is not crucial as discussed in the main text. With
the parameters σ⊥ and σ fixed, one has to rely on the control
of the scattering length in order to fulfil this condition.
Within the variational approach, one computes the

average energy per site and requires that σ minimizes it.
The problem of the different shape of the minima, also
referred to in the main text, can be addressed as follows.
The total energy is given by

ε ¼
Z

d3r⃗
X
r⃗0;α

nα
ℏ2

2mα
j∇ϕαr⃗0 j2 þ nαVextjϕαr⃗0 j2

þ
X
β>α

nαnβ
gαβ
2

jϕαr⃗0 j2jϕβr⃗0 j2 ðC8Þ

(nα is the number of atoms per well of the species α).
Because of the asymmetry, the total energy per site is
different depending on which minima one is referring
Vextjϕαr⃗0 j2. For the minima at x ¼ �a=2 the result is

ε

N
¼

X
α

nα
ℏ2a−2

2mα

1

2

�
a
σα

�
2

þ
X
α

4nαV0

�
σα
a

�
2
�
3

�
σα
a

�
2

þ 2

�

þ
X
α;β>α

nαnβ
gαβ

4π3=2σ2⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2α þ σ2β

q ; ðC9Þ

where it was already included the approximation that the
spreading in the perpendicular direction is the same for all
species and characterized by σ⊥. Assuming that all masses
are the same and the offsets Δα ¼ 0, the only parameters
that are species dependent are the densities nα and the
amplitudes V0α. The asymmetry of the minima is present
wheneverΔα ≠ 0. Therefore, the problem of the asymmetry
of the different Wannier function is not present here. It was
checked that the obtained estimates do not depend very
much on the Δ parameters if they are not too large. The
density for fermions is nF ¼ 1 while for the other two
species of bosons, it is n1;2 ¼ S. With this there are in total
two parameters to fix, σB and σF, given two coupled
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equations ∂ε=∂σF ¼ 0 and ∂ε=∂σB ¼ 0. The reference
energy is denoted by Eref ¼ ℏ2=2ma2 with an assumed
equal mass for all the species m. The following dimension-
less parameters are now introduced: Ṽ0α ¼ V0α=Eref ,
σ̃α ¼ σα=a, and ãαβ ¼ aαβ=a. Regarding the scattering
lengths, one is working on the assumption that a1F ¼
a2F ¼ a12 ≡ 2ascatt and a11 ¼ a22 ¼ ascatt. The two equa-
tions are then

8>>>>><
>>>>>:

σ̃−3F − 16Ṽ0Fσ̃Fð3σ̃2F þ 1Þ þ 4Sðã1Fþã2FÞσ̃Fffiffi
π

p
σ̃2⊥ðσ̃2Fþσ̃2BÞ3=2

¼ 0

σ̃−3B − 16Ṽ0Bσ̃Bð3σ̃2B þ 1Þ

þ 1ffiffi
π

p
σ̃2⊥

�
ðã1Fþã2FÞσ̃B
ðσ̃2Fþσ̃2BÞ3=2

þ
ffiffi
2

p
Sðã11þã22þã12Þ

σ̃2B

�
¼ 0

: ðC10Þ

As discussed in the main text and above, one takes a12 ¼
2ascat and a11 ¼ a22 ¼ ascat. Because of the difference on
the interaction terms of the two equations of (C10) the
assumption a1F ¼ a2F ¼ 2ascat does not automatically
satisfy the requirement of the Hamiltonian parameters of
the proposal. For S small, at least, the result is approximately
valid so these values are also taken as reference for the
scattering between bosons and fermions. Equation (C10) is
used to obtain the data reported in Fig. 2.
An important check concerns whether the values of the

parameters validate the perturbative approximation obtained
for large values of U. This amounts to check that tα=U and
V0αΔα are actually small (here it is considered that they
should be ∼0.1 or smaller). For illustrative purposes it was
fixed S ¼ 1, V0F ¼ V0B ¼ V0, and ΔF ¼ ΔB ¼ Δ. Direct
analysis of the above equations shows that in order to
guarantee that the perturbative regime is valid in the interval
Ṽ0 ∼ 3–10, then one should have σ̃⊥ ∼ 0.2 and Δ≲ 10−3.
If one takes σ̃⊥ to be, say, two or three times higher than this,
larger potential amplitudes are required. Alternatively, larger
scattering lengths could also be used. From the other side,
there is some freedom in choosing the values ofΔ in order to
remain in the perturbative regime. However, this choice
should respect the fact the twominima should still be present
at x ¼ �a=2 which is translated into jΔj < 1=3. Finally, the
mass parameter of the target model will scale as V0Δ and
the choice was taken such that the energy scale of this term
matches the order of magnitude of the other terms in the
Hamiltonian tαtβ=U ∼ V0Δ,which results to beΔ≲ 10−3, as
referred to in the main text.

APPENDIX D: EQUATIONS OF MOTION AND
ENERGY-MOMENTUM TENSOR FOR

THEORIES WITH HIGHER
DERIVATIVES

Here a classical field theory with higher derivatives is
considered. The well-known Euler-Lagrange equations are
derived by the extremization of the action. The inclusion of

higher derivatives on the Lagrangian lead to a reformulation
of the equations. In fact by calculating explicitly δS ¼ 0,
integrating by parts whenever necessary, one obtains

XN
n¼0

ð−1Þn∂μ1…∂μn

∂L
∂ð∂μ1…∂μnϕÞ

¼ 0; ðD1Þ

where N is the highest number of derivatives appearing
in a term of the Lagrangian. For N ¼ 1 one recovers the
usual Euler-Lagrange equations.
Consider now a general translation xμ → xμ þ εμ.

The total change of the Lagrangian is

δL ¼ δL
δð∂μ1…∂μnϕÞ

δð∂μ1…∂μnϕÞ; ðD2Þ

which results in

δL ¼ ∂L
∂ð∂μ1…∂μnϕÞ

∂ν∂μ1…∂μnϕε
ν: ðD3Þ

The derivatives can be written as acting on ∂L
∂ð∂μ1…∂μnϕÞ

with a minus sign plus a total derivative term:

∂L
∂ð∂μ1…∂μnϕÞ

∂ν∂μ1…∂μnϕ

¼ ∂μ1

� ∂L
∂ð∂μ1…∂μnϕÞ

∂μ2…∂μn∂νϕ

�

− ∂μ1

∂L
∂ð∂μ1…∂μnϕÞ

∂μ2…∂μn∂νϕ: ðD4Þ

By continuing this process with every ∂μi acting on ϕ in
the terms that are not an exact derivative (last term), one
obtains

∂L
∂ð∂⃗ϕÞ ∂ν∂μ1…∂μnϕ

¼
Xn
i¼1

ð−1Þi−1∂μi

�
∂μ1…∂μi−1

∂L
∂ð∂⃗ϕÞ ∂μiþ1

…∂μn∂νϕ

�

þ ð−1Þn∂μ1…∂μn

∂L
∂ð∂⃗ϕÞ ∂νϕ; ðD5Þ

where, in order to simplify the notation, it was written

∂L
∂ð∂⃗ϕÞ≡

∂L
∂ð∂μ1…∂μnϕÞ

:

The special case of n ¼ 0 gives ∂L
∂ϕ ∂νϕ. Summing over

all n, joining all terms coming from the part of the above
expression, one can recognize the equations of motion (D1)
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and therefore they are put to zero. What remains is a series
of total derivatives. Furthermore in itself the Lagrange
density changes as δL ¼ εν∂νϕ. By rearranging the vari-
ables one obtains

XN
n¼1

Xn
i¼1

ð−1Þi−1∂μ1

�
∂μ2…∂μi

∂L
∂ð∂⃗ϕÞ ∂μiþ1

…∂μn∂νϕ

�
εν

− ∂μ1Lδ
μ1
ν εν ¼ 0 ðD6Þ

and therefore one can identify the energy-momentum
tensor. This is just the conserved current that follows
from Noether’s theorem for the special case of space-time
translations:

Tμν ¼
XN
n¼0

Xn
i¼0

ð−1Þi∂μ1…∂μi

∂L
∂ð∂μ∂μ1…∂μnϕÞ

∂μiþ1

…∂μn∂νϕ − Lημν: ðD7Þ
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