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I N TRODUC TION

Inherited thrombocytopenias are a heterogeneous group of 
disorders characterized by a low platelet count and bleed-
ing tendency.1 The molecular defects may alter the different 
stages of megakaryopoiesis and platelet production: mega-
karyocyte differentiation, maturation or platelet release and 
survival.

Defects involving the differentiation of haematopoietic 
stem cells into megakaryocyte progenitors result in a severe 
reduction of platelets due to the lack of megakaryocytes in 
the bone marrow.2 Among these entities, the best- known is 
congenital amegakaryocytic thrombocytopenia (CAMT), 
an autosomal recessive thrombocytopenia caused by 

mutations of MPL (CAMT- MPL, MIM 604498) and THPO 
(CAMT- THPO) genes, encoding the MPL receptor and its 
ligand (thrombopoietin), respectively. Recently, MECOM- 
associated syndrome (MECOM- AS), an autosomal domi-
nant form of amegakaryocytic thrombocytopenia caused by 
mutations in MECOM, was included in this group.3,4

MECOM is a complex locus on chromosome 3q26, which 
produces multiple transcripts generated by alternative tran-
scriptional start sites and alternative splicing processes.5,6 
One of the major gene products is EVI1, a transcription 
factor of 1051 amino acids with both activating and repres-
sive activity on different target genes. It is characterized by 
two zinc- finger domains (ZFD) clustered at the N- terminus 
(seven ZF motifs) and at the C- terminus (three ZF motifs), 
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Summary
MECOM- associated syndrome (MECOM- AS) is a rare disease characterized by 
amegakaryocytic thrombocytopenia, progressive bone marrow failure, pancytope-
nia and radioulnar synostosis with high penetrance. The clinical phenotype may 
also include finger malformations, cardiac and renal alterations, hearing loss, B- cell 
deficiency and predisposition to infections. The syndrome, usually diagnosed in the 
neonatal period because of severe thrombocytopenia, is caused by mutations in the 
MECOM gene, encoding for the transcription factor EVI1. The mechanism linking 
the alteration of EVI1 function and thrombocytopenia is poorly understood. In a 
paediatric patient affected by severe thrombocytopenia, we identified a novel variant 
of the MECOM gene (p.P634L), whose effect was tested on pAP- 1 enhancer element 
and promoters of targeted genes showing that the mutation impairs the repressive 
activity of the transcription factor. Moreover, we demonstrated that EVI1 controls 
the transcriptional regulation of MPL, a gene whose mutations are responsible for 
congenital amegakaryocytic thrombocytopenia (CAMT), potentially explaining the 
partial overlap between MECOM- AS and CAMT.
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which recognize the GA(T/C)AAGA(T/C)AAGATAA7,8 and 
GA(A/T)GA(T/C)9,10 consensus sequences, respectively, one 
repression domain (RD) for the binding of CtBP (C- terminal 
binding protein) proteins to modulate the EVI1 repressive 
activity, and one C- terminal acidic domain.11

In MECOM- AS, amegakaryocytic thrombocytopenia is 
characterized by low platelet count since birth, with pro-
gressive bone marrow failure requiring haematopoietic stem 
cell transplantation (HSCT) in the early infancy.4,12– 15 In 
addition to radioulnar synostosis (RUS), other limb defects, 
cardiac and renal anomalies, hearing loss, B- cells deficiency 
and predisposition to infections have been reported.4 Of 
note, a few patients with mutations in MECOM have RUS 
and/or other limb malformations without haematological 
alterations.4,16

MECOM- AS is extremely rare and has been reported 
in approximately 50 families carrying mostly private mu-
tations in MECOM, whose effect on protein function and 
clinical phenotype remains unclear.3,4,12– 15,17,18 Here, we 
report a patient with amegakaryocytic thrombocytope-
nia caused by a de novo variant (c.1901C>T, p.P634L) in 
MECOM (NM_001105078.3), which was initially regarded 
as an amino acid substitution of uncertain significance 
(VUS). For this reason, we studied in vitro the effect of the 
variant, showing that it affects the repressive activity of the 
transcription factor on its targets, including MPL.

M ATER I A L S A N D M ETHODS

Clinical presentation

The patient was the first- born boy from a non- consanguineous 
couple of Northern Italian descent. The parents were healthy 
with normal blood counts, and no family history of throm-
bocytopenia was reported. During pregnancy, an ultrasound 
examination revealed bilateral talipes equinovarus. At birth, 
no other dysmorphic features or malformations were ob-
served except for mild posterior ear rotation. A few days 
after birth, he presented with scattered petechiae and bruis-
ing associated with severe thrombocytopenia (platelet count 
16 × 109/L). Allo-  and auto- antibodies against platelet anti-
gens were not found in the mother's serum. He was treated 
with high- dose intravenous immunoglobulins and steroids 
with no effect. Repeated platelet transfusions resulted in a 
substantial rise in platelet counts (Table S1). The bone mar-
row aspirate was consistent with amegakaryocytic thrombo-
cytopenia showing the absence of megakaryocytes without 
any other substantial alterations. Marrow karyotyping was 
repeatedly normal. No increased susceptibility to infection 
or alteration in immunological parameters (immune phe-
notype, immunoglobulin levels and vaccine response) were 
noted. Specifically, B- cell number and subpopulation (naïve, 
marginal zone and switched memory) were normal, except 
for a mild reduction in marginal zone B cells (Tables S2 and 
S3). Informed consent for mutational screening and the pre-
sent report were obtained per institutional guidelines.

Mutational screening and in silico analysis

To explore the genetic cause of the clinical phenotype, the 
DNA extracted from peripheral blood was analysed by a cus-
tom gene panel including known genetic causes of inherited 
thrombocytopenia and bone marrow failure (Table  S4), as 
previously described.19 The variant was analysed by Sanger 
sequencing on DNA extracted from peripheral blood and a 
buccal swab of the proband, as well as from peripheral blood 
of both parents for segregation analysis.

The potential pathogenic effect of the MECOM missense 
variant on the protein function was evaluated by PolyPhen- 2 
(Polymorphism Phenotyping v2), PROVEAN (Protein 
Variation Effect Analyser), Mutation Assessor and CADD 
(Combined Annotation Dependent Depletion). For these 
bioinformatic tools, we used Variant Effect Predictor at 
https://grch37.ensem bl.org/info/docs/tools/ vep/index.html.

Plasmids

The Flag- pcDNA3.1 (+) expression vectors containing the 
WT and c.2248C>T MECOM cDNA (NM_001105078.3) 
were kindly provided by Dr Tetsuya Niihori. The c.1901C>T 
variant was generated by PCR site- directed mutagenesis 
using primers designed with the Quick Change Primer De-
sign software (Agilent).

The plasmids for gene reporter assays were obtained by 
cloning the ITGA2B, PBX1 and MPL promoter regions up-
stream of the P. pyralis luciferase gene in the PGL4 basic 
vector (Promega). The primers used to amplify the target pro-
moter regions of genomic DNA are available upon request. 
pAP- 1- luc reporter vector and pRL- CMV were purchased 
from Agilent Technologies and Addgene, respectively.

Cell cultures and transfection

Functional studies were carried out in HEK293T and K562 
cells. Lipofectamine™ LTX Reagent with PLUS™ Reagent 
(A12621) (Invitrogen) was used to transfect K562 cells fol-
lowing manufactured instructions. HEK293T cells were 
transfected using the calcium- phosphate method.

Luciferase reporter assays

Cells were seeded on 24 well plates (5 × 104 cells/well for 
HEK293T cells, 1.5 × 105 cells/well for K562) and after 24 h, 
1 μg of each MECOM cDNA expression vector was tran-
siently transfected together with 300 ng of the PGL4 (LucF). 
Each sample was additionally transfected with 100 ng of 
pRL- CMV (LucR) to perform the normalization of data out-
put. After 48 h, cells were lysed with 100 μL of Passive Lysis 
Buffer 1X and the assay for the transactivation activity was 
performed using Dual- Luciferase Reporter Assay System ac-
cording to the manufacturer's instructions (Promega). The 
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results were expressed as the ratio of Firefly to Renilla lucif-
erase (LucF/LucR) and graphically displayed by histograms 
representing the mean value of at least three independent 
experiments with standard deviations. Statistical analysis 
(unpaired t- test) was done using GraphPad Prism software.

R E SU LTS

Identification of the novel variant (P634L) of 
EVI1

The mutational screening analysis performed on the 
proband identified a novel c.1901C>T variant in MECOM 
(NM_001105078.4), resulting in the P634L amino acid sub-
stitution of EVI1. Segregation analysis of the healthy parents 
showed that c.1901C>T is a de novo variant (Figure 1). The 
presence of the substitution was confirmed on a buccal swab, 
suggesting its germline status. No other potentially causa-
tive variant was found in genes associated with inherited 
thrombocytopenia.

The P634L missense variant is not reported in GnomAD 
or dbSNP; it affects the repression domain (RD) of EVI1 in a 
very conserved region (Figure 1B). Consistent with its rarity, 
bioinformatic tools predict the potential pathogenic effect 
on the protein structure and function (Provean: Deleterious; 
Polyphen- 2: probably damaging; CADD: 15.37). However, as 
the impact of missense variants is considered of uncertain 

significance, functional studies have been performed to con-
firm its deleterious effect.

P634L inhibits repression activity of EVI1

To test the functional effect of P634L, we evaluated the tran-
scriptional activity of EVI1 in a reporter gene assay with 
the Firefly luciferase gene under the control of the activator 
protein- 1 enhancer element (pAP- 1- luc), a system previously 
used to demonstrate the pathogenicity of other MECOM 
variants.3 HEK293T and K562 cells were co- transfected with 
the pAP- 1- luc construct and the pCDNA3.1 vector express-
ing the wild type (WT) or the mutant P634L form of EVI1. 
As a control, we included a relatively common mutation 
(R750W) identified in several individuals with MECOM- 
AS.3,4,12– 14,17 Western blot analysis of the exogenous mutant 
proteins showed that they are not degraded (Figure 2A).

Cells overexpressing the WT protein showed a repres-
sive activity on the pAP- 1 element, which is significantly 
reduced, although to different extent when the P634L and 
R750W forms are transfected in both HEK293T and K562 
cells (Figure  2B,C). These results suggest that even if mu-
tant proteins are expressed, they are not transcriptionally 
functional.

Since the repressive activity of EVI1 has been tested indi-
rectly on the pAP- 1 enhancer element,20 we carried out the 
dual luciferase assay in both cell lines with the reporter gene 

F I G U R E  1  Segregation analysis and conservation of P634L. (A) Pedigree of the family showing the de novo c.1901C>T variant of MECOM. (B) 
Orthologs alignment of the EVI1 transcription factor from HomoloGene (https://www.ncbi.nlm.nih.gov/homol ogene/ 21086), showing conservation 
of residue P634 (in red) among different species. (C) Electropherogram of Sanger sequencing of family members showing the de novo status of the 
c.1901C>T substitution in the proband. PB, peripheral blood; BS, buccal swab.
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under the control of the promoters of the PBX1 and ITGA2B 
genes, which are known and putative targets of EVI1, respec-
tively.21 In particular, the PBX1 promoter contains five possible 
binding sequences for the N- term ZFD and one for the C- term 
ZFD, which both cooperate to regulate PBX1 expression. 
While WT- EVI1 represses the luciferase activity, its P634L and 

R750W mutated forms reduce the inhibitory activity of the 
transcription factor (Figure  3), supporting the hypothesis of 
the pathogenic effect of P634L.

Identification of MPL promoter as a 
target of MECOM

Since the expression level of the MPL receptor is reduced in 
mice overexpressing EVI1,22 we hypothesized that EVI1 con-
trols the transcription of the MPL gene. Therefore, we cloned 
the MPL promoter region of 509 bp (from −313 to +96 of the 
transcription start site) known to contain potential regula-
tory motifs involved in its expression,23 upstream of the lu-
ciferase gene. According to our hypothesis, overexpression 
of WT- EVI1 in HEK293T cells determines the reduction of 
the luciferase activity of almost 40% (37 ± 18%) of that ob-
tained with the empty vector. Overexpression of P643L, as 
well as of R750W, significantly reduces the repressive ability 
of EVI1 on the MPL promoter (Figure 4). Similar effects were 
observed after transfection of the constructs in K562 cells. 
Taken together, these data suggest that EVI1 regulates the 
MPL expression, whose control is essential to trigger mega-
karyopoiesis and platelet production.24,25

Variant P634L is associated with bone marrow 
failure without radioulnar synostosis

Once the diagnosis of MECOM- AS was confirmed even sup-
ported by the pathogenic role of P634L, the proband under-
went an X- ray examination of the forearms, which did not 
show any sign of synostosis or other ulnar anomalies. The 
haematological picture was closely monitored. In the first 
year of life, the patient developed moderate neutropenia and 
anaemia. He was treated with Erythropoietin at the dose 
of 400 U/kg/week from the age of 2.5 months to the age of 
4.5 months. From the age of 3 months the platelet count was 
stable over 35– 40 × 109/L, and the anaemia and neutropenia 
resolved. A novel decrease in platelet count was observed 
at the age of 2.5 years, leading to transfusion dependence 
(Table S1). Concomitantly, the patient developed severe neu-
tropenia (minimal neutrophil count: 0.1 × 109/L at the age of 
3 years) and moderate anaemia with a mild rise in HbF. At the 
age of 3 years, he underwent a HSCT from an HLA- matched 
unrelated donor, after a conditioning regimen compris-
ing Treosulfan, Fludarabine, Thiotepa and anti- thymocyte 
globulin. Platelet engraftment occurred within 26 days with-
out any severe toxicity (Table  S1). At present, 3 years after 
the transplant, the patient is well apart from autoimmune 
hyperthyroidism and is currently treated with methimazole.

DISCUSSION

Within the group of diseases comprising inherited throm-
bocytopenia and bone marrow failure syndromes (and 

F I G U R E  2  MECOM mutations alter the repression activity of 
EVI1. (A) Western blot analysis of whole lysates of HEK293T cells 
overexpressing EVI1- Flag using anti- Flag antibody. The normalized 
ratios between Flag- EVI1 and GAPDH levels obtained by densitometric 
analyses are reported below. (B, C) Luciferase reporter assay in HEK293T 
(B) and K562 cells (C) transfected with pCDNA3.1 vectors, expressing 
the wild type (WT) or the mutant P634L and R750W mutant forms of 
EVI1 on the activator protein- 1 enhancer element (pAP- 1). Histograms 
show the firefly/renilla luciferase light emission ratio normalized on the 
pCDNA3.1 empty vector sample. Error bars represent standard deviation 
of three independent experiments. # p < 0.05 and ### p < 0.001 are versus 
empty vector. * p < 0.05, ** p < 0.01, and *** p < 0.001 are versus WT- EVI1 
overexpression, as determined by Student's t- test.
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overlapping syndromes), causative mutations in new genes 
have been discovered in recent years. In most of these dis-
eases, including MECOM- AS, many aspects, such as the 
spectrum of mutations, the pathogenic mechanisms, the 
clinical features and the outcome, are still poorly under-
stood. In this context, we identified a patient with a previ-
ously unreported de novo variant (P634L) in the MECOM 
gene. The presence of de novo variants in the disease is a 
relatively common event, as it has been reported in several 
index cases tested for segregation analysis3,4,12,17,26– 28 or with 
asymptomatic parents,3,4,14,16,17 suggesting that mutations at 
this locus could be associated with potential lethality in the 
prenatal stage.

The absence of P634L in population databases and several 
in silico predictors supported a deleterious consequence of 
this variant on protein function. The amino acid substitu-
tion affects the RD29,30 where— at least to our knowledge— 
only two nonsense mutations (K612* and E644*) have been 
identified.17,31 Since it is the first missense variant identified 
in this domain, as the others are located in the C- terminal 
ZFD, we performed functional studies to determine whether 
P634L affects protein functions. The data showed that the 

F I G U R E  3  Mutants of EVI1 lose the repressive activity of the transcription factor on ITGA2B and PBX1 promoter. (A, B) Luciferase reporter assay in 
HEK293T (A, B) or K562 (C, D) cells transfected with pCDNA3.1 vectors, expressing the wild type (WT) or the mutant P634L and R750W forms of EVI1. 
The Firefly luciferase gene is under the control of ITGA2B (A, C) or PBX1 (B, D) promoter. Histograms show the firefly/renilla luciferase light emission 
ratio normalized on the pCDNA3.1 empty vector sample (black bar). Error bars represent standard deviation of three independent experiments. # p < 
0.05, ## p < 0.01 and ### p < 0.001 are versus empty vector. * p < 0.05, ** p < 0.01, and *** p < 0.001 are versus WT- EVI1 overexpression, as determined by 
Student's t- test.

F I G U R E  4  Mutants of EVI1 lose the repressive activity of the 
transcription factor on MPL promoter. Luciferase reporter assay in 
HEK293T (grey bars) and K562 (black bars) transfected with pCDNA3.1 
vectors, expressing the wild type (WT) or the mutant P634L and R750W 
mutant forms of EVI1 on MPL promoter. Histograms show the firefly/
renilla luciferase light emission ratio normalized on the pCDNA3.1 
empty vector sample. Error bars represent standard deviation of three 
independent experiments. # p < 0.05 and ## p < 0.01 are versus empty 
vector. * p < 0.05 and *** p < 0.001 are versus WT- EVI1 overexpression, as 
determined by Student's t- test.
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repressive activity of P634L on EVI1 targets is impaired and 
comparable to a mutation localized into the ZFD (R750W) 
used as control, suggesting that their effect is independent 
of the functional domain affected. Even if the reporter gene 
studies do not recapitulate the disease, overexpression of 
P634L in an in vitro assay allows us to assign it a pathogenic 
role. Furthermore, these data allowed us to confirm a direct 
role for EVI1 in the regulation of ITGA2B, previously pro-
posed as a potential target, since its expression was found 
to be deregulated upon EVI1 depletion in haematopoietic 
stem cells.32 Altogether the data suggested that the MECOM 
mutation exerts an inhibitory effect on repression of their 
targets. We cannot however exclude that, in different cellular 
contexts, the mutations could exert a gain of function effect, 
exacerbating the repressive activity of EVI1, as reported by 
Niihori et al on the AP- 1 motif.3

Most importantly, our in vitro results link EVI1 to MPL, 
another key regulator of megakaryopoiesis whose mutations 
are responsible for a form of amegakaryocytic thrombocy-
topenia. We found that EVI1 represses the MPL promoter 
in human cells, as it was observed in mice overexpressing 
EVI1.22 Since this inhibitory activity is significantly re-
duced when the transcription factor is mutated, we cannot 
exclude a similar effect in vivo leading to impaired block 
of the MPL transcription. The association of de- repression 
of MPL with pancytopenia is supported by mouse studies, 
showing that ectopic overexpression of MPL more often re-
sults in thrombocytopenia characterized by a reduced num-
ber of HSCs in the bone marrow, similarly to patients with 
MECOM- AS.33,34 Furthermore, previous data demonstrated 
that MPL is expressed on haematopoietic stem cells (HSCs) 
from these patients, despite their low number.4 However, due 
to difficulties (rare patients with a few haematopoietic stem 
cells) in carrying out expression studies, it is not possible to 
establish whether the MPL level is comparable to controls 
and therefore further investigations will be fundamental 
to determine the potential effect of EVI1 mutations in con-
trolling the MPL transcription in vivo.

The mechanism linking the impaired MPL downregula-
tion due to mutations in MECOM to bone marrow failure 
remains to be elucidated. EVI1 is highly expressed in HSC 
and downregulated during commitment35 and its heterozy-
gous loss leads to exhaustion of HSCs because of accelerated 
differentiation, suggesting an important role of this tran-
scription factor in the regulation of HSC renewal.10,32,36,37 
Therefore, we speculate that the haematopoietic defects in 
MECOM- AS could be explained by alterations of the mecha-
nisms controlling the HSCs renewal and maintenance. This 
hypothesis is supported by a recent study demonstrating 
that MECOM haploinsufficiency results in functional loss 
of HSCs due to dysregulation of genes critical for HSC main-
tenance.38 In addition, our results suggest that, in physio-
logical conditions, EVI1 may prevent the differentiation of 
HSCs into megakaryocytes through repression of the MPL 
transcription. When MECOM is mutated, this finely tuned 
mechanism is impaired, leading to early and accelerated 
megakaryocyte differentiation. This mechanism, together 

with the failure of HSC maintenance due to MECOM haplo-
insufficiency, could be responsible for a drastic reduction in 
HSCs capable of producing functional platelets and thus the 
thrombocytopenia in these patients. Furthermore, the pro-
gressive stem cell loss could lead to bone marrow failure and 
pancytopenia, as proposed for other bone marrow failure 
syndromes, such as the telomer biology disorders.39,40

According to this hypothesis, opposite biological ef-
fects on MPL in MECOM- AS (impaired downregulation) 
and CAMT- MPL (loss of function) can lead to a common 
clinical phenotype: initial thrombocytopenia evolving in 
bone marrow aplasia that requires HSCT. Indeed, our pa-
tient had severe thrombocytopenia at birth due to absence 
of megakaryocytes in the bone marrow. Similarly to some 
patients with CAMT- MPL, the patient had relatively stable 
blood counts for 2 years, and eventually experienced bone 
marrow failure. He underwent HSCT at the age of 2.5 years, 
after a myeloablative condition based on Treosulfan, as de-
scribed in other non- malignant disorders.41 The transplant- 
associated toxicity was limited, similar to other experiences 
in MECOM- AS or CAMT- MPL.42,43

Notably, a clinically undistinguishable disease can be as-
sociated also with variants in THPO. In CAMT- THPO, the 
reduction of megakaryocytes is due to defective production 
of thrombopoietin in the liver; therefore, HSCT is not cura-
tive for these patients,44 who are instead successfully treated 
with THPO- receptor agonists.45,46 For this reason, the dif-
ferent forms of amegakaryocytic thrombocytopenia require 
a precise genetic diagnosis.

In conclusion, we identified a novel missense mutation 
in the MECOM region coding for the repression domain of 
EVI1 in a patient with severe congenital thrombocytopenia 
and bone marrow failure associated with lower limb and 
ear malformation. Moreover, our findings support the role 
of EVI1 mutations in the haematopoietic defects observed 
in MECOM- associated syndrome as consequence of an im-
paired MPL repression, allowing us to better understand 
molecular mechanisms underlying this disease.
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