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1. Introduction

Ferrofluids are among the wide variety of synthetic materials created in the twentieth century. A ferrofluid
is a liquid that presents ferromagnetic properties, i.e. it becomes strongly magnetizable in the presence of 
an external magnetic field. Such a material does not exist naturally in the environment but it was created 
in 1963 by NASA [44] with a very specific goal: to be used as a fuel for rockets in an environment without 
gravity, hence the necessity to be pumped by applying a magnetic field.

Ferrofluids are colloidal (a mixture in which one substance of microscopically dispersed insoluble particles 
is suspended throughout another substance) made of nanoscale ferromagnetic particles of a compound 
containing iron, suspended in a fluid. They are magnetically soft, which means that they do not retain 
magnetization once there is no external magnetic field acting on them.

The versatility of such material and its peculiar property of being controlled via a magnetic field made 
it suitable to be used in a whole variety of applications: ferrofluids are for instance used in loudspeakers 
in order to cool the coil and damp the cone [29], as seals in magnetic hard-drives [34], in order to reduce 
friction [25] or enhance heat transfer [26,40]. We refer the interested reader to [45], the introduction of [33]
and references therein for a survey of potential applications of ferrofluids.

There are two systems of partial differential equations which are generally accepted as models for the 
motion of ferrofluids, which are known under the name of their developer, the Shliomis model [42] and the 
Rosensweig model [30]. The mathematical analysis of such systems is very recent, in [1–3] and [10] it is 
proved that both Shliomis and Rosensweig model admit global weak and local strong solutions in bounded, 
smooth subdomains of R3. The same authors then considered as well thermal and electrical conductivity as
well as steady-state solutions of various ferrofluids systems in [4–9] and [24]. In [38] and [18] it was proved 
that the Rosensweig system for ferrofluids is globally well posed in dimension two.

In the present work we consider the Bloch-Torrey regularization of the Shliomis system for ferrofluids in 
the whole three-dimensional space R3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ0 (∂tu + (u · ∇)u) − νΔu + ∇p = μ0 (M · ∇)H + μ0

2 curl (M ×H) , (x, t) ∈ R3 ×R+,

∂tM + (u · ∇)M − σΔM = 1
2 (curl u) ×M − 1

τ
(M − χ0H) − β M × (M ×H) , (x, t) ∈ R3 ×R+,

div (H + M) = F, (x, t) ∈ R3 ×R+,

div u = 0, curl H = 0, (x, t) ∈ R3 ×R+,

(S1)
proposed by M. Shliomis in [43,41]. The function u represents the linear velocity of the fluid. If we denote 
as Hext the external magnetic field acting on the fluid F = −div Hext will be denoted as the external
magnetic force. The external magnetic field Hext induces a demagnetizing field H and a magnetic induction
B = H + M .

The parameter σ > 0 comes in play when the diffusion of the spin magnetic moment is not negligible, 
we refer the reader to [23], and indeed it has a regularizing effect since in such regime the system (S1) is 
purely parabolic. The constant ρ0, ν, μ0, σ, τ, χ0, β are positive constants with a physical meaning. For the
sake of readability we will consider the following normalization

ρ0 = μ0 = β = 1.

This assumption is made in order to simplify the readability of the paper only, and does not entail qualitative
changes in the behavior of the solutions of (S1). On the other hand we will consider

ν, χ0, σ, τ > 0.
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We already mentioned why we consider σ > 0, while being ν the kinematic viscosity of a fluid it is natural to 
assume it strictly positive. Let us hence now focus our attention on the remaining two physical parameters: 
τ and χ0. The main scope of the present paper is in fact to describe the limit regimes of the solutions of
(S1) when τ and χ0 tend to zero.

τ : The parameter τ is called the entropic relaxation time of the system (S1), and roughly speaking it 
describes the average time required by the system (S1) to recover a situation of equilibrium once it is 
perturbed. The average relaxation time of commercial grade ferrofluids is of the order

τ ≈ 10−9 ,

whence, considering the smallness of such factor, it is reasonable to ask what happens to the solutions of 
(S1) when τ → 0. Despite the number of works on ferrofluids systems mentioned above there is though, 
to the best of our knowledge, no systematic understanding of what this state of equilibrium might look 
like. On a formal level when τ is very small the dynamic of the term

1
τ

(M − χ0H) ,

is predominant in the evolution of M , whence what is generally done in the literature is to consider the 
approximation

M ≈ χ0H, (1.1)

which, if satisfied, compensates the magnitude of 1
τ (M − χ0H). The main goal of the present work is

hence to provide a first rigorous description of the solutions of (S1) in the limit regime τ → 0, and to 
understand how and in which way small values of τ can have stabilizing effects on the solutions of (S1). 
In a nutshell, we prove that when τ → 0

(M,H) τ→0−−−→ (χ0GF , GF ) , (1.2)

where GF is a function depending upon the external magnetic field only, while

u
τ→0−−−→ U,

where U is the unique solution of the following Navier-Stokes system with hydrostatic-magnetic pressure

{
∂tU + U · ∇U − νΔU = −∇ (π − χ0PF ) ,

div U = 0,

where PF depends only on the external magnetic force F , and in particular assumes the following
explicit form

PF = 1
2 (1 + χ0)2

∇
∣∣∇Δ−1F

∣∣2 .
The derivation of such magnetic pressure is somewhat surprising and it will be discussed in detail later 
in the manuscript.
3



χ0: The dimensionless parameter χ0 is called magnetic susceptibility and indicates whether a material is
attracted into or repelled out of a magnetic field. If the magnetic susceptibility is greater than zero, the 
substance is said to be “paramagnetic”; the magnetization of the substance is higher than that of empty 
space. If the magnetic susceptibility is less than zero, the substance is “diamagnetic”; it tends to exclude 
a magnetic field from its interior. Since ferrofluids are magnetically soft materials their magnetization 
is higher than that of the vacuum, hence the motivation that lead us to suppose χ0 > 0. Experimental
results show that for oil-based colloidals χ0 ∈ [0.3 , 4.3], while for water-based colloidals 0 < χ0 � 1:
water-based ferrofluids are hence almost neutral to external magnetic forces.

The results provided and quickly illustrated here above formally justify the physical intuition of how the 
parameters τ and χ0 influence the dynamics of (S1). Rigorously proving such results at a mathematical
level is though not so immediate. The singular linear perturbation

1
τ

(M − χ0H) ,

which is reminiscent of singular perturbations arising in problems in geophysical fluid mechanics (cf. [28,
16,20] etc) is in fact of a different nature; it has no definite sign and more importantly it depends upon 
the external magnetic field F . Being this the case the singular perturbation 1

τ (M − χ0H) does not supply
a zero L2 energy contribution as it happens for rotating fluids ([15,20]), compressible fluids ([28,17,31]) or
stratified fluids ([13,14,39,36,32,19,12]), whence it is not possible to construct global weak or local strong 
solutions uniformly in τ > 0 by means of energy methods as it is done in the examples mentioned above.

The way hence to construct a sequence (Uτ )τ∈(0,τ0) of solutions of (S1) passes through the understanding
of the physical properties of the singular perturbation 1

τ (M − χ0H); in the geophysical fluid dynamics
setting mentioned above typically the singular perturbation induces hi-frequency oscillations on which it 
is possible to prove dispersive estimates. In the present case the singular perturbation seems to produce a 
damping effect, but it is not at all clear how such damping acts on the system; the singular perturbation 
has in fact no definite sign in the unknowns u, M, H and hence we cannot immediately conclude in this way.

The problem is that the unknowns M and H are not suitable in order to describe the system (S1)
uniformly in τ . One part of the unknown is in fact effectively damped to zero while the other converges 
toward a stationary state; we must hence find another set of unknowns which somehow explicit such problem. 
If we define

P = 1R3 − Δ−1∇div, Q = Δ−1∇div,

it is rather easy to deduce from the magnetostatic equation div (M + H) = F that2

H = −QM + Δ−1∇F. (1.3)

Using the relation (1.3) we can re-write the singular perturbation 1
τ (M − χ0H) as

1
τ

(M − χ0H) = 1
τ

(1 + χ0Q)M − χ0

τ
Δ−1∇F. (1.4)

This singular perturbation presents two immediate characteristics which are not present in some classical 
works on singular perturbation problems ([21,22,20,15,37], the list is far from being exhaustive);

2 Here we use the fact that curl H = 0.
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• if the magnetic susceptibility χ0 is large, which is the case for oil-based ferrofluids as explained above,
the operator (1 + χ0Q) has not positive sign,

• the singular perturbation (1.4) is linear and non-homogeneous, case that, to the best of our knowledge,
has not yet been treated in the literature.

Instead we decide to tailor a specific approach to the problem; applying the operator P to the evolution 
equation of M , and hence as well to the singular perturbation 1

τ (M − χ0H), we deduce that

1
τ
P (M − χ0H) = 1

τ
PM.

It is hence clear that PM , the divergence-free part of M , is damped to zero in the evolution of the system 
(S1). The next very natural step is to compute the second term of the Hodge decomposition of 1

τ (M − χ0H)
which is

1
τ
Q (M − χ0H) = 1 + χ0

τ

(
QM − χ0

1 + χ0
∇Δ−1F

)
. (1.5)

In such setting we can hence deduce the new limit τ → 0 formal balance

QM ≈ χ0

1 + χ0
∇Δ−1F,

which is much better than the balance (1.1) since now we obtain an asymptotic which depends only on the 
external magnetic field F and not on another unknown. We can as well recover the formal limit asymptotic 
for H as well from the relation (1.3).

Despite a better understanding of the asymptotics as τ → 0 we did not yet solve the main problem of 
the mathematical construction of solutions uniformly in τ , the singular perturbation on the r.h.s. of (1.5)
has still sign not defined, and appears in the system (S1) applying the operator Q to the evolution equation 
of M , i.e.

∂tQM − σΔQM + 1 + χ0

τ

(
QM − χ0

1 + χ0
∇Δ−1F

)
= Nonlinear terms . (1.6)

We remark at this point though that F is not an unknown of the problem. We can hence subtract
χ0

1+χ0

(
∂t − σΔ

)
∇Δ−1F from both sides of (1.6) and defining the new unknown r = QM − χ0

1+χ0
∇Δ−1F

we can deduce the evolution equation for r

∂tr − σΔr + 1 + χ0

τ
r = − χ0

1 + χ0

(
∂t − σΔ

)
∇Δ−1F︸ ︷︷ ︸

Outer force f

+ Nonlinear terms ,

which is now damped and diffused, and we can close our argument. In detail, the new evolutionary system 
so obtained is of the form (here m = PM)

∂tu− νΔu = Nonlinear terms ,

∂tm− σΔm + 1
τ

m = Nonlinear terms ,

∂tr − σΔr + 1 + χ0

τ
r = Nonlinear terms + f.

(1.7)

At this point we hence expect the unknown m, r in (1.7) to be exponentially damped to zero at a rate
O
(
e−t/τ

)
. There are though two immediate obstructions to such deduction:
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• The external force f in the evolution equation is an O (1) function,
• There are terms on the r.h.s. of (1.7) which are O (1) functions for m, r → 0.

Whence despite the tendency of the evolution of m and r is to be quickly damped to zero there are 
external forces in the system (1.7) which are genuinely bigger than τ and which induce a higher order 
growth on the unknowns m and r. It is in this context that slightly more involved parabolic estimates are 
required (see Lemma 2.12 for the exact estimates used in this work) in order to see that m, r

τ→0−−−→ 0. A
downside of such approach is that we are not able to quantify the rate of convergence of m, r to zero as 
τ → 0, due indeed to the perturbative effects induced by the O (1) perturbations.

Let us finally mention an unexpected stabilizing effect we remarked. We already mentioned and explained 
in reasonable detail that the components m and r of (1.7) are subjected to a damping-in-time. Let us hence 
now consider that we want to construct L4

T Ḣ
1 solutions of (1.7) in a very similar fashion to what is done

for the more familiar incompressible Navier-Stokes equations. It is clear hence that if τ is sufficiently small, 
hence the damping coefficient is very large, for any t > 0 the functions m (t) , r (t) are drawn to zero rather 
vigorously so that we expect that they are “small”. This crude intuition lead us to think that we might as 
well expect to construct global solutions for (1.7) imposing a smallness hypothesis on u0, the initial data
of the velocity flow, and τ : we can in fact construct global solutions substituting a smallness hypothesis 
on m0, r0 with a smallness hypothesis on τ . Such result is attainable only if we construct solutions in the
critical space L4

T Ḣ
1 and not in, say, L∞

T Ḣ
1
2 ∩L2

T Ḣ
3
2 ; the damping effect has no effects on the L∞

T Ḣ
1
2 norm.

1.1. Results and organization of the paper

The main goal of the present paper is to study the properties of the solutions of system (S1) when the 
parameter τ is small or converging to zero, indeed hence the first (and main) result of the present work 
is an existence result which is uniform for τ belonging to a suitable right-neighborhood of zero, whose size 
depends on the magnitude of the initial data.

From now on given a Banach space X, any T ∈ [0,∞] , k ∈ N and p ∈ [1,∞] we denote as W k,p
T X the 

space W k,p
(
[0, T ) ;X

)
. Given any Sobolev or Lebesgue space if the domain is not specified it is implicitly

assumed to be R3. Given any s < d/2 we define the homogeneous Sobolev space Ḣs
(
Rd
)

as the closure of 
S0
(
Rd
)

with respect to the norm

‖v‖Ḣs(Rd) =

⎛
⎝∫
Rd

|ξ|2s |û (ξ)|2 dξ

⎞
⎠1/2

,

while for any s ∈ R the non-homogeneous Sobolev space Hs
(
Rd
)

is composed of the tempered distributions
v such that 

(
1 +

√
−Δ

)s
v ∈ L2 (Rd

)
. Given any k ∈ N and p ∈ [1,∞] we say that v ∈ Ẇ k,p

T X if 
∂k
t v ∈ Lp

TX and v ∈ W k,p
T X if 

(
1 + ∂k

t

)
v ∈ Lp

TX. Given a vector field V : Rn × R+ → Rm we will write
V ∈ W k,p

(
[0, T ] ; Ḣs (Rn)

)
instead than writing V ∈

(
W k,p

(
[0, T ] ; Ḣs (Rn)

))m in order to simplify the
overall notation. The capital letter C will always indicate a positive value independent by any parameter of
the problem whose value may implicitly vary from line to line while c = min

{
ν, σ

}
.

Let us moreover suppose the external magnetic field F belongs to the space3

F ∈ L4
loc
(
R+;L2) ∩W 1,2

loc
(
R+;H2) . (1.8)

We underline that the external magnetic field is not an unknown of the problem, hence it is in no way 
restrictive to assume that it is smooth and integrable.

3 Remark that in this case the Sobolev space H2 is considered to be non-homogeneous.
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Theorem 1.1. Let u0 ∈ Ḣ
1
2 , F ∈ L4

loc
(
R+;L2) ∩ W 1,2

loc
(
R+;H2). There exists a ρ, �0 > 0, where ρ > 2�0,

and a T = T�0 > 0 defined as

T = T�0 = sup
{
t � 0

∣∣∣ ‖F‖L4([0,t];L2(R3)) < �0 and F ∈ W 1,2 ([0, t) ;H2)} , (1.9)

sufficiently small so that

‖F‖L4
TL2 � �0 �

min
{

min
{
ν, σ

}1/2
, min

{
ν, σ

}3/4
}

C
,

and such that if we define

m0 =
(
1 − Δ−1∇div

)
M0, r0 = Δ−1∇div M0 −

χ0

1 + χ0
∇Δ−1F.

a) Let u0, m0, r0 ∈ Ḣ
1
2 be such that

‖u0‖
Ḣ

1
2
� ν1/4

C
ρ, ‖(m0, r0)‖

Ḣ
1
2
� σ1/4

C
ρ,

and

τ <
(1 + χ0)7/3

C χ
4/3
0

(
‖F‖L2

T Ḣ2 + ‖F‖Ẇ 1,2
T L2

)−4/3
�
4/3
0 . (1.10)

Then there exists a unique solution (u,M,H) of (S1) with initial data (u0,M0) in the space CT Ḣ
1
2 ∩

L4
T Ḣ

1.
b) Let U0 = (u0,m0, r0) ∈ Ḣ

1
2 arbitrarily large and τ > 0 satisfy the relation (1.10), there exists a

T � = T �
U0

∈ (0, T ), where T is defined in (1.9), such that the system (S1) admits a unique solution with 
initial data (u0,M0) in the space CT�Ḣ

1
2 ∩ L4

T�Ḣ1.
c) Let u0 ∈ Ḣ

1
2 be such that

‖u0‖
Ḣ

1
2
� ν1/4

C
ρ, (1.11)

and m0, r0 ∈ Ḣ1 arbitrary. Let τ be sufficiently small so that

τ � min

⎧⎪⎨
⎪⎩ ρ4

C
(
‖m0‖4

Ḣ1 + ‖r0‖4
Ḣ1

) ,
(1 + χ0)7/3 �4/3

0

Cχ
4/3
0

(
‖F‖L2

T Ḣ2 + ‖F‖Ẇ 1,2
T L2

)4/3

⎫⎪⎬
⎪⎭ . (1.12)

Then there exists a unique solution (u,M,H) of (S1) with initial data (u0,M0) in the space CT Ḣ
1
2 ∩

L4
T Ḣ

1.
d) Let u0 ∈ Ḣ

1
2 arbitrarily large and let τ satisfy (1.12), there exists a T � ∈ (0, T ) such that the system 

(S1) admits a unique solution with initial data (u0,M0) in the space CT�Ḣ
1
2 ∩ L4

T�Ḣ1.

Remark 1.2.

• The value T defined in (1.9) is well defined and strictly positive since the application

t �→ ‖F‖ 4 2 3 ,
L ([0,t];L (R ))
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is continuous and non-decreasing in R+ and zero when t = 0. From now on when we write T we will
always consider the value defined by (1.9). Let us remark that if F is sufficiently small in L4 (R+;L2)
then T can be equal to infinity as well, transforming hence the results stated in the points a and c in 
genuinely global-in-time results.

• In the definition (1.9) we must include the hypothesis F ∈ W 1,2
T H2 only for the case in which T = ∞.

In fact a priori it may as well happen that ‖F‖L4(R+;L2) � �0, F ∈ W 1,2
loc

(
R+;H2) but F does not

belong to the space W 1,2 (R+;H2). In such setting we implicitly use the fact that F ∈ W 1,2 (R+;H2)
in setting the smallness hypothesis (1.10) and (1.12).

• The points a and b in the statement of Theorem 1.1 can be rephrased as “global” existence for small
data and “local” existence for arbitrary initial critical data. Indeed the point a is a proper global-in-time
result only if T = ∞ where T is defined in (1.9): the hypothesis on T , which is a smallness hypothesis
on the norm of F , avoids that the external magnetic field F pumps too much energy in the system. It
is in fact intuitive that, if M, H have to satisfy the magnetostatic equation

div (M + H) = F,

and F is “arbitrarily large” then the curl-free part of M + H will be arbitrarily large as well (in some 
appropriate, non specified, topology). In such scenario M and H result to be hence “large” and it is not 
possible to construct solutions via a fixed point theorem around a stationary state of (S1).

• The points c and d are again a “global” and “local” existence result. We focus now on the characteristics
of the point c. It is worth noticing that we impose a smallness hypothesis on the initial data for the
velocity field u0 and for τ . We let hence M0 and H0 be arbitrarily large in Ḣ1; this effect is due to the
term 1

τ (M − χ0H) in (S1). Roughly speaking such term provides a damping with damping coefficient
τ−1 which we will exploit in order to damp the Ḣ1 norm of M0 and H0 sufficiently fast so that the overall
L4
T Ḣ

1 norm will result to be small, hence to possibility apply a fixed point theorem. It is also for this
reason that we construct solutions in the critical space L4

T Ḣ
1 instead that, say, the more natural critical

energy space L∞
T Ḣ

1
2 ∩L2

T Ḣ
3
2 . If we start with large Ḣ

1
2 data the damping effect does not influence the

overall L∞
T Ḣ

1
2 norm of the solution, hence a fixed point theorem based on the smallness of the norm 

is not applicable in such setting when large initial data is considered, in fact M0 and H0 can even be
unbounded in Ḣ

1
2 , but they have to be finite in Ḣ1 in order to apply the result in Theorem 1.1, c.

• Let us remark again that in the point c of Theorem 1.1 the only hypothesis assumes on m0, r0 is a
smallness hypothesis with respect to τ in the space Ḣ1. The data m0, r0 can even be unbounded in the
critical space Ḣ

1
2 ; we are hence able to construct a global-in-time solution for the system (S1) imposing 

a smallness hypothesis on the initial velocity flow u0 only.
• Since the points c and d represent an unexpected dynamical effect for the system (S1) we will prove

explicitly only the point c, being the other points simple variations of this one.
• Even if we restrain ourselves to the more familiar setting stated in the points a and b we construct

solutions in the critical space L4
T Ḣ

1 imposing initial data in Ḣ
1
2 ; we construct hence potentially infinity 

L2 energy solutions for (S1). This work is, to the best of our knowledge, the first work in which infinite
L2 energy solutions for ferrofluids systems are constructed. It is worth to remark that if we try to
construct solutions for (S1) using the natural L2 energy of the system (see [1,10,38,18]) uniformly in τ
we deduce an estimate of the form

E (t) + cτ

t∫
D (t′) dt′ � C

τ
,

0

8



where E and D are the natural energy and dissipation of the system (S1). Energy methods are hence not 
applicable in order to construct solutions of (S1) uniformly in τ since the r.h.s. of the above inequality 
blows-up as τ → 0 and does not provide uniform estimates.

Theorem 1.1 is hence an existence result for solutions of (S1) which holds uniformly for τ in a right 
neighborhood (0, τ0) of zero. As we already explained in detail in the remark above the points c and d deal
with stabilizing properties of solutions of (S1) when τ is small. It is hence a natural question at this stage 
to ask whether solutions of (S1) converge (and if they do, in which topology) to some limit flow.

It turns out that the term 1
τ (M − χ0H) acts effectively as an exponential damping on the components

M, H; such damping effect is though not immediate to prove, and neither it is immediate to rigorously 
deduce from the structure of the equations (S1). The precise statement is the following one:

Theorem 1.3. Let us consider the same hypothesis as in Theorem 1.1, c and let us suppose moreover that 
m0, r0 ∈ Ḣ

1
2 , let us consider any (small) ε ∈ (0, T ), then

M
τ→0−−−→ χ0

1 + χ0
∇Δ−1F, in L∞

(
(ε, T ) ; Ḣ 1

2

)
,

H
τ→0−−−→ 1

1 + χ0
∇Δ−1F, in L∞

(
(ε, T ) ; Ḣ 1

2

)
.

(1.13)

Moreover the following convergence holds true

u
τ→0−−−→ ū, in L∞

(
(ε, T ) ; Ḣ 1

2

)
,

∇u
τ→0−−−→ ∇ū, in L2

(
(ε, T ) ; Ḣ 1

2

)
,

(1.14)

where ū is the solution of the following incompressible Navier-Stokes system with additional magnetic pres-
sure ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
∂tū + ū · ∇ū− νΔū + ∇p̄ = χ0

2 (1 + χ0)2
∇
∣∣∇Δ−1F

∣∣2 ,
div ū = 0,

ū|t=0 = u0.

(1.15)

Remark 1.4.

• We want to underline that the convergence mentioned in Theorem 1.3 takes place only in the topology
(1.14); this is justified by the fact that when τ → 0 a genuine damping effect is induced, whence we
cannot have immediate convergence (i.e. in L∞

(
(0, ε) ; Ḣ 1

2

)
) to the limit function.

• Let us denote respectively with M0 and H0 the r.h.s. of (1.13), i.e.

M0 = χ0

1 + χ0
∇Δ−1F, H0 = 1

1 + χ0
∇Δ−1F.

If we let τ → 0 in the equation for M appearing in (S1) and we denote ū = limτ→0 u consistently with
the notation of Theorem 1.3. It looks at a first glance that such limiting process on the equation for 
M induces a nonlinear constraint which relates ū with the limiting flows M0, H0 which are uniquely
determined by the external magnetic force F , whence ū = ū (F ) which could not satisfy (1.15) in (ε, T )
making of the limit system an overdetermined problem. This is indeed not the case since despite the 
following convergence holds true
9



M − χ0H
τ→0−−−→ 0,

in a sufficiently weak sense (say D′ (R3 × (ε, T )
)
) we are unable to quantify the rate of convergence

toward zero of M − χ0H as it has been already mentioned at page 6. Whence we do not actually know
to which element will the term

1
τ

(M − χ0H) ,

converge. This can though be easily deduced, at least in a formal way; let us consider a φ ∈
D
(
R3 × (ε, T )

)
, considering the convergences (1.13) and (1.14), and supposing there exists a f ∈

D′ (R3 × (ε, T )
)

so that

1
τ

(M − χ0H) D′
−−−→
τ→0

−f,

testing the equation (S1) with φ and letting τ → 0 the limit equation solved by M0 (in D′) is

∂tM
0 + (ū · ∇)M0 − σΔM0 − 1

2 (curl ū) ×M0 = f,

whence the limit problem is consistently expressed. �

The present paper is structured as follows:

• Section 2 is devoted to introduce some preliminary results which we use all along the paper. In particular
Section 2.1 consists of a series of bounds for linear parabolic equations with damping which will be very
important in the application of the fixed point theorem in Section 4.4.

• In Section 3 we define a new set of unknowns for the system (S1) so that we can deduce a new system (see
(S2) for the detailed definition) which highlights and makes explicit the damping effect induced by the
singular perturbation τ−1 (M − χ0H). Such procedure has been already outlined in the introduction,
in Section 3 we make this argument rigorous.

• Section 4 is the core of the present article, in such section we prove Theorem 1.1 which is the most
technical result of the present paper. The proof of Theorem 1.1 consists in a fixed point argument,
which has to be performed carefully, and more importantly, has to be adapted to highlight the particular
properties of the system (S1) (most notably the damping effects induced by the singular perturbation
τ−1 (M − χ0H)).

• Section 5 is devoted to the proof of Theorem 1.3. Using the result proved in Section 4 (i.e. Theorem 1.1,
an existence result uniform in τ) we prove at first that some part of the system is effectively damped
to zero in a critical norm away from t = 0, next we use such convergence in order to prove that the
velocity flow converges toward the system (1.15).

2. Preliminaries

All along the present paper we will consider nonlinear interactions of (homogeneous) Sobolev functions.
It is well known that, in a more general context, the product of two distributions in, a priori, not well 
defined, cf. [35]. In the context of Sobolev functions we can state the following elementary criterion:

Lemma 2.1. Let (s, t) ∈ R2 and d ∈ N \ {0} be such that s, t < d
2 and s + t > 0. The point-wise product

application maps continuously Ḣs
(
Rd
)
× Ḣt

(
Rd
)

onto Ḣs+t− d
2
(
Rd
)
, i.e. if we consider u ∈ Ḣs

(
Rd
)
, v ∈

Ḣt
(
Rd
)
, there exists a C > 0 depending only on the dimension d so that
10



‖u v‖
Ḣs+t− d

2 (Rd)
� C ‖u‖Ḣs(Rd) ‖v‖Ḣt(Rd) .

Remark 2.2. There exists a non-homogeneous counterpart of Lemma 2.1. �

Lemma 2.1 belongs to the mathematical folklore, and can be stated as well for periodic vector fields, cf. 
[20]. Such result is widely used in the Navier-Stokes theory and goes under the name of product rules for 
Sobolev spaces. All along the paper we will use continuously, even implicitly, the result stated in Lemma 2.1.

Definition 2.3. Let X be an abstract Banach space and Tp : Xp → X a p–linear map onto X. We define

‖Tp‖ = sup
φ1,...,φp∈BX(0,1)

Tp (φ1, . . . , φp) .

Proposition 2.4. Let X be a Banach space and let Tp : Xp → X, p = 1, 2, 3 a p-linear map onto X. Suppose
there exists an η ∈

(
0, 1

4
)

such that

‖T1‖ � η, (2.1)

and a positive real number r such that

0 < r < min
{

1
8 ‖T2‖

,
1

4
√

‖T3‖

}
. (2.2)

For any y ∈ BX

(
0, r

4
)
, there exists a unique x ∈ BX (0, r) such that

x = y + T1 (x) + T2 (x, x) + T3 (x, x, x) .

Remark 2.5. Let us remark that we assume a smallness hypothesis (contractivity) on the linear operator T1.
Neglecting such hypothesis compromise irremediably the possibility of finding a fixed point via an iterative 
argument. �

Proof. The proof of Proposition 2.4 is rather standard. Let us define inductively the sequence{
x0 = 0,

xn+1 = y + T1 (xn) + T2 (xn, xn) + T3 (xn, xn, xn) .

We deduce immediately, thanks to (2.1) and (2.2) that if xn ∈ BX (0, r) then

‖xn+1‖ < r.

Next we prove that the sequence (xn)n is a Cauchy sequence in the topology of X, since

xn+1 − xn = T1 (xn − xn−1) + T2 (xn, xn − xn−1) + T2 (xn − xn−1, xn)

+ T3 (xn, xn, xn − xn−1) + T3 (xn, xn − xn−1, xn) + T3 (xn − xn−1, xn, xn) ,

we deduce, using the hypothesis (2.1) and (2.2)

‖xn+1 − xn‖ �
(
η + 2r ‖T2‖ + 3r2 ‖T3‖

)
‖xn − xn−1‖ ,

<
3
4 ‖xn − xn−1‖ ,
11



which holds for any n � 1 and which indeed implies that (xn)n is a Cauchy sequence in the Banach space
X, it is hence convergent. In order to prove uniqueness we suppose there exist two different x, z ∈ BX (0, r)
so that

x = y + T1 (x) + T2 (x, x) + T3 (x, x, x) ,

z = y + T1 (z) + T2 (z, z) + T3 (z, z, z) .

We subtract the two equations here above so that we obtain

x− z = T1 (x− z) + T2 (x, x− z) + T2 (x− z, z) + T3 (x, x, x− z) + T3 (x, x− z, z) + T3 (x− z, z, z) .

Taking norms on the above equality using the triangular inequality and the fact that ‖x‖ , ‖z‖ < r we deduce

‖x− z‖ �
(
η + 2r ‖T2‖ + 3r2 ‖T3‖

)
‖x− z‖ ,

<
3
4 ‖x− z‖ ,

which is obviously satisfied if and only if x = z, concluding. �
2.1. Estimates for linear parabolic equations

In the present section we prove some more or less well-known estimates for linear parabolic equations 
which will be of the utmost importance in the development of the paper.

Let us consider two functions h, g defined on R, and let us consider a T ∈ (0,∞]. We denote h � g =
1[0,T ]h ∗ 1[0,T ]g where ∗ is the standard convolution.

In this section we will use continuously the Minkowsky integral inequality: let us consider (S1, μ1) and
(S2, μ2) two σ–finite measure spaces and let f : S1 × S2 → R be measurable, then the following inequality
holds true:

⎡
⎣∫
S2

∣∣∣∣∣∣
∫
S1

f(x, y)μ1(dx)

∣∣∣∣∣∣
p

μ2(dy)

⎤
⎦

1
p

�
∫
S1

⎛
⎝∫

S2

|f(x, y)|p μ2(dy)

⎞
⎠

1
p

μ1(dx).

As an immediate application of the Minkowski integral inequality we can deduce the following result;

Lemma 2.6. Let 1 � p � p′ and f : X1 × X2 → R a function belonging to Lp
(
X1;Lp′ (X2)

)
where 

(X1;μ1) , (X2;μ2) are measurable spaces, then f ∈ Lp′ (X2;Lp (X1)) and we have the inequality

‖f‖Lp′ (X2;Lp(X1)) � ‖f‖Lp
(
X1;Lp′ (X2)

) .
Let us now consider the linear parabolic system with damping

{
∂tw + γw − μΔw = F,

w|t=0 = w0.
(2.3)

The estimates that we prove in this section are in particular focused to show quantitative smoothing effects 
on the solutions of (2.3) in terms of the parameters γ and μ.

The following result is classical, we refer to [11, Lemma 5.10, p. 210]:
12



Lemma 2.7. Let w be the unique solution of (2.3) in C
(
[0, T ] ;S ′ (Rd

))
of the Cauchy problem (2.3) when

γ � 0 with F ∈ L2 ([0, T ] ; Ḣs−1 (Rd
))

and let w0 ∈ Ḣs
(
Rd
)
. Then for each t ∈ [0, T ]

‖w (t)‖2
Ḣs(Rd) + μ

t∫
0

‖∇w (t′)‖2
Ḣs(Rd) dt′ � ‖w0‖2

Ḣs(Rd) + C

μ
‖F‖2

L2
T Ḣs−1(Rd) ,

‖w‖
L4

T Ḣs+1
2 (Rd)

� C

μ1/4

(
‖w0‖Ḣs(Rd) + 1

μ1/2 ‖F‖L2
T Ḣs−1(Rd)

)
.

For our purposes we will require the bulk force F appearing in (2.3) to be in L4/3
T L2, whence Lemma 2.7

will not suffice in our context.

Lemma 2.8. Let q ∈ [1, 2] , T ∈ (0,∞] and let us define

sq = 2
(

1 − 1
q

)
∈ [0, 1] ,

and let us suppose F ∈ Lq
(
[0, T ] ; Ḣs−sq

(
Rd
))

and let w0 ∈ Ḣs
(
Rd
)
∩ Ḣs+ 1

2
(
Rd
)
. Let us denote with w

be the unique solution of (2.3) in C
(
[0, T ] ;S ′ (Rd

))
of the Cauchy problem (2.3) when γ > 0. Then

‖w‖
L4

T Ḣs+ 1
2 (Rd)

� C

[
min

{‖w0‖
Ḣs+1

2 (Rd)

γ1/4 ,
‖w0‖Ḣs

(
Rd
)

μ1/4

}
+ 1

μ3/4 ‖F‖Lq
T Ḣs−sq (Rd)

]
.

Proof. Let us perform a Ḣs
(
Rd
)

estimate onto (2.3). We deduce the energy inequality

1
2

d
dt ‖w (t)‖2

Ḣs + γ ‖w (t)‖2
Ḣs + μ ‖∇w‖2

Ḣs � |(F (t) | w (t))Ḣs | ,

� ‖F (t)‖Ḣs−sq ‖w (t)‖Ḣs+sq .

Integrating the above relation in [0, t] , t ∈ [0, T ] we deduce the inequality

1
2 sup

t′∈(0,t)

{
‖w (t′)‖2

Ḣs

}
+γ

t∫
0

‖w (t′)‖2
Ḣs dt′ +μ

t∫
0

‖∇w (t′)‖2
Ḣs dt′ � 1

2 ‖w0‖2
Ḣs +‖F‖Lq

t Ḣ
s−sq ‖w‖

L
q

q−1
t Ḣs+sq

.

(2.4)
A standard interpolation of Sobolev spaces implies that

‖w‖
L

q
q−1
t Ḣs+sq

� ‖w‖
2−q
q

L∞
t Ḣs ‖∇w‖

2
q (q−1)
L2

t Ḣ
s ,

whence using the inequality

‖F‖Lq
t Ḣ

s−sq ‖w‖
L

q
q−1
t Ḣs+sq

� ‖F‖Lq
t Ḣ

s−sq ‖w‖
2−q
q

L∞
t Ḣs ‖∇w‖

2
q (q−1)
L2

t Ḣ
s ,

� 1
4 ‖w‖2

L∞
t Ḣs + 3μ

4 ‖∇w‖2
L2

t Ḣ
s + C

μ
‖F‖2

Lq
t Ḣ

s−sq ,

which inserted in (2.4) gives
13



1
4 sup

t′∈(0,t)

{
‖w (t)‖2

Ḣs

}
+ γ

t∫
0

‖w (t′)‖2
Ḣs dt′ + μ

4

t∫
0

‖∇w (t′)‖2
Ḣs dt′ � 1

2 ‖w0‖2
Ḣs + C

μ
‖F‖2

Lq
t Ḣ

s−sq .

The above equation in particular implies that

‖w‖L2
t Ḣ

s+1 � C

μ1/2

(
‖w0‖Ḣs + 1

μ1/2 ‖F‖Lq
t Ḣ

s−sq

)
,

‖w‖L2
t Ḣ

s � C

γ1/2

(
‖w0‖Ḣs + 1

μ1/2 ‖F‖Lq
t Ḣ

s−sq

)
.

(2.5)

Let us now denote

Sγ,μ (∂, t) g (x) = e−t(γ−μΔ)g (x) . (2.6)

Indeed the solution of equation (2.3) can be expressed in terms of the evolution semigroup Sγ,μ as

ŵ (ξ, t) = Sγ,μ (ξ, t) ŵ0 (ξ) +
t∫

0

Sγ,μ (ξ, t− t′) F̂ (ξ, t′) dt′. (2.7)

An application of Hölder inequality gives us the estimate, for t ∈ [0, T ]

sup
t′∈(0,t)

|ŵ (ξ, t′)| � |ŵ0 (ξ)| + Cq(
γ + μ |ξ|2

) q−1
q

∥∥∥F̂ (ξ, ·)
∥∥∥
Lq([0,t])

,

whence an L2
(
Rd, |ξ|2s dξ

)
estimate on the above inequality allows us to deduce

V (t) def=

⎛
⎝∫
Rd

|ξ|2s
(

sup
t′∈(0,t)

|ŵ (ξ, t′)|
)2

dξ

⎞
⎠1/2

,

� ‖w0‖Ḣs +

⎛
⎝∫
Rd

|ξ|2s(
γ + μ |ξ|2

)sq ∥∥∥F̂ (ξ, ·)
∥∥∥2

Lq([0,t])
dξ

⎞
⎠1/2

(2.8)

Whence we remark that

⎛
⎝∫
Rd

|ξ|2s

2
(
γ + μ |ξ|2

)sq ∥∥∥F̂ (ξ, ·)
∥∥∥2

Lq
T

dξ

⎞
⎠1/2

� μ−1/2

⎛
⎝∫
Rd

|ξ|2(s−sq)
∥∥∥F̂ (ξ, ·)

∥∥∥2

Lq
T

dξ

⎞
⎠1/2

= μ−1/2
∥∥∥F̂∥∥∥

L2
(
Rd, |ξ|

(
s−sq

)
dξ; Lq([0,T ])

) .

We use hence Lemma 2.6 with p = q, μ2 (dξ) = |ξ|(s−sq) dξ and p′ = 2 to deduce that
∥∥∥F̂∥∥∥

L2
(
Rd, |ξ|

(
s−sq

)
dξ; Lq([0,T ])

) � ‖F‖Lq
T Ḣs−sq (Rd) , (2.9)

and we use again Lemma 2.6 in order to deduce
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‖w‖L∞
t Ḣs � V (t) . (2.10)

Inserting the estimates (2.9) and (2.10) in (2.8) we deduce

‖w‖L∞
t Ḣs � Cq

(
‖w0‖Ḣs + 1

μ1/2 ‖F‖Lq
T Ḣs−sq (Rd)

)
(2.11)

Interpolating equation (2.5) and (2.11) we deduce that, for any t ∈ [0, T ]

‖w‖
Lp

t Ḣ
s+ 2

p
� Cq

μ1/p

(
‖w0‖Ḣs + 1

μ1/2 ‖F‖
L
q
T Ḣs−sq

(
Rd

)
)
,

‖w‖Lp
t Ḣ

s � Cq

γ1/p

(
‖w0‖Ḣs + 1

μ1/2 ‖F‖
L
q
T Ḣ

s−sq
(
Rd

)
)
.

(2.12)

Setting p = 4 in the first equation of (2.12) we almost obtain the claim, what remains to be proved is the 
decaying effects on the initial data. Using Minkowski integral inequality and standard computations

‖Sγ,μ (∂)w0‖
L4

T Ḣs+ 1
2 (Rd)

=

⎛
⎜⎝

T∫
0

⎛
⎝∫
Rd

|ξ|2s+1
e−2t

(
γ+μ|ξ|2

)
|ŵ0 (ξ)|2 dξ

⎞
⎠2

dt

⎞
⎟⎠

1/4

,

�

⎛
⎜⎝∫
Rd

|ξ|2s+1 |ŵ0 (ξ)|2
⎛
⎝ T∫

0

e−4t
(
γ+μ|ξ|2

)⎞⎠
1/2

dξ

⎞
⎟⎠

1/2

,

�

⎛
⎝∫
Rd

|ξ|2s+1

2
√

γ + μ |ξ|2
|ŵ0 (ξ)|2 dξ

⎞
⎠1/2

,

� C min
{‖w0‖

Ḣ
s+ 1

2
(
Rd

)
γ1/4 ,

‖w0‖Ḣs(Rd)

μ1/4

}
. �

(2.13)

The next lemma describes the regularity of the solutions of (2.3) in the case in which the external force 
is in L4

T Ḣ
1, whence we focus on the regularity induced by the damping γw and we do not consider any

space-smoothing effect induced by the heat propagator:

Lemma 2.9. Let w0 ∈ Ḣs and let F ∈ L2
T Ḣ

s, then w solution of (2.3) is such that

‖w‖L4
T Ḣs(Rd) � C

(
1

γ1/4 ‖w0‖Ḣs(Rd) + 1
γ3/4 ‖F‖L2

T Ḣs(Rd)

)

Proof. The present proof is a slight modification of the proof of Lemma 2.8.
In the same way we deduced (2.8) we can argue that (here we set q = 2 and t ∈ [0, T ])

‖w‖L∞
t Ḣs � ‖w0‖Ḣs +

⎛
⎝∫
Rd

|ξ|2s

γ + μ |ξ|2
∥∥∥F̂ (ξ, ·)

∥∥∥2

L2([0,t])
dξ

⎞
⎠1/2

,

� ‖w0‖Ḣs + 1
γ1/2 ‖F‖L2

T Ḣs .
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Performing a Ḣs energy estimate on (2.3) we deduce an estimate similar to (2.5);

‖w‖L2
t Ḣ

s � C

γ1/2

(
‖w0‖Ḣs + 1

γ1/2 ‖F‖L2
t Ḣ

s

)
.

An interpolation now concludes the estimates. �
Lemma 2.9 in particular asserts that, if F is sufficiently regular, the solution w of (2.3) is an oγ (1)

function in L4
T Ḣ

s. This is not completely surprising, in fact supposing that F ∈ L2
T Ḣ

s−1 (let us remark
that such regularity is not the same one required in the statement of Lemma 2.9) a standard Ḣs energy
estimate on the equation (2.3) shows that in fact w is O

(
γ−1) as γ → ∞ in L2

T Ḣ
s, interpolating hence we

deduce that w is oγ (1) in Lp
T Ḣ

s for p ∈ [2,∞) (if F is “sufficiently regular”). This is obviously not the case
when p = ∞; the damping provided by the term γw has no effect in t = 0, we want though to quantify such 
damping effects for strictly positive times.

Let us now set α, γ, μ > 0, and let us define the following function defined in Rd

mα
γ,μ (x) =

(
|x|2

γ + μ |x|2

)α
2

. (2.14)

Indeed to the function mα
γ,μ we can associate a Fourier multiplier

mα
γ,μ (∂) g = F−1 (mα

γ,μ (ξ) ĝ (ξ)
)

= F−1

⎛
⎝( |ξ|2

γ + μ |ξ|2

)α
2

ĝ (ξ)

⎞
⎠ .

Lemma 2.10. Let g ∈ L2 (Rd
)
, then

∥∥mα
γ,μ (∂) g

∥∥
L2(Rd) �

C

γα/4 ‖g‖L2(Rd) + 1
μα/2 oγ (1) ,

where oγ (1) is a nonnegative function which tends to zero as γ tends to infinity.

Lemma 2.10 in particular asserts that, fixed μ, α > 0, mα
γ,μ (∂) γ→∞−−−−→ 0 as a linear operator on L2 (Rd

)
.

Proof.
‖mγ,μ (∂) g‖2

L2(Rd) =
∫ (

|ξ|2

γ + μ |ξ|2

)α

|ĝ (ξ)|2 dξ,

=
∫

|ξ|�γ1/4

(
|ξ|2

γ + μ |ξ|2

)α

|ĝ (ξ)|2 dξ +
∫

|ξ|>γ1/4

(
|ξ|2

γ + μ |ξ|2

)α

|ĝ (ξ)|2 dξ = Iγ + Iγ .

Since g ∈ L2 and since m2α
γ,μ � μ−α pointwise we can assert, by dominated convergence, that

Iγ � 1
μα

oγ (1) ,

while since m2α
γ,μ is strictly increasing in |ξ| we can assert that

Iγ � 1
γα/2 ‖g‖2

L2(Rd) ,

concluding. �
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Definition 2.11. Given two Banach spaces X, Y we say that z ∈ X +Y if there exists a x ∈ X and an y ∈ Y

so that z = x + y. Moreover

‖z‖X+Y = sup
{
‖x‖X + ‖y‖Y

∣∣∣ x ∈ X, y ∈ Y ∧ x + y = z
}
.

Our aim is to use hence Lemma 2.10 in order to study the damping properties, when γ is large, in
L∞
T Ḣs

(
Rd
)

of the solutions of (2.3) when F is an O (1) function in some suitable space.

Lemma 2.12. Let w0 ∈ Ḣ
1
2 and F ∈ L2

T Ḣ
− 1

2 +L
4/3
T L2, i.e. F = F1+F2 with F1 ∈ L2

T Ḣ
− 1

2 and F2 ∈ L
4/3
T L2.

Let w be the unique tempered distribution which solves (2.3), then for each t ∈ [0, T ]

‖w (t)‖
Ḣ

1
2
� C

(
e−γt ‖w0‖

Ḣ
1
2

+ 1
min

{
γ1/4, γ1/8

} ‖F‖
L2

T Ḣ− 1
2 +L

4/3
T L2 + 1

min
{
μ1/2, μ1/4

} oγ (1)
)
, (2.15)

whence

lim
γ→∞

‖w‖
L∞

(
(ε,T );Ḣ

1
2
) = 0, (2.16)

for any ε > 0.

Remark 2.13. Indeed the limit in (2.16) holds in the timespan (ε, T ) as it is clear from the estimate (2.15): 
in t = 0 there is obviously no damping effect. �

Proof. By superposition we can write w = W + w1 + w2, where

W (x, t) = Sγ,μ (∂, t)w0 (x) ,

w1 (x, t) =
t∫

0

Sγ,μ (∂, t− t′)F1 (x, t′) dt′,

w2 (x, t) =
t∫

0

Sγ,μ (∂, t− t′)F2 (x, t′) dt′.

Indeed the following bound is immediate

‖W (t)‖
Ḣ

1
2

= ‖Sγ,μ (∂, t)w0‖
Ḣ

1
2
� e−γt ‖w0‖

Ḣ
1
2
.

For w1 we can argue as in (2.11) (here we set q = 2) in order to deduce

‖w1‖
L∞

t Ḣ
1
2
�

⎛
⎝∫
Rd

|ξ|
γ + μ |ξ|2

∥∥∥F̂1 (ξ, ·)
∥∥∥2

L2([0,t])
dξ

⎞
⎠1/2

,

=
∥∥∥m1

γ,μ (∂) ∂−1/2 ‖F1‖L2
t

∥∥∥
L2

x

.

We apply Lemma 2.10 with α = 1 in order to deduce

‖w1‖
L∞

t Ḣ
1
2
� C

γ1/4 ‖F1‖
L2

t Ḣ
− 1

2
+ 1

μ1/2 oγ (1) .
17



For w2 we repeat the same procedure which lead us to prove (2.11), setting q = 4/3, we have

‖w2‖
L∞

t Ḣ
1
2
�

⎛
⎜⎝∫
Rd

|ξ|(
γ + μ |ξ|2

)1/2

∥∥∥F̂2 (ξ, ·)
∥∥∥2

L4/3([0,t])
dξ

⎞
⎟⎠

1/2

,

=
∥∥∥∥m1/2

γ,μ (ξ)
∥∥∥F̂2

∥∥∥
L

4/3
t

∥∥∥∥
L2

ξ

.

We again use Lemma 2.10 with α = 1/2, next Lemma 2.6 and Plancherel theorem to deduce the final bound 
required

‖w2‖
L∞

t Ḣ
1
2
� C

γ1/8 ‖F2‖L4/3
t L2 + 1

μ1/4 oγ (1) . �
3. Reformulation of the system (S1)

As already mentioned the main goal in the present study is to study the dynamics of the system (S1)
when τ is small or tends to zero. Intuitively one understands that, when τ → 0 the term

1
τ

(M − χ0H) ,

is the leading order term (in τ) in (S1), whence we expect, when τ is sufficiently close to zero, to have 
the asymptotic development M − χ0H = O (τ) in some suitable topology. To understand rigorously this
asymptotic is the mayor difficulty in the analysis of solutions of (S1).

Heuristically one expects the term 1
τ (M − χ0H) to provide a damping effect on the components M, H,

solutions of (S1). The damping effect is though not immediately clear from (S1); the aim of the present 
section is hence to provide a new reformulation of the system (S1) in some new, but equivalent, unknowns 
which explicit the damping effect provided by the term 1

τ (M − χ0H).
From the magnetostatic equation, the third equation of (S1), and since curl H = 0, we immediately 

deduce that

H = −QM + GF , GF = ∇Δ−1F,

where Q = Δ−1∇div.

Remark 3.1. Let us remark that if GF = ∇Δ−1F and F has the regularity stated in (1.8) then

GF ∈ L4
T Ḣ

1 ∩ L2
T Ḣ

3, ∂tGF ∈ L2
T Ḣ

1. (3.1)

The regularity stated in (3.1) will be considered implicitly given from now on. �

Whence it is clear that, denoting P the Leray projector onto divergence-free vector fields, and denoting

m = PM, m̃ = QM,

that

1
τ
P (M − χ0H) = 1

τ
m,

1
τ
Q (M − χ0H) = 1 + χ0

τ

[
m̃− χ0

1 + χ0
GF

]
.

18



We can hence define the new unknown

r = m̃− χ0

1 + χ0
GF ,

of which we can compute the evolution equation from (S1). The advantage of working with the variables 
m, r instead than M, H resided in the fact that, for such, the damping induced by the term 1

τ (M − χ0H)
is explicit.

We can hence compute the evolution equations for (u,m, r) form the ones of (u,M,H) (and vice-versa) 
via the following reversible change of variables

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u = u

M = m + r + χ0

1 + χ0
GF

H = −r + 1
1 + χ0

GF

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u = u

m = PM

r = QM − χ0

1 + χ0
GF

. (3.2)

Thanks to the explicit change of unknown given in (3.2) it is rather simple to deduce the evolution of 
(u,m, r) from (S1), and we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + (u · ∇)u− νΔu + ∇p =
(
m + r + χ0

1 + χ0
GF

)
· ∇

(
−r + 1

1 + χ0
GF

)

+ 1
2curl

[(
m + r + χ0

1 + χ0
GF

)
×
(
−r + 1

1 + χ0
GF

)]
,

∂tm + 1
τ

m− σΔm = −P
[
u · ∇

(
m + r + χ0

1 + χ0
GF

)]
+ 1

2P
[
(curl u) ×

(
m + r + χ0

1 + χ0
GF

)]

− P
{(

m + r + χ0

1 + χ0
GF

)
×
[(

m + r + χ0

1 + χ0
GF

)
×
(
−r + 1

1 + χ0
GF

)]}
,

∂tr + 1 + χ0

τ
r − σΔr = −Q

[
u · ∇

(
m + r + χ0

1 + χ0
GF

)]
+ 1

2Q
[
(curl u) ×

(
m + r + χ0

1 + χ0
GF

)]
−Q

{(
m + r + χ0

1 + χ0
GF

)
×
[(

m + r + χ0

1 + χ0
GF

)
×
(
−r + 1

1 + χ0
GF

)]}
− χ0

1 + χ0

(
∂tGF − σΔGF

)
,

div u = 0,

(u,m, r)|t=0 = (u0,m0, r0) .
(S2)

From now on we will work with the system in the form (S2).

Remark 3.2. We would like to remark the fact that, despite the system (S2) seems at a firs sight much more 
complex than the system (S1), there is in fact no relevant new technical difficulty in (S2).

In fact the nonlinearities appearing on the right hand side of (S2) belong at most to six classes which we 
can study without problem and which are here enumerated4

4 Here and in the rest of the paper we use Einstein summation convention.
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• They can be of the form

BNS (v, v) =
(
vi q

NS,�
i,j (∂) vj

)
�=1,2,3

,

where qNS,�
i,j are homogeneous Fourier multipliers of order one.

• They can be of the form

L1 (v) =
(
vi q

(1),�
i,j (∂)Gj

)
�=1,2,3

, L2 (v) =
(
Gi q

(2),�
i,j (∂) vj

)
�=1,2,3

,

form some function G (notably in (S2) G = GF ). Here again q(k),�
i,j , k = 1, 2 are homogeneous Fourier 

multipliers of order one.
• Lastly they can be p-linear forms of the form

Np (v) = v⊗p ⊗G⊗(3−p),

where we recall that given a w ∈ R3 we identify as w⊗q the canonical q–linear form whose components
are elements of the form

q∏
q′=1

wjq′ .

In particular hence the components of Np (v) are of the form

p∏
q′=1

3−p∏
q′′=1

vjq′Gjq′′ .

Whence we can assert that (S2) can be studied as a special system of the form

∂tv + Mv −A2 (∂) v = BNS (v, v) + L1 (v) + L2 (v) +
3∑

p=1
Np (v) + f, (3.3)

where M is a diagonal, nonnegative matrix and A2 (∂) is an elliptic differential homogeneous operator of
order two and f is a bulk force. We will many times think of (S2) in the form (3.3) since there are much 
less terms to consider, which qualitatively describe every nonlinear term appearing in (S2). �

4. Existence of a unique solution in a critical functional space uniformly in τ ∈ (0, τ0)

In the present section we prove the main result of the paper, i.e. Theorem 1.1. The detailed result proved
is the following one, which implies the proof of Theorem 1.1 as explained in Remark 4.2;

Proposition 4.1. Let u0 ∈ Ḣ
1
2 and GF ∈ L4

loc
(
R+; Ḣ1)∩W 1,2

loc
(
R+; Ḣ1 ∩ Ḣ3). There exists a ρ, �0 > 0 such

that ρ > 2�0 and a T = T�0 ∈ (0,∞] (see (1.9)) so that

‖GF ‖L4
T Ḣ1 � �0 �

min
{
c1/2, c3/4

}
C

, (4.1)

where c = min {ν, σ} such that, if;
20



a) Let u0, m0, r0 ∈ Ḣ
1
2 be such that

‖u0‖
Ḣ

1
2
� ν1/4

C
ρ, ‖(m0, r0)‖

Ḣ
1
2
� σ1/4

C
ρ,

and

τ <
(1 + χ0)7/3

C χ
4/3
0

(
‖GF ‖L2

T Ḣ3 + ‖GF ‖Ẇ 1,2
T Ḣ1

)−4/3
�
4/3
0 , (4.2)

then there exist a unique solution (u,m, r) of (S2) in the ball B (0, 4ρ) of the space L4
T Ḣ

1 which moreover
belongs to the space CT Ḣ

1
2 .

b) Let u0, m0, r0 ∈ Ḣ
1
2 arbitrarily large and τ > 0 satisfy the relation (4.2), there exists a T � = T �

U0
∈ (0, T )

such that the system (S2) admits a unique solution in the ball B (0, 4ρ) of the space L4
T�Ḣ1 which

moreover belongs to the space CT�Ḣ
1
2 .

c) Let u0 ∈ Ḣ
1
2

‖u0‖
Ḣ

1
2
� ν1/4

C
ρ, (4.3)

and m0, r0 ∈ Ḣ1 arbitrary. Let τ be sufficiently small so that

τ � min

⎧⎪⎨
⎪⎩ ρ4

C
(
‖m0‖4

Ḣ1 + ‖r0‖4
Ḣ1

) ,
(1 + χ0)7/3 �4/3

0

Cχ
4/3
0

(
‖GF ‖L2

T Ḣ3 + ‖GF ‖Ẇ 1,2
T Ḣ1

)4/3

⎫⎪⎬
⎪⎭ . (4.4)

Then there exists a unique solution (u,m, r) of (S2) in the ball B (0, 4ρ) of the space L4
T Ḣ

1 which
moreover belongs to the space CT Ḣ

1
2 .

d) Let u0 ∈ Ḣ
1
2 arbitrarily large and let τ satisfy (4.4), there exists a T � ∈ (0, T ) such that the system (S2)

admits a unique solution in the ball B (0, 4ρ) of the space L4
T�Ḣ1 which moreover belongs to the space

CT�Ḣ
1
2 .

Remark 4.2. Let us note that if we prove Proposition 4.1 than we prove as well Theorem 1.1 with the 
substitution

(u,m, r) �→ (u,M,H) ,

defined explicitly in (3.2). �

Remark 4.3. We will prove only the point c since the other points are variations of the same argument which 
are simple to the reader familiar with the construction of solutions for the Navier-Stokes equations via a 
fixed point theorem. �

Remark 4.4. Let us point out that if we allow T = ∞ in the statement of Proposition 4.1 (i.e. it suffices to
consider GF to be “small” in L4

T Ḣ
1) the points a and c provide a global solution of (S2), in particular the

point c provides a global solution imposing a smallness hypothesis on u0 only in Ḣ
1
2 and assuming m0, r0

be arbitrarily large or unbounded in Ḣ
1
2 . �

The proof of the point c of Proposition 4.1 is an application of the fixed point theorem stated in Propo-
sition 2.4; conceptually there is no great difference with the more familiar construction of a unique solution 
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in a critical space for the incompressible Navier-Stokes equations, there are though two main difficulties 
which we want to consider

• Indeed the nonlinear estimates for (S2) are more lengthy and complicated than the transport bilinear
form of the incompressible Navier-Stokes equations,

• Secondly, and more important in our context, we want to give a proof which provides an existence result
which is uniform-in-time with respect to the physical parameter τ ∈ (0, τ0) for some small τ0 > 0.

The proof is hence divided as follows:

• In Section 4.1 we reformulate the system (S2) in a suitable mild form. Such passage consist mostly in
computations which have to be carried out in detail due to the many nonlinearities appearing in system
(S2),

• In Section 4.2 we provide some nonlinear parabolic estimates for the six generic classes of nonlinearities
which compose all the nonlinear terms of Shilomis system (S2), as explained in Remark 3.2. Indeed the
linear parabolic estimates carried out in the introductory Section 2.1 will be the main tool in order to
prove the nonlinear estimates required,

• In Section 4.3 we apply the nonlinear parabolic bounds deduced in Section 4.2 to the mild form of (S2)
deduced in Section 4.1,

• Finally in Section 4.4 we apply the nonlinear bounds for the Shilomis system deduced in Section 4.3 in
order to apply the fixed point theorem stated in Proposition 2.4 and to deduce the existence of a unique
solution of (S2) in critical space.

Remark 4.5. Since the proof of Proposition 4.1 relies on a fixed point theorem it is known that such result 
generally relies on a smallness hypothesis on which it is possible to construct a perturbative argument.

The smallness hypothesis appearing in Proposition 4.1 is rather unusual, hence we would like to comment 
them:

� The smallness hypothesis on the initial velocity flow (4.3) is rather standard in the theory of Navier-
Stokes equations.

� The smallness hypothesis (4.1) can look peculiar in a first stance, but it is inevitable. It says in fact 
that the external magnetic field cannot pump too much L4

T Ḣ
1 energy in the system. This is reasonable

since in the equation (S2) there are terms of the form GF · ∇GF , if such term is arbitrarily large it will
break down any smallness condition on which the perturbative argument for Navier-Stokes equations is 
based; relaxing (4.1) is hence impossible in our context.

� As a matter of facts the in the point c we consider initial data m0, r0 arbitrarily large in Ḣ
1
2 and Ḣ1.

Such hypothesis may look as unreasonable at a first sight, but we want to make notice to the reader that 
the smallness hypothesis (4.4) compensates to such lack of smallness for the initial data. In a nutshell it 
says that if the damping coefficient is sufficiently large the Ḣ1 norm of (m, r) is damped with sufficient 
vigor so that (m, r) turns out to be “small” in the space L4

T Ḣ
1, without hence violating the smallness

principle on which any perturbative method is based.
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4.1. Reformulation of (S2) in an appropriate mild form

Lt us rewrite the system (S2) in the mild form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u (x, t) = S0,ν (∂, t)u0 (x) +
t∫

0

S0,ν (∂, t− t′)Nu (x, t′) dt′,

m (x, t) = S 1
τ ,σ (∂, t)m0 (x) +

t∫
0

S 1
τ ,σ (∂, t− t′)Nm (x, t′) dt′,

r (x, t) = S 1+χ0
τ ,σ (∂, t) r0 (x) +

t∫
0

S 1+χ0
τ ,σ (∂, t− t′)Nr (x, t′) dt′ +

t∫
0

S 1+χ0
τ ,σ (∂, t− t′) f (x, t′) dt′,

(4.5)

where

Nu = −P (u · ∇u) + P
[(

m + r + χ0

1 + χ0
GF

)
· ∇

(
−r + 1

1 + χ0
GF

)]

+ 1
2P curl

[(
m + r + χ0

1 + χ0
GF

)
×
(
−r + 1

1 + χ0
GF

)]
,

Nm = −P
[
u · ∇

(
m + r + χ0

1 + χ0
GF

)]
+ 1

2P
[
(curl u) ×

(
m + r + χ0

1 + χ0
GF

)]

− P
{(

m + r + χ0

1 + χ0
GF

)
×
[(

m + r + χ0

1 + χ0
GF

)
×
(
−r + 1

1 + χ0
GF

)]}
,

Nr = −Q
[
u · ∇

(
m + r + χ0

1 + χ0
GF

)]
+ 1

2Q
[
(curl u) ×

(
m + r + χ0

1 + χ0
GF

)]

−Q
{(

m + r + χ0

1 + χ0
GF

)
×
[(

m + r + χ0

1 + χ0
GF

)
×
(
−r + 1

1 + χ0
GF

)]}
,

f = − χ0

1 + χ0

(
∂tGF − σΔGF

)
.

(4.6)

We will now reformulate the integral system (4.5) in an even more generic form with which will be easier 
to study. Let us now denote as U = (u,m, r), the system (4.5) can alternatively be written as

U (x, t) = S (∂, t)U0 (x) + T [U ] (x, t) + g (x, t) , (4.7)

where

S (∂, t)U0 (x) =

⎛
⎜⎝ S0,ν (∂, t)u0 (x)

S 1
τ ,σ (∂, t)m0 (x)

S 1+χ0
τ ,σ (∂, t) r0 (x)

⎞
⎟⎠ , (4.8)

while

T [U ] =
( 3∑

Tp [U ]
)

+ T2,NS [U ] + T1,I [U ] + T1,II [U ] , (4.9)

p=1
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where

T2,NS [U ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t∫
0

S0,ν (∂, t− t′)
{
−P

(
u · ∇u

)
− P

[
(m + r) · ∇r

]
− 1

2P curl
[
(m + r) × r

]}
(t′) dt′

t∫
0

S 1
τ ,σ (∂, t− t′)

{
−P

[
u · ∇ (m + r)

]
+ 1

2P
[
(curl u) × (m + r)

]}
(t′) dt′

t∫
0

S 1+χ0
τ ,σ (∂, t− t′)

{
−Q [u · ∇ (m + r)] + 1

2Q [(curl u) × (m + r)]
}

(t′) dt′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.10)

T1,I [U ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 (1 + χ0)

t∫
0

S0,ν (∂, t− t′)
{
P [(m + (1 − χ0) r) · ∇GF ] + P [(m + (1 + χ0) r) div GF ]

}
(t′) dt′

− χ0

1 + χ0

t∫
0

S 1
τ ,σ (∂, t− t′)

{
P
[
u · ∇GF

]}
(t′) dt′

− χ0

1 + χ0

t∫
0

S 1+χ0
τ ,σ (∂, t− t′)

{
Q
[
u · ∇GF

]}
(t′) dt′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.11)
and let us remark how the operator T1,I [U ] acts as a derivative on the function GF only, while the operator
T1,II [U ] is defined as

T1,II [U ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 (1 + χ0)

t∫
0

S0,ν (∂, t− t′)
{
− GFdiv (m + (1 + χ0) r) − GF · ∇ (m + (1 + χ0) r)

}
(t′) dt′

χ0

2 (1 + χ0)

t∫
0

S 1
τ ,σ (∂, t− t′)

{
P [curlu× GF ]

}
(t′) dt′

χ0

2 (1 + χ0)

t∫
0

S 1+χ0
τ ,σ (∂, t− t′)

{
Q [curlu× GF ]

}
(t′) dt′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.12)
We now define the p–linear operators Tp [U ];

T1 [U ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

χ0

(1 + χ0)2

t∫
0

S 1
τ ,σ (∂, t− t′)

{
P
[
GF ×

(
(m + (1 + χ0) r) × GF

)]}
(t′) dt′

χ0

(1 + χ0)2

t∫
S 1+χ0

τ ,σ (∂, t− t′)
{
Q
[
GF ×

(
(m + (1 + χ0) r) × GF

)]}
(t′) dt′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.13)
0
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T2 [U ]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

χ0

1 + χ0

t∫
0

S 1
τ ,σ (∂, t− t′)

{
P
[
GF ×

(
r ×m

)]
+ P

[
(m + r) × [(m + (1 + χ0) r) × GF ]

]}
(t′) dt′

χ0

1 + χ0

t∫
0

S 1+χ0
τ ,σ (∂, t− t′)

{
Q
[
GF ×

(
r ×m

)]
+ Q

[
(m + r) × [(m + (1 + χ0) r) × GF ]

]}
(t′) dt′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.14)

T3 [U ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

t∫
0

S 1
τ ,σ (∂, t− t′)

{
P
[
(m + r) × (r ×m)

]}
(t′) dt′

t∫
0

S 1+χ0
τ ,σ (∂, t− t′)

{
Q
[
(m + r) × (r ×m)

]}
(t′) dt′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.15)

While finally we can define the outer force g as

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ0

(1 + χ0)2

t∫
0

S0,ν (∂, t− t′) (GF · ∇GF ) (t′) dt′

0

− χ0

1 + χ0

t∫
0

S 1+χ0
τ ,σ (∂, t− t′)

(
∂tGF − σΔGF

)
(t′) dt′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝ g1

0
g2

⎞
⎟⎠ (4.16)

Despite the long and tedious computations we can already understand why we decided to rewrite system 
(4.5) in the abstract form (4.7). The integral operators defined explicitly in (4.10)–(4.15) are all of the 
following form: a time convolution of a nonlinearity which falls within one of the six cases explained in 
Remark 3.2 with one operator of the form Sμ,γ (∂) defined in (2.6).

4.2. Parabolic estimates for generalized Shilomis-type nonlinearities

It suffices hence to check that the nonlinear integral operator defined by the right hand side of (4.7)
is continuous in L4

T Ḣ
1 in order to apply Proposition 2.4 and to deduce the existence of a fixed point

for the integral equation (4.5). Indeed to prove the continuity of each term in the nonlinearity given by 
(4.9) would be a lengthy and tedious work. On the other hand we can exploit the observations deduced 
in Remark 3.2: every term appearing in (4.6) belongs to one of at most six classes of nonlinearities, this 
significantly simplifies the process.

Proposition 4.6. Let v, v1, v2, v3, G ∈ L4
T Ḣ

1, let (γ, μ) ∈ [0,∞) × (0,∞) and let BNS, Lj , Np, j = 1, 2, p =
1, 2, 3 be as in Remark 3.2, then setting Sγ,μ the propagator defined in (2.6) the following inequalities hold
true

1. ‖Sγ,μ (∂) �t BNS (v1, v2)‖L4 Ḣ1 � C
3/4 ‖v1‖L4

T Ḣ1 ‖v2‖L4
T Ḣ1 ,
T μ
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2. ‖Sγ,μ (∂) �t Lj (v)‖L4
T Ḣ1 � C

μ3/4 ‖G‖L4
T Ḣ1 ‖v‖L4

T Ḣ1 ,

3. ‖Sγ,μ (∂) �t Np (v1, . . . , vp)‖L4
T Ḣ1 � C

μ1/2

(
p∏

i=1
‖vi‖L4

T Ḣ1

)
× ‖G‖3−p

L4
T Ḣ1 .

Proof. 1. Indeed Sγ,μ (∂) �t BNS (v1, v2) can be though as the unique solution of (2.3) when w0 = 0
and F = BNS (v1, v2), hence applying Lemma 2.7 we deduce that ‖Sγ,μ (∂) �t BNS (v1, v2)‖L4

T Ḣ1 �
C

μ3/4 ‖BNS (v1, v2)‖L2
T Ḣ−1/2 . Moreover since every term in BNS is of the form vi q

NS,�
i,j (∂) vj where qNS,�

i,j

homogeneous Fourier multiplier of order one applying Lemma 2.1 we deduce

‖BNS (v1, v2)‖L2
T Ḣ−1/2 � C

(
‖v1 ⊗∇v2‖L2

T Ḣ−1/2 + ‖∇v1 ⊗ v2‖L2
T Ḣ−1/2

)
,

� C ‖v1‖L4
T Ḣ1 ‖v2‖L4

T Ḣ1 ,

proving the first inequality.
2. Similarly as above Sγ,μ (∂) �tLj (v) is the unique solution of (2.3) when w0 = 0 and F = Lj (v), whence

‖Sγ,μ (∂) �t Lj (v)‖L4
T Ḣ1 � C

μ3/4 ‖Lj (v)‖L2
T Ḣ−1/2 . Using again Lemma 2.1 we deduce

‖Lj (v)‖L2
T Ḣ−1/2 � C

(
‖G⊗∇v‖L2

T Ḣ−1/2 + ‖∇G⊗ v‖L2
T Ḣ−1/2

)
,

� C ‖G‖L4
T Ḣ1 ‖v‖L4

T Ḣ1 ,

concluding the proof of the second inequality.
3. Similarly as above we can deduce the estimate

‖Sγ,μ (∂) �t Np (v1, . . . , vp)‖L4
T Ḣ1 � C

μ1/2 ‖Np (v1, . . . , vp)‖L4/3
T L2 ,

using Lemma 2.8. Whence, since

Np (v1, . . . , vp) ∼ v⊗p ⊗G⊗(3−p),

using repeatedly Hölder inequality and the continuous embedding Ḣ1 ↪→ L6 we deduce

‖Np (v1, . . . , vp)‖L4/3
T L2 �

(
p∏

i=1
‖vi‖L4

T Ḣ1

)
× ‖G‖3−p

L4
T Ḣ1 . �

4.3. Bounds for the system (4.7)

As mentioned above the scope of the present section is to apply the nonlinear bounds proved in Section 4.3
to the Shilomis system in mild form (4.7). Such bounds will be provided systematically in the present section.

At first we need to estimate the contributions provided by the initial datum:

Proposition 4.7. Let u0 ∈ Ḣ
1
2 , m0, r0 ∈ Ḣ1, then

1. ‖S0,ν (∂)u0‖L4
T Ḣ1 � C

ν1/4 ‖u0‖
Ḣ

1
2
,

2.
∥∥∥S 1

τ ,σ (∂)m0

∥∥∥
L4

T Ḣ1
� Cτ1/4 ‖m0‖Ḣ1 ,

3.
∥∥∥S 1+χ0

τ ,σ (∂) r0
∥∥∥
L4 Ḣ1

� Cτ1/4

1/4 ‖r0‖Ḣ1 .

T (1 + χ0)
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Proof. We apply respectively Lemma 2.7 to deduce the first inequality and Lemma 2.8 to deduce the second 
and the third inequality. �

Next we bound the bulk force:

Proposition 4.8. Let GF ∈ L4
T Ḣ

1 ∩ L2
T Ḣ

3 ∩ Ẇ 1,2
T Ḣ1, and let τ be

τ <
(1 + χ0)7/3

C χ
4/3
0

(
‖GF ‖L2

T Ḣ3 + ‖GF ‖Ẇ 1,2
T Ḣ1

)−4/3
�
4/3
0 , (4.17)

then let us consider g defined as in (4.16), the following bound is true

‖g‖L4
T Ḣ1 � �0.

Proof. Let us define

f1 = χ0

(1 + χ0)2
GF · ∇GF ,

f2 = − χ0

1 + χ0

(
∂tGF − σΔGF

)
.

And let g1, g2 be defined as in (4.16), indeed

g1 = S0,ν (∂) �t f1,

g2 = S 1+χ0
τ ,σ (∂) �t f2.

Indeed g1 is the unique solution of the following Cauchy problem

{
∂tw − νΔw = f1,

w|t=0 = 0,

whence applying Lemma 2.7 we deduce

‖g1‖L4
T Ḣ1 � C χ0

(1 + χ0)2 ν3/4
‖GF · ∇GF ‖

L2
T Ḣ− 1

2
.

Lemma 2.1 and the fact that ‖GF ‖L4
T Ḣ1 � �0 imply that

‖g1‖L4
T Ḣ1 � Cχ0�

2
0

(1 + χ0)2 ν3/4
. (4.18)

In order to bound g2 we apply Lemma 2.9 with w0 = 0 and F = f2, obtaining the bound

‖g2‖L4
T Ḣ1 =

∥∥∥S 1+χ0
τ ,σ (∂) �t f2

∥∥∥
L4

T Ḣ1
� Cχ0τ

3/4

(1 + χ0)7/4
(
‖GF ‖L2

T Ḣ3 + ‖GF ‖Ẇ 1,2
T Ḣ1

)
,

which with the bound (4.17) implies that

‖g2‖L4 Ḣ1 � �0
. (4.19)
T 2
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If �0 � (1 + χ0)2 ν3/4

2Cχ0
the bounds (4.18) and (4.19) imply that

‖g‖L4
T Ḣ1 � �0. �

We prove now the nonlinear bounds; in order to do so we need to explicit the time-convolution form of 
the nonlinearities defined in (4.10)–(4.15), let us hence define

BNS (U,U) =

⎛
⎜⎝ BNS,u (U,U)

BNS,m (U,U)
BNS,r (U,U)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−P
(
u · ∇u

)
− P

[
(m + r) · ∇r

]
− 1

2P curl
[
(m + r) × r

]
−P

[
u · ∇ (m + r)

]
+ 1

2P
[
(curl u) × (m + r)

]
−Q [u · ∇ (m + r)] + 1

2Q [(curl u) × (m + r)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.20)

L1 (U) =

⎛
⎜⎝ L1,u (U)

L1,m (U)
L1,r (U)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2 (1 + χ0)

(
P [(m + (1 − χ0) r) · ∇GF ] + P [(m + (1 + χ0) r) div GF ]

)
− χ0

1 + χ0
P
[
u · ∇GF

]
− χ0

1 + χ0
Q
[
u · ∇GF

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.21)

L2 (U) =

⎛
⎜⎝ L2,u (U)

L2,m (U)
L2,r (U)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2 (1 + χ0)

(
− GFdiv (m + (1 + χ0) r) − GF · ∇ (m + (1 + χ0) r)

)
χ0

2 (1 + χ0)
P [curlu× GF ]

χ0

2 (1 + χ0)
Q [curlu× GF ]′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.22)

N1 (U) =

⎛
⎜⎝ N1,u (U)

N1,m (U)
N1,r (U)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

χ0

(1 + χ0)2
{
P
[
GF ×

(
(m + (1 + χ0) r) × GF

)]}
χ0

(1 + χ0)2
{
Q
[
GF ×

(
(m + (1 + χ0) r) × GF

)]}

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.23)

N2 (U,U) =

⎛
⎜⎝ N2,u (U,U)

N2,m (U,U)
N2,r (U,U)

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

χ0

1 + χ0
P
[
GF × (r ×m)

]
+ χ0

1 + χ0
P
[
(m + r) × [(m + (1 + χ0) r) × GF ]

]
χ0 Q

[
GF ×

(
r ×m

)]
+ χ0 Q

[
(m + r) × [(m + (1 + χ0) r) × GF ]

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.24)
1 + χ0 1 + χ0
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N3 (U,U,U) =

⎛
⎜⎝ N3,u (U,U,U)

N3,m (U,U,U)
N3,r (U,U,U)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

P
[
(m + r) × (r ×m)

]
Q
[
(m + r) × (r ×m)

]

⎞
⎟⎟⎟⎟⎟⎟⎠ . (4.25)

With such notation we can rewrite the operators defined in (4.10)–(4.15) in a time-convolution form

T2,NS [U ] =

⎛
⎜⎝ S0,ν (∂) �t BNS,u (U,U)

S 1
τ ,σ (∂) �t BNS,m (U,U)

S 1+χ0
τ ,σ (∂) �t BNS,r (U,U)

⎞
⎟⎠ , T1,I [U ] =

⎛
⎜⎝ S0,ν (∂) �t L1,u (U)

S 1
τ ,σ (∂) �t L1,m (U)

S 1+χ0
τ ,σ (∂) �t L1,r (U)

⎞
⎟⎠ ,

T1,II [U ] =

⎛
⎜⎝ S0,ν (∂) �t L2,u (U)

S 1
τ ,σ (∂) �t L2,m (U)

S 1+χ0
τ ,σ (∂) �t L2,r (U)

⎞
⎟⎠ , T1 [U ] =

⎛
⎜⎝ S0,ν (∂) �t N1,u (U)

S 1
τ ,σ (∂) �t N1,m (U)

S 1+χ0
τ ,σ (∂) �t N1,r (U)

⎞
⎟⎠ ,

T2 [U ] =

⎛
⎜⎝ S0,ν (∂) �t N2,u (U,U)

S 1
τ ,σ (∂) �t N2,m (U,U)

S 1+χ0
τ ,σ (∂) �t N2,r (U,U)

⎞
⎟⎠ , T3 [U ] =

⎛
⎜⎝ S0,ν (∂) �t N3,u (U,U,U)

S 1
τ ,σ (∂) �t N3,m (U,U,U)

S 1+χ0
τ ,σ (∂) �t N3,r (U,U,U)

⎞
⎟⎠ .

(4.26)

It is hence not a coincidence that the nonlinearities in (4.20)–(4.25) have the same notation as the 
nonlinearities on which we provide the bounds in Section 4.2, setting in fact G = G and U = (u,m, r) we 
can express the nonlinearity T [U ] of (4.7) in the form (4.26) we can use the results of Section 4.2 in order 
to prove the following result:

Proposition 4.9. Let c = min
{
ν, σ

}
, and let ‖GF ‖L4

T Ḣ1 � �0, then the following bounds hold true

1. ‖T1,j [U ]‖L4
T Ḣ1 � C

c3/4
�0 ‖U‖L4

T Ḣ1 for j = I, II ,

2. ‖T2,NS [U ]‖L4
T Ḣ1 � C

c3/4
‖U‖2

L4
T Ḣ1 ,

3. ‖Tp [U ]‖L4
T Ḣ1 � C

c1/2
�3−p
0 ‖U‖p

L4
T Ḣ1 for p = 1, 2, 3.

Proof. Thanks to the results stated and proved in Section 4.2 the proof of Proposition 4.9 is now immediate.

1. We know that T1,j can be written in convolution form as it is done in (4.26), whence we use the estimates
proved in Proposition 4.6, 2 to deduce the bound

‖T1,j [U ]‖L4
T Ḣ1 � C

c3/4
‖GF ‖L4

T Ḣ1 ‖U‖L4
T Ḣ1 ,

but since ‖GF ‖L4
T Ḣ1 � �0 we deduce the first bound.

2. Similarly as before we exploit the convolution formulation of T2,NS given in (4.26) and we use the bound
proved in Proposition 4.6, 1 to deduce

‖T2,NS [U ]‖L4
T Ḣ1 � C

c3/4
‖U‖2

L4
T Ḣ1 .

3. As in the first two steps, but using the bound proved in Proposition 4.6, 3, we deduce that

‖Tp [U ]‖ 4 ˙ 1 � C ‖G‖3−p
4 ˙ 1 ‖U‖p 4 ˙ 1 , for p = 1, 2, 3,
LTH c1/2 LTH LTH
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but again since ‖GF ‖L4
T Ḣ1 � �0 we prove the last bound. �

4.4. The fixed point theorem

We can at this point apply Proposition 2.4 to the system (4.7). Let us define

y = S (∂)U0 + g,

where S (∂)U0 is defined in (4.8) and g is defined in (4.16). Next let us define

T1 (U) = T1,I [U ] + T1,II [U ] + T1 [U ] ,

where T1,I , T1,II and T1 are respectively defined in (4.11), (4.12) and (4.13). Next

T2 (U,U) = T2,NS [U ] + T2 [U ] ,

where T2,NS, T2 are defined in (4.10) and (4.14). Finally we define

T3 (U,U,U) = T3 [U ] .

In order to apply Proposition 2.4 we have to check the following three conditions

i The element y = S (∂)U0 + g belongs to the ball BL4
T Ḣ1 (0, ρ) for ρ small,

ii Each p–linear operator Tp, p = 1, 2, 3 maps continuously 
(
L4
T Ḣ

1)p to L4
T Ḣ

1,
iii The norm of T1 as a linear operator from L4

T Ḣ
1 to itself is strictly smaller than 1/4.

We prove hence these conditions here below;

i A standard triangular inequality tells us that

‖y‖L4
T Ḣ1 � ‖S (∂)U0‖L4

T Ḣ1 + ‖g‖L4
T Ḣ1 ,

whence, thanks to the results proved in Proposition 4.7 we can argue that if

‖u0‖
Ḣ

1
2
� ν1/4

6C ρ, τ <
1 + χ0

6C4
(
‖m0‖4

Ḣ1 + ‖r0‖4
Ḣ1

) ρ4,

then

‖S (∂)U0‖L4
T Ḣ1 � ρ

2 .

While if �0 < ρ
2 Proposition 4.8 assures us that ‖g‖L4

T Ḣ1 < ρ/2, proving the first claim.
ii Proposition 4.9 assures us that each p–linear operator Tp, p = 1, 2, 3 maps continuously 

(
L4
T Ḣ

1)p to 
L4
T Ḣ

1.
iii We use again the result in Proposition 4.9 to deduce that

‖T1‖ � 2C (1 + �0){
1/2 3/4

} �0,
min c , c
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whence we deduce that if

�0 <
min

{
c1/2, c3/4

}
8C ,

then ‖T1‖ < 1/4.

We can hence apply Proposition 2.4 to deduce the existence a unique solution to the equation in mild 
form (4.7), which in turn implies the existence of a unique solution (u,m, r) ∈ L4

T Ḣ
1 to (S2).

The continuity w.r.t. the Ḣ
1
2 topology, i.e. that U ∈ CT Ḣ

1
2 , follows from standard considerations which 

are analogous to the incompressible Navier-Stokes case, see [27]. �
5. Convergence as τ → 0

In the previous section we proved that it is possible to construct solutions of (S2) in a critical functional 
space independently of the parameter τ , when τ is sufficiently small. In the present section we let τ → 0
and we deduce the limit system solved by (uτ ,mτ , rτ ) in the limit τ → 0. Just for this section, since we 
are interested to compute the asymptotic as τ → 0, we explicate the dependence of the unknown on the 
parameter τ . The result we prove is the following one.

Proposition 5.1. Let (u0,m0, r0) , GF and τ be as in the statement c of Proposition 4.1, and let us moreover
assume that ∇GF ∈ L2

T Ḣ
1
2 . Then for any ε > 0

‖(mτ , rτ )‖
L∞

(
(ε,T );Ḣ

1
2
) τ→0−−−→ 0. (5.1)

Moreover for each t ∈ [0, T ] the following energy bound holds true

1
2 ‖(mτ (t) , rτ (t))‖2

Ḣ
1
2

+ 1
τ

t∫
0

‖(mτ (t′) , rτ (t′))‖2
Ḣ

1
2

dt′ + σ

t∫
0

‖(∇mτ (t′) ,∇rτ (t′))‖2
Ḣ

1
2

dt′ � C

σ
ρ4, (5.2)

where ρ is the radius of the ball in which the solutions constructed in Proposition 4.1 live.
Moreover uτ τ→0−−−→ ū in L∞

(
(ε, T ) ; Ḣ 1

2

)
and ∇uτ τ→0−−−→ ∇ū in L2

(
(ε, T ) ; Ḣ 1

2

)
, where ū is the solution 

of the following incompressible Navier-Stokes equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∂tū + ū · ∇ū− νΔū + ∇p̄ = χ0

(1 + χ0)2
GF · ∇GF ,

div ū = 0,

ū|t=0 = u0.

(5.3)

Remark 5.2.

• We want to point out that the systems (1.15) and (5.3) are equivalent. Indeed since GF = ∇Δ−1F it is
not difficult to deduce that

GF · ∇GF = 1 ∇
∣∣∇Δ−1F

∣∣2 .
2
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• Thanks to the result proved in Proposition 4.1 it is not surprising, performing an energy estimate, to
deduce that5

‖(rτ ,mτ )‖
L2

T Ḣ
1
2

= O (τ) , as τ → 0.

Unfortunately such convergence is not strong enough in order to deduce that uτ converges toward ū
solution of (5.3) in the critical topology L∞

(
(ε, T ) ; Ḣ 1

2

)
∩L2

(
(ε, T ) ; Ḣ 3

2

)
(it though sufficient in order 

to deduce that there is convergence in some weak sense). We must therefore prove that mτ , rτ converge 
to zero in a stronger topology in order to prove convergence in critical norms, for this reason we have 
to prove the particular convergence stated in (5.1). �

Proof. We will divide the proof of Proposition 5.1 in several steps

Step 1: Proof of (5.1).
We prove the result for mτ only being the procedure for rτ identical. Let us rewrite the evolution 
equation of mτ , given in (S2), as

∂tm
τ + 1

τ
mτ − σΔmτ = F τ

1 + F τ
2 , (5.4)

where

F τ
1 = −P

[
uτ · ∇

(
mτ + rτ + χ0

1 + χ0
GF

)]
+ 1

2P
[
(curl uτ ) ×

(
mτ + rτ + χ0

1 + χ0
GF

)]

F τ
2 = −P

{(
mτ + rτ + χ0

1 + χ0
GF

)
×
[(

mτ + rτ + χ0

1 + χ0
GF

)
×
(
−rτ + 1

1 + χ0
GF

)]}
.

Hence thanks to the result proved in Proposition 4.1 we know that there exists a τ0 = τ0 (u0,m0, r0)
and a T ∈ (0,∞] so that (uτ ,mτ , rτ ) ∈ L4

T Ḣ
1 uniformly for τ ∈ [0, τ0]. Hence since by hypothesis

GF ∈ L4
T Ḣ

1 we deduce that

F τ
1 ∈ L2

T Ḣ
−1/2, F τ

2 ∈ L
4/3
T L2,

uniformly for τ ∈ [0, τ0].
We can hence apply the estimate (2.15) of Lemma 2.12 setting γ = τ−1, μ = σ and w = mτ we 
deduce

‖mτ (t)‖
Ḣ

1
2
� C

(
e−

t
τ ‖m0‖

Ḣ
1
2

+ τ1/8
[
‖F τ

1 ‖L2
T Ḣ−1/2 + ‖F τ

2 ‖L4/3
T L2

]
+ 1

σ1/4 o 1
τ

(1)
)
,

which indeed proves the statement (5.1) for mτ . With the very same procedure we can prove the 
bound

‖rτ (t)‖
Ḣ

1
2
� C

(
e−

1+χ0
τ t ‖m0‖

Ḣ
1
2

+ τ1/8

(1 + χ0)1/8
[
‖Hτ

1 ‖L2
T Ḣ−1/2 + ‖Hτ

2 ‖L4/3
T L2

]
+ 1

σ1/4 o 1+χ0
τ

(1)
)
,

where

5 See the energy estimate (5.2) and its proof for a complete argument.
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Hτ
1 = −Q

[
uτ · ∇

(
mτ + rτ + χ0

1 + χ0
GF

)]
+ 1

2Q
[
(curl uτ ) ×

(
mτ + rτ + χ0

1 + χ0
GF

)]

Hτ
2 = −Q

{(
mτ + rτ + χ0

1 + χ0
GF

)
×
[(

mτ + rτ + χ0

1 + χ0
GF

)
×
(
−rτ + 1

1 + χ0
GF

)]}
,

which concludes the proof of (5.1).
Step 2: Proof of (5.2).

We prove the bound for mτ only being the procedure for rτ identical. Let us multiply the equation
(5.4) for 

√
−Δ mτ and let us integrate in space, integrating by parts if it may be, we deduce the

energy inequality

1
2

d
dt ‖m

τ‖2
Ḣ

1
2

+ 1
τ
‖mτ‖2

Ḣ
1
2

+ σ ‖∇mτ‖2
Ḣ

1
2
�
〈
F τ

1 |
√
−Δ mτ

〉
L2×L2

+
〈
F τ

2 |
√
−Δ mτ

〉
L2×L2

.

But indeed 〈
F τ

1 |
√
−Δ mτ

〉
L2×L2

� C

σ
‖F τ

1 ‖
2
Ḣ− 1

2
+ σ

2 ‖∇mτ‖2
Ḣ

1
2
,〈

F τ
2 |

√
−Δ mτ

〉
L2×L2

� ‖F τ
2 ‖L2 ‖mτ‖Ḣ1 ,

whence we deduce

1
2

d
dt ‖m

τ‖2
Ḣ

1
2

+ 1
τ
‖mτ‖2

Ḣ
1
2

+ σ

2 ‖∇mτ‖2
Ḣ

1
2
� C

σ
‖F τ

1 ‖
2
Ḣ− 1

2
+ ‖F τ

2 ‖L2 ‖mτ‖Ḣ1 ,

therefore integrating in time

1
2 ‖mτ (t)‖2

Ḣ
1
2

+ 1
τ

t∫
0

‖mτ (t′)‖2
Ḣ

1
2

dt′ + σ

2

t∫
0

‖∇mτ (t′)‖2
Ḣ

1
2

dt′

� C

σ
‖F τ

1 ‖
2
L2

T Ḣ− 1
2

+ ‖F τ
2 ‖L4/3

T L2 ‖mτ‖L4
T Ḣ1 .

It is hence easy to deduce using Lemma 2.1 that (here we denote Uτ = (uτ ,mτ , rτ ))

‖F τ
1 ‖L2

T Ḣ− 1
2
� ‖Uτ‖L4

T Ḣ1

(
‖Uτ‖L4

T Ḣ1 + ‖GF ‖L4
T Ḣ1

)
,

for the construction given in Proposition 4.1 we know that ‖Uτ‖L4
T Ḣ1 � ρ, and moreover

‖GF ‖L4
T Ḣ1 � �0 < ρ by hypothesis, hence we deduce

‖F τ
1 ‖

2
L2

T Ḣ− 1
2
� Cρ4.

Similar computations lead us to deduce the bound ‖F τ
2 ‖L4/3

T L2 � ρ3, whence we conclude the proof
of the estimate (5.2).

Step 3: Convergence toward the limit system (5.3).
Indeed under the smallness hypothesis on GF and ū stated in the point c of Proposition 4.1 there
exists a unique ū bar solution of (5.3) in the space6 CT Ḣ

1
2 ∩ L4

T Ḣ
1. Let us now select a ε ∈ (0, T )

so that

6 Let us remark that if T = ∞ the solution is global.
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‖uτ (·, ε) − ū (·, ε)‖
Ḣ

1
2
� ηε,

where ηε
ε→0−−−→ 0 since the applications t �→ ‖uτ (·, t)‖

Ḣ
1
2

and t �→ ‖ū (·, t)‖
Ḣ

1
2

are continuous. Next 
let us denote as

δuτ = uτ − ū,

by the aid of (S2) and (5.3) we can compute the evolution equation satisfied by δuτ , i.e.

∂tδu
τ − νΔδuτ + ∇δpτ = −δuτ · ∇uτ + ū · ∇δuτ + Gτ ,

where the outer force Gτ is defined as

Gτ =
(
mτ + rτ + χ0

1 + χ0
GF

)
· ∇

(
−rτ + 1

1 + χ0
GF

)
− χ0

(1 + χ0)2
GF · ∇GF

+ 1
2curl

[(
mτ + rτ + χ0

1 + χ0
GF

)
×
(
−rτ + 1

1 + χ0
GF

)]
. (5.5)

We rely now on the following technical lemma whose proof is postponed:

Lemma 5.3. The function Gτ converges to zero as τ → 0 in L2
(
(ε, T ) ; Ḣ− 1

2

)
.

We can hence endow the system with an appropriate initial data at time t = ε in order to deduce 
the following Cauchy problem satisfied by δuτ :

⎧⎪⎪⎨
⎪⎪⎩
∂tδu

τ − νΔδuτ + ∇δpτ = −δuτ · ∇uτ + ū · ∇δuτ + Gτ , (x, t) ∈ R3 × (ε, T ) ,

div δuτ = 0, (x, t) ∈ R3 × (ε, T ) ,

δuτ |t=ε = uτ (·, ε) − ū (·, ε) , x ∈ R3.

(5.6)

We can hence perform an Ḣ
1
2 energy estimate onto the system (5.6) deducing the following energy 

inequality

1
2

d
dt ‖δu

τ (t)‖2
Ḣ

1
2

+ ν ‖∇δuτ (t)‖2
Ḣ

1
2

�
∣∣∣(δuτ · ∇uτ | δuτ )

Ḣ
1
2

∣∣∣+ ∣∣∣( ū · ∇δuτ | δuτ )
Ḣ

1
2

∣∣∣+ ∣∣∣(Gτ | δuτ )
Ḣ

1
2

∣∣∣ . (5.7)

The following bounds are moreover immediate for any α > 0

∣∣∣(Gτ | δuτ )
Ḣ

1
2

∣∣∣ � αν ‖∇δuτ (t)‖2
Ḣ

1
2

+ C

αν
‖Gτ (t)‖2

Ḣ− 1
2
,∣∣∣(δuτ · ∇uτ | δuτ )

Ḣ
1
2

∣∣∣ � αν ‖∇δuτ (t)‖2
Ḣ

1
2

+ C

αν
‖uτ (t)‖4

Ḣ1 ‖δuτ (t)‖2
Ḣ

1
2
,∣∣∣( ū · ∇δuτ | δuτ )

Ḣ
1
2

∣∣∣ � αν ‖∇δuτ (t)‖2
Ḣ

1
2

+ C

αν
‖ū (t)‖4

Ḣ1 ‖δuτ (t)‖2
Ḣ

1
2
.

(5.8)

Whence selecting α ∈
(
0, 1

8
)
, combining the inequalities of (5.7) and (5.8) and applying a standard

Gronwall argument we deduce the following bound for any t ∈ (ε, T )
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‖δuτ (t)‖2
Ḣ

1
2

+ ν

t∫
ε

‖∇δuτ (t′)‖2
Ḣ

1
2

exp

⎧⎨
⎩

t∫
t′

‖uτ (t′′)‖4
Ḣ

1
2

+ ‖ū (t′′)‖4
Ḣ

1
2

dt′′
⎫⎬
⎭dt′

� Cηε exp

⎧⎨
⎩

t∫
ε

‖uτ (t′)‖4
Ḣ

1
2

+ ‖ū (t′)‖4
Ḣ

1
2

dt′
⎫⎬
⎭

+ C

ν

t∫
0

‖Gτ (t′)‖2
Ḣ− 1

2
exp

⎧⎨
⎩

t∫
t′

‖uτ (t′′)‖4
Ḣ

1
2

+ ‖ū (t′′)‖4
Ḣ

1
2

dt′′
⎫⎬
⎭dt′ (5.9)

defining hence

Φuτ ,ū (t′, t) = exp

⎧⎨
⎩

t∫
t′

‖uτ (t′′)‖4
Ḣ

1
2

+ ‖ū (t′′)‖4
Ḣ

1
2

dt′′
⎫⎬
⎭ ,

and since uτ , ̄u ∈ L4
T Ḣ

1 we deduce that

Φuτ ,ū (t′, t) � 1, Φuτ ,ū (t′, t) � Kuτ ,ū,

whence (5.9) can be rewritten in the following more compact form

‖δuτ (t)‖2
Ḣ

1
2

+ ν

t∫
ε

‖∇δuτ (t′)‖2
Ḣ

1
2

dt′ � Kuτ ,ū

ν

(
ηε + ‖Gτ‖L2

T Ḣ−1/2

)
, (5.10)

but ‖Gτ‖L2
T Ḣ−1/2

τ→0−−−→ 0 thanks to the result stated in Lemma 5.3, and since ηε
ε→0−−−→ the right

hand side of (5.10) can be made arbitrarily small, proving hence the convergence. �
Proof of Lemma 5.3: Let us remark that we can rewrite the function Gτ as

Gτ = (mτ + rτ ) · ∇
(
−rτ + 1

1 + χ0
GF

)
− χ0

1 + χ0
GF · ∇rτ

− 1
2curl

[(
mτ + rτ + χ0

1 + χ0
GF

)
× rτ

]
+ 1

2curl
[
(mτ + rτ ) ×

(
−rτ + 1

1 + χ0
GF

)]
.

Eventually commuting derivatives on terms of the form GF ⊗∇ (mτ , rτ ), Gτ can again be rewritten in the
following compact form

Gτ = Rτ ⊗ q1 (∂)Rτ + q2 (∂) (Rτ ⊗Rτ ) + Rτ ⊗ p1 (∂)GF + p2 (∂) (GF ⊗Rτ ) ,

where q1, q2, p1, p2 are matrix-valued homogeneous Fourier multiplier of order one and Rτ = mτ or rτ .
Hence using Lemma 2.1 and the Sobolev interpolation inequality ‖f‖Ḣ1 � ‖f‖1/2

Ḣ
1
2
‖∇f‖1/2

Ḣ
1
2

we deduce

‖Rτ ⊗ q1 (∂)Rτ‖
L2

(
(ε,T );Ḣ− 1

2
) � C ‖Rτ‖

L∞
(
(ε,T );Ḣ

1
2
) ‖∇Rτ‖

L2
(
(ε,T );Ḣ

1
2
) ,

‖q2 (∂) (Rτ ⊗Rτ )‖
L2

(
(ε,T );Ḣ− 1

2
) � C ‖Rτ‖

L∞
(
(ε,T );Ḣ

1
2
) ‖∇Rτ‖

L2
(
(ε,T );Ḣ

1
2
) ,

‖Rτ ⊗ p1 (∂)GF ‖
L2

(
(ε,T );Ḣ− 1

2
) � C ‖Rτ‖

L∞
(
(ε,T );Ḣ

1
2
) ‖∇GF ‖

L2
(
(ε,T );Ḣ

1
2
) ,
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‖p2 (∂) (GF ⊗Rτ )‖
L2

(
(ε,T );Ḣ− 1

2
) � C ‖Rτ‖

L∞
(
(ε,T );Ḣ

1
2
) ‖∇GF ‖

L2
(
(ε,T );Ḣ

1
2
) ,

and each of the above terms converge to zero as τ → 0 thanks to the hypothesis assumed on GF , the uniform
bound (5.2) and the convergence result (5.1). �
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