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Abstract

Simulating the laser welding process inherently carries both high
complexity and computational cost. Even more, when aiming to
optimize this process, such as finding the combination of process
variables that minimizes residual deformation, the computational
expense required to individually analyze multiple configurations
quickly becomes unsustainable.
In this doctoral research project, the overall computational cost
has been reduced by acting on both the FEM modeling and opti-
mization techniques. Initially, the model was simplified at meso-
scopic level by disregarding microscopic dynamics and focusing
on accurately representing the melt pool, particularly the laser
penetration depth. This was achieved by introducing the con-
cept of passive elements, specific FEM elements with thermo-
mechanical properties dependent on the material state. Once
the evaporation temperature is reached, these elements instan-
taneously transmit incoming energy to the underlying elements,
facilitating keyhole formation.
Concerning the optimization process, to minimize computational
cost, metamodels were employed. Specifically, two highly efficient
machine learning techniques were adopted. Firstly, the optimum
is iteratively determined by refining the metamodel only in the
most promising regions, following the principles of Bayesian op-
timization. Secondly, a multifidelity approach was utilized for
model training, involving the collaboration of high-fidelity and
low-fidelity data to efficiently find the optimum solution. Regard-
ing the multifidelity approach, the performance of both nested
and non-nested infilling strategies has been investigated in rela-
tion to the data correlation coefficient.





Contents

1 Introduction - Project Genesis 1

2 Laser Welding Process Modeling 9
2.1 Physics of Laser Welding . . . . . . . . . . . . . . . . . . . . . 9
2.2 Numerical Simulation of Laser Welding . . . . . . . . . . . . 11
2.3 Concept and Theory of Passive Elements . . . . . . . . . . . 14
2.4 Experimental Validation of Passive Elements . . . . . . . . . 22
2.5 Theory of Heat Source . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Heat Source Model . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Validation of Heat Source Model . . . . . . . . . . . . . . . . 34
2.8 Full Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.9 Validation of Full Model . . . . . . . . . . . . . . . . . . . . . 39

3 Multifidelity Bayesian Optimization 47
3.1 Introduction to Metamodeling . . . . . . . . . . . . . . . . . . 47
3.2 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Acquisition Function . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Gaussian Process Regression . . . . . . . . . . . . . . . . . . 51
3.5 CoKriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6 Nested vs. Non-nested Infilling Strategy . . . . . . . . . . . . 58

3.6.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.2 Acquisition function and exit strategy . . . . . . . . . 64
3.6.3 Optimization Algorithm . . . . . . . . . . . . . . . . . 65
3.6.4 1-D Study . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Optimization of Laser Welding Process 77
4.1 Workflow Overview . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 3-D Model Optimization . . . . . . . . . . . . . . . . . . . . . 79
4.3 Experimental Validation . . . . . . . . . . . . . . . . . . . . . 87



5 Conclusions 89
5.1 Time Cost Savings . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Current method limitations and potential future developments 90

A APDL Script I

B Matlab Script VII

Bibliography



List of Figures

1.1 Example of oven cavity and, marked in red, the welded areas 3
1.2 Conceptual illustration of unstructured optimization (a) and

Bayesian optimization (b) in a biparametric domain. Red X
represents the optimum, blu circles the initial sample points
and the black crosses the iterative refinement . . . . . . . . . 6

2.1 Schematic representation of low- and high-intensity laser beam
welding regimes . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Problem identification . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Influence of the thermal conductivity k on the stationary tem-

perature distribution of an infinite thick DC04 steel plate with
a heat source of 3.5 kW even distributed on a circular surface
of radius 0.2 mm. This temperature difference introduces a
numerical error due to the non-infinite k . . . . . . . . . . . . 15

2.4 Transient temperature in body with uniform temperature dis-
tribution (Lumped Capacitance Method) in case of Dirichlet
boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Temperature distribution in a semi-infinite solid in function
of space and time. The marked spot represents the condition
for θ = 99.9% . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Comparison of experimental and numerical results with P =
1500 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Comparison between simulated and experimental keyhole depth
function of time for different powers . . . . . . . . . . . . . . 25

2.8 Plot of the 1-D Gaussian distribution defined in equation (21)
with σ = 1, µ = 5, P = 1 . . . . . . . . . . . . . . . . . . . . . 26

2.9 Plot of the 2-D Gaussian distribution defined in Equation (22)
with σ = 1, µ = 0, P = 1 . . . . . . . . . . . . . . . . . . . . . 27

2.10 Evaluation points for a grid with space resolution of 0.02 m,
time resolution of 0.2 s, space extension of 0.1 m and time
extension of 1 s . . . . . . . . . . . . . . . . . . . . . . . . . . 31



2.11 Accuracy of the Gaussian heat source distribution function of
the resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.12 Graphic representation of the complete optimization workflow 33
2.13 Contour plot of the top-surface temperature distribution at 1s 35
2.14 Plot of the mid-line temperature distribution at 1s . . . . . . 36
2.15 Schematic representation of the simulation flow and main

characteristics and innovations of the model . . . . . . . . . . 38
2.16 Geometry (a) and mesh (b) of the 3-D test model . . . . . . . 40
2.17 Comparison between ratio 70–30 and ratio 0–100 (entire en-

ergy concentrated in the inner circle) with P = 3800 W. The
two distributions have the same underlying volume in the 3-D
space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.18 Mechanical properties of steel DC04 function of temperature:
isotropic instantaneous coefficient of thermal expansion (a),
isotropic elasticity (b), and bilinear isotropic hardening (c) . . 44

2.19 Comparison between simulation (1) and experimental (2) re-
sults at different powers: 3800 W (a), 3600 W (b), 3400 W
(c), and 3200 W (d) . . . . . . . . . . . . . . . . . . . . . . . 45

2.20 Temperature distribution in ◦C at different time steps and
corresponding position and direction of laser beam, indicated
by a black spot and an arrow, respectively. Horizontal lines
are the welding lines, along the oblique lines the laser beam
moves from the end of a welding line to the next one . . . . . 46

3.1 Highly (a), medium (b) and low (c) correlated data sets . . . 60
3.2 Initial sampling: high and low fidelity data (a) and visualiza-

tion of the equidistant nested distribution (b) . . . . . . . . . 62
3.3 Convergence behavior of the Data Correlation Factor for the

highly correlated functions . . . . . . . . . . . . . . . . . . . . 63
3.4 Schematization of the algorithm to select next sampling . . . 66
3.5 Convergence and infilling sequence for the case nested . . . . 68
3.6 Convergence and infilling sequence for the case non-nested . . 70
3.7 Infilling iterative distribution for the nested (a) and non-

nested (b) strategy . . . . . . . . . . . . . . . . . . . . . . . . 71
3.8 EI convergence for the highly correlated (a), medium (b) and

low correlated (c) data set . . . . . . . . . . . . . . . . . . . . 73
3.9 Cumulative costs based on infilling strategy and simulation

time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.10 Infilling point distribution for highly (a) and low (b) corre-

lated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Full workflow of the optimization process in Optislang . . . . 78



4.2 Latin hypercube sampling in the entire domain (a) and feasi-
ble configurations respecting the constraint (b) . . . . . . . . 81

4.3 Initial DOEs: proportional (a) and inversely proportional (b)
correlation of the parameters . . . . . . . . . . . . . . . . . . 82

4.4 Results of the laser welding simulation: initial (a) and opti-
mized (b) status . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 3-D scanned plates joint: initial (a) and optimized (b) welding
path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Comparison between "simulations only" approach and adopted
multifidelity bayesian optimization . . . . . . . . . . . . . . . 91





List of Tables

2.1 Generic laser parameters used for the validation analysis . . . 35
2.2 Thermal Properties of steel DC04 . . . . . . . . . . . . . . . . 42
2.3 Validation results: for every configuration is reported the sim-

ulated, the measured, and the differential deformation in z-
direction (out-of-plane) using the plate center as reference . . 43

4.1 Upper and lower boundaries of the parameters based on ex-
perience and on the machine characteristics . . . . . . . . . . 83

4.2 Main properties of the Gaussian regression model . . . . . . . 86
4.3 Initial and optimized parameters . . . . . . . . . . . . . . . . 87





List of Symbols
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Chapter 1

Introduction - Project
Genesis

The idea of pursuing a PhD dates back to my master’s de-
gree studies, but at that time, the desire to experience the
working world prevailed. This decision led me, shortly af-
ter earning my master’s degree, to leave Italy for Germany,
where, after 5 years of groundwork in Baden-Württemberg
and Bavaria, in 2018, I found a job as a simulation engineer
at BSH GmbH, world leader in the production of household
appliances.
Most of the projects I deal with on a daily basis are com-
pleted within a few weeks or at most a few months. How-
ever, there are issues that, due to their complexity, require
appropriate time investments, specific methods, and ad-
vanced expertise. By their nature, these topics are usually
incompatible with the fast-paced rhythms of the industry
and are often addressed in an approximate manner or even
postponed indefinitely.
In this organizational context, the pursuit of an industrial
PhD fits perfectly, primarily as in-depth study of a complex
subject and application of state-of-the-art technologies to a
specific practical case. Framing a very complex and articu-
lated problem in the form of a PhD has indeed allowed me,

1



1. Introduction - Project Genesis

first of all, to allocate the necessary internal resources for
the project, as well as to draw on top-tier specific expertise
provided by the university. From this idea, a collaboration
between BSH and the University of Trieste was born, and
the choice fell on a topic of great interest to the company,
namely laser welding and its optimization.
But before delving into the project, here is some back-
ground information about the company I work for: BSH
GmbH, acronym for Bosch Siemens Hausgeräte, is a Ger-
man company based in Munich and specialized in the design
and production of household appliances. It was established
in 1967 through the collaboration between Robert Bosch
GmbH and Siemens AG, and since 2015 BSH has been fully
integrated into the Bosch Group. Currently, the company
employs approximately 63,000 employees across 39 facilities
and 3 continents. In 2022, it achieved a turnover of nearly
16 billion euros, making it the top-ranking company in Eu-
rope. The company’s portfolio is extensive, and alongside
the two internationally recognized flagship brands, Bosch
and Siemens, there are also other smaller brands such as
Neff and Gaggenau, as well as several local entities, like the
historic German brand Constructa, which are now called
"local heroes". The product portfolio is equally remark-
able, encompassing not only household appliances but also
service and ecosystem brands. Despite the household ap-
pliances sector being widely regarded as mature and tra-
ditional, the company has made significant investments in
innovation in recent years, increasing its research and de-
velopment expenditure to 5.3%. The drive for innovation
is manifesting in various directions, ranging from digital-
ization to robotics, from sustainable packaging to Artificial
Intelligence (AI). In the field of AI, the applications are
countless. On the one hand, the company aims to utilize
this new technology to offer customers new products and
services, while on the other hand, it also seeks to enhance
current products and manufacturing processes. This work

2



1. Introduction - Project Genesis

Figure 1.1: Example of oven cavity and, marked in red, the welded
areas

aligns with this second perspective.
In Traunreut, Bavaria, in the beautiful lakeside area led by
the lake Chiemsee, BSH has a facility that was established
in 1952. At this facility, the company develops ovens, cook-
tops, microwave ovens, and small household appliances.
Ovens and cooktops are directly manufactured on-site. The
core of an oven is the cavity, made of DC04 or DC06 steel
and coated with enamel to protect it from oxidation, and it
consists normally of four parts that are produced through
stamping and welded together: top and bottom, initially
stamped together as a combined component (known in Ger-
man as Kombi-Teil) and then separated, along with the
mantle and flange. The various parts are joined using lin-
ear welds in the overlapping areas (figure 1.1).
For quality and cleanliness reasons, as well as process ef-
ficiency and speed, laser welding has been used for sev-
eral years now. However, laser welding also comes with
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disadvantages or, more accurately, challenges. One of the
primary challenges is its sensitivity to process parameters:
laser welding involves very high power concentrated in small
surface areas (in this specific case, several kW focused within
a few tenths of a millimeter), and a slight variation in one
of the characteristic parameters can have a significant effect
on the final result. For this reason, the machines must be
highly accurate, perfectly calibrated, and the parameters
must be chosen with extreme care. Currently, the selection
of welding parameters relies solely on the technicians’ expe-
rience, a few simple theoretical, empirical, or semi-empirical
formulas, and numerous experimental trials. This approach
results in a simplistic process that is not easily adaptable
when there are changes in boundary conditions or design
parameters, such as plate thickness. Furthermore, due to
the lack of information regarding the depth and diameter
of the weld area at the interface, it becomes challenging to
make assessments regarding the strength of the joint. Ad-
ditional mechanical tests, such as shearing or peeling tests,
would need to be conducted to evaluate its resistance. As
further confirmation of what has been highlighted so far,
during the quality control phase, welded components oc-
casionally fail to meet the required standards and exhibit
significant permanent deformations. These deformations
not only pose aesthetic concerns but can also jeopardize
the proper functionality of the oven. One exemplary case is
the deformation of the mantle, also known as the side wall,
which sometimes reaches a magnitude that hinders, if not
prevents, the installation of the side racks that support the
baking trays. Less visible but equally important is the issue
of residual stresses: residual deformations are accompanied
by residual stresses, which can be further accentuated dur-
ing assembly due to increased clearance between the parts.
In areas where these stresses are higher, during the regu-
lar operation of the oven cracks in the enamel layer could
potentially appear, a condition that must be avoided for

4
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aesthetic reasons and to prevent oxidation of the underly-
ing steel layer.
Therefore, the primary objective of the welding process
should be, in addition to ensuring a strong and durable
joint, to minimize deformations and residual stresses. To
this end, BSH initiated a multidisciplinary project in late
2019 in collaboration with the University of Trieste, framed
as an Industrial Doctorate program, of which this work rep-
resents the final report. The project revolves around two
main themes: the first is the modeling of the laser weld-
ing process using the Finite Element Method (FEM), while
the second is the optimization of the process itself. The
underlying idea of this activity is to delve into the latest
optimization techniques based on machine learning and ap-
ply them to the specific case of the industrial laser welding
process.
The complexity of the modeling phase lies not only in the
nature of the physical problem to be analyzed but also in
the need to simplify the model to a degree that makes it
suitable for the optimization process, which of course re-
quires a certain number of iterations. All of this without
excessively compromising accuracy.
Regarding the optimization process, in order to minimize
also in this case its computational cost, two specific ap-
proaches have been adopted: the Bayesian approach and
the multifidelity approach. The first one involves iteratively
adding points to the data used to train the surrogate model
only in the area of interest, thus avoiding the need to use a
large number of Design of Experiments distributed through-
out the domain (figure 1.2). The multifidelity approach, on
the other hand, involves combining data of different nature
and quality for the creation of the surrogate model. This
allows not only the utilization of all available resources but
also the use of less valuable but faster sources of information
to find the optimum. In the case of an optimization based
on FEM simulations, for instance, low-fidelity data could

5
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(a)

(b)

Figure 1.2: Conceptual illustration of unstructured optimization (a)
and Bayesian optimization (b) in a biparametric domain. Red X rep-
resents the optimum, blu circles the initial sample points and the black
crosses the iterative refinement
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refer to the results obtained from models with a coarser
mesh compared to high-fidelity data.
Maintaining the initially separate narrative, this introduc-
tory chapter will be followed by a chapter on FEM modeling
of the laser welding process (Chapter 2) and a chapter ded-
icated to the optimization algorithms used to minimize the
residual deformations (Chapter 3). Chapter 4 will then dis-
cuss the results of the optimization, and finally, in Chapter
5, conclusions will be drawn and potential future develop-
ments, both about FEM model and optimization strategies,
will be discussed.
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Chapter 2

Laser Welding Process
Modeling

2.1 Physics of Laser Welding

In laser welding, the power intensity, expressed in W/mm2,
reaches such high levels that the vaporization temperature
is achieved. As a result, a portion of the vaporized metal
escapes from the system, representing a power loss. How-
ever, this allows for significantly deeper heat penetration
compared to a low-intensity process. This is because the
combined effects of material removal and vapor pressure on
the liquid sidewalls create what is known as a "keyhole" -
a microstructural hole in the metal layer that enables the
laser beam to penetrate directly and indirectly through mul-
tiple reflections. Hence, laser welding exhibits high energy
efficiency (figure 2.1).
From a physical standpoint, this process is highly com-
plex. Not only does it involve all three phases of matter
(solid, liquid, and vapor), but it also entails intricate dy-
namics of thermal and mass transfer, as well as interact-
ing forces. The keyhole cavity contains metal vapor that
partially absorbs the incoming laser light. The vapor’s
charged particles acquire kinetic energy from the beam pho-
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2. Laser Welding Process Modeling

Figure 2.1: Schematic representation of low- and high-intensity laser
beam welding regimes

tons through a process called inverse Bremsstrahlung ab-
sorption (iB-absorption). When this energy gain becomes
significant, it leads to beam damping, further ionization of
the metal vapor, an increase in plasma temperature, and
consequently, an increase in the iB-absorption coefficient.
However, this effect remains as long as the plasma temper-
ature stays below a critical value, as described by Zhou [38].
The presence of plasma within the keyhole plays a positive
role in the welding process. It acts as a protective barrier,
preventing the keyhole cavity from cooling due to the sur-
rounding atmosphere. Additionally, plasma radiation en-
hances vaporization at the keyhole surface. Once the criti-
cal temperature is surpassed, damping becomes dominant,
and vaporization diminishes.
The metal vapor can also coalesce into larger nanoparti-
cles, forming fumes. Particles of comparable size or larger
than the laser beam wavelength attenuate the laser power
through Mie-scattering, while much smaller particles atten-
uate it through Rayleigh scattering. As the metal vapor

10
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flows out of the cavity, it creates a plume, which is con-
tinually replenished by newly evaporated material. The
plume can also contribute to beam damping, as described
by Moscicki [29].
Due to temperature dependence, both the absorption and
scattering coefficients are closely linked to the plasma prop-
erties and the temperature field. The angle of incidence of
the laser beam ray with respect to the keyhole surface also
affects the absorption process, as described by Bergstrom
[6]. The geometry of the keyhole surface is influenced by the
energy balance among the beam, plasma, and pool, as well
as the force balance between plasma and pool (e.g., surface
tension, Marangoni force, and recoil pressure). The inter-
play of these factors results in the complex and tightly cou-
pled physical phenomena observed in keyhole laser welding.
Fabbro [10] conducted experimental analysis of the keyhole
structure at different speed regimes, highlighting the effects
of ablation pressure, vapor plume, surface tension, gravity,
and induced electromagnetic forces.

2.2 Numerical Simulation of Laser Weld-
ing

Several models have been proposed to analyze these phe-
nomena. In [7] and [8] Courtois developed a 3-D model
that describes both heat and fluid flow characteristics. It
considers the multi-reflections of the laser beam in the key-
hole, treating it under its wave form by solving Maxwell’s
equations. Zhang [36] employed the volume of fluid (VOF)
method and analyzed the multi-reflections of the laser beam
using a ray-tracing algorithm. Both methods share a high
level of complexity and computational time. Alternatively,
simplified methods are available as alternatives to the afore-
mentioned self-consistent approaches, characterized by a
very high level of detail. These simplified methods typically

11
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involve simplifications in modeling the heat source and de-
fine the power as a function of penetration. For example,
Hozoorbakhsh [19] proposed a heat source that combines
a surface and an adaptive volumetric component, Shan-
mugam [32] used the double-ellipsoidal heat source concept
based on Goldak studies [15], while Artinov [3] introduced
a two-step thermal analysis where the moving heat flux re-
sults from a moving temperature distribution based on a
fixed laser beam thermal analysis. If the focus of the study
is solely on the keyhole depth and evaluating the size of the
melted area, fundamental parameters for the welded joint,
further simplifications can be adopted. For instance, Fab-
bro [11] proposed a model that describes the laser beam
penetration as a function of a normalized aspect ratio (R0 )
and a characteristic speed (V0 ) related to the Peclet num-
ber. After solving the thermal fluid dynamical equations, a
mechanical simulation must be added to evaluate residual
stresses and deformations post-welding. This simulation
is based on the temperature distribution calculated with
the initial model. Huang [20] suggested employing a lo-
cal solid model to evaluate temperature distribution and
plastic strains, as well as a global shell model to assess the
overall deformation resulting from the local plastic strains.
Xu [35] successfully captured changes in convexity of ultra-
thin 316 stainless steel plates welded with a pulsed laser pro-
cess, considering the input power, angular deformation, and
longitudinal shrinkage force. In this work, a thermal and
elasto-plastic FEM model is proposed to simulate pulsed
laser welding processes of sandwich layers, specifically fo-
cusing on residual deformations (figure 2.2). This model
aims to serve industrial purposes and therefore needs to
be both accurate and computationally efficient, while also
accommodating complex geometries and welding paths. In-
tegrating the microscale of the keyhole and the macroscale
of the actual welded parts in the same model would expo-
nentially increase computational time. To address this, the

12
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(a) Case of two metal sheets welded together that lose planarity

(b) Detail of the complex welding path

Figure 2.2: Problem identification
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keyhole description is simplified at the mesoscale level by
introducing the concept of passive elements, which accu-
rately predict the keyhole size based solely on the material
properties of the components. Expanding on Tirand pro-
posal [33] to increase thermal conductivity to simulate the
Marangoni effect, in this case, the thermal conductivity is
modified to also simulate metal vaporization and the pres-
ence of air inside the keyhole, which adds negligible thermal
resistance.

2.3 Concept and Theory of Passive Ele-
ments

To simulate the material vaporization at high temperature
and the formation of the keyhole, a simplified approach de-
fined as the "passive element" concept is introduced. In-
stead of physically modeling the keyhole, such as using
the ekill command in Ansys to deactivate elements above
the vaporization temperature as suggested by Zhang [37],
this method focuses on enhancing heat penetration through
mathematical manipulation of the thermal material proper-
ties of the welded part. This approach involves modifying
the thermal conductivity, significantly increasing it along
the direction of penetration while setting the in-plane val-
ues to zero. By doing so, heat is rapidly transferred to the
bottom of the keyhole, facilitating continuous penetration.
Above the vaporization temperature, the thermal conduc-
tivity transitions from isotropic to orthotropic behavior. In
this specific case a value of 1011 W/mK is assigned to the
thermal conductivity, ensuring that under steady-state con-
ditions, with a power of 3.5 kW applied to a radius of 0.2
mm, the temperature difference per unit length remains be-
low 1°C (figure 2.3).
The elements transition into a state of thermal passivity,
thus justifying their designation. To provide further clar-

14
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Figure 2.3: Influence of the thermal conductivity k on the stationary
temperature distribution of an infinite thick DC04 steel plate with a
heat source of 3.5 kW even distributed on a circular surface of radius
0.2 mm. This temperature difference introduces a numerical error due
to the non-infinite k
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ity, they are passive with respect to the energy above the
vaporization temperature, while still retaining the energy
associated with the solid and liquid phases. It is important
to note that a portion of this energy is lost through the
vaporization process and must be considered when calcu-
lating the overall process efficiency, as described in para-
graph 5 and evaluated through experimental means. To as-
sess the theoretical validity of this approach, it is essential
to demonstrate that the assumption of steady-state condi-
tions in the keyhole zone holds true at each time step. This
assumption implies that the heat input from the outer sur-
face is always equal to the heat output at the bottom of the
keyhole, with no energy storage in the system (Ėin = Ėout).
In simpler terms, the transient period must be shorter than
the minimum time step, which, in this specific scenario,
is 1 ms. Given the significantly high thermal conductiv-
ity above the evaporation temperature, the assumption of
lumped capacitance is deemed acceptable. This approxi-
mation remains coherent for Bi values below 0.1, where Bi
represents the Biot number [21]. The Biot number is defined
as the quantity hl/k, a dimensionless parameter that plays
a fundamental role in conduction problems. It provides a
measure of the temperature drop in the solid (described by
the conductivity k) relative to the temperature difference
between the surface and the fluid (described by the heat
transfer coefficient h) and can also be viewed as a ratio of
thermal resistances. The core concept behind the lumped
capacitance method is that the solid’s temperature remains
spatially uniform during the transient process. In other
words, temperature gradients within the solid are consid-
ered negligible. From Fourier’s law,

q
′′

x = −k
dT

dx
, (1)
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while this assumption implies an infinitely high thermal
conductivity, such a condition is practically unattainable.
However, this condition is closely approximated if the resis-
tance to conduction within the solid is much smaller than
the resistance to heat transfer between the solid and its sur-
roundings. By neglecting temperature gradients within the
solid, the problem can no longer be analyzed solely through
the general heat equation,

δT

δt
= α∇2T +

q̇

ρc
. (2)

Instead, the transient temperature response is determined
by formulating an overall energy balance on the solid, relat-
ing the rate of heat loss at the surface to the rate of change
of internal energy,

−Ėout = Ėst, (3)

−hAs(T − T∞) = ρV c
dT

dt
. (4)

Introducing the temperature difference,

θ ≡ T − T∞, (5)

and recognizing that dθ/dt = dT/dt if T∞ is constant, it
follows that,

ρV c

hAs

dθ

dt
= −θ. (6)
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Separating variables and integrating from the initial con-
ditions, for which t = 0 and T (0) = Ti, we then obtain,

ρV c

hAs

∫ θ

θi

dθ

θ
= −

∫ t

0

dt, (7)

with θi ≡ Ti − T∞.

Solving the integral,

ρV c

hAs

ln
θi
θ
= t, (8)

θ

θi
=

T − T∞

Ti − T∞
= exp

[
−hAs

ρV c
t

]
, (9)

(ρV c)/(hAs) is called thermal time constant and it is usu-
ally identified with τ . The larger is τ , the faster will be the
transient (figure 2.4).
Nevertheless, it’s important to note that the conductivity
k does not appear in this therm. To evaluate the influence
of k on the transient duration and to ensure the consistency
of assuming steady-state conditions, the more general tran-
sient formulation in a semi-infinite solid must be considered.
In this case, the problem becomes more complex, as the so-
lution is a function of both space and time. To simplify the
problem, the new variable η is defined as,
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Figure 2.4: Transient temperature in body with uniform tempera-
ture distribution (Lumped Capacitance Method) in case of Dirichlet
boundary conditions
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η ≡ x√
4αt

. (10)

Considering that,

δT

δx
=

dT

dη

δη

δx
=

1√
4αt

dT

dη
, (11)

δ2T

δx2
=

d

dη

[
δT

δx

]
δη

δx
=

1

4αt

d2T

dη2
, (12)

δT

δt
=

dT

dη

δη

δt
=

x

2t
√
4αt

dT

dη
, (13)

then, for the Fourier equation for q̇ = 0,

δ2T

δx2
=

1

α

δT

δt
, (14)

becomes,

d2T

dη2
= −2η

dT

dη
, (15)

d(dT/dη)

(dT/dη)
= −2ηdη. (16)

Integrating twice,

ln (dT/dη) = −η2 + C1, (17)
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dT

dη
= C1 exp (−η2), (18)

T = C1

∫ η

0

exp (−u2)du+ C2, (19)

with u as dummy variable. Applying now, for example,
Dirichlet b.c. such that,

T (η = 0) = Ts, (i.c.)

T (η → ∞) = Ti, (b.c.)

the expression for the dimensionless temperature in func-
tion of η is then,

T − Ts

Ti − Ts

=
2√
π

∫ η

0

exp (−u2)du ≡ erf(η), (20)

with C1 = 2(Ti − Ts)/
√
π and C2 = Ts. erf is the Gaussian

error function. Knowing η it is now possible to evaluate
one parameter between x and t but not both. The depth
of the keyhole of course cannot exceed the total thickness
of the metal sheets. In this specific case, two 0.5 mm metal
sheets are joined together and thus the total thickness is 1
mm. Setting the density and specific heat of steel above the
evaporation temperature to ρ = 7287 kg/m3 and c = 573
J/kg/K, it is now possible to evaluate the time required to
reach the steady state conditions1. The imposed tempera-
ture is reached only asymptotically but 99.9% is considered
an acceptable approximation. Based on the given data, this

1These values have no physical meaning but are required for numerical consis-
tency
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temperature is reached after t ≈ 2e−6 s, corresponding to
η = 2.33 (figure 2.5).

Figure 2.5: Temperature distribution in a semi-infinite solid in func-
tion of space and time. The marked spot represents the condition for
θ = 99.9%

This value is two orders of magnitude smaller than the
smallest time step and thus the assumption of steady state
conditions in the keyhole zone at every time step is valid.

2.4 Experimental Validation of Passive El-
ements

The concept of passive elements is validated using experi-
mental data sourced from the literature [26]. The problem
being studied is axisymmetric and can be simulated using a
2-D model. The experimental data refers to the penetration
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depth of a keyhole on a steel plate under three different laser
powers (1000, 1250, and 1500 W) during a 25 ms transient
period. The power source remains constant throughout the
experiment. Assuming an overall process efficiency of 65%,
which includes all power losses, there is a strong agreement
in all three cases (as shown in figures 2.6 and 2.7).
The main power losses occur at laser level, for example due
to transmission through a transparent or translucent mate-
rial, on the welding surface due to reflection and scattering
and due to plasma absorption. In summary, the passive
elements, with knowledge of the overall efficiency of the
welding process, effectively describe the formation of the
keyhole. Given their simplicity, malleable definition, and
time-saving nature, they represent a valid concept for ana-
lyzing welding processes in industrial applications.

2.5 Theory of Heat Source

Regarding the laser beam, the heat source depends on both
position and time. The position refers only to the in-plane
position, not the coordinate along the layer thickness. This
means that defocusing of the laser beam and reflections
along the keyhole do not affect the total power or its distri-
bution. Therefore, more complex approximations such as
the 3-D conical heat source or the combination of conical
and cylindrical heat sources as described by Dal [9] are not
necessary in this case. By using passive elements that facil-
itate heat penetration, the heat source is simplified to a 2-D
distribution applied solely to the upper face of the plate.
A generic heat source is mathematically described as a heat
flux distribution, which is a function of space (x, y) and
time. Dimensionally, this quantity represents power per
unit area. Each welding technology has its own specific
power distribution, which can be approximated using math-
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(a) at 2 ms

(b) at 8 ms

(c) at 18 ms

Figure 2.6: Comparison of experimental and numerical results with P
= 1500 W
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(a)

(b)

(c)

Figure 2.7: Comparison between simulated and experimental keyhole
depth function of time for different powers
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Figure 2.8: Plot of the 1-D Gaussian distribution defined in equation
(21) with σ = 1, µ = 5, P = 1

ematical functions or a combination of functions. Bradac
[22] argues, for instance, that while the 3-D Gaussian dis-
tribution is more suitable for simulating laser and electron
beam welding, arc welding is better described by a hemi-
spherical surface or a double-ellipsoid source. In the case
of a laser beam, the Gaussian distribution provides a good
fit, characterized by a peak in the center and exponentially
decreasing values with distance.
The general formulation of the Gaussian distribution on a
plane (figure 2.8) is as follows,

fG_plane =
1

σ
√
2π

e−
(x−µ)2

2σ2 . (21)
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Figure 2.9: Plot of the 2-D Gaussian distribution defined in Equation
(22) with σ = 1, µ = 0, P = 1

The given passage describes the relationship between the
standard deviation (σ), mean (µ), and total power (P). The
standard deviation represents the distance from the mean
that encompasses 34.15% of the total power. It is often
linked to half of the beam’s radius (r). This implies that
the beam’s radius is equivalent to two standard deviations.
At this radius, the power amounts to 13.5% of the maxi-
mum value.
In the three-dimensional space (figure 2.9), the Gaussian
function takes on the following general form,

fG_volume = Ae
−
(

(x−µ)2

2σ2
x

+
(y−µ)2

2σ2
y

)
. (22)
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If σx = σy and µ = 0, then,

fG_volume = Ae
−
(

x2+y2

2σ2

)
. (23)

Integrating in the domain ]−∞,∞[, it can be demonstrated
that,

∫ ∫
Ae

−
(

x2+y2

2σ2

)
dxdy = 2πAσ2. (24)

Considering that the integral of the heat flux is the total
heat flow, this means,

2πAσ2 = P [W], (25)

and thus,

A =
P

2πσ2
[W/mm2]. (26)

Substituting equation (26) in equation (23),

fG_volume(x, y) =
P

2πσ2
e
−
(

x2+y2

2σ2

)
, (27)
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valid for a steady laser beam with center in the origin and
no losses. For a moving heat flux with a certain efficiency
described by a parameter η, equation (27) becomes,

fG_volume(x, y, t) =
ηP

2πσ2
e
−
(

(x−x0(t))
2+(y−y0(t))

2

2σ2

)
, (28)

where x0 and y0 are the moving position of the laser beam
center, function of time, and η is an overall efficiency that
takes into account all losses and has been evaluated exper-
imentally during the calibration process.

2.6 Heat Source Model

In the context of FEM analysis, a heat source in the Ansys
ACT Extension "Moving Heat" can be defined as either a
surface load or a volumetric load. The volumetric load pro-
vides additional control over heat penetration compared to
the surface load by introducing the absorption coefficient
as an extra parameter. Both approaches share certain lim-
itations:

1. Only the Gaussian power distribution is available, mean-
ing that not all types of heat sources can be accurately de-
scribed using this tool.
2. Pulsed processes cannot be modeled using this exten-
sion.
3. The heating paths need to be defined in the CAD model.
4. The input parameters are not parameterizable, which
means they cannot be optimized automatically.
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For further details regarding individual input parameters,
please refer to the original extension documentation. Both
the methods proposed by Ansys and the new approach pre-
sented in this work can be categorized as simplified meth-
ods, as they focus on the macroscopic effects of heat transfer
and consider thermal conduction as the dominant mech-
anism. The study by Geng [14] demonstrates that heat
conduction is the primary heat transfer mechanism in weld
pools, while melt convection becomes crucial at the mi-
crostructural scale.
The core principle of the presented method is to divide the
entire space-time domain, through which the heat flux prop-
agates, into numerous cells, creating a finely-gridded struc-
ture. At each point within this domain, the heat flux is
calculated. The grid’s resolution is determined by the dis-
tance between adjacent points. A higher resolution leads
to a more accurate capture of the moving heat flux. For
instance, if the moving heat source extends from the origin
in the x- and y-directions over a distance of 0.1 m, starting
at 0 s and ending after 1 s, and assuming a spatial resolu-
tion of 0.02 m and a temporal resolution of 0.2 s, the total
number of degrees of freedom would be 216. The domain
can be visualized as shown in Figure 2.10.
The presented method offers two significant advantages.
Firstly, the domain and heat flux are defined only once dur-
ing the pre-processing phase, ensuring consistency through-
out the entire simulation. Secondly, all variables of the
problem can be parameterized, allowing for optimization
as each grid point serves as a degree of freedom for all vari-
ables. The required resolution of the grid depends on the
specific characteristics of the problem. If the heat source
has a small beam radius, a high spatial resolution is neces-
sary. Similarly, if the process occurs rapidly, a high time res-
olution is required. Laser welding processes exhibit both of
these conditions, which explains the need for high-resolution
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Figure 2.10: Evaluation points for a grid with space resolution of
0.02 m, time resolution of 0.2 s, space extension of 0.1 m and time
extension of 1 s

domains in such cases.
Figure 2.11 illustrates a generic Gaussian heat flux distri-
bution with a power of P = 1 W and a beam radius of r
= 0.02 m (2σ) at three different resolutions. It is evident
that a resolution of 0.02 m, which is equal to the beam ra-
dius, is insufficient to accurately capture the curve. The
peak is completely missed, significantly affecting the total
power introduced into the system (the area under the Gaus-
sian curve). On the other hand, the resolution of 0.01 m
appears acceptable as it delivers similar results to a resolu-
tion ten times higher.
The process of defining the heat flux involves two steps:
the first step is carried out in APDL (ANSYS Parametric
Design Language) and involves indexing the heat flux array
in space and time based on the required resolution for the
problem. The second step is implemented in Matlab, where
the heat flux is calculated based on spatial and temporal
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Figure 2.11: Accuracy of the Gaussian heat source distribution func-
tion of the resolution

variables. The interface between the two programming lan-
guages is established through a text file generated in Mat-
lab, which contains APDL expressions for assigning the cal-
culated heat flux to the corresponding indexes. These two
steps are part of an iterative process designed for optimiz-
ing a laser welding process. The optimization is focused on
minimizing residual deformation after welding by adjusting
laser power, pulse duration, frequency, and velocity.
To reduce computational time, a metamodel trained using
Kriging-based techniques is employed. Figure 4.1 illustrates
the complete iterative optimization workflow. It begins
with a set of DOEs that indicate the residual deformation
for specific combinations of input parameters. An initial
version of the metamodel is trained using these DOEs. The
optimization is then performed on the metamodel, making
predictions on deformation. The goal of the optimization
is to find the minimum of the function and minimize resid-
ual deformation. However, since the function is not known
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Figure 2.12: Graphic representation of the complete optimization
workflow

across the entire domain, the optimization is not solely fo-
cused on finding the global minimum. Instead, the mini-
mum is indirectly determined by maximizing the Expected
Improvement (EI) acquisition function, which considers ar-
eas of high uncertainty as well as the actual minimum. The
optimal configuration obtained is then used to create a new
power source distribution, and a new simulation is run. The
set of DOEs is updated, and the optimization process con-
tinues until the EI tolerance or a maximum number of iter-
ations is reached. APDL and Matlab scripts are described
in detail in Appendices A and B.
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2.7 Validation of Heat Source Model

To validate the accuracy of the new heat flux formulation,
the results obtained have been compared to the tempera-
ture field generated on a 1 mm steel plate using the Ansys
ACT extension "ACT_MovingHeat_R170_v4.1" with the
same heating source parameters. There is a slight difference
in the definition of the Gaussian heat distribution between
the two cases:
The ACT extension models the Gaussian heat flux source
using the equation,

q = C2e
− (x−x0)

2+(y−y0)
2

C2
1 , (29)

where q represents the heat flux on the desired surface, C1

is the radius of the beam, C2 is the source power intensity,
and x0 and y0 are the instantaneous coordinates of the heat
source center. On the other hand, the APDL formulation
is given by,

q =
P

2πσ2
e−

(x−x0)
2+(y−y0)

2

2σ2 , (30)

where P is the total power in watts and σ is the stan-
dard deviation, conventionally equal to half the radius of
the beam. In the validation analysis, the values used in the
ACT Moving Heat Flux extension are listed in Table 2.1.
The APDL script, instead of radius of beam and power
intensity, requires in input total power and standard devi-
ation. Based on Equations (29) and (30), these values are
determined to be 1231 W and 1.4 mm, respectively. Figure
2.13 displays the temperature distribution across the entire
surface at 1 s, while Figure 2.14 focuses specifically on the
welding line (mid-line). The results show a high degree of

34



2. Laser Welding Process Modeling

Laser parameter value
velocity [mm/s] 80

radius of beam [mm] 2
power intensity [W/mm2] 100

start time [s] 0
end time [s] 1

Table 2.1: Generic laser parameters used for the validation analysis

Figure 2.13: Contour plot of the top-surface temperature distribution
at 1s

similarity between the two approaches, indicating that the
new formulation is a valid technique for simulating mov-
ing heat fluxes. It can be utilized as a substitute for the
ACT extension in more complex scenarios or for optimiza-
tion purposes.
To ensure the correct application of input power to the
model, an energy balance check was performed. A single
welding spot was simulated using the full model, and the
simulation continued until the temperature became uniform
across the plate. In this particular case, there were no power
losses, and the material properties were assumed to be con-
stant and evaluated at room temperature. The input energy
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Figure 2.14: Plot of the mid-line temperature distribution at 1s

applied to the model had to match the increment of internal
energy in the plate. After 1000 s, the average temperature
reached 22.794°C. The total energy increment in the plate
was calculated as follows:

∆E = ρV c∆T = 7850 · 0.1 · 0.1 · 0.001 · 434 · (22.794− 22)

= 27.050 J/spot

The total input energy, considering for this case a power (P)
of 3.6 kW, a pulse duration (t) of 9 ms, and an efficiency
(η) of 83.5% is equal to,

Q = P · t · η = 3600 · 0.009 · 0.835 = 27.054 J/spot

The energy balance is perfectly satisfied.
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2.8 Full Model

The FEM model presented follows a two-phase approach,
consisting of a transient thermal simulation and a subse-
quent transient quasi-static mechanical simulation (Figure
2.15).
The thermal simulation serves as the initial phase, where
the input corresponds to the laser power source, varying
with both position and time. The output of this thermal
simulation is the temperature field, which varies over time.
The output obtained from the thermal simulation serves as
the input for the subsequent mechanical simulation. In this
phase, the mechanical behavior of the structure is analyzed
under the influence of the temperature field. The primary
output of the mechanical simulation is the residual defor-
mations, specifically referred to as out-of-plane distortion
in this particular case.
In the welding process, the melting temperature is consid-
ered to be the critical bonding temperature. When this
temperature is reached, a bonded contact is established at
the interface between the layers, and it remains active even
as the temperature decreases. To ensure accurate welding
and maintain the position of the parts, a magnetic field is
generated during the process. This magnetic field serves
the purpose of holding the parts in place and ensuring pre-
cise welding accuracy. Once the welding is completed, the
magnetic field is deactivated, allowing the parts to be re-
leased. As a result, residual deformations become visible
in the structure. To simulate this condition in the compu-
tational model, a contact interface is defined. During the
welding phase, the contact is specified with frictional no
separation properties, meaning there is no separation be-
tween the layers. However, during the cooling down phase,
simple frictional properties are assigned to the contact in-
terface, with a frictional coefficient of 0.2.
The validation of the full thermo-mechanical model was
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Figure 2.15: Schematic representation of the simulation flow and main
characteristics and innovations of the model
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conducted using a test model comprising two square plates
made of DC04 steel. Each plate had an edge length of 100
mm and a thickness of 0.5 mm. In the thermal simulation,
the two welded plates were represented as a single layer.
Additionally, a 10-mm thick steel plate was bonded at the
bottom of the model solely for the purpose of simulating
conductive thermal dissipation through the support. On
the opposite side, convection heat transfer with a coeffi-
cient of 10 W/m2K was applied. Towards the end of the
welding process, this coefficient was increased by a factor of
4 to facilitate the cooling of the parts to room temperature.
For the thin plates, the mesh was refined locally around the
regions where pulsing power was applied (Figure 2.16).

2.9 Validation of Full Model

The described model was subjected to multiple simulations
and experimental validations. The experiments were per-
formed using a Trumpf Trulaser Cell 3000 laser machine,
known for its dual-phase laser beam capability. This means
that the total power can be distributed between two con-
centric areas: an outer area with a radius of 0.2 mm and
an inner area with a radius of 0.05 mm. In this project,
a power ratio of 70% outside and 30% inside was selected,
and the Gaussian profile was adjusted accordingly to ac-
commodate both power sources (Figure 2.17).
It is important to avoid excessive power concentrations in
small areas to prevent instability in keyhole formation and
ensure predictable welding performance. Residual deforma-
tions were accurately measured using a 3-D scanner after
welding and compared with the simulation results. Various
variables were considered in the model, including frequency,
power, pulse duration, laser arm speed, and welding path.
Some of these data were used to calibrate the model and
estimate the overall process efficiency. The remaining data
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(a) 2-layers configuration and dummy cylinders

(b) Mesh with local refinement

Figure 2.16: Geometry (a) and mesh (b) of the 3-D test model
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Figure 2.17: Comparison between ratio 70–30 and ratio 0–100 (entire
energy concentrated in the inner circle) with P = 3800 W. The two
distributions have the same underlying volume in the 3-D space
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were utilized for model validation. The calibration process
yielded an average efficiency of 83.5%. The final validation
involved simulating the welding process with four differ-
ent powers (3800 W, 3600 W, 3400 W, and 3200 W). For
each configuration, the final deformation at the four cor-
ners relative to the center was evaluated and compared to
experimental data. The other parameters were set as fol-
lows: pulse duration of 9 ms, frequency of 33.15 Hz, speed
of 0.25 m/s, and a welding path consisting of five horizontal
lines spaced at 7 mm from the left and right edges, 10 mm
from the top and bottom edges, and 20 mm evenly spaced.
DC04 steel plates were used for the experimental tests. The
thermal and mechanical material properties were defined in
the FEM model as specified in Table 2.2 and Figure 2.18.

Solid Liquid Vapour
T [K] < 1798 > 3134
k1 [W/mK] 60.5 33 0
k2 [W/mK] 60.5 33 1011

c [J/kgK] 434 573 573
ρ [kg/m3] 7850 7287 7287
∆Hmelt [J/m3] 1.85× 109 −
∆Hvap [J/m3] − 4.44× 1010

Table 2.2: Thermal Properties of steel DC04

The results of the validation are visualized in Figure 2.19
and summarized in Table 2.3.
The average difference between the simulated and experi-
mental results is 0.14 mm, or 0.08 mm when considering the
positive or negative sign. With the exception of one corner
corresponding to the initial spot, the simulation yields good
results. Further investigations are being conducted to un-
derstand and address this issue. Figure 2.20 provides three
snapshots of the thermal simulation.
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Configuration
3800W 3600W 3400W 3200W

Sim [mm] 0.75 0.71 0.68 0.62
Corner 1 Exp [mm] 0.31 0.33 0.23 0.33

∆d [mm] 0.44 0.38 0.45 0.29
Sim [mm] 0.39 0.37 0.37 0.42

Corner 2 Exp [mm] 0.39 0.42 0.4 0.52
∆d [mm] 0.00 -0.05 -0.03 -0.10
Sim [mm] 0.63 0.54 0.6 0.57

Corner 3 Exp [mm] 0.55 0.49 0.62 0.84
∆d [mm] 0.08 0.05 -0.02 -0.27
Sim [mm] 0.24 0.22 0.33 0.37

Corner 4 Exp [mm] 0.24 0.28 0.28 0.36
∆d [mm] 0.00 -0.06 0.05 0.01

Table 2.3: Validation results: for every configuration is reported
the simulated, the measured, and the differential deformation in z-
direction (out-of-plane) using the plate center as reference
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(a)

(b)

(c)

Figure 2.18: Mechanical properties of steel DC04 function of temper-
ature: isotropic instantaneous coefficient of thermal expansion (a),
isotropic elasticity (b), and bilinear isotropic hardening (c)
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(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

Figure 2.19: Comparison between simulation (1) and experimental (2)
results at different powers: 3800 W (a), 3600 W (b), 3400 W (c), and
3200 W (d)
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Figure 2.20: Temperature distribution in ◦C at different time steps
and corresponding position and direction of laser beam, indicated by a
black spot and an arrow, respectively. Horizontal lines are the welding
lines, along the oblique lines the laser beam moves from the end of a
welding line to the next one
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Chapter 3

Multifidelity Bayesian
Optimization

3.1 Introduction to Metamodeling

Metamodeling, also known as surrogate modeling or re-
sponse surface modeling, is a technique in machine learning
that involves building a simplified model, or metamodel, to
approximate the behavior of a complex, computationally
expensive, or time-consuming system. In many real-world
scenarios, the process of acquiring data from the target sys-
tem can be resource-intensive, costly, or time-consuming.
This could be due to various factors such as physical ex-
periments, simulations, or expensive computations. Meta-
modeling addresses this challenge by creating a surrogate
model that captures the key features and relationships of
the target system, enabling faster and more cost-effective
analysis and decision-making. The metamodel is typically
built using a smaller set of training data, often obtained
through a limited number of observations or simulations
of the target system. The data consists of input-output
pairs, where the inputs represent the system’s variables or
parameters, and the outputs represent the corresponding
responses or outcomes. The metamodel then approximates
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the mapping between the inputs and outputs, allowing for
efficient evaluation and prediction without the need for ex-
tensive computations or simulations.
One of the primary benefits of metamodeling is its ability
to accelerate the analysis and optimization of complex sys-
tems. By replacing the computationally expensive target
system with a fast and simplified surrogate model, meta-
modeling enables rapid exploration of different scenarios,
sensitivity analysis, and optimization algorithms. This is
particularly valuable in engineering, manufacturing, and
scientific domains where the underlying processes may in-
volve intricate physics, or complex simulations. Metamod-
eling techniques can be broadly classified into two main
categories: global and local metamodels. Global metamod-
els aim to approximate the target system’s behavior across
the entire input space, while local metamodels focus on spe-
cific regions of interest or areas where accurate predictions
are crucial. Commonly used metamodeling techniques in-
clude polynomial regression, kriging (Gaussian process re-
gression), radial basis functions, support vector regression,
and artificial neural networks. Each technique has its own
assumptions, advantages, and limitations, making it impor-
tant to select an appropriate metamodeling approach based
on the specific characteristics of the target system and the
available training data.

3.2 Bayesian Optimization

Bayesian optimization is a technique for optimizing black-
box functions that are expensive to evaluate. It combines
the principles of Bayesian inference and optimization to ef-
ficiently explore and exploit the search space, ultimately
finding the global optimum with a limited number of func-
tion evaluations. At its core, Bayesian optimization lever-
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ages a probabilistic surrogate model, typically a Gaussian
process, to model the unknown objective function. This
surrogate model provides estimates of the objective func-
tion and its associated uncertainty at any point in the input
space. By iteratively selecting the most promising points
to evaluate based on an acquisition function, Bayesian op-
timization intelligently explores the search space, striking a
balance between exploration and exploitation. The acquisi-
tion function guides the selection of the next point to eval-
uate by considering both the predicted function values and
their uncertainties. It quantifies the potential improvement
over the current best value and aims to strike a balance
between exploring uncertain regions and exploiting promis-
ing areas. By sequentially updating the surrogate model
with new evaluations and refining the acquisition function,
Bayesian optimization progressively improves the estima-
tion of the objective function and focuses on promising re-
gions. This enables the efficient search for the global opti-
mum, even in cases where the objective function is noisy,
non-convex, or lacks gradient information.

3.3 Acquisition Function

In a Bayesian optimization problem, new samples are it-
eratively added based on specific criteria defined by the
acquisition function (AQF). The AQF aims to balance the
exploration and exploitation concepts in an efficient man-
ner. Exploration involves selecting points with high pos-
terior variance, while exploitation focuses on points with
low mean values (for minimization problems). The litera-
ture on AQFs is extensive, and for this study, the Expected
Improvement (EI) approach proposed by Mockus [28] and
later by Jones [23] has been implemented due to its ro-
bustness and simplicity. The EI approach is similar to the
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Probability of Improvement (PI) but considers the expec-
tation instead. Computing the expectation involves solv-
ing an integral, but this computational task is not overly
expensive because, when working with a Gaussian Process
(GP), it can be done analytically. To compute the expected
improvement, we define the improvement as,

I(x) = max(f ∗ − Y, 0). (31)

Here, f ∗ represents the current best value, and Y ∼ N (µ, σ2)
is the predicted value of the objective function at point x
based on the GP surrogate model. Introducing now the ex-
pectation,

EI(x) =
∫ ∞

−∞
I(x)ϕ(ϵ)dϵ, (32)

EI(x) =
∫ (f∗−µ)/σ

−∞
(f ∗ − µ− σϵ)ϕ(ϵ)dϵ,

EI(x) = (f ∗ − µ)Φ

(
f ∗ − µ

σ

)
− σ

∫ (f∗−µ)/σ

−∞
ϵϕ(ϵ)dϵ,

EI(x) = (f ∗−µ)Φ

(
f ∗ − µ

σ

)
+

σ√
2π

∫ (f∗−µ)/σ

−∞
(−ϵ)e−ϵ2/2dϵ,

EI(x) = (f ∗ − µ)Φ

(
f ∗ − µ

σ

)
+ σϕ

(
f ∗ − µ

σ

)
, (33)
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where ϕ and Φ are the PDF and CDF of standard normal
distribution, respectively. The probability density function,
denoted as PDF, is a function that describes the relative
likelihood of a continuous random variable taking on a spe-
cific value. For a continuous random variable, the PDF
represents the probability of the variable falling within a
particular range of values. In other words, it provides a
probability distribution over the possible values of the ran-
dom variable. The cumulative distribution function, de-
noted as CDF, is a function that gives the probability that
a random variable takes on a value less than or equal to a
specified value.

3.4 Gaussian Process Regression

Choosing the GP as a technique to generate a metamodel
offers several advantages over other approaches. Here are
some reasons why the Gaussian process is often preferred:

• Flexibility and Nonlinearity: Gaussian processes can
model complex and nonlinear relationships between in-
put variables and output responses. They are capable
of capturing intricate paths, variations, and interac-
tions in the data without imposing strict assumptions
about the functional form of the underlying relation-
ship.

• Uncertainty Quantification: GPs provide a principled
way to quantify uncertainty in predictions. Along with
estimating the mean response, GPs produce proba-
bilistic predictions by computing the covariance or un-
certainty associated with the predictions. This allows
for a more comprehensive understanding of the model’s
confidence and enables robust decision-making, espe-
cially in scenarios with limited data or noisy observa-
tions.
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• Bayesian Framework: GPs are inherently Bayesian mod-
els, which means they naturally incorporate prior knowl-
edge and can be updated with new data. This is par-
ticularly valuable in the context of metamodeling, as it
allows for sequential learning and refinement of the sur-
rogate model as more observations become available.
The Bayesian framework also facilitates the propaga-
tion of uncertainty from the surrogate model to down-
stream analyses, such as optimization or uncertainty-
based decision-making.

• Interpolation and Extrapolation: GPs excel at interpo-
lation, meaning they can accurately estimate responses
for input configurations within the range of observed
data. Additionally, GPs can provide reasonable predic-
tions for extrapolation, meaning they can extend the
surrogate model’s predictions to regions of the input
space where no observations are available. This makes
GPs useful for exploring and analyzing the response
surface beyond the sampled data points.

• Adaptive Sampling: GPs enable adaptive sampling,
where new evaluations are strategically chosen based
on the model’s predictions and uncertainty estimates.
Through active learning or acquisition functions, GPs
guide the selection of informative points, effectively
reducing the number of expensive evaluations needed
to build an accurate metamodel. This makes GPs effi-
cient in optimizing computationally expensive or time-
consuming objective functions.

• Interpretable Covariance Structure: GPs utilize co-
variance functions, also known as kernels, to model
the relationships between input variables. These ker-
nels encode prior assumptions about the smoothness,
periodicity, or other properties of the response surface.
By selecting appropriate covariance functions, one can
incorporate prior knowledge or domain expertise into
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the metamodel, allowing for interpretability and in-
sights into the underlying system.

While other techniques such as polynomial regression, neu-
ral networks, or radial basis functions also have their merits,
Gaussian processes offer a unique combination of flexibility,
uncertainty quantification, Bayesian framework, adaptabil-
ity, and interpretability, making them a popular choice for
metamodeling tasks.
Supervised learning can be categorized into two main types:
regression and classification problems. In classification tasks,
the outputs are discrete class labels that assign data points
to specific categories or groups. On the other hand, re-
gression focuses on predicting continuous quantities, which
involve estimating numerical values rather than assigning
class labels.
A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution.
It is completely specified by its mean function and covari-
ance function [30]. We define mean function m(x) and the
covariance function k(x, x′) of a real process f(x) as

m(x) = E[f(x)], (34)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))], (35)

and will write the Gaussian process as,

f(x) ∼ GP(m(x), k(x, x′)). (36)

Usually the mean is set to be zero. The specification of the
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covariance function implies a distribution over functions. In
the case of noise-free observations the joint distribution of
the training outputs fT and the test outputs f∗ according
to the prior is,

[
fT
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (37)

If there are n training and n∗ test points then K(X,X∗)
denotes the n x n∗ matrix of the covariances evaluated at
all pairs of training and test points, and similarly for the
other entries K(X,X), K(X∗, X∗) and K(X∗, X). To get
the posterior distribution over functions we need to restrict
this joint prior distribution to contain only those functions
which agree with the observed data points. This operation
corresponds to conditioning the joint Gaussian prior distri-
butions on the observations to give,

f∗|X∗, X, f ∼ N (K(X∗, X)K(X,X)−1f,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)). (38)

In case of noisy observations, introducing the noise ϵ with
variance σ2

n, eq. 37 becomes,

[
y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
, (39)

with y = f(x) + ϵ.

Deriving the conditional distribution corresponding to eq.
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38 we arrive at the key predictive equations for Gaussian
process regression,

f∗|X, y,X∗ ∼ N
(
f ∗, cov(f∗)

)
, (40)

where,

f ∗
∆
= E [f∗|X, y,X∗] = K(X∗, X)[K(X,X)+σ2

nI]
−1y, (41)

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X)+σ2
nI]

−1K(X,X∗),
(42)

that in compact notation becomes, for a single test point
x∗,

f ∗ = kT
∗ (K + σ2

nI)
−1y, (43)

V[f∗] = k(x∗, x∗)− kT
∗ (K + σ2

nI)
−1k∗, (44)

with V[f∗] the variance prediction for the posterior. Typi-
cally the covariance functions that are used will have some
free parameters, the so-called hyperparameters. Optimiz-
ing them, for example estimating the maximum likelihood,
corresponds to estimate the maximum likelihood of the ob-
served data. Given a set of observed data points and their
corresponding function values, the posterior distribution in
GPs is obtained by combining the prior distribution (often
assumed to be a Gaussian) with the likelihood function,
which describes the probability of observing the data given
the function values and noise level. The posterior distri-
bution is proportional to the product of the prior and the
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likelihood, as dictated by Bayes’ theorem. Bayes’ theorem
is expressed as,

P (f∗|X, y,X∗) =
P (X, y,X∗|f∗)P (f∗)

P (X, y,X∗)
, (45)

where P (f∗|X, y,X∗) is the posterior probability, represent-
ing the updated probability of event f∗ given events X, y,X∗,
P (X, y,X∗|f∗) is the likelihood, representing the probabil-
ity of observing events X, y,X∗ given event f∗, P (f∗) is
the prior probability, representing the initial probability
of event f∗ and P (X, y,X∗) is the marginal likelihood or
evidence, representing the probability of observing events
X, y,X∗.

3.5 CoKriging

In general, high-fidelity models provide detailed and accu-
rate representations of the system but are computation-
ally expensive. On the other hand, low-fidelity models are
computationally inexpensive but may lack the accuracy re-
quired for precise predictions. The MultiFidelity (MF) ap-
proach bridges this gap by leveraging both high- and low-
fidelity models to obtain accurate results at a reduced com-
putational cost.
The key idea of the coKriging method is to define the MF-
surrogate at level l, denoted Y (l), as a correction of the
MF-surrogate at level l − 1. Prediction and variance be-
come [31],
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f̄ (l)
∗ (x) = ρ(l−1)f̄

(l−1)
∗ (x) + kT

(l)(x)
(
K(l) + σ2

n(l)
In(l)

)−1

·

·∆Y (l)(ρ(l−1)),
(46)

V(l)(x) = ρ2(l−1)V(l−1)(x) + k(l)(x) + σ2
n(l)

−

−kT
(l)(x)

(
K(l) + σ2

n(l)
In(l)

)−1

k(l)(x).
(47)

The formulations for nested and non-nested infilling are
largely analogous, with the primary distinction being the
term ∆Y (l)(ρ(l−1)) referred to as the vector of noisy obser-
vation residuals. For the nested approach,

∆Y (l)(ρ(l−1)) =

{
Y (l) l = 1

Y (l) − ρ(l−1)Y
(l−1) l ≥ 1

, (48)

while for the non-nested approach,

∆Y (l)(ρ(l−1)) =

{
Y (l) l = 1

Y (l) − ρ(l−1)f̄
(l−1)
∗ l ≥ 1

. (49)

In the nested approach, this term depends on the observa-
tion from the preceding level. In contrast, the non-nested
approach doesn’t have this observation, so it relies on the
prediction from the previous level.
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3.6 Nested vs. Non-nested Infilling Strat-
egy

Multifidelity methods for constructing surrogate models in
Bayesian optimization, which involve using evaluations at
different levels of accuracy, represent a significant advance-
ment in computational efficiency compared to traditional
single fidelity strategies as demonstrated by Ariyarit [2] and
Belakaria [5]. The idea of utilizing less accurate but faster
data sets to gather information and train the surrogate
model is a valuable resource for accelerating the optimiza-
tion process. An example of multifidelity data is the use of
FEM models with varying mesh refinement or contact set-
tings, where the low-fidelity level corresponds to a coarser
mesh or less stringent penetration constraints as proposed
by Aruna [4]. However, when considering Gaussian Process
regression emulators, it is not always the case that multifi-
delity cokriging outperforms single fidelity ordinary kriging.
Lim [27] demonstrated that if the additional observations
for the second process are located near the observations of
the first process, but their number is limited and the cor-
relation between the two processes is weak, cokriging does
not improve prediction performance compared to kriging.
This is especially true when the bivariate spatial processes
possess an intrinsic coregionalization covariance structure.
Similarly, the classic nested data sampling, despite satis-
fying the Markov assumption, does not necessarily outper-
form a non-nested structured data sampling. Sacher [31],
for example, compared nested and non-nested formulations
and concluded that the non-nested multi-fidelity approach
is more efficient in terms of numerical cost and more robust
against noisy evaluations of intermediate fidelity levels and
low correlations between levels. The issue of correlation
between data arises in both [27] and [31], and before delv-
ing into the project model, it is essential to determine the
most suitable infilling strategy for multifidelity Bayesian
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optimization in terms of convergence and computational
costs [13]. This study begins with a preliminary 1-D anal-
ysis, where three different data sets are defined, each with
a distinct level of correlation between high- and low-fidelity
levels. These data sets are then tested using both nested
and non-nested infilling strategies based on specific acqui-
sition functions, and conclusions regarding the relationship
between data correlation and infilling strategy are drawn.
Once the optimal infilling strategy based on the available
data is determined, the Bayesian optimization can be ap-
plied to the project model using the same settings as the
1-D analysis, including the acquisition function, exit strat-
egy, and optimization algorithm.

3.6.1 Data Sets

To assess the connection between the infilling strategy and
data correlation, three distinct data sets are established.
The initial data set comprises data exhibiting a strong cor-
relation, with its DCF (Data Correlation Factor) approach-
ing 90%. The second data set contains data displaying a
moderate correlation, approximately 50%. Lastly, the third
data set encompasses data with a DCF value of around 25%,
indicating a low level of correlation. Each data set consists
of (x, y) coordinates that correspond to points on 1-D func-
tions. Furthermore, all three data sets possess two fidelity
levels: high-fidelity and low-fidelity. The high-fidelity level
accurately represents the true function to be minimized,
employing noise-free sampling. On the other hand, the low-
fidelity level differs across the data sets, generating varying
correlation levels. This distinction allows for the creation of
different correlation levels among the data sets (figure 3.1).
In general, despite potential variations in the data’s origin,
all fidelity levels are established using the same input and
output variables. The key distinction lies in the accuracy
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(a)

(b)

(c)

Figure 3.1: Highly (a), medium (b) and low (c) correlated data sets
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of the observed samples. For instance, if both data sets
are simulations, the high-fidelity data might originate from
a model with a finer mesh, whereas, if the data have dif-
ferent sources, the high-fidelity data could be experimental
and the low-fidelity data simulations. In cases where low-
fidelity data is expected to be more affordable to collect, a
large number of observations can be easily amassed. Con-
versely, high-fidelity data is typically costly to obtain, ne-
cessitating a restriction on the number of observations. The
initial data sets are structured nested, with the correlation
factor based solely on the nested values present in both
the high-fidelity and low-fidelity levels. Initially, the low-
fidelity level comprises 9 points, evenly distributed, while
the high-fidelity level consists of 5 points (figure 3.3).
It can be demonstrated that the minimum number of sam-

ples required to achieve a DCF close to the asymptotic value
for this particular problem is 5. The low-fidelity function
initially incorporates 9 equally spaced points to establish a
nested relationship with the high-fidelity level (figure 3.2).
The 1-D function is intentionally designed to be arbitrarily
complex, featuring multiple local minima and steep gradi-
ents. This complexity serves the purpose of increasing the
number of iterations necessary to achieve convergence and
effectively exploit the impacts of various infilling strategies.

1. Highly correlated functions

High-fidelity function:

Y = arcsin

(
X

10

)
+X2−X+exp (5−X)20+exp (−X)20.

(50)
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(a)

(b)

Figure 3.2: Initial sampling: high and low fidelity data (a) and visu-
alization of the equidistant nested distribution (b)
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Figure 3.3: Convergence behavior of the Data Correlation Factor for
the highly correlated functions
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Low-fidelity function:

Y = arcsin

(
X

10

)
+X2−X+exp (5−X)20+exp (−X)20+

1

15
X.

(51)

2. Medium correlated functions

Low-fidelity function:

Y = arcsin

(
X

12

)
+X3−X+exp (5−X)20+exp (−X)18.

(52)

3. Low correlated functions

Low-fidelity function:

Y = arcsin

(
X

14

)
+X

7
2
−X+exp (5−X)20+exp (−X)16.

(53)

3.6.2 Acquisition function and exit strategy

At each iteration of the process, the maximum Expected
Improvement (EI) is computed for both the low-fidelity
(EIL) and high-fidelity (EIH) levels. The parameter X cor-
responding to the highest EI value is selected, and new sam-
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ples are added accordingly. If the highest EI value is from
the low-fidelity level (EIL > EIH), a new pair of points is
added to the low-fidelity level by solving the known objec-
tive function at X. On the other hand, if the high-fidelity
EI value is higher than the low-fidelity EI value (EIL <
EIH), the additional sampling depends on the chosen infill-
ing strategy. In the case of a nested approach, both the
low-fidelity and high-fidelity levels are updated, whereas
only the high-fidelity level is updated in the case of a non-
nested strategy. The procedure is illustrated in figure 3.4.
To account for the additional time required to solve the
high-fidelity problem, the EI values are weighted. In this
study, a factor of 3 is used, representing the time ratio be-
tween the high-fidelity and low-fidelity models in a real-life
laser welding simulation scenario. This means that the op-
tion is selected only if EIL is three times larger than EIH .
The iterations continue until the maximum EI calculated
for the high-fidelity level becomes smaller than 1e-10 or af-
ter a maximum of 40 iterations. Once the final surrogate
model is obtained, a final optimization step is performed,
this time minimizing the prediction to determine the mini-
mum of the surrogate function.

3.6.3 Optimization Algorithm

The Adaptive Metamodel of Optimal Prognosis (AMOP)
algorithm, available in Ansys Optislang, is employed as
the optimizer to find the maximum Expected Improvement
at each iteration and level. AMOP is an iterative meta-
modeling approach based on the Multi-Objective Prognosis
(MOP) method proposed by Will [34]. It utilizes an adap-
tive refinement of data points and functions similarly to
an optimizer, running a specified number of solver runs in
multiple iterations. The convergence criterion for AMOP
is to achieve a minimum value of the Coefficient of Prog-
nosis for all selected responses. In comparison to gradient-
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Figure 3.4: Schematization of the algorithm to select next sampling
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based methods such as Downhill Simplex, AMOP allows
for a search throughout the entire domain, enabling explo-
ration of the global minimum without being influenced by
local minima. The sampling process is divided into two
stages: a global search with 50 samples and a local refine-
ment with 45 samples. The global search employs a plain
Monte Carlo approach to ensure coverage of all areas within
the domain without favoring specific locations. A total of 10
iterations are performed, with the first iteration dedicated
to the global search, followed by 9 iterations of local refine-
ments. Each local refinement stage allows a maximum of 5
samples, resulting in a total of 45 samples for refinement.
To maintain a balanced distribution of samples between the
local and global searches, the number of global samples is
set to 50. This approach strikes a good balance between
computational time and result quality for this specific case.
Increasing the number of samples, both globally and locally,
has shown no significant differences in results, while using
fewer than 5 samples for refinement may be insufficient.

3.6.4 1-D Study

As expected, when using the nested strategy, the highly cor-
related data set exhibits the best convergence rate in the
initial iterations. However, the behavior in the latter part
of the optimization is not intuitive. All three cases experi-
ence a regression in convergence, with the highly correlated
case showing a slow but steady convergence, the low cor-
related case demonstrating a faster but rough convergence,
and the medium case falling in between (figure 3.5).
All cases exhibit a similar distribution between low- and
high-fidelity infilling, with a slight preference for low-fidelity
infilling (3.5). The ratio between high-fidelity sampling and
total iterations is 45% for the first case, 47.5% for the second
case, and 40% for the low correlated case. Consequently,
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EI convergence for the nested strategy

Infilling quantitative distribution for the nested strategy. Blue squares indi-
cate high-fidelity+low-fidelity infilling and red one low-fidelity. In the last
column total number of high-fidelity+low-fidelity samples and total number
of low-fidelity samples are reported

Figure 3.5: Convergence and infilling sequence for the case nested
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the low correlated case is the most cost-effective in terms
of computation, as the number of iterations remains the
same. Analyzing the results for the non-nested strategy, it
is evident that the behavior is similar to the nested strat-
egy for two data sets: both the low and highly correlated
cases converge, while the medium correlated data set stag-
nates. This time, the highly correlated case demonstrates
the best behavior in both the initial and latter parts of
the optimization after the regression. The results are once
again summarized in figure 3.6, similar to the way they were
summarized for the nested case.
By considering +1 for an iteration where high-fidelity EI
dominates over low-fidelity EI and -1 for the opposite, it
is possible to plot the cumulative distribution of the ac-
quisition function selection for both nested and non nested
cases (figure 3.7). Although there are no significant dif-
ferences among the three cases, in case of nested infilling,
the highly correlated case tends to add more high-fidelity
points in the initial iterations, which could partially explain
the better convergence observed in this segment. In the lat-
ter part of the optimization, low-fidelity infilling dominates
in all three cases (descending curve). Despite the appar-
ent similarities in behavior, the distribution of EI selection
differs significantly in case of non-nested infilling: in this
case, the number of high-fidelity samplings is consistently
above 80% (82.5%, 90%, and 85% respectively), indicating
a much higher computational cost.
Comparing now the two infilling strategies, nested and non-
nested, for each case, the following results are observed:
for the highly correlated data, the non-nested strategy per-
forms well, even outperforming the nested approach. For
the medium correlated data, the non-nested solution does
not converge, and the nested approach is the only valid
option. Similarly, for the low correlated data set, the per-
formance of the two strategies is comparable, but the nested
strategy exhibits a better convergence rate after a certain
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EI convergence for the non-nested strategy

Infilling quantitative distribution for the non-nested strategy. Blue squares
indicate high-fidelity infilling and red ones low-fidelity. In the last column
total number of high-fidelity samples and total number of low fidelity sam-
ples are reported

Figure 3.6: Convergence and infilling sequence for the case non-nested
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(a)

(b)

Figure 3.7: Infilling iterative distribution for the nested (a) and non-
nested (b) strategy
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number of iterations (figure 3.8).
Although the performance for the low and highly correlated
cases is similar, the cost of the two infilling strategies dif-
fers. While the non-nested strategy may seem tempting to
save computational time (considering that when EI_high-
fidelity dominates over EI_low-fidelity, only one simulation
is needed instead of two), the total cost decidedly favors
the nested approach. The non-nested approach could be
considered for a "quick and dirty" optimization with few
iterations. Assuming a unit cost of 1 hour for low-fidelity
simulation and 3 hours for high-fidelity simulation based on
the 3-D model, the cumulative cost is represented in figure
3.9. Finally, it is interesting to observe the distribution of
samplings across the domain (figure 3.10). Both nested and
non-nested strategies converge, which explains the major-
ity of the points falling within the range of 4 (minimum at
3.88). The distribution is similar, but the nested strategy
appears to be more sparse than the non-nested strategy.
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(a)

(b)

(c)

Figure 3.8: EI convergence for the highly correlated (a), medium (b)
and low correlated (c) data set
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Figure 3.9: Cumulative costs based on infilling strategy and simula-
tion time
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(a)

(b)

Figure 3.10: Infilling point distribution for highly (a) and low (b)
correlated data
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Chapter 4

Optimization of Laser
Welding Process

4.1 Workflow Overview

The optimization environment can be structured into four
primary sections as underlined in figure 4.1:

1. Sampling: This involves the use of two specific Excel
files, labeled as ’low fidelity’ and ’high fidelity’. These files
comprise tables filled with input and output values that are
essential for the training of the surrogate model. The pro-
cess is not static; it involves adding values in an iterative
manner until either the point of convergence is reached or
the maximum number of iterations is completed. The pro-
cess incorporates two levels of fidelity, thereby making it a
multifidelity approach.

2. Metamodeling – Training and Prediction: Dur-
ing this stage, the metamodel is trained with the data that
has been collected. The training facilitates the generation
of a prediction concerning the optimal value, which is deter-
mined based on a specific acquisition function. Here, the
optimum is identified as the value that brings about the
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Figure 4.1: Full workflow of the optimization process in Optislang
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greatest expected improvement.

3. FEM-Simulation: After determining the optimum,
a new set of input data is created, and the correspond-
ing output is evaluated using the FEM simulation model.
There are two distinct models provided, each corresponding
to one of the fidelity levels.

4. Bayesian Iterative Optimization: In this final phase,
the newly obtained data set is incorporated into the exist-
ing training samples. This inclusion is a crucial part of the
process, allowing for the continuous evolution and refine-
ment of the optimization cycle.

4.2 3-D Model Optimization

The project model involves a 3-D thermo-mechanical elasto-
plastic FEM model for simulating a laser welding process
as described in [12]. It comprises two fidelity levels, with
the lower level featuring a coarser mesh for both thermal
and mechanical aspects compared to the higher level. The
objective function to be minimized is the residual deforma-
tion, while the laser power, pulse duration, frequency, and
laser speed are the parameters to be optimized. Although
surrogate models have been extensively used in manufac-
turing, including the laser welding field, such as the work
by Heydari [18] who simulated the laser welding process of
Ti6Al4V alloy steels and investigated the effects of weld-
ing speed, laser power, and pulse duration using a response
surface based on a fixed series of DOEs using a Central
Composite Design (CCD) matrix, and the study by Ai [1]
who performed a complete Efficient Global Optimization
(EGO) by simulating a fiber laser welding (FLW) process
of dissimilar materials (low carbon and stainless steel) and
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4. Optimization of Laser Welding Process

implemented optimization techniques combining a genetic
algorithm optimized backpropagation neural network (GA-
BPNN) and Particle Swarm Optimization (PSO) to maxi-
mize weld bead integrity and minimize the weld area, the
novelty of this work lies in the application of a multifidelity
approach based solely on simulations.
A common approach to define the initial DOEs involves
using Latin hypercube sampling. This method ensures uni-
formly distributed samples across the entire domain. How-
ever, in this case, the inputs are not independent but linked
through the equation:

Ppuf

v
= constant [J/m]. (54)

Here, P represents power [W], pu is pulse duration [s], f
denotes pulse frequency [Hz], and v stands for laser speed
[m/s]. This equation establishes that the energy introduced
per unit length must remain constant to ensure solid bond-
ing and prevent excessive or insufficient penetration. Con-
sequently, the initial sampling is divided into two steps (fig-
ure 4.2): firstly, a Latin hypercube sampling across the en-
tire domain for numerous combinations, including both fea-
sible and non-feasible ones, and thus different values for the
constraint equation, and secondly, filtering the candidates
to extract a feasible subsystem by adding the mentioned
constraint. The experimentally determined constant is 4500
J/m. To this value, a tolerance of ± 100 J/m is added,
which allows for more feasible points by relaxing the con-
straint. When plotting parameters such as laser speed ver-
sus frequency, a positive proportionality becomes evident.
Conversely, plotting pulse duration versus frequency reveals
a negative proportionality (figure 4.3). There are two fi-
delity levels, with the higher level featuring a finer mesh.
The initial DOEs consist of 28 points for the low-fidelity
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(a)

(b)

Figure 4.2: Latin hypercube sampling in the entire domain (a) and
feasible configurations respecting the constraint (b)
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(a)

(b)

Figure 4.3: Initial DOEs: proportional (a) and inversely proportional
(b) correlation of the parameters
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4. Optimization of Laser Welding Process

level and 6 nested points for the high-fidelity level, achiev-
ing an initial correlation coefficient of 0.6. The 6 points of
the high-fidelity level are selected from the 28 low-fidelity
points to satisfy the nested condition. These points encom-
pass the upper and lower boundaries of the parameters,
ensuring coverage across the entire domain. Among these
points, 5 have at least one parameter with the highest or
lowest value, while only one point is chosen with average
values. Upper and lower boundaries are reported in the ta-
ble 4.1:

min max
P [W] 2000 4000
pu [s] 0.003 0.012
f [Hz] 20 70
v [m/s] 0.1 0.4

Table 4.1: Upper and lower boundaries of the parameters based on
experience and on the machine characteristics

The surrogate model is created using a proprietary tool
based on Le Gratiet work [16]. It consists of two main
subroutines: cokriging_create, responsible for metamodel
creation, and cokriging_prediction, used for deformation
prediction with the desired parameter configuration. The
key properties are defined in table 4.2. For more infor-
mation about the Gaussian Process employed to train the
model, please refer to the original study [17] and the in-
house implemented modifications [24] and [25].
Building upon the results of the 1-D analysis, a Bayesian op-
timization with nested infilling strategy is employed. The
same AQF and optimizer from the 1-D analysis are im-
plemented for the 3-D analysis. The model consists of
two plates measuring 100 x 20 x 0.5 mm, which need to
be joined together. In the transient thermal simulation,
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(a)

(b)

Figure 4.4: Results of the laser welding simulation: initial (a) and
optimized (b) status

the laser power source moves in the y-direction. Subse-
quently, in the mechanical simulation, the transient tem-
perature field is imported, and the plates are fixed on one
side in y- and z-direction with a remote displacement to
allow shrinking in the x-direction. The other side of the
plates remains free, and the maximum displacement is ob-
served in the z-direction. With the current parameters,
the maximum deformation, validated through experimen-
tal tests, amounts to 1.07 mm. However, with the opti-
mized parameters, the residual deformation reduces to 0.39
mm, resulting in a 64% improvement as depicted in figure
4.4. The surrogate model provides a mean residual defor-
mation of 0.44 mm for the same configuration, with a vari-
ance of 0.004 mm2. As expected, the metamodel does not
precisely match the simulation results but provides a good
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4. Optimization of Laser Welding Process

approximation. More importantly, it efficiently helps iden-
tify the global minimum. To achieve even greater accuracy,
a direct optimization of the simulation model around the
metamodel’s optimum could be conducted. However, for
the present project, this step was not required. The ac-
tual and new parameters are highlighted in table 4.3. The
new configuration prioritizes frequency and pulse duration
over power, while the higher speed leads to a faster welding
process.
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actual new
P [W] 3800 2412
pu [s] 9 11
f [Hz] 33.15 62.5
v [m/min] 15 21.6

Table 4.3: Initial and optimized parameters

4.3 Experimental Validation

Although the 3-D model had previously undergone experi-
mental validation, further testing was conducted using the
new set of parameters. The boundary conditions, identical
to those used in the optimization simulation, were dupli-
cated. In this phase, two DC04 steel plates, each measur-
ing 100x20x0.5 mm, were bonded, initially using the previ-
ously established settings and subsequently with the newly
optimized parameter configuration (figure 4.5). The results
were telling: with the default settings, the residual defor-
mation measured 1.04 mm, but with the optimized parame-
ters, it was significantly reduced to 0.43 mm. This outcome
not only reaffirms the model’s reliability but also highlights
the enhancement in welding effectiveness.
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(a)

(b)

Figure 4.5: 3-D scanned plates joint: initial (a) and optimized (b)
welding path
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Chapter 5

Conclusions

5.1 Time Cost Savings

In order to estimate the computational cost efficiency of
the adopted method, a comparative analysis was conducted
against an ideal approach that solely relies on simulations,
thus not utilizing metamodelling or iterative optimum seek-
ing. Moreover, it is assumed that only the high fidelity
model is used, as direct use of the low fidelity model to ob-
tain quantitative information on residual deformation would
inevitably lead to incorrect results, despite its utility in
finding the optimum in a multifidelity system. The com-
putational advantage of this method has been estimated
compared to a series of predefined simulations, rather than
compared to an intermediate approach based on direct op-
timization of the FEM model. This is primarily to account
for the worst-case scenario where neither optimization tech-
niques nor surrogate models are employed. This choice is
also motivated by the fact that applying deterministic op-
timization algorithms, such as the simplex method, does
not guarantee finding the global optimum. The simplex
method, like other deterministic methods based on gradi-
ent or Hessian matrix calculations, although suitable for
problems with constraints, is a linear method capable of
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quickly converging with convex functions. For more com-
plex problems or in the case of "black box" scenarios, it is
necessary to initially perform a global optimization to find
the region of the optimum, followed by local refinement to
accurately compute the sought maximum or minimum.
Therefore, a substantial series of simulations was envisioned,
covering the entire allowed domain. Considering that only
3 out of the 4 variables are actually independent and that
each simulation lasts on average 3 hours, and assuming that
at least 5 configurations are desired for each input to achieve
good accuracy, a total of 375 hours is required to complete
the analysis. This computational cost is obtained by mul-
tiplying the time required for a single simulation, 3 hours,
by the number of possible configurations, which is 125.
With the optimization model described in this text, conver-
gence was achieved after 17 iterations, saving 75% in time.
Considering that the low fidelity simulations have an aver-
age duration of one hour and that training the metamodel
and searching for the optimum does not exceed 10 minutes
per iteration, the total computational cost amounts to 3.5
days, instead of 15.6 days. Figure 5.1 illustrates the compu-
tational cost distribution for the two strategies. In addition,
there would be no guarantee of identifying the optimum,
but only the best configuration among those tested. To find
the optimum, it would be necessary to resort to some form
of interpolation, and the best way to do so would again be
to use metamodels, even though in this case they are based
on a high-density single-step approach to data.

5.2 Current method limitations and poten-
tial future developments

As much as the method presented in this work has allowed
for obtaining useful information to optimize the laser weld-
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Figure 5.1: Comparison between "simulations only" approach and
adopted multifidelity bayesian optimization

ing process within reasonable timeframes, it can certainly
be further developed. While the accuracy of the FEM
model is satisfactory on one hand, the computational effi-
ciency does not yet seem suitable for conducting optimiza-
tions on a large scale characterized by hundreds of welding
points. For this reason, the optimization focused solely on
laser parameters and not on the geometric aspects related
to the welding path.
A new FEM model is currently under study with the aim
of drastically reducing computation times by exploiting the
cyclic nature of the welding process. The method essen-
tially involves simulating a single spot, as done previously,
to highlight its residual deformation. Subsequently, a force
is applied to the involved nodes to return them to their
original position. Finally, utilizing the concept of submod-
eling, the obtained stresses are sequentially applied to all
other welding spots. Once a method is available to work
with large models, the implementation of the welding path
variable in the optimization process can be pursued, allow-
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ing for the analysis of non-linear paths as well.
Moreover, regarding the junction strength, in the exper-
imental phase, the following observations have emerged:
when applying the optimized input values, the two plates
are indeed welded together, but the junction strength, i.e.,
the force required to separate them, has proven to be lower
than the desired value, which typically corresponds to 80%
of the material’s tensile strength. This value is not linear,
considering the time dependence of the process, and can-
not be simply described by the constraint that the specific
energy, expressed in [J/m], remains constant in all config-
urations. For example, with the same power and speed,
doubling the frequency compared to a baseline configura-
tion results in twice as many welding points, but each of
them has a contact force less than half that of a single spot
in the baseline configuration, leading to a lower total sum
of all the points. Keeping the energy per spot constant,
instead of specific energy, is not numerically feasible, as the
system would inevitably tend to reduce the frequency to 0
in order to minimize deformations. Therefore, it is neces-
sary to define a more specific correlation between the input
parameters that takes into account the non-linearity of the
bond force.
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Appendix A

APDL Script

APDL (ANSYS Parametric Design Language) is a programming
language specifically created for generating and modifying input
files utilized by ANSYS simulation software. It serves the purpose
of automating repetitive tasks, constructing intricate models, and
conducting parametric investigations. APDL can be employed in
conjunction with the ANSYS graphical user interface (GUI) or as
an autonomous tool. The APDL script discussed in this article
belongs to the former category and is intended for direct integra-
tion into Ansys Workbench. It functions as an additional com-
mand, serving as a boundary condition within transient thermal
simulations, replacing the default heat source input. This script
is divided into four sections: the initial part defines various con-
stants that specify the dimensions of the domain, encompassing
both spatial and temporal extents that encompass the mobile
heat source, as well as the number of evaluation points. The
combination of domain size and evaluation points establishes the
resolution of the load: a smaller domain, with the number of
points held constant, results in higher resolution. Similarly, res-
olution increases when the domain size remains consistent while
the number of points increases. Nonetheless, it’s important to
note that the total number of evaluation points in Ansys Work-
bench is finite due to internal computational constraints. As a re-
sult, this method may not be suitable for exceedingly large mod-
els and domains. The required resolution naturally depends on
the size and duration of the power source involved in the process.
In instances where the power source has very small beam radii,
such as in laser processes, a very high resolution is imperative.
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This same requirement holds true for time resolution when the
pulse duration is exceedingly brief. The heat source is depicted as
a surface load, with only two in-plane dimensions specified, and
no penetration by the heat source is considered. Achieving ac-
curate results hinges on selecting appropriate numbers of points
for both spatial and temporal dimensions. The distance between
adjacent points should be finely tuned to accurately represent the
physics of the problem and should be smaller than the beam size
and pulse duration, respectively. Consequently, the mesh must
be adequately refined. As an illustrative example, the constants
corresponding to a single straight welding line moving in the y-
direction are provided here below.

Script 1/4: Constants
lx = 0.02 m % extension of the domain in x-direction
ly = 0.1 m % extension of the domain in y-direction
tmax = 1 s % extension of the domain in time
npx = 241 % number of evaluation points in x-direction
npy = 1201 % number of evaluation points in y-direction
nt = 501 % number of evaluation points in time per welding line
k = 1 % number of welding lines

In the second part of the algorithm, the indices for the array
named "lht," which contains all the information about the heat
source, are created. The indexing has a 3-dimensional structure:
two dimensions describe the spatial position of the source on
the selected surface, and the third dimension represents the time
step. In APDL, such an array is defined using the "TABLE"
command. In this case, the array indices are real (non-integer)
numbers, which must be defined when populating the table. The
index numbers for the rows and columns are stored in the zeroth
column and row of the "array elements," and they are initially
assigned values close to zero. These index numbers must be in
ascending order and are used solely for retrieving an array ele-
ment. When retrieving an array element with a real index that
does not exactly match a specified index, linear interpolation is
performed among the nearest indices to obtain the corresponding
array element values. It’s important to note that this approach
is valid only for plane surfaces. For 3-D surfaces, an additional
dimension needs to be considered, and the "TAB4" command
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is used instead. For each position defined by x-y coordinates
and at each time step, a heat flux value expressed in W/m2 will
be assigned in the subsequent step. This implies that the heat
source is defined for all points within the domain, irrespective
of the power intensity, even if the heat flux at that particular
position and time step is zero. This method may not be ideal
for very large domains due to the limited resolution available.
However, the advantage lies in the simplicity of having a single
domain for the entire simulation. Using local domains that move
with the heat source would allow for a much higher resolution
in the area of interest while ignoring portions of the model not
involved in the heating process. However, this approach would
necessitate significantly higher mathematical complexity. Here
below the indexing corresponding to the example provided upon
is documented.

Script 2/4: Array Indices

*dim,lht,table,npx,npy,k*nt,x,y,time % size of the array
*do,ix,1,npx % x indices

locx=(ix-1)/(npx-1)*lx
*do,it,1,k*nt

lht(ix,0,it)=locx
*enddo
*enddo
*do,iy,1,npy % y indices

locy=(iy-1)/(npy-1)*ly
*do,it,1,k*nt

lht(0,iy,it)=locy
*enddo
*enddo
*do,it,1,k*nt % time indices

time=(it-1)/(k*nt-1)*tmax
lht(0,0,it)=time

*enddo

The formula to calculate the array size (AS) is simply the
product of the sizes associated with the three dimensions: x, y,
and t:

AS = npx · npy · (nt · k). (A.1)
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In this example, the total size for the array "lht" is 145009941.
To calculate the resolution (RE) for each dimension, given the
domain extension and the number of points, the following formu-
las are used:

REx =
lx

npx − 1
[m], (A.2)

REy =
ly

npy − 1
[m], (A.3)

REt =
tmax

(nt − 1) · k
[s]. (A.4)

In this case study, all three resolutions are equal to 8e-5 m for
both x and y dimensions and 2e-3 s for the t dimension. These
values are smaller than the smallest details they need to capture,
such as the beam radius and pulse duration.
Once the array and indices are set up, the matrix needs to be pop-
ulated with power intensity or heat flux (HF) values in W/m² for
all generated combinations, at every location and time step. This
process is defined as:

lht(x, y, t) = HF. (A.5)

The power intensity is not directly calculated or defined in An-
sys Workbench; instead, it is generated using a Matlab script, as
explained in the following section. The Matlab script generates
a .txt output file containing all non-zero heat flux values, which
is then called within the APDL script, as indicated here below:

Script 3/4: Heat Fluxes

/NOPR
/inp, powersource, txt, Z:...
/GOPR
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In the end, the complete array, encompassing indices and heat
flux values, is employed to specify the surface load on the desig-
nated surface. The last part of the script provides an explanation
of the syntax of the APDL command "sf".

Script 4/4: Surface Load

sf,top_face,hflu,%lht%
allsel
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Appendix B

Matlab Script

The Matlab script takes various input variables, such as laser
power, pulse duration, frequency, and velocity. It then generates
a text file in APDL format containing the power source data.
It’s possible to specify these input parameters directly in Mat-
lab or, if using it as part of an optimization process, also input
them from an additional .csv file referred to in the Matlab script.
Both of these options are explained in detail here below. The
optimization process generates a file named "parameters.csv."

Script 1/4: Input Parameters
% all units expressed in m, s and W
Pt = 3600; % total power
t1 = 0.009; % pulse duration
f = 33.15; % frequency
v = 0.25; % velocity
tt = 1/f ; % cycle period
t2 = tt− t1; % off duration
% alternatively
% M0 = readmatrix(’\\trtswiewfs01.euce.corp.bshg.com.̇..csv’);
% Pt=M0(1);
% t1=M0(2);
% f=M0(4);
% v=M0(3);

Two other important input parameters are the standard de-
viation (σ), which characterizes the laser beam’s shape, and the
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overall process efficiency (η) as defined in [12]. These parame-
ters are defined separately since they remain constant. Addition-
ally, there are inputs related to the specific welding path. In this
script, for instance, it has been customized to simulate 5 horizon-
tal welding lines on a 100x100 mm steel plate. The laser moves in
the y-direction while maintaining a constant x-direction. In this
part of the script, there are three additional parameters needed:

Script 2/4: Specific Inputs

p = [90× 10−3 , 70× 10−3 , 50× 10−3 , 30× 10−3 , 10× 10−3 ,−10× 10−3 ]; % x
positions
dy0 = 0.007 ; % distance from the border
pmax = max(size(p)− 1); % number of parallel lines

pmax represents the actual number of welding lines, while p
has one more value because it considers the laser returning to the
initial position for the next line, even for the last welding line.
The domain and resolution are defined in the next part of the
script, and their values must match those specified in the APDL
script.

Script 3/4: Domain and Resolution

np = 601; % number of space divisions
nt = 501; % number of time divisions per line
lx = 0.1; % x domain
ly = 0.1; % y domain

The remaining portion of the script is presented here below:

Script 4/4: Power Source Array

% initialization
it=[];
ix=[];
iy=[];
r=0;
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fid = fopen(’powersource.txt’,’wt’);

for n=1:pmax %for every line

tp=sqrt((p(n+1)-p(n))2 + (0.1− dy0 ∗ 2)2)/v; % return to next starting point
tline=(0.1-dy0*2)/v+tp; % welding line + return to next starting point
ttot=pmax*(0.1-dy0*2)/v; % total welding lines
npuls=round(t1/ttot*nt*((0.1-dy0*2)/v)/((0.1-dy0*2)/v+tp)*pmax); % time
steps per cycle with laser on
nf=round(tt/ttot*nt*((0.1-dy0*2)/v)/((0.1-dy0*2)/v+tp)*pmax); % time
steps per cycle
i=1;

for it=1:nt % for every time step per line
time=(it-1)/(nt-1)*tline;
x0=p(n); % x position center heat source
y0=dy0+v*time; % y position center heat source
if it==1

r=0;
end
if r>npuls-1

i=0; % laser off
end
if r==nf

i=1; % laser on
r=0; % counter pulse number

end
r=r+1;
for ix=1:np % for every x position

x=(ix-1)/(np-1)*lx;
dx=x-x0; % x position relative to x0
for iy=1:np % for every y position

y=(iy-1)/(np-1)*ly;
dy=y-y0; % y position relative to y0

power=Pt/2/pi/(s)2 ∗ exp(−(dx2 + dy2)/2/(s)2); % power distribution
power=power*i*e; % power * on/off * efficiency

if y0>0.1-dy0 % ignore values beyond the limit
power=0;

end
lht(ix,iy,it+(n-1)*nt)=power; % assign power distribution to position

and time step
if power>0 % ignore 0 values
fprintf(fid,’lht(%6.0f,%6.0f,%6.0f)=%6.0f \n’,ix,iy,it+(n-1)*nt,power)

% print the results
end

IX



end
end

end
end
fclose(fid);

Upon initializing the indexes, a series of nested for-loops are
used to determine the power intensity for each position and time
step. The index r tracks the pulse duration, and the binary index
i takes on a value of 0 when the laser is off and 1 when the laser
is on. The power remains constant when the laser is on and is
set to zero when the laser is off. Finally, the power is also scaled
by the overall process efficiency. Using the fprintf command, the
resulting array is formatted in APDL style and exported to a .txt
file named "powersource" Only the non-zero values are included
in the output.
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