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Abstract

We study a class of 2D solutions of a Bloch–Torrey regularization of the Rosensweig system in the whole 
space, which arise when the initial data and the external magnetic field are 2D. We prove that such solutions 
are globally defined if the initial data is in Hk

(
R

2
)

, k � 1.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A ferrofluid is a liquid which presents ferromagnetic properties, i.e. it becomes strongly mag-
netizable in presence of an external magnetic field. Such material do not exist naturally in the 
environment but it was created in 1963 by NASA [43] with a very specific goal: to be used as a 
fuel for rockets in an environment without gravity, whence the necessity to be pumped applying 
a magnetic field.

The versatility of such material and its peculiar property of being controlled via a magnetic 
field made it suitable to be later used in a whole variety of applications: ferrofluids are for instance 
used in loudspeakers in order to cool the coil and damp the cone [29], as seals in magnetic 
hard-drives [33], in order to reduce friction [23] or enhance heat transfer [24], [39]. We refer the 
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interested reader to [44], the introduction of [31] and references therein for a survey of potential 
applications of ferrofluids.

Ferrofluids are colloidal2 made of nanoscale ferromagnetic particles of a compound contain-
ing iron, suspended in a fluid. They are magnetically soft, which means that they do not retain 
magnetization once there is no external magnetic field acting on them.

On a physical point of view ferrofluids (FF) are very different from magnetohydrodynamical 
(MHD) fluids: the former are magnetizable fluids with very low electrical conductivity while 
the latter are nonmagnetizables and electrically conducting. There are two generally accepted 
models describing the evolution of a FF which are known under the name of their developers, 
the Rosensweig model [30], and the Shiliomis model [40]. The mathematical analysis of such 
systems is very recent, in [1], [2], [3] and [10] it is proved that both Shiliomis and Rosensweig 
model admit global weak and local strong solutions in bounded, smooth subdomains of R3. The 
same authors then considered as well thermal and electrical conductivity as well as steady-state 
solutions of various ferrofluids systems in [4], [5], [6], [7], [8], [9] and [22]. We mention as well 
the work [38] in which it is studied the behavior of critical solutions of the Shliomis model for 
ferrofluids in the vanishing relaxation time limit τ → 0.

In the present paper we will consider the following regularization of Bloch–Torrey type of the 
Rosensweig model for homogeneous micropolar fluids

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0 (∂tu + u · ∇u) − (η + ζ )�u + ∇p = μ0M · ∇H + 2ζ curl �,

ρ0κ (∂t� + u · ∇�) − η′�� − λ′∇div � = μ0 M × H + 2ζ (curl u − 2�) ,

∂tM + u · ∇M − σ�M = � × M − 1

τ
(M − χ0H) ,

div (H + M) = F,

div u = 0,

curl H = 0,

(u,ω,M,H)|t=0 = (u0,�0,M0,H0) ,

(R)

where the parameters ρ0, η, ζ, μ0, κ, η′, λ′, σ, τ and χ0 have a physical meaning and are consid-
ered to be fixed and positive. The unknown u represents the linear velocity wile � represents 
the angular velocity, M is the magnetizing field and H is the effective magnetizing field. The 
equation

div (H + M) = F

will be often denoted as the magnetostatic equation. The parameter σ > 0 comes in play when 
the diffusion of the spin magnetic moment is not negligible, we refer the reader to [20], and 
indeed it has a regularizing effect since in such regime the system (R) is purely parabolic.

The constant χ0 is a dimensionless value called magnetic susceptibility, for oil-based fluids 
(see [34]) usually χ0 ∈ [0.3,4.3] while for water-based fluids 0 < χ0 � 1. The critical value 

2 A mixture in which one substance of microscopically dispersed insoluble particles is suspended throughout another 
substance.
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χ0 = 0 implies that the medium is not magnetizable and hence there is not external magnet force 
exerted on the fluid.

The equations (R) are derived under the following hypotheses (see [35])

� The ferromagnetic particles suspended in the carrier fluid are spherical,
� The ferromagnetic particles have the same size and mass,
� The density of the ferromagnetic particles in the colloidal is homogeneous,
� No agglomeration effects are considered.

The equations (R) are considered in the whole three-dimensional space in R3 ×R+, and we 
assume that

F = F (x1, x2, t) , (H1)

i.e. the external magnetic field is independent of the vertical variables. In such setting we are 
going to consider special solutions of (R) of the form

u = (u1 (x1, x2, t) , u2 (x1, x2, t) ,0) ,

� = (0,0,ω (x1, x2, t)) ,

M = (M1 (x1, x2, t) ,M2 (x1, x2, t) ,0) .

(H2)

With the hypotheses (H1) and (H2) the system (R) becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0 (∂tu + u · ∇u) − (η + ζ )�u + ∇p = μ0M · ∇H + 2ζ

(
∂2ω

−∂1ω

)
,

ρ0κ (∂tω + u · ∇ω) − η′�ω = μ0M × H + 2ζ (curl u − 2ω) ,

∂tM + u · ∇M − σ�M =
(−M2

M1

)
ω − 1

τ
(M − χ0H) ,

div (H + M) = F,

div u = curl H = 0,

(u,ω,M,H)|t=0 = (u0,ω0,M0,H0) .

(R2D)

The system (R2D) is the most natural interpretation of the three-dimensional Rosensweig sys-
tem (R) in a two-dimensional domain, or, rephrased differently, the system (R2D) represents the 
evolution of (R) stemming from genuinely 2D initial data and forced by a genuinely 2D external 
magnetic field (hence the motivation of the hypotheses (H2) and (H1) respectively). Such config-
uration can describe a first approximation of a 3D setting for initial data and external magnetic 
fields which are locally laminar. On a mathematical viewpoint the study of the system (R2D) is 
interesting because it provides a 2D counterpart for the (regularized) Rosensweig system (R), 
whence it is natural in such setting to address the question of global existence of strong solu-
tions originating for arbitrary initial data, result which is well-understood in other incompressible 
models (cf. [12] for incompressible Navier–Stokes equations, [32] for Q-tensor system). Let us 
notice that the evolution assumption � = � (x1, x2, t) = (0,0,ω (x1, x2, t)) holds if and only if 
the initial data and F |t=0 satisfy respectively the consistency hypotheses (H2) and (H1); in such 
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setting the flow is genuinely laminar and the angular component of the motion lies in the same 
plane in which the fluid moves (namely the 〈x1, x2〉-plane), whence the angular velocity assumes 
the form � = (0,0,ω (x1, x2, t)).

Remark 1.1. We underline the fact that the symbols �, ∇ do not represent the same operators 
in (R) and (R2D); in the former they represent respectively the three-dimensional Laplacian and 
gradient while in the latter they represent the bi-dimensional Laplacian and gradient. Only thanks 
to the hypotheses (H1) and (H2) we can perform the identification of (R) and (R2D). In order 
to avoid confusion we explicitly define here the operators appearing in (R2D), even though they 
are nothing but the standard three dimensional operators restricted onto the space of functions 
satisfying the hypotheses (H1) and (H2). From now on the symbols �, ∇ represent respectively 
the operators

� = ∂2
1 + ∂2

2 , ∇ =
(

∂1
∂2

)
,

and the transport form is defined as

u · ∇A =
2∑

i=1

ui∂iA.

In the same spirit the vector product is identified as the bilinear form

(A,B) ∈R
2 ×R

2 
→ A × B = −A1B2 + A2B1 ∈ R,

and the curl operator is the following operator

curl u = −∂2u1 + ∂1u2,

while given any vector field v = (v1, v2)
ᵀ we define as v⊥ = (−v2, v1

)ᵀ
. �

2. Results and notation

2.1. Main result and organization of the paper

The following statement codifies the main result presented in this paper which concerns the 
global well-posedness of solutions in the form (H2) for the system (R2D):

Theorem 2.1. Let u0, ω0, M0, H0 ∈ Hk
(
R

2
)

for some k � 1 such that div u0 = 0 and 
div (M0 (x) + H0 (x)) = F (x,0) and let GF = �−1∇F ∈ W

1,∞
loc

(
R+;Hk+1

(
R

2
))

, F ∈
L2

loc

(
R+;L2

(
R

2
))

. The system (R2D) admits a unique global strong solution in C
(
R+;Hk

(
R

2
))

which enjoys the following additional regularity

u,ω,M,H ∈ L∞ ([0, T ] ;Hk
(
R

2
))

, ∇u,∇ω,∇M,∇H ∈ L2
(

[0, T ] ;Hk
(
R

2
))

,

for each T > 0.
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Remark 2.2. The choice of an initial data in Hk
(
R

2
)
, k � 1 is due to technical reasons. We 

expect to be able to prove global propagation of any Sobolev regularity when the initial data 
belongs to L2

(
R

2
)
, obtaining an analogous result of what is already known for the 2D incom-

pressible Navier–Stokes equations. Such result will be the subject of future investigation3. The 
proof of Theorem 2.1 provided in the present paper does not hold true in the case in which 
k = 0 (i.e. the initial data is L2) due to a lack of regularity-in-time induced by the Kelvin 
force. �

As it is often the case in the study of existence and regularity for complex fluids the main 
difficulty in the present paper is the global analysis of the perturbations induced by the many non-
linear interactions of (R2D). At first hence we study the natural L2

(
R

2
)
-energy decay for smooth 

solutions of R2D. Adapting the techniques of [10] to the present setting and exploiting some 
cancellation properties it is hence possible to prove that smooth, decaying at infinity solutions 
of (R2D) propagate globally L2

(
R

2
)

regularity. Unfortunately, contrarily to the incompressible 
Navier–Stokes equations, such result is not sufficient in order to construct global-in-time L2 solu-
tions by mean of compactness methods. In fact a standard way to construct global weak solutions 
is to prove that, given a sequence (Un)n,

(Un)n is bounded in Lp ([0, T ) ;X0) ,

(∂tUn)n is bounded in Lp ([0, T ) ;X1) ,

for a p ∈ (1,∞), any T > 0 and X0 ↪→ X1, hence if there exists some space X such that4

X0 � X ↪→ X1,

it is possible to apply Aubin–Lions lemma [11] in order to deduce that the sequence (Un)n
is compact in Lp ([0, T ) ;X). Whence, if such bounds are proved to be true, a passage to the 
limit as n → ∞ concludes the construction. In the case of Rosensweig system though, as it was 
already remarked in [10], the Kelvin force Fm = μ0 M · ∇H is only L1

(
[0, T ) ;H−1/2

(
R

2
))

, i.e. 
the Kelvin force has not sufficiently regularity in-time in order to apply such technique. A way 
to bypass such problem is hence to construct global weak solutions in H

1
2
(
R

2
)
; if such global 

bounds can be attained we can mange hence to prove that Fm ∈ L2
(
[0, T ) ;L2

(
R

2
))

, whose 
regularity in time is hi enough in order to deduce existence of global weak solutions by means of 
compactness methods.

Next we investigate if these weak solutions constructed are sufficiently regular to deduce 
global propagation of any Sobolev regularity. The answer is indeed affirmative, and the proof 
of such result is performed via an iterative argument; given a k ∈ N \ {0} we suppose that the 
system (R2D) is globally well-posed in Hj

(
R

2
)
, j ∈ {0, . . . , k − 1} and we prove that the global 

propagation holds true as well in Hk
(
R

2
)
. Indeed if k = 0 ⇒ Hk = L2 the propagation is true 

thanks to the global L2-estimates. The main tool in order to prove such inductive argument are 
the technical estimates performed in Lemma 5.4 and 5.5.

3 At the moment of the publication of the present work such result has been proved in [16]
4 In such notation Z � Y means that Z is compactly embedded in Y .
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The proof of Theorem 2.1 is divided in two parts such as in other works describing global 
regularity of two-dimensional complex fluids systems (we refer for instance to [32], [28], [27], 
[18], [17], [15]); at first, using a Galerkin approximation scheme, it is possible to prove the exis-
tence of global weak solutions. Next, assuming the initial data fulfills the regularity requirements 
stated in Theorem 2.1, we prove that the system R2D propagates globally Sobolev regularity of 
any order greater or equal than one.

The paper is structured as follows

• Section 2.2 is a brief introduction to more or less well-known technical results and notation 
which will be used all along the present work.

• In Section 3 we perform some a priori estimates on sufficiently smooth and decaying at in-
finity solutions of (R2D) in the same spirit as in [10] (and as well [1] and [32] for some 
different systems). In detail we prove that such regularized solutions conserve globally L2

energy thanks to some cancellation properties first remarked in [10] in the framework of 
bounded and smooth domains of R3 and here adapted to our framework. Next we prove in 
Lemma 3.5 that as long as the hypotheses for the conservation of the L2 energy are satisfied, 
and if the initial data is more regular (namely H

1
2
(
R

2
)
), then the global propagation of en-

ergy can be extended to the H
1
2
(
R

2
)

level as well. We focus to prove the global propagation 

of the H
1
2
(
R

2
)

energy since such step will be required in order to construct global weak 

solutions in H
1
2 −ε

(
R

2
)
, ε > 0, providing hence global weak solutions with high regularity.

• In Section 4 we construct global weak solutions of (R2D) under the stronger hypotheses of 
an initial data in H

1
2
(
R

2
)
. It is hence in this section that this higher regularity (compared to 

classical Leray solutions, cf. [26] or [14]) assumption on the initial data is explained. The 

Kelvin force Fm = μ0 M · ∇H can be bounded in the space L1
loc

(
R+;H− 1

2
(
R

2
))

only 

with the bounds provided by the global conservation of energy at a L2 level only (i.e. with 
the results of Lemma 3.2). Such time-regularity is hence not sufficient in order to apply 
standard compactness theorems in functional spaces (such as the one in [11]), whence the 
requirement of an initial data in H

1
2
(
R

2
)
, which is again non-restrictive since the goal is to 

construct global strong solutions for (R2D).
• Lastly in Section 5 we prove that, considered an initial data in Hk and an external magnetic 

field F sufficiently regular, we can propagate globally-in-time such Sobolev regularity. Such 
result is not a completely trivial deduction as it is pointed out in Remark 5.3; again the 
Kelvin force Fm lacks the commutation properties which are characteristics for transport 
terms with isochoric velocity fields, whence a more careful energy bound, whose key feature 
is an iterative proof relying on the technical Lemmas 5.4 and 5.5, is required.

2.2. Preliminaries and notation

From now on for any Lebesgue or Sobolev space whose (open) domain � ⊆R
d is not explic-

itly defined it will be implicitly considered to be � =R
2.

For any k ∈ N we denote as Ck (�) the space of functions which are k times continuously 
differentiable in the open set �.

All along this paper given a v ∈ S ′ we define as v̂ the Fourier transform of v (we refer the 
reader to the book [21] for a definition of the Fourier transform on the space of tempered distri-
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butions S ′). Let us consider now a v̂ such that v̂ ∈ L1
loc

(
R

2
)

we define the family of operators 
(�s)s∈R as

�sv =F−1
(

|ξ |s v̂ (ξ)
)

.

Using such family of operators we can hence define the nonhomogeneous fractional Sobolev
space Hs

(
R

2
)

as the space of tempered distributions v such that v̂ ∈ L2
loc

(
R

2
)

and such that

(1 + �)s v ∈ L2
(
R

2
)

.

There exists as well an homogeneous counterpart of the fractional Sobolev space which consists 
of all the tempered distributions v̂ ∈ L1

loc

(
R

2
)

such that �sv ∈ L2
(
R

2
)
. In order to avoid no-

tational confusion between homogeneous and nonhomogeneous Sobolev spaces we denote the 
former as �sL2

(
R

2
)
. For a much deeper discussion on homogeneous Sobolev spaces and their 

properties we refer the reader to [12, Section 1.3] and references therein.
Given a vector field v = (v1, . . . , vN) for any N ∈ N we denote as ∇v the Jacobian matrix of 

v i.e.

∇v =
(
∂ivj

)
i=1,2

j=1,...,N

.

It is of interest to notice that if we define

‖∇v‖2
L2 =

2∑
i=1

N∑
j=1

∫ ∣∣∂ivj (x)
∣∣2 dx,

there exists a K > 0 such that for any v ∈ �L2
(
R

2
)

1

K
‖�v‖L2 � ‖∇v‖L2 �K ‖�v‖L2 ,

we shall use such property continuously in what follows and, by extension, we will identify for 
any k ∈ N the equivalent quantities

∥∥∥(1 + �)k v

∥∥∥
L2

and

⎛⎝ k∑
|α|=0

∥∥∂αv
∥∥2

L2

⎞⎠1/2

,

where ∂α is a differential operator of the form ∂α = ∂
α1
1 ∂

α2
2 where α = (α1, α2).

A point of interest is to understand how, given a σ ∈ R, the operator �σ acts on a product 
of tempered distributions. The following result, which belongs to the mathematical folklore (see 
[19], [36] just to make an example), gives a very simple criterion:

Lemma 2.3. Let s, t real values such that s, t < 1 and s + t > 0, and let �su1 ∈ L2
(
R

2
)
, �tu2 ∈

L2
(
R

2
)
, then �s+t−1 (u1u2) ∈ L2

(
R

2
)
.
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A space of great interest in Section 3 will be the fractional �
1
2 L2

(
R

2
)

space. In particular we 
will require the following interpolation inequality whose proof is a straightforward consequence 
of the continuous embedding of �

1
2 L2

(
R

2
)

in L4
(
R

2
)

(see [12, Chapter 1]):

Lemma 2.4. Let u ∈ H 1
(
R

2
)
, the following chain of inequalities holds true

‖u‖L4 � C1

∥∥∥� 1
2 u

∥∥∥
L2

� C2 ‖u‖1/2

L2 ‖∇u‖1/2

L2 .

Next we state the following interpolation inequality which will be useful

Lemma 2.5. Let v ∈ H
3/2
(
R

2
)
. Then v ∈ L∞ (

R
2
)

and there exists a C > 0 such that

‖v‖L∞(R2
) � C

∥∥∥� 1
2 v

∥∥∥1/2

L2
(
R2
) ∥∥∥� 3

2 v

∥∥∥1/2

L2
(
R2
) . (2.1)

Indeed the fact that v ∈ H
3
2 obviously implies that v ∈ L∞ by classical Sobolev embeddings. 

What is important in Lemma 2.5 is the inequality (2.1) which allows qualitatively better control 
on the L∞ norm of v in terms of an interpolation between high and low order derivatives.

We provide a short proof of the classical result stated in Lemma 2.5 for the sake of clarity.

Proof. We can indeed decompose v as v = vA + vA, where

vA =F−1 (1{|ξ |�A}v̂
)
, vA =F−1 (1{|ξ |>A}v̂

)
.

Using a Bernstein inequality (see [12, Lemma 2.1, p. 52]) and the Sobolev embedding �1/2L2 ↪→
L4 we can argue that

‖vA‖L∞ � A
1/2 ‖v‖L4 � A

1/2
∥∥�1/2v

∥∥
L2 ,

while for the hi-frequency part vA we can argue in the following way∣∣∣vA (x)

∣∣∣� ∫
{|ξ |>A}

∣∣v̂ (ξ)
∣∣dξ,

�

⎛⎜⎝ ∫
{|ξ |>A}

|ξ |−3 dξ

⎞⎟⎠
1/2 ∥∥�3/2v

∥∥
L2 �A−1/2

∥∥�3/2v
∥∥

L2 .

Setting hence

A =
∥∥�3/2v

∥∥
L2∥∥�1/2v
∥∥

L2

,

we conclude. �
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And we state the following simple product rule, for a proof of which we refer the reader to 
[12, Corollary 2.54, p. 90]

Lemma 2.6. For each s > 0 the space Hs ∩ L∞ is an algebra and there exists a C > 0 such that 
for each v1, v2 ∈ Hs ∩ L∞

‖v1v2‖Hs � Cs+1

s

(
‖v1‖L∞ ‖v2‖Hs + ‖v1‖Hs ‖v2‖L∞

)
.

A similar result holds for the homogeneous space �sL2 ∩ L∞.

We will use these results repeatedly in the following.

Definition 2.7 (Hodge decomposition). Let v ∈ L2, we can decompose v as v =Pv +Qv, where

div Pv = 0, curl Qv = 0, (2.2)

and

Pv =
(

1R3 −R⊗R
)

v, Qv =R⊗R v,

where R = (R1,R2) and Rj is the j -th Riesz transform (cf. [41] and [42]).

Remark 2.8. We will denote the Leray projector P and its orthogonal (in L2) complement Q
respectively as

P = 1 − �−1∇div, Q= �−1∇div,

following a common notation in the Navier–Stokes theory (see [25]). The operators P and Q are 
continuous in Lp, p ∈ (1,∞). �

Remark 2.9. Let us consider a Banach space X and let us set p ∈ [1,∞], we say that

the sequence (un)n∈N is uniformly bounded in L
p

loc (R+;X) ,

if, fixed any T > 0, there exists a positive constant cT depending on T > 0 only such that

‖un‖Lp([0,T ];X) � cT for any n ∈N. �

We will denote as C a positive constant whose expression may depend upon the several phys-
ical parameters appearing in (R2D) and whose explicit value may implicitly vary from line to 
line.
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3. Energy inequality and a priori estimates

In this section we perform some a priori estimates for smooth solutions of (R2D) which decay 
at infinity sufficiently fast to zero so that we can integrate by parts without boundary terms. We 
moreover consider the external magnetic field F to be of zero average, and we formally define

GF = �−1∇F.

The main result we want to prove in this section is the following one

Proposition 3.1. Let u0, ω0, M0, H0 ∈ H
1
2
(
R

2
)

and let us suppose u, ω, M, H ∈ C2
(
R

2
)

is a 
classical solution of (R2D) which decays at infinity sufficiently fast so that there is no boundary 

term. Then if F ∈ L2
loc

(
R+;L2

(
R

2
))

and GF = �−1∇F ∈ W
1,∞
loc

(
R+;H 3

2
(
R

2
))

then for any 
T > 0

(u,ω,M,H) ∈ L∞ ([0, T ] ;H 1
2

(
R

2
))

, ∇ (u,ω,M,H) ∈ L2
(

[0, T ] ;H 1
2

(
R

2
))

.

The proof of Proposition 3.1 is divided in two steps; at first we prove that smooth, decaying at 
infinity solutions of (R2D) conserve L2 energy adapting the proof of [10] in our case, i.e. when 
the domain is R2, next we use the propagation of the L2 energy in order to prove that, when the 
initial data belongs to H 1/2, such smooth and decaying solutions propagate the H 1/2 regularity as 
well. The complete proofs of such results are performed in full detail in Appendix A, but we will 
nonetheless explain the main feature and cancellations which make possible such propagation.

Let us define the following quantities:

c̃ = min

{
η,η′, σ,

μ0σ

2
,

1

τ

(
μ0

2
+ χ0

(
μ0 + 1

2

))
,

1

τ

}
, (3.1)

E (0) = ρ0 ‖u0‖2
L2 + μ0 ‖H0‖2

L2 + ρ0κ ‖ω0‖2
L2 + ‖M0‖2

L2 , (3.2)

E (t) = ρ0 ‖u‖2
L2 + μ0 ‖H‖2

L2 + ρ0κ ‖ω‖2
L2 + ‖M‖2

L2 , (3.3)

Ed (t) = ‖∇u‖2
L2 + ‖∇ω‖2

L2 + ‖∇M‖2
L2 + ‖div M‖2

L2 + ‖H‖2
L2 + ‖M‖2

L2 , (3.4)

fτ (t) = C

τ
‖GF ‖2

L2 + C ‖F‖2
L2 , (3.5)

while we will denote as C a positive constant, whose explicit value may vary from line to line, 
which depends upon the physical quantities ρ0, η, ζ, μ0, κ, η′, σ and τ .

The first result is the following control of L2 energy:

Lemma 3.2. Let u0, ω0, M0, H0 ∈ L2 and F, GF , ∂tGF ∈ L2
loc

(
R+;L2

)
. Let u, ω, M, H ∈

C2
(
R

2
)

be a classical, decaying at infinity, solution of (R2D) in the timespan [0, T ] where T
is positive and possibly finite. Then

u,M,H,ω ∈ L∞ ([0, T ] ;L2
)

, ∇u,∇ω,∇M,H,M ∈ L2
(

[0, T ] ;L2
)

,

and for each t ∈ [0, T ] the following inequality holds
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1

2
E (t) + c̃

t∫
0

Ed

(
t ′
)

dt ′ � �(U0,F,GF ) , (3.6)

where

�(U0,F,GF ) = 1

2
E (0) + C

(
‖F‖L2

(
[0,T ];L2

) + ‖GF ‖L2
(
[0,T ];L2

) + ‖∂tGF ‖L2
(
[0,T ];L2

)) .

(3.7)

It is a rather common feature, when it comes to estimate the L2 regularity of smooth solution 
of nonlinear parabolic system, to look for suitable cancellations in the energy terms of higher 
order. This procedure leads to the well-known cancellation

(u · ∇u | u)L2 = 1

2

∫
u · ∇

(
|u|2

)
dx = 0,

due to the incompressibility of the flow, which makes possible to prove the existence of global 
solutions à la Leray for the incompressible Navier–Stokes equations in any dimension. We ob-
viously refer to seminal work of Leray [26]. Such simple trick can hence be used in relatively 
simple systems describing hydrodynamical incompressible inhomogeneous flows, such as in [13]
or [37], in order to deduce immediately the existence of global L2 energy solutions.

More refined cancellations can be used as well in more sophisticated systems describing 
complex fluids, such as the already mentioned [32], [1] or [10], in order to obtain uniform L2

bounds for regularized solutions. We outline hence here the main cancellations required in order 
to achieve such uniform bounds, leaving the detailed computations to Appendix A.1, in order 
to, hopefully, provide a clear idea of the methodology adopted without the unnecessary burden 
of the long, albeit inevitable, estimates which are involved. We remark that the cancellations ex-
plained in the following have been at first performed in [10] in the context of bounded, smooth, 
three-dimensional domains.

Indeed the transport terms u ·∇u, u ·∇ω, u ·∇M give a zero contribution in a L2 estimate due 
to the fact that we consider the velocity flow to satisfy the incompressibility condition div u = 0, 
i.e.

(u · ∇u | u)L2 = 0, (u · ∇ω | ω)L2 = 0, (u · ∇M | M)L2 = 0,

exploiting the very same trick mentioned above. Moreover since the vector (−M2,M1) is or-
thogonal to M the pointwise identity (−M2,M1) · M = 0 holds true, whence

((−M2
M1

)
ω

∣∣∣∣ M

)
L2

= 0.

The only bilinear interactions which do not present an immediate cancellation are hence the 
Kelvin force Fm = μ0M · ∇H appearing in the equation describing the evolution of u in (R2D), 
and the bilinear interaction μ0M × H in the equation for ω. The key observation is hence the 
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following one: since curl H = 0 the vector field H can hence be written as the gradient of a 
potential function φH , with such the following chain of identities holds true5

(M · ∇H | u)L2 =
∫

Mi∂i∂jφH uj
div u=0= −

∫
∂jMi∂iφH uj = − (u · ∇M | H)L2 .

We can recover an analogous term as the r.h.s. of the above equation multiplying the equation of 
M for H and integrating, in doing so we provide the cancellation required for the Kelvin force 
Fm, but we create an additional bilinear interaction((−M2

M1

)
ω

∣∣∣∣ H

)
L2

= 0.

Fortunately such interaction cancels with the term6 (M × H | ω)L2 , which indeed is exactly the 
second term of which we could not identify an immediate cancellation.

Next we state and prove the following simple lemma, which relates the regularity of the vector 
field H in terms of the regularity of M . Despite the proof is immediate we will use continuously 
such technical result in the rest of the paper.

Lemma 3.3. Let us fix a s ∈ R and let M, GF be such that �sM,�sGF ∈ L2, then there exists a 
positive constant C such that∥∥�sH

∥∥
L2 � C

(∥∥�sM
∥∥

L2 + ∥∥�sGF

∥∥
L2

)
,∥∥�s∇H

∥∥
L2 � C

(∥∥�s∇M
∥∥

L2 + ∥∥�s∇GF

∥∥
L2

)
.

Proof. Let us consider the magnetostatic equation div (M + H) = F , we can deduce hence that

H = −QM + GF , (3.8)

where Q is defined as

Qv = �−1∇div v,

and for any vector field v we have curl Qv = 0. The operator Q commutes with �s , and being 
Q a Fourier multiplier of order zero it maps L2 to itself, whence the claim follows. �

A first application of Lemma 3.3 is the following lemma, which provides a bound for the 
Kelvin force Fm in H 1/2:

Lemma 3.4. The following bound holds true

∣∣(�1/2 (M · ∇H)
∣∣ �

1/2u
)
L2

∣∣� C ‖∇u‖L2

∥∥�1/2M
∥∥

L2

(∥∥∇�
1/2M

∥∥
L2 + ∥∥∇�

1/2GF

∥∥
L2

)
.

5 Here we use Einsteins summation convention.
6 One convinces himself performing the computations componentwise.
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Proof. Since for any s ∈R the operator �sv =F−1
(|ξ |s v̂

)
is self-adjoint in L2 we deduce that

∣∣(�1/2 (M · ∇H)
∣∣ �

1/2u
)
L2

∣∣= ∣∣∣∣∫ �
1/2 (M · ∇H) · �1/2u dx

∣∣∣∣ ,
=
∣∣∣∣∫ (M · ∇H) · �u dx

∣∣∣∣ ,
� ‖∇u‖L2 ‖M · ∇H‖L2 ,

whence applying Lemma 2.3 and 3.3

‖M · ∇H‖L2 � C
∥∥�1/2M

∥∥
L2

∥∥�1/2∇H
∥∥

L2 ,

� C
∥∥�1/2M

∥∥
L2

(∥∥�1/2∇M
∥∥

L2 + ∥∥�1/2∇GF

∥∥
L2

)
. �

Now we can pass to the second step in the proof of Proposition 3.1, i.e. we provide global 
H

1
2
(
R

2
)

bounds for smooth, decaying at infinity, solutions of (R2D). Let us hence define the 
following quantities,

c = min

{
η + ζ

2
,
η′

2
,4ζ,

σ

2
,

1

τ
,
χ0

2τ

}
,

F (0) = ρ0
∥∥�1/2u0

∥∥2
L2 + ρ0κ

∥∥�1/2ω0
∥∥2

L2 + ∥∥�1/2M0
∥∥2

L2 ,

F (t) = ρ0
∥∥�1/2u

∥∥2
L2 + ρ0κ

∥∥�1/2ω
∥∥2

L2 + ∥∥�1/2M
∥∥2

L2 ,

Fd (t) = ∥∥�1/2∇u
∥∥

L2 + ∥∥�1/2∇ω
∥∥2

L2 + ∥∥�1/2ω
∥∥2

L2 + ∥∥�1/2∇M
∥∥2

L2 + ∥∥�1/2M
∥∥2

L2

+ ∥∥�1/2QM
∥∥2

L2 ,

�τ (t) = ∥∥�1/2∇GF

∥∥2
L2 + C

τ

∥∥�1/2GF

∥∥2
L2 + ‖∇ω‖L2 ‖∇u‖L2 ,

(3.9)

which will be used in the statement of the following lemma:

Lemma 3.5. Let u0, ω0, M0, H0 ∈ H
1/2, F ∈ L2

loc

(
R+;L2

)
and GF ∈ W

1,∞
loc

(
R+;H 3/2

)
. Let 

u, ω, M, H ∈ C2
(
R

2
)

be a classical, decaying at infinity, solution of (R2D) in the timespan [0, T ]
where T is positive and possibly finite. Then

�
1/2 (u,ω,M) ∈ L∞ ([0, T ] ;L2

)
, �

1/2 (∇u,∇ω,∇M) ∈ L∞ ([0, T ] ;L2
)

,

and for each t ∈ [0, T ] the following inequality holds

F (t) + 2c

t∫
0

Fd

(
t ′
)

dt ′ � �̃ (U0,F,GF ) ,

where �̃ (U0,F,GF ) is defined as
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�̃ (U0,F,GF ) = C F (0) exp

{
C

c̃
�(U0,F,GF )

}
+ C exp

{
C

c̃
�(U0,F,GF )

}
‖GF ‖

L2

(
[0,T ];H 3

2

)

+ C

c̃
exp

{
C

c̃
�(U0,F,GF )

}
�(U0,F,GF ) ,

and � is defined in (3.7). Moreover

�
1/2H ∈ L∞ ([0, T ] ;L2

)
, �

1/2∇H ∈ L2
(

[0, T ] ;L2
)

. (3.10)

The proof of Lemma (3.5) consists simply in performing �1/2L2 energy estimates on the 
system R2D and using the regularity results stated in Lemma 3.2 and proved in Appendix A.1
to deduce a global energy bound. The detailed proof is postponed in Appendix A.2, and can be 
skipped in a first stance, for the sake of the readability. Nonetheless one convinces himself that 
such estimates work out fine considering the bound provided in Lemma 3.4: if we consider GF

sufficiently regular7 the bound provided allows us to apply a Gronwall inequality and entails 
global �1/2L2 regularity provided that ‖∇u‖L2 ∈ L2

loc (R+), which is assured by Lemma 3.2.
At this point we can hence prove Proposition 3.1; denoting U = (u,ω,M,H), considering 

the inequality

‖U‖
H

1
2
(
R2
) =

√
‖U‖2

L2 + ∥∥�1/2U
∥∥2

L2 ,

� ‖U‖L2 + ∥∥�1/2U
∥∥

L2 ,

and the results of Lemma 3.2 and 3.5 the claim of Proposition 3.1 follows.

4. The approximate system

The purpose of the present section is to build global weak solutions for the system (R2D)
for sufficiently regular initial data. We will use a Galerkin approximation method. Let us hence 
define properly the concept of weak solution for the system (R2D);

Definition 4.1. We say that (u, ω, M, H) is a weak solution of problem (R2D) if the conditions 
below are satisfied

(i) The quad (u, ω, M, H) belongs to L∞(0, T ; L2(R2)) ∩ L2(0, T ; H 1(R2));
(ii) The momentum equation of system (R2D) holds in the distributional sense: for any com-

pactly supported ϕ1, in C∞( [0, +∞) ×R
2, R2) with divϕ1 = 0,

ρ0

∫
R2

u(t, x) · ϕ1(t, x)dx + (η + ζ )

t∫
0

∫
R2

∇u(s, x) : ∇ϕ1(s, x)dxds =

7 Let us recall that GF = �−1∇F depends on the external magnetic field F only, whence it is not an unknown of the 
system.
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= ρ0

∫
R2

u0(x) · ϕ1(0, x)dx +
t∫

0

ρ0

∫
R2

u(s, x) · ∂tϕ1(s, x)dxds +

+ρ0

t∫
0

∫
R2

u(s, x) ⊗ u(s, x) : ∇ϕ1(t, x)dx +

+μ0

t∫
0

∫
R2

(M(s, x) · ∇H(t, x)) · ϕ1(s, x)dxds − 2ζ

t∫
0

∫
R2

ω(s, x) curlϕ1(s, x)dxds,

for almost any t ∈ (0, T ).
(iii) The angular momentum equation of system (R2D) holds in the distributional sense: for any 

compactly supported ϕ2 ∈ C∞( [0, +∞) ×R
2)

ρ0k

∫
R2

ω(t, x)ϕ2(t, x)dx + (η′ + ζ )

∫
R2

∇ω(t, x) · ∇ϕ2(t, x)dx =

=
t∫

0

ρ0k

∫
R2

ω(s, x)∂tϕ2(s, x)dxds + ρ0k

∫
R2

ω0(x)ϕ2(0, x)dx +

+4ζρ0

t∫
0

∫
R2

ω(s, x)ϕ2(s, x)dxds = ρ0kρ0

t∫
0

∫
R2

ω(s, x)u(s, x) · ∇ϕ2(t, x)dxds +

+μ0ρ0

t∫
0

∫
R2

M(s, x) × H(t, x)ϕ2(s, x)dxds + 2ζ

∫
R2

u(s, x) × ∇ϕ2(s, x)dxds,

for almost any t ∈ (0, T ).
(iv) The magnetizing equation and the magnetostatic equations hold in the distributional sense: 

for any compactly supported ϕ3 ∈ C∞( [0, +∞) ×R
2, R2) and compactly supported ϕ4 in 

C∞(R2, R2)

∫
R2

M(t, x) · ϕ3(t, x)dx + (η + ζ )

t∫
0

∫
R2

∇M(s, x) : ∇ϕ3(s, x)dxds =

=
t∫

0

∫
R2

M(s, x) · ϕ3(s, x)dxds +
∫
R2

M0(x) · ϕ3(0, x)dx +

+
t∫

0

∫
R2

u(s, x) ⊗ M(s, x) : ∇ϕ3(s, x)dxds +
t∫

0

∫
R2

ω(s, x)M(s, x) × ϕ3(s, x)dxds −

− 1

τ

t∫ ∫
2

(M(s, x) − H(s, x)) · ϕ3(s, x)dxds,
0 R
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for almost any time t ∈ (0, T ).

The solution is said to be global if the previous properties are satisfied for all fixed time T > 0.

We can now provide the detailed statement of the result we want to prove in the present 
section:

Proposition 4.2. Let u0, ω0, M0, H0 ∈ H
1
2
(
R

2
)

be such that

div u0 = 0, and div
(
M0 (x) + H0 (x)

)= F (x,0) .

Let F ∈ L2
loc

(
R+;L2

)
, GF = ∇�−1F ∈ W

1,∞
loc

(
R+;H 3/2

)
, then there exists a unique global 

weak solution (u,ω,M,H) of (R2D) in the energy space

(u,ω,M,H) ∈ C
(
R+;H 1

2

)
, (∇u,∇ω,∇M,∇H) ∈ L2

loc

(
R+;H 1

2

)
.

Proof. Let us define the following truncation operator

Jnv =F−1
(

1{ 1
n
�|ξ |�n

}v̂ (ξ)

)
,

which localize a tempered distribution v away from low and high frequencies. With such we can 
define the following sequence of approximating systems of (R2D):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0 (∂tun +Jn (un · ∇un)) − (η + ζ )�un + ∇pn = μ0 Jn (Mn · ∇Hn) + 2ζ

(
∂2ωn

−∂1ωn

)
,

ρ0κ (∂tωn +Jn (un · ∇ωn)) − η′�ωn = μ0Jn (Mn × Hn) + 2ζ (curl un − 2ωn) ,

∂tMn +Jn (un · ∇Mn) − σ�Mn = Jn

((−M2,n

M1,n

)
ωn

)
− 1

τ
(Mn − χ0Hn) ,

div (Hn + Mn) = JnF,

div un = curl Hn = 0,

(un,ωn,Mn,Hn)|t=0 = (Jnu0,Jnω0,JnM0,JnH0) .

(4.1)

We want to rewrite the above system in a purely evolutionary form, such as it was for instance 
done in [32] for the Q-tensor system. To do so we have hence to incorporate the information 
given by the equations

div (Hn + Mn) = JnF and div un = curl Hn = 0,

in the evolution equation for un, ωn and Mn. Indeed using the relation (3.8) we can define Hn as 
a function of Mn and the external magnetic field as

Hn = −QMn + Gn, (4.2)
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where indeed Gn = ∇�−1JnF . Whence, denoting as P the Leray projector onto divergence-free 
vector fields, explicitly defined as

Pv = (1 −Q) v,

=
(

1 − �−1∇div
)

v,

we can write the approximated system (4.1) in a equivalent, purely evolutionary form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0

(
∂tun +PJn (Pun · ∇Pun)

)
− (η + ζ )�un

= μ0 PJn

(
Mn · ∇ (−QMn + Gn)

)
+ 2ζP

(
∂2ωn

−∂1ωn

)
,

ρ0κ
(
∂tωn +Jn (Pun · ∇ωn)

)
− η′�ωn

= μ0Jn

(
Mn × (−QMn + Gn)

)
+ 2ζ (curl Pun − 2ωn) ,

∂tMn +Jn (Pun · ∇Mn) − σ�Mn

= Jn

((−M2,n

M1,n

)
ωn

)
− 1

τ
(Mn − χ0 (−QMn + Gn)) ,

(un,ωn,Mn)|t=0 = (Jnu0,Jnω0,JnM0) .

(4.3)

Let us underline moreover that, being Hn defined via the equation (4.2) the approximate 
magnetostatic equation in such setting reads as

div (Hn + Mn) = div Mn − div QMn + div Gn,

but indeed div Mn = div QMn, and since Gn = �−1∇ JnF it is immediate that div Gn = JnF , 
whence we recover the fourth equation of (4.1). Moreover since by hypotheses div u0 = 0 and 
the evolution equation of un can be written in the abstract form ∂tun = P f (un, x, t), for a 
suitable f , it is hence assured that div [un (t)] = 0 for any t in the (eventual) lifespan of un.

Let us now define the Hilbert space

H
1/2

n =
{
f ∈ H

1
2

(
R

2
) ∣∣∣ Supp f̂ ⊂ Bn (0) \ B1/n (0)

}
,

endowed with the H
1
2
(
R

2
)

scalar product.
Indeed denoting Vn = (un,ωn,Mn) we can say that the system (4.3) can be written in the 

autonomous form

d

dt
Vn = Fn (Vn) ,

where Fn maps H
1/2

n onto itself. We can hence regard system (4.3) as an ordinary differential 
equation in H

1/2

n verifying the conditions of Cauchy–Lipschitz theorem. Being so we deduce the 
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existence of a sequence of positive maximal lifespans (Tn)n such that, for each n, the system 
(4.3) admits a unique maximal solution

Vn ∈ C
(

[0, Tn) ;H 1/2

n ∩ H∞) .

The cancellation properties which allowed us to prove Lemma 3.2 hold for the system (4.3) as 
well, whence following the same lines of the proofs of Lemma 3.2 and 3.5 we can prove similar 
uniform energy bounds, namely the following result holds true:

Lemma 4.3. Let u0, ω0, M0 ∈ H
1/2, F ∈ L2

loc

(
R+;L2

)
, GF ∈ W

1,∞
loc

(
R+;H 3/2

)
and let 

div u0 = 0. Fixed any T > 0 there exists a positive constant c = c 
(
T ,ρ0, η, ζ,μ0, κ, η′, σ, τ

)
independent of n and t ∈ [0, T ], such that∥∥∥ (un,ωn,Mn)

∥∥∥
L∞

(
[0,t];H 1

2

) � c,

∥∥∥ (∇un,∇ωn,∇Mn)

∥∥∥
L2

(
[0,t];H 1

2

) � c

c
,

where c is defined in (3.9).

Considering hence the result stated in Lemma 4.3, fixed any positive, finite T > 0 we can 
argue via a continuation argument in order to deduce that for each n the maximal lifespan of the 
unique solution of (4.3) is equal to T . Since T is positive and arbitrary, we deduce that for each n

Vn ∈ C
(
R+;H 1/2

n

)
.

Being moreover the energy bounds provided in Lemma 4.3 uniform we can hence infer 
that the sequences (Vn)n , (∇Vn)n are, respectively, uniformly bounded in L∞

loc

(
R+;H 1/2

)
and 

L2
loc

(
R+;H 1/2

)
, from which we deduce, by interpolation, that the sequence

(Vn)n is uniformly bounded in L2
loc

(
R+;H 3

2

(
R

2
))

.

This sort of uniform regularity is strong enough in order to provide a uniform bound for the 
sequence (∂tVn)n in a space of the form L2

loc (R+;Hα), where α < 3/2, possibly negative.

We already mentioned that the (approximated) Kelvin force Fm
n = μ0 Jn

(
Mn ·

∇ (−QMn + Gn)
)

is the less regular term among all the nonlinear terms appearing in the system 
(4.3), namely exploiting energy estimates only at a L2 level (hence using the results provided by 

Lemma 3.2) it is possible to prove only that Fm
n belongs (uniformly in n) to L1

loc

(
R+;H− 1

2

)
. 

This time regularity is not sufficiently strong in order to apply standard compactness results, such 
as Aubin–Lions lemma (cf. [11]). For this reason hence we introduced in Lemma 3.5 the uniform 
H

1
2
(
R

2
)

energy estimates: such control on a higher level of derivatives will hence allow us to 
provide a uniform bound for the sequence 

(
Fm

n

)
n

in the L2
loc

(
R+;L2

)
topology, making hence 

possible to apply Aubin–Lions lemma (cf. [11]).
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In order to bound the generic term Fm
n it suffices to remark that, given two vector fields (a, b) ∈

H
1
2
(
R

2
)× H

1
2
(
R

2
)

the application

H
1
2

(
R

2
)

× H
1
2

(
R

2
)
→L2

(
R

2
)

,

(a, b)
→ a ⊗ b,

is continuous, hence we deduce that∥∥Fm
n

∥∥
L2
(
[0,T ];L2

(
R2
)) � C ‖Mn‖

L∞
(

[0,T ];H 1
2
(
R2
)) ‖∇ (−QMn + Gn)‖

L2

(
[0,T ];H 1

2
(
R2
)) ,

� C ‖Mn‖
L∞

(
[0,T ];H 1

2
(
R2
))

×
⎛⎝‖∇Mn‖

L2

(
[0,T ];H 1

2
(
R2
)) + ‖Gn‖

W 1,∞
(

[0,T ];H 3
2
(
R2
))
⎞⎠ ,

< ∞.

We implicitly used in the second inequality the fact that Q maps continuously H 1/2 to itself. The 
right hand side of the above equation can be bounded, uniformly in n, in terms of the initial data 
thanks to the results stated in Lemma 4.3.

The remaining nonlinear approximate terms can be bounded using the global energy estimates 
at a L2 level. Letting Vn = (un,ωn,Mn) we remark that every nonlinear term appearing in (4.3)
is either in the form

un · ∇Vn,

or either in the form

Vn ⊗ Vn,

whence it suffices to provide bounds for these two types of nonlinearities.
Being un divergence-free and using Lemma 2.3 and an interpolation of Sobolev spaces we 

deduce the following bound

‖un · ∇Vn‖L2
(
[0,T ];H−1

) � ‖un ⊗ Vn‖L2
(
[0,T ];L2

) ,
�
∥∥∥‖un‖1/2

L2 ‖∇un‖1/2

L2 ‖Vn‖1/2

L2 ‖∇Vn‖1/2

L2

∥∥∥
L2([0,T ])

,

� ‖un‖1/2

L∞([0,T ];L2
) ‖Vn‖1/2

L∞([0,T ];L2
) ‖∇un‖1/2

L2
(
[0,T ];L2

)
× ‖∇Vn‖1/2

L2
(
[0,T ];L2

) < ∞,

thanks to the results provided in Lemma 4.3.
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While for the other kind of nonlinearity

‖Vn ⊗ Vn‖L2
(
[0,T ];L2

) � ‖Vn‖L∞([0,T ];L2
) ‖∇Vn‖L2

(
[0,T ];L2

) < ∞.

Applying hence Aubin–Lions lemma [11] we state that the sequence

(un,ωn,Mn)n∈N is compact in L2
loc

(
R+;H

3
2 −ε

loc

(
R

2
))

, ∀ ε > 0,

which implies that there exists at least one

(u,ω,M) ∈ L∞
loc

(
R+;H 1

2

)
∩ L2

loc

(
R+;H 3

2

)
,

such that the sequence (un,ωn,Mn)n∈N converges (up to relabeled subsequences if it may be) to

(un,ωn,Mn)
n→∞−−−−→ (u,ω,M) in L2

loc

(
R+;H

3
2 −ε

loc

(
R

2
))

, ∀ε > 0. (4.4)

Such convergence is sufficiently strong in order to pass to the limit in the bilinear interactions in 
(4.3).

To prove that the limit element (u,ω,M) solves the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0

(
∂tu +P (Pu · ∇Pu)

)
− (η + ζ )�u

= μ0 P
(
M · ∇ (−QM + GF )

)
+ 2ζP

(
∂2ω

−∂1ω

)
,

ρ0κ
(
∂tω + (Pu · ∇ω)

)
− η′�ω

= μ0

(
M × (−QM + GF )

)
+ 2ζ (curl Pu − 2ω) ,

∂tM + (Pu · ∇M) − σ�M

=
(−M2

M1

)
ω − 1

τ
(M − χ0 (−QM + GF )) ,

(u,ω,M)|t=0 = (u0,ω0,M0) ,

(4.5)

in a weak sense is a rather standard procedure, facilitated by the rather high regularity of the 
convergence (4.4). Among all the nonlinear interactions the convergence which is less immediate 
to prove is

Mn · ∇QMn
n→∞−−−−→ M · ∇QM.

Considering hence a test function ψ ∈ D
(
R+ ×R

2
)
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∫
Mn · ∇QMn ψ dxdt −

∫
M · ∇QM ψ dxdt =

∫
(Mn − M) · ∇QMn ψ dxdt

+
∫

M · ∇Q (Mn − M) ψ dxdt,

= I1,n + I2,n.

Applying Hölder inequality we deduce the bound

I1,n � ‖Mn − M‖L2
loc

(
R+;L4

loc

) ‖∇QMn‖L2
loc

(
R+;L2

loc

) ‖ψ‖L∞(R+;L4
) .

Standard Sobolev embeddings and (4.4) imply that

‖Mn − M‖L2
loc

(
R+;L4

loc

) � ‖Mn − M‖
L2

loc

(
R+;H 1/2

loc

) → 0 as n → ∞,

moreover since ∇Q is a pseudo-differential operator of order one we argue that

‖∇QMn‖L2
loc

(
R+;L2

loc

) � ‖Mn‖L2
loc

(
R+;H 1

loc

) < C < ∞,

thanks to the results of Lemma 4.3, proving that I1,n
n→∞−−−−→ 0.

Similarly it can be proved that I2,n → 0 as n → ∞.
Defining hence

H = −QM + GF ,

is straightforward to prove that considering (u,ω,M) the weak solution of (4.5), then 
(u,ω,M,H) solve weakly (R2D).

The proof that the solutions constructed above are unique in the energy space L∞
loc

(
R+;H 1/2

)∩
L2

loc

(
R+;H 3/2

)
is postponed in Appendix A.3. �

5. Propagation of higher regularity

In this section we prove that given any initial data in Hk, k ∈N it is hence possible to construct 
global strong solutions for the system (R2D). The result we prove is the following one

Proposition 5.1. Let k � 1, u0, ω0, M0, H0 ∈ Hk
(
R

2
)

such that div u0 = 0 and let GF ∈
W

1,∞
loc

(
R+;Hk+1

)
. The unique global weak solution U = (u,ω,M,H) of (R2D) identified in 

Proposition 4.2 enjoys the following additional regularity

U ∈ C
(
R+;Hk

(
R

2
))

, ∇U ∈ L2
loc

(
R+;Hk

(
R

2
))

.

Remark 5.2. Indeed if k > 1 + � + ρ where � ∈ N and ρ ∈ [0,1] the space Hk
(
R

2
)

embeds 
continuously in the Hölder space C�,ρ

(
R

2
)
, whence Proposition 5.1 implies the propagation of 

smoothness. �
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Remark 5.3. In Proposition 4.2 we proved that U weak solutions of (R2D) is such that

U ∈ L2
loc

(
R+;H 3

2

(
R

2
))

,

whence considering the embedding H
3
2
(
R

2
)

↪→ L∞ (
R

2
)

we conclude that U ∈ L2
loc(R+;

L∞ (
R

2
)
).

Let us now consider u to be a solution of the two-dimensional incompressible Navier–Stokes 
equations. If we suppose u to be in the space L2

loc

(
R+;L∞ (

R
2
))

it is rather easy to deduce that 
such regularity for the unknown u is sufficient in order to immediately deduce global propagation 
of Hk

(
R

2
)
, k ∈ N, k � 1 regularity for the Navier–Stokes incompressible equations. Being in 

fact true that

‖a b‖Hk � ‖a‖Hk ‖b‖L∞ + ‖a‖L∞ ‖b‖Hk ,

for a proof of which we refer to [12, Corollary 2.54, p. 90], we can argue that∣∣(u · ∇u | u)Hk

∣∣� ∣∣(u ⊗ u | ∇u)Hk

∣∣ ,
� ν

2
‖∇u‖2

Hk + C ‖u‖2
L∞ ‖u‖2

Hk ,
(5.1)

and such kind of term can be absorbed and controlled with standard parabolic energy estimates.
For the system (R2D) though the global propagation of high-order regularity is not such an 

immediate deduction. We explain such defect of regularity considering only the perturbations 
generated by the Kelvin force

Fm = μ0 M · ∇H.

Let us recall in fact that in the Kelvin force the vector field M is not divergence-free, hence 
the commutation of derivatives performed in (5.1) cannot be done in such setting. Performing 
similar computations as the ones above one convinces himself that, setting W = (M,H), one 
must have at least W ∈ L2

loc

(
R+;L∞ (

R
2
))∩ L1

loc

(
R+;W 1,∞ (

R
2
))

(which amounts to require 
W ∈ L2

loc

(
R+;H 1+η

(
R

2
)) ∩ L1

loc

(
R+;H 2+η

(
R

2
))

, η > 0 in terms of Sobolev regularity8) in 
order mimic the procedure explained above for the incompressible Navier–Stokes equations. �

Indeed in order to prove Proposition 5.1 it suffices to perform some Hk energy estimates on 
the system (R2D). In this spirit the following auxiliary lemma will be used:

Lemma 5.4. Let a, b, c ∈ L∞
loc

(
R+;Hk

(
R

2
))

and ∇a, ∇b, ∇c ∈ L2
loc

(
R+;Hk

(
R

2
))

be such 
that for each j ∈ {0, . . . , k − 1} there exists two functions 

(
Fj ,Gj

) ∈ L∞
loc (R+) × L2

loc (R+)

such that ∥∥∥ (a, b) (t)

∥∥∥
Hj

� Fj (t) ,∥∥∥∇ (a, b) (t)

∥∥∥
Hj

� Gj (t) ,

(5.2)

8 Sharper criteria could be deduced.
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then for each ε > 0 and each multi-index α such that |α| = k the following inequality holds true

∣∣∣∣∫ ∂α (a · ∇b) · ∂αc dx

∣∣∣∣� ε
(∥∥∇∂αa

∥∥2
L2 + ∥∥∇∂αb

∥∥2
L2 + ∥∥∇∂αc

∥∥2
L2

)
+ Ck

ε

(
k−1∑
�=0

F 2
� G2

� + G2
0

)∥∥∂αc
∥∥2

L2 + Ck

ε
G2

0

∥∥∂αa
∥∥2

L2 + Ck

ε

k−1∑
�=1

G2
�, (5.3)

where ∂α = ∂
α1
1 ∂

α2
2 .

The proof of Lemma 5.4 is postponed to Appendix A.4 for the sake of readability.
In an analogous way as we prove Lemma 5.4 we can prove the following result

Lemma 5.5. Let a, b, c satisfy the same hypotheses as in Lemma 5.4, then

∣∣∣∣∫ ∂α (a b) ∂αc dx

∣∣∣∣� ε
(∥∥∇∂αa

∥∥2
L2 + ∥∥∇∂αb

∥∥2
L2 + 2

∥∥∇∂αc
∥∥2

L2

)
+ Ck

(
k−1∑
�=1

G
1/2

�−1G
1/2

� G
1/2

k−�−1G
1/2

k−�

)∥∥∂αc
∥∥

L2 + Ck

ε
G2

k−1

(
‖a‖2

L2 + ‖b‖2
L2

)
. (5.4)

The proof is postponed in Appendix A.5.

Proof of Proposition 5.1. If k = 0 Proposition 4.2 proves the claim, hence without loss of gen-
erality we can assume that k > 0.

We prove the claim with inductive hypotheses on k, since, as explained above, we can assume 
that k � 1. We assume that:

Hypotheses 1. For each j ∈ {0, . . . , k − 1} we suppose U ∈ C
(
R+;Hj

(
R

2
))

and ∇U ∈
L2

loc

(
R+;Hj

(
R

2
))

. Moreover for each j ∈ {0, . . . , k − 1} there exist two functions Fj and Gj

which are respectively L∞
loc (R+) and L2

loc (R+) such that, for each t � 0

‖U (t)‖Hj � Fj (t) , ‖∇U (t)‖Hj � Gj (t) . �

Let us hence consider a multi-index α = (α1, α2) such that |α| = k, let us apply the operator 
∂α to the equation of u in (R2D), let us multiply the resulting equation for ∂αu and let integrate 
in space obtaining the inequality

ρ0

2

d

dt

∥∥∂αu
∥∥2

L2 + (η + ζ )
∥∥∇∂αu

∥∥2
L2

�
∣∣(∂α (u · ∇u)

∣∣ ∂αu
)
L2

∣∣+ μ0
∣∣(∂α (M · ∇H)

∣∣ u
)
L2

∣∣+ 2ζ

∣∣∣∣(( ∂2∂
αω

−∂1∂
αω

) ∣∣∣∣ ∂αu

)
L2

∣∣∣∣ .
(5.5)
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We hence apply the inequality (5.3) to the terms |(∂α (u · ∇u) | ∂αu)L2 | and μ0|(∂α(M ·
∇H) | u)L2 | obtaining the bounds

∣∣(∂α (u · ∇u)
∣∣ ∂αu

)
L2

∣∣� ε
∥∥∇∂αu

∥∥2
L2 + C

ε

(
k−1∑
�=0

F 2
� G2

� + G2
0

)∥∥∂αu
∥∥2

L2 +
k−1∑
�=1

G2
�, (5.6)

μ0
∣∣(∂α (M · ∇H)

∣∣ u
)
L2

∣∣� ε
(∥∥∇∂αM

∥∥2
L2 + ∥∥∇∂αH

∥∥2
L2 + ∥∥∇∂αu

∥∥2
L2

)
+C

ε

⎡⎣ ⎛⎝k−1∑
�=0

F 2
� G2

� + G2
0

⎞⎠∥∥∂αu
∥∥2
L2 + G2

0

∥∥∂αM
∥∥2
L2

⎤⎦+ C

ε

k−1∑
�=1

G2
�.

But since H = −QM + GF we can apply Lemma 3.3 to deduce that∥∥∇∂αH
∥∥2

L2 �
∥∥∇∂αM

∥∥2
L2 + ∥∥∇∂αGF

∥∥2
L2 ,

whence

μ0
∣∣(∂α (M · ∇H)

∣∣ u
)
L2

∣∣� ε
(

2
∥∥∇∂αM

∥∥2
L2 + ∥∥∇∂αu

∥∥2
L2

)
+ C

ε

[ (
k−1∑
�=0

F 2
� G2

� + G2
0

)∥∥∂αu
∥∥2

L2 + G2
0

∥∥∂αM
∥∥2

L2

]
+
[

C

ε

k−1∑
�=1

G2
� + ε

∥∥∇∂αGF

∥∥2
L2

]
.

(5.7)

Moreover a simple Cauchy–Schwartz inequality imply∣∣∣∣(( ∂2∂
αω

−∂1∂
αω

) ∣∣∣∣ ∂αu

)
L2

∣∣∣∣� ε
∥∥∇∂αω

∥∥2
L2 + C

ε

∥∥∂αu
∥∥2

L2 ,

but indeed, considering the inductive hypotheses, Hypotheses 1,∥∥∂αu
∥∥2

L2 � ‖∇u‖2
Hk−1 � G2

k−1,

whence ∣∣∣∣(( ∂2∂
αω

−∂1∂
αω

) ∣∣∣∣ ∂αu

)
L2

∣∣∣∣� ε
∥∥∇∂αω

∥∥2
L2 + C

ε
G2

k−1. (5.8)

Whence inserting the bounds (5.6), (5.7), (5.8) in (5.5) we deduce the inequality

ρ0

2

d

dt

∥∥∂αu
∥∥2

L2 + (η + ζ )
∥∥∇∂αu

∥∥2
L2 � ε

(∥∥∇∂αω
∥∥2

L2 + 2
∥∥∇∂αM

∥∥2
L2 + ∥∥∇∂αu

∥∥2
L2

)
+ C

ε

[ (
k−1∑
�=0

F 2
� G2

� + G2
0

)∥∥∂αu
∥∥2

L2 + G2
0

∥∥∂αM
∥∥2

L2

]
+
[

C

ε

k−1∑
�=1

G2
� + ε

∥∥∇∂αGF

∥∥2
L2

]
.

(5.9)
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Let us now perform the same kind of procedure on the equation describing the evolution for 
ω in (R2D), we deduce

ρ0κ

2

d

dt

∥∥∂αω
∥∥2

L2 +η′ ∥∥∇∂αω
∥∥2

L2 � ρ0κ
∣∣(∂α (u · ∇ω)

∣∣ ∂αω
)
L2

∣∣+μ0
∣∣(∂α (M × H)

∣∣ ∂αω
)
L2

∣∣
+ 2ζ

∣∣(∂αcurl u
∣∣ ∂αω

)
L2

∣∣− 4ζ
∥∥∂αω

∥∥2
L2 . (5.10)

Using the estimates (5.3) and (5.4) respectively we can estimate the following terms

ρ0κ
∣∣(∂α (u · ∇ω)

∣∣ ∂αω
)
L2

∣∣� ε

8

(∥∥∇∂αu
∥∥2

L2 + 2
∥∥∇∂αω

∥∥2
L2

)
+C

ε

(
k−1∑
�=0

F 2
� G2

� + G2
0

)∥∥∂αω
∥∥2

L2 + C

ε
G2

0

∥∥∂αu
∥∥2

L2 + C

ε

k−1∑
�=1

G2
�,

(5.11)

μ0
∣∣(∂α (M × H)

∣∣ ∂αω
)
L2

∣∣� ε
(∥∥∇∂αM

∥∥2
L2 + ∥∥∇∂αH

∥∥2
L2 + ∥∥∇∂αω

∥∥2
L2

)
+C

(
k−1∑
�=1

G
1/2

�−1G
1/2

� G
1/2

k−�−1G
1/2

k−�

)∥∥∂αω
∥∥

L2 + C

ε
G2

k−1

(
‖M‖2

L2 + ‖H‖2
L2

)
.

Using Lemma 3.3 we can state that

∥∥∇∂αH
∥∥2

L2 �
∥∥∇∂αM

∥∥2
L2 + ∥∥∇∂αGF

∥∥2
L2 ,

G2
k−1 ‖H‖2

L2 � G2
k−1 ‖M‖2

L2 + G2
k−1 ‖GF ‖2

L2 ,

whence

μ0
∣∣(∂α (M × H)

∣∣ ∂αω
)
L2

∣∣� ε

8

(
2
∥∥∇∂αM

∥∥2
L2 + 2

∥∥∇∂αω
∥∥2

L2

)
+ C

(
k−1∑
�=1

G
1/2

�−1G
1/2

� G
1/2

k−�−1G
1/2

k−�

)∥∥∂αω
∥∥

L2

+ C

ε
G2

k−1

(
2‖M‖2

L2 + ‖GF ‖2
L2

)
+ ε

∥∥∇∂αGF

∥∥2
L2 . (5.12)

While

2ζ
∣∣(∂αcurl u

∣∣ ∂αω
)
L2

∣∣� ε
∥∥∇∂αu

∥∥2
L2 + C

ε
G2

k−1, (5.13)

as it was argued in order to prove (5.8). Whence the bounds (5.11), (5.12) and (5.13) transform 
(5.10) in

ρ0κ d ∥∥∂αω
∥∥2

L2 +η′ ∥∥∇∂αω
∥∥2

L2 +4ζ
∥∥∂αω

∥∥2
L2 � ε̃

(∥∥∇∂αu
∥∥2

L2 + ∥∥∇∂αM
∥∥2

L2 + ∥∥∇∂αω
∥∥2

L2

)

2 dt
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+ C

ε̃

(
k−1∑
�=0

F 2
� G2

� + G2
0

)∥∥∂αω
∥∥2

L2 + C

ε̃
G2

0

∥∥∂αu
∥∥2

L2 +C

(
k−1∑
�=1

G
1/2

�−1G
1/2

� G
1/2

k−�−1G
1/2

k−�

)∥∥∂αω
∥∥

L2

+ C

ε̃

(
k−1∑
�=1

G2
� + G2

k−1

(
2‖M‖2

L2 + ‖GF ‖2
L2

)
+ ε̃

∥∥∇∂αGF

∥∥2
L2

)
, (5.14)

where ε̃ < ε/16.
Applying the operator ∂α to the equation of M in (R2D), multiplying for ∂αM and integrating 

in the variable x ∈R
2 give us instead

1

2

d

dt

∥∥∂αM
∥∥2

L2 + σ ‖∇M‖2
L2 + 1

τ

∥∥∂αM
∥∥2

L2 �
∣∣(∂α (u · ∇M)

∣∣ ∂αM
)
L2

∣∣
+
∣∣∣∣(∂α

((−M2
M1

)
ω

) ∣∣∣∣ ∂αM

)
L2

∣∣∣∣+ χ0

τ

(
∂αH

∣∣ ∂αM
)
L2 . (5.15)

Using the estimate (5.3) and (5.4) we deduce the bounds

ρ0κ
∣∣(∂α (u · ∇M)

∣∣ ∂αM
)
L2

∣∣� ε

8

(∥∥∇∂αu
∥∥2

L2 + 2
∥∥∇∂αM

∥∥2
L2

)
+C

ε

(
k−1∑
�=0

F 2
� G2

� + G2
0

)∥∥∂αM
∥∥2

L2 + C

ε
G2

0

∥∥∂αu
∥∥2

L2 + C

ε

k−1∑
�=1

G2
�,

(5.16)

∣∣∣∣(∂α

((−M2
M1

)
ω

) ∣∣∣∣ ∂αM

)
L2

∣∣∣∣� ε

8

(
2
∥∥∇∂αM

∥∥2
L2 + ∥∥∇∂αω

∥∥2
L2

)
+C

(
k−1∑
�=1

G
1/2

�−1G
1/2

� G
1/2

k−�−1G
1/2

k−�

)∥∥∂αM
∥∥

L2 + C

ε
G2

k−1

(
‖M‖2

L2 + ‖ω‖2
L2

)
.

(5.17)

Using the identity (3.8) and the fact that the operator Q commutes with the operator ∂α

χ0

τ

(
∂αH

∣∣ ∂αM
)
L2 = −χ0

τ

(
∂αQM

∣∣ ∂αM
)
L2 + χ0

τ

(
∂αGF

∣∣ ∂αM
)
L2 ,

= −χ0

2τ

∥∥∂αQM
∥∥2

L2 + C

τ

∥∥∂αGF

∥∥2
L2 .

(5.18)

Whence inserting (5.16), (5.17) and (5.18) in (5.15) we deduce

1

2

d

dt

∥∥∂αM
∥∥2

L2 + σ ‖∇M‖2
L2 + 1

τ

(∥∥∂αM
∥∥2

L2 + χ0

2

∥∥∂αQM
∥∥2

L2

)
� ε̃

(∥∥∇∂αu
∥∥2

L2 + ∥∥∇∂αM
∥∥2

L2 + ∥∥∇∂αω
∥∥2

L2

)
+ C

ε̃

(
k−1∑
�=0

F 2
� G2

� + G2
0

)∥∥∂αM
∥∥2

L2

+ C

ε̃
G2

0

∥∥∂αu
∥∥2

L2

(
k−1∑

G
1/2

�−1G
1/2

� G
1/2

k−�−1G
1/2

k−�

)∥∥∂αM
∥∥

L2
�=1
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+ C

{
1

ε̃

[
k−1∑
�=1

G2
� + G2

k−1

(
‖M‖2

L2 + ‖ω‖2
L2

)]
+ 1

τ

∥∥∂αGF

∥∥2
L2

}
, (5.19)

where ε̃ < ε/16.
Whence adding (5.9), (5.14) and (5.19), and denoting

f2 =
(

k−1∑
�=0

F 2
� G2

� + G2
0

)
,

f1 =
k−1∑
�=1

G
1/2

�−1G
1/2

� G
1/2

k−�−1G
1/2

k−�,

f0 =
k−1∑
�=1

G2
� + G2

k−1

(
‖U‖2

L2 + ‖GF ‖2
L2

)
+ 1

τ
‖GF ‖2

Hk + ‖∇GF ‖2
Hk ,

(5.20)

where as usual U = (u,ω,M,H) we recover the inequality

1

2

d

dt

(
ρ0
∥∥∂αu

∥∥2
L2 + ρ0κ

∥∥∂αω
∥∥2 + ∥∥∂αM

∥∥2
L2

)
+
(

min
{
η + ζ, η′, σ

}
− ε

)(∥∥∇∂αu
∥∥2

L2 + ∥∥∇∂αω
∥∥2

L2 + ∥∥∇∂αM
∥∥2

L2

)
� C

ε
f2

(
ρ0
∥∥∂αu

∥∥2
L2 + ρ0κ

∥∥∂αω
∥∥2 + ∥∥∂αM

∥∥2
L2

)
+ C f1

(
ρ0
∥∥∂αu

∥∥
L2 + ρ0κ

∥∥∂αω
∥∥+ ∥∥∂αM

∥∥
L2

)
+ C

ε
f0.

Setting hence ε sufficiently small so that

min
{
η + ζ, η′, σ

}
− ε � c > 0,

and applying a Gronwall inequality we deduce hence that

ρ0
∥∥∂αu (t)

∥∥2
L2 + ρ0κ

∥∥∂αω (t)
∥∥2 + ∥∥∂αM (t)

∥∥2
L2

+c

t∫
0

[∥∥∇∂αu
(
t ′
)∥∥2

L2 + ∥∥∇∂αω
(
t ′
)∥∥2

L2 + ∥∥∇∂αM
(
t ′
)∥∥2

L2

]
exp

⎧⎨⎩C

t∫
t ′

f2
(
t ′′
)+ f1

(
t ′′
)

dt ′′
⎫⎬⎭dt ′

� C
(
ρ0
∥∥∂αu0

∥∥2
L2 + ρ0κ

∥∥∂αω0
∥∥2 + ∥∥∂αM0

∥∥2
L2

)
exp

⎧⎨⎩C

t∫
0

f2
(
t ′
)+ f1

(
t ′
)

dt ′
⎫⎬⎭

+ C

t∫
0

[
f1
(
t ′
)+ f0

(
t ′
)]

exp

⎧⎨⎩C

t∫
t ′

f2
(
t ′′
)+ f1

(
t ′′
)

dt ′′
⎫⎬⎭dt ′. (5.21)
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The right-hand side of (5.21) is bounded in compact sets of R+ considering the definition of 
the fi ’s functions given in (5.20) and the regularity of the functions Fi, Gi set in the inductive 
hypotheses, Hypotheses 1. Setting hence

δ <
c

min
{
ρ0, ρ0κ,1

} ,

and since for each 0 � t ′ � t � T

exp

⎧⎨⎩C

t∫
t ′

f2
(
t ′′
)+ f1

(
t ′′
)

dt ′′
⎫⎬⎭� 1,

we can transform (5.21) into

(∥∥∂αu (t)
∥∥2

L2 + ∥∥∂αω (t)
∥∥2 + ∥∥∂αM (t)

∥∥2
L2

)

+ δ

t∫
0

[∥∥∇∂αu
(
t ′
)∥∥2

L2 + ∥∥∇∂αω
(
t ′
)∥∥2

L2 + ∥∥∇∂αM
(
t ′
)∥∥2

L2

]
dt ′

� C
(
ρ0
∥∥∂αu0

∥∥2
L2 + ρ0κ

∥∥∂αω0
∥∥2 + ∥∥∂αM0

∥∥2
L2

)
exp

⎧⎨⎩C

t∫
0

f2
(
t ′
)+ f1

(
t ′
)

dt ′
⎫⎬⎭

+ C

t∫
0

[
f1
(
t ′
)+ f0

(
t ′
)]

exp

⎧⎨⎩C

t∫
t ′

f2
(
t ′′
)+ f1

(
t ′′
)

dt ′′
⎫⎬⎭dt ′. (5.22)

Since the functions fi’s defined in (5.20) are independent of the choice of the multi-index α
we can sum each inequality derived in (5.22) on the set of multi-indexes α of length k deriving 
the inequality (here we denote V = (u,ω,M))

‖V (t)‖2
Hk + δ

t∫
0

∥∥∇V
(
t ′
)∥∥2

Hk dt ′ � C ‖U0‖2
Hk exp

⎧⎨⎩C

t∫
0

f2
(
t ′
)+ f1

(
t ′
)

dt ′
⎫⎬⎭

+ C

t∫
0

[
f1
(
t ′
)+ f0

(
t ′
)]

exp

⎧⎨⎩C

t∫
t ′

f2
(
t ′′
)+ f1

(
t ′′
)

dt ′′
⎫⎬⎭dt ′.
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We can hence set

F̃ 2
k (t) = C ‖U0‖2

Hk exp

⎧⎨⎩C

t∫
0

f2
(
t ′
)+ f1

(
t ′
)

dt ′
⎫⎬⎭

+C

t∫
0

[
f1
(
t ′
)+ f0

(
t ′
)]

exp

⎧⎨⎩C

t∫
t ′

f2
(
t ′′
)+ f1

(
t ′′
)

dt ′′
⎫⎬⎭dt ′,

G̃2
k (t) = 1

δ

d

dt

[
F̃ 2

k (t)
]
,

while using the identity (3.8) we argue that

‖H‖Hk(t) � C
(‖M (t)‖Hk + ‖GF (t)‖Hk

)
,

� C
(
F̃k (t) + ‖GF ‖L∞([0,T ];Hk

)) def= 1

2
Fk (t) ,

‖∇H‖Hk(t) � C
(‖∇M (t)‖Hk + ‖∇GF (t)‖Hk

)
,

� C
(
G̃k (t) + ‖∇GF ‖L∞([0,T ];Hk

)) def= 1

2
Gk (t) .

(5.23)

By definition Fk � F̃k and Gk � G̃k , hence U = (u,ω,M,H) satisfies the Hypotheses 1 for 
k when Fk and Gk are defined as in (5.23), proving hence the induction and concluding the 
proof. �
Appendix A. Technical estimates

A.1. Proof of Lemma 3.2

Let us multiply the equation of u in (R2D) for u and let us integrate in R2, obtaining

ρ0

2

d

dt
‖u‖2

L2 + (η + ζ )‖∇u‖2
L2 = μ0 (M · ∇H | u)L2 + 2ζ

((
∂2ω

−∂1ω

) ∣∣∣∣ u

)
L2

. (A.1)

Since curl H = 0 we can assert that there exists a scalar function φH such that H = ∇φH . 
Hence we can deduce the identity μ0 (M · ∇H | u)L2 = −μ0 (u · ∇M | H)L2 . Multiplying the 
equation describing the evolution of M in (R2D) for H and integrating in space we deduce that

(∂tM | H)L2 + (u · ∇M | H)L2 − σ (�M | H)L2

=
((−M2

M1

)
ω

∣∣∣∣ H

)
L2

− 1

τ
(M − χ0H | H)L2 ,

which combined with (A.1) implies the following equality
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ρ0

2

d

dt
‖u‖2

L2 + (η + ζ )‖∇u‖2
L2 = μ0 (∂tM | H)L2 − μ0σ (�M | H)L2

− μ0

((−M2
M1

)
ω

∣∣∣∣ H

)
L2

+ μ0

τ
(M − χ0H | H)L2 + 2ζ

((
∂2ω

−∂1ω

) ∣∣∣∣ u

)
L2

. (A.2)

Multiplying the fourth equation of (R2D) for φH , integrating by parts, considering that H = ∇φH

and integrating we obtain the equation

− (M | H)L2 = ‖H‖2
L2 +

∫
div∇�−1F · φH dx,

= ‖H‖2
L2 − (GF | H)L2 ,

(A.3)

from which we deduce

μ0

τ
(M − χ0H | H)L2 = −μ0

τ
(1 + χ0)‖H‖2

L2 + μ0

τ
(GF | H)L2 ,

� −μ0

τ

(
3

4
+ χ0

)
‖H‖2

L2 + C

τ
‖GF ‖2

L2 .

While differentiating in time the magnetostating equation, multiplying for φH and integrating 
in space we deduce

μ0 (∂tM | H)L2 = −μ0

2

d

dt
‖H‖2

L2 + μ0 (∂tGF | H)L2 ,

� −μ0

2

d

dt
‖H‖2

L2 + μ0

4τ
‖H‖2

L2 + Cμ0τ ‖∂tGF ‖2 .

Taking in consideration the magnetostatic equation div (M + H) = F , recalling that �M =
div∇M , integrating by parts, using the identity (3.8) and a Young inequality we derive

−μ0σ (�M | H)L2 = −μ0σ ‖div M‖2
L2 + μ0σ

∫
div M Fdx,

�−μ0σ

2
‖div M‖2

L2 + C ‖F‖2
L2 .

Next we consider the identity

2ζ

((
∂2ω

−∂1ω

) ∣∣∣∣ u

)
L2

= 2ζ (curl u | ω)L2 ,

which holds true with a simple integration by parts, these considerations transform (A.2) in

1

2

d

dt

(
ρ0 ‖u‖2

L2 + μ0 ‖H‖2
L2

)
+ (η + ζ )‖∇u‖2

L2 + μ0σ

2
‖div M‖2

L2 + μ0

τ

(
1

2
+ χ0

)
‖H‖2

L2

� Cμ0τ ‖∂tGF ‖2
L2 − μ0

((−M2
M1

)
ω

∣∣∣∣ H

)
L2

+ 2ζ (curl u | ω)L2 + C

τ
‖GF ‖2

L2 + C ‖F‖2
L2 .

(A.4)
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Let us now perform an L2 energy estimate on the equation for ω in (R2D):

ρ0κ

2

d

dt
‖ω‖2

L2 + η′ ‖∇ω‖2
L2 = μ0 (M × H | ω)L2 + 2ζ (curl u − 2ω | ω)L2 . (A.5)

The following algebraic identity is immediate

μ0 (M × H | ω)L2 = μ0

((−M2
M1

)
ω

∣∣∣∣ H

)
L2

,

whence we can add (A.4) and (A.5) to deduce the following inequality

1

2

d

dt

(
ρ0 ‖u‖2

L2 + μ0 ‖H‖2
L2 + ρ0κ ‖ω‖2

L2

)
+ (η + ζ )‖∇u‖2

L2 + η′ ‖∇ω‖2
L2 + μ0σ

2
‖div M‖2

L2 + μ0

τ

(
1

2
+ χ0

)
‖H‖2

L2

� Cμ0τ ‖∂tGF ‖2
L2 + 2ζ (curl u | ω)L2 − 4ζ ‖ω‖2

L2 + C

τ
‖GF ‖2

L2 + C ‖F‖2
L2 . (A.6)

Since ‖∇u‖2
L2 =∑2

i,j=1

∫ ∣∣∂iuj

∣∣2 dx an application of Cauchy–Schwartz inequality shows that

ζ ‖∇u‖2
L2 + 4ζ ‖ω‖2

L2 − ζ (curl u | 2ω)L2 � 0,

whence we can improve the bound in (A.6) with

1

2

d

dt

(
ρ0 ‖u‖2

L2 + μ0 ‖H‖2
L2 + ρ0κ ‖ω‖2

L2

)
+ η ‖∇u‖2

L2 + η′ ‖∇ω‖2
L2 + μ0σ

2
‖div M‖2

L2 + μ0

τ

(
1

2
+ χ0

)
‖H‖2

L2

� Cμ0τ ‖∂tGF ‖2
L2 + C

τ
‖GF ‖2

L2 + C ‖F‖2
L2 . (A.7)

At last we perform an L2 energy estimate on the equation for M and we deduce

1

2

d

dt
‖M‖2

L2 + σ ‖∇M‖2
L2 = − 1

τ
‖M‖2

L2 + χ0

τ
(H | M)L2 ,

whence with the identity (A.3)

1

2

d

dt
‖M‖2

L2 + σ ‖∇M‖2
L2 + 1

τ
‖M‖2

L2 = −χ0

τ

(
‖H‖2

L2 + (GF | H)L2

)
,

� −χ0

2τ
‖H‖2

L2 + C ‖GF ‖2
L2 ,

(A.8)

whence adding (A.7) and (A.8) we deduce the final inequality
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1

2

d

dt

(
ρ0 ‖u‖2

L2 + μ0 ‖H‖2
L2 + ρ0κ ‖ω‖2

L2 + ‖M‖2
L2

)
+ η ‖∇u‖2

L2

+ η′ ‖∇ω‖2
L2 + σ ‖∇M‖2

L2 + μ0σ

2
‖div M‖2

L2 + 1

τ

(
μ0

2
+ χ0

(
μ0 + 1

2

))
‖H‖2

L2

+ 1

τ
‖M‖2

L2 � Cμ0τ ‖∂tGF ‖2
L2 + 1

τ
‖GF ‖2

L2 + ‖F‖2
L2 . (A.9)

We can hence reformulate (A.9) with the quantities defined in (3.1)–(3.5), with such and an 
integration in time we deduce the integral inequality

1

2
E (t) + c̃

t∫
0

Ed

(
t ′
)

dt ′ � 1

2
E (0) + C

t∫
0

fτ

(
t ′
)

dt ′,

which concludes the proof. �
A.2. Proof of Lemma 3.5

The proof of Lemma 3.5 consists in performing some H
1
2
(
R

2
)

energy estimates on the system 
(R2D) and to check that, as long as the estimates of Lemma 3.2 hold as well, we can obtain a 
global control for the H

1
2
(
R

2
)

regularity of the solutions of (R2D). Let us hence multiplying the 
equation describing the evolution of u for �u and integrating in space we deduce the following 
energy equality

ρ0

2

d

dt

∥∥�1/2u
∥∥2

L2 + (η + ζ )
∥∥�1/2∇u

∥∥
L2 �

∣∣(�1/2 (u · ∇u)
∣∣ �

1/2u
)
L2

∣∣
+ μ0

∣∣(�1/2 (M · ∇H)
∣∣ �

1/2u
)
L2

∣∣+ 2ζ

∣∣∣∣(�
1/2

(
∂2ω

−∂1ω

) ∣∣∣∣ �
1/2u

)
L2

∣∣∣∣ ,
hence using repeatedly integration by parts and Lemma 2.3∣∣(�1/2 (u · ∇u)

∣∣ �
1/2u
)
L2

∣∣� ‖u · ∇u‖L2 ‖∇u‖L2 ,

� ‖∇u‖L2

∥∥�1/2u
∥∥

L2

∥∥�1/2∇u
∥∥

L2 ,

� η + ζ

2

∥∥�1/2∇u
∥∥2

L2 + C ‖∇u‖2
L2

∥∥�1/2u
∥∥2

L2 ,∣∣∣∣(�
1/2

(
∂2ω

−∂1ω

) ∣∣∣∣ �
1/2u

)
L2

∣∣∣∣� ‖∇ω‖L2 ‖∇u‖L2 ,

and hence considering as well the estimate given in Lemma 3.4 we deduced the following in-

equality applying repeatedly the convexity inequality ab� a2

2 + b2

2 :

ρ0

2

d

dt

∥∥�1/2u
∥∥2

L2 + η + ζ

2

∥∥�1/2∇u
∥∥

L2 �
σ

8

∥∥�1/2∇M
∥∥2

L2 +

C ‖∇u‖2
L2

∥∥�1/2u
∥∥2

L2 + ‖∇ω‖L2 ‖∇u‖L2 + C ‖∇u‖2
L2

∥∥�1/2M
∥∥2

L2 + ∥∥�1/2∇GF

∥∥2
L2 . (A.10)
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Multiplying the equation describing the evolution of ω in (R2D) for �ω and integrating in 
space we deduce instead

ρ0κ

2

d

dt

∥∥�1/2ω
∥∥2

L2 + η′ ∥∥�1/2∇ω
∥∥2

L2 + 4ζ
∥∥�1/2ω

∥∥2
L2

�
∣∣(�1/2 (M × H)

∣∣ �
1/2ω
)
L2

∣∣+ 2ζ
∣∣(�1/2curl u

∣∣ �
1/2ω
)
L2

∣∣ ,
and ∣∣(�1/2 (M × H)

∣∣ �
1/2ω
)
L2

∣∣� ∥∥�1/2∇ω
∥∥

L2

∥∥�−1/2 (M × H)
∥∥

L2 ,

� C
∥∥�1/2∇ω

∥∥
L2

∥∥�1/2M
∥∥

L2 ‖H‖L2 ,

� η′

4

∥∥�1/2∇ω
∥∥2

L2 + C ‖H‖2
L2

∥∥�1/2M
∥∥2

L2 ,∣∣(�1/2curl u
∣∣ �

1/2ω
)
L2

∣∣� ‖∇ω‖L2 ‖∇u‖L2 .

Whence we deduced the inequality

ρ0κ

2

d

dt

∥∥�1/2ω
∥∥2

L2 + η′

2

∥∥�1/2∇ω
∥∥2

L2 + 4ζ
∥∥�1/2ω

∥∥2
L2

� C ‖H‖2
L2

∥∥�1/2M
∥∥2

L2 + ‖∇ω‖L2 ‖∇u‖L2 . (A.11)

We perform the same procedure onto the equation for M deducing hence

1

2

d

dt

∥∥�1/2M
∥∥2

L2 + σ
∥∥�1/2∇M

∥∥2
L2 �

∣∣(�1/2 (u · ∇M)
∣∣ �

1/2M
)
L2

∣∣
+
∣∣∣∣(�

1/2

((−M2
M1

)
ω

) ∣∣∣∣ �
1/2M

)
L2

∣∣∣∣− 1

τ

(
�

1/2M − χ0�
1/2H

∣∣ �
1/2M

)
L2 .

Straightforward calculations prove the following bounds∣∣(�1/2 (u · ∇M)
∣∣ �

1/2M
)
L2

∣∣� σ

8

∥∥�1/2∇M
∥∥2

L2 + ‖∇M‖2
L2

∥∥�1/2u
∥∥2

L2 ,∣∣∣∣(�
1/2

((−M2
M1

)
ω

) ∣∣∣∣ �
1/2M

)
L2

∣∣∣∣� ‖M‖L2

∥∥�1/2ω
∥∥

L2

∥∥�1/2∇M
∥∥

L2 ,

� σ

8

∥∥�1/2∇M
∥∥2

L2 + C ‖M‖2
L2

∥∥�1/2ω
∥∥2

L2 .

For the last term it suffices to notice that

− 1

τ

(
�

1/2M − χ0�
1/2H

∣∣ �
1/2M

)
L2 = − 1

τ

(∥∥�1/2M
∥∥2

L2 + χ0
(
�

1/2H
∣∣ �

1/2M
)
L2

)
,

and moreover since H = −QM + GF as it was explained in (3.8) we deduce that(
�

1/2H
∣∣ �

1/2M
)

2 = −∥∥�1/2QM
∥∥2

2 + (�1/2GF

∣∣ �
1/2M

)
2 .
L L L
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Since GF = ∇�−1F we immediately deduce that

(
�

1/2GF

∣∣ �
1/2M

)
L2 = (�1/2GF

∣∣ �
1/2QM

)
L2 �

1

2

∥∥�1/2QM
∥∥2

L2 + C
∥∥�1/2GF

∥∥2
L2 ,

whence we conclude that

− 1

τ

(
�

1/2M − χ0�
1/2H

∣∣ �
1/2M

)
L2 � − 1

τ

(∥∥�1/2M
∥∥2

L2 + χ0

2

∥∥�1/2QM
∥∥2

L2

)
+ C

τ

∥∥�1/2GF

∥∥2
L2 .

We recover hence the final H
1
2
(
R

2
)

energy inequality for M :

1

2

d

dt

∥∥�1/2M
∥∥2

L2 + σ

2

∥∥�1/2∇M
∥∥2

L2 + 1

τ

(∥∥�1/2M
∥∥2

L2 + χ0

2

∥∥�1/2QM
∥∥2

L2

)
� C

(
‖∇M‖2

L2

∥∥�1/2u
∥∥2

L2 + ‖M‖2
L2

∥∥�1/2ω
∥∥2

L2

)
+ C

τ

∥∥�1/2GF

∥∥2
L2 . (A.12)

Adding the inequalities (A.10), (A.11) and (A.12) we recover the differential inequality

1

2

d

dt

(
ρ0
∥∥�1/2u

∥∥2
L2 + ρ0κ

∥∥�1/2ω
∥∥2

L2 + ∥∥�1/2M
∥∥2

L2

)
+
[
η + ζ

2

∥∥�1/2∇u
∥∥

L2 + η′

2

∥∥�1/2∇ω
∥∥2

L2 + 4ζ
∥∥�1/2ω

∥∥2
L2

+ σ

2

∥∥�1/2∇M
∥∥2

L2 + 1

τ

(∥∥�1/2M
∥∥2

L2 + χ0

2

∥∥�1/2QM
∥∥2

L2

)]
� C

[
‖∇u‖2

L2

∥∥�1/2u
∥∥2

L2 + ‖∇u‖2
L2

∥∥�1/2M
∥∥2

L2 + ‖H‖2
L2

∥∥�1/2M
∥∥2

L2 + ‖∇M‖2
L2

∥∥�1/2u
∥∥2

L2

+ ‖M‖2
L2

∥∥�1/2ω
∥∥2

L2

]
+
[∥∥�1/2∇GF

∥∥2
L2 + C

τ

∥∥�1/2GF

∥∥2
L2 + ‖∇ω‖L2 ‖∇u‖L2

]
. (A.13)

With the quantities defined in (3.9) we can deduce from equation (A.13) the following differential 
inequality

1

2

d

dt
F (t) + c Fd (t) � CEd (t) F (t) + �τ (t) + CEd (t) ,

where Ed is defined in (3.4) which is an L1 function in time thanks to the bounds provided in 
Lemma 3.2. An application of Gronwall inequality allows hence to deduce the inequality

F (t) + 2c

t∫
exp

⎧⎨⎩
t∫

′
Ed

(
t ′′
)

dt ′′
⎫⎬⎭Fd

(
t ′
)

dt ′ � C F (0) exp

⎧⎨⎩C

t∫
Ed

(
t ′
)

dt ′
⎫⎬⎭
0 t 0
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+ C

t∫
0

exp

⎧⎨⎩C

t∫
t ′

Ed

(
t ′′
)

dt ′′
⎫⎬⎭[�τ

(
t ′
)+ Ed

(
t ′
)]

dt ′. (A.14)

Whence considering the L2 energy bound (3.6) we can argue that, for each 0 � t ′ � t � T

1 �
t∫

t ′
Ed

(
t ′′
)

dt ′′ � 1

c̃
� (U0,F,GF ) ,

which in turn implies that

F (t) + 2c

t∫
0

Fd

(
t ′
)

dt ′

� C F (0) exp

{
C

c̃
�(U0,F,GF )

}
+ C exp

{
C

c̃
�(U0,F,GF )

}
‖GF ‖

L2

(
[0,T ];H 3

2

)

+ C

c̃
exp

{
C

c̃
�(U0,F,GF )

}
�(U0,F,GF ) .

In order to deduce (3.10) it suffices to apply Lemma 3.3 and to consider that GF was considered 
to be in W 1,∞

loc

(
R+;H 3/2

)
. �

A.3. Proof of the uniqueness statement in Proposition 4.2

We want to prove here that the solutions constructed in Section 4 are unique in the energy 
space L∞

loc

(
R+;H 1/2

) ∩ L2
loc

(
R+;H 3/2

)
. In order to do so let us hence denote V = (u,ω,M) as 

above and let us write the system (4.5) in the compact form{
∂tV −L V = B2 (V ,V ) + B1 (V ,V ) + L V + fext,

V |t=0 = V0,
(A.15)

where respectively

L V =
⎛⎝ (η + ζ )�u

η′�ω

σ�M

⎞⎠ , L V =
⎛⎝ μ0P (M · ∇GF ) − 2ζ P∇⊥ω

μ0 M × GF + 2ζ (curl Pu − 2ω)

− 1
τ

(1 + χ0Q)M

⎞⎠ , fext =
⎛⎝ 0

0
− 1

τ
GF

⎞⎠ ,

while the bilinear interactions B2 and B1 are defined as

B2 (V ,V ) =
⎛⎝−ρ0P (Pu · ∇Pu) − μ0P (M · ∇QM)

−ρ0κPu · ∇ω

−Pu · ∇M

⎞⎠ , B1 (V ,V ) =
⎛⎝ 0

−μ0 M ×QM

M⊥ω

⎞⎠ .

And let Vi, i = 1, 2 be a global weak solution of the following Cauchy problem



S. Scrobogna / J. Differential Equations 266 (2019) 2718–2761 2753
{
∂tVi −L Vi = B2 (Vi,Vi) + B1 (Vi,Vi) + L Vi + fext,

Vi |t=0 = Vi,0,

where Vi,0, i = 1, 2 belong to H 1/2. As explained above

Vi ∈ L∞
loc

(
R+;H 1

2

(
R

2
))

, ∇Vi ∈ L2
loc

(
R+;H 1

2

(
R

2
))

.

Let us hence define δV = V1 − V2 and δV0 = V1,0 − V2,0, then δV solves weakly

{
∂t δV −L δV = B2 (V1, δV ) + B2 (δV,V2) + B1 (V1, δV ) + B1 (δV,V2) + L δV,

δV |t=0 = δV0.
(A.16)

The method we will adopt in order to prove the uniqueness of solutions of (A.15) in 
L∞

loc

(
R+;H 1/2

)∩ L2
loc

(
R+;H 3/2

)
is rather standard and it develops in the following way

� We perform some L2 energy estimates on the system (A.16) in order to deduce a bound of 
the following form

‖δV ‖2
L∞([0,t];L2

) + ‖∇δV ‖2
L2
(
[0,t];L2

) � ‖δV0‖L2 f (t) ,

for any t > 0 and some f ∈ L∞
loc (R+).

� We perform next some �1/2L2 energy estimates always on the system (A.16) in order to 
deduce the energy inequality

‖δV ‖2
L∞([0,t];�1/2L2

) + ‖∇δV ‖2
L2
(
[0,t];�1/2L2

) � ‖δV0‖�
1/2L2 g (t) ,

for any t > 0 and some g ∈ L∞
loc (R+).

� Interpolating the two inequalities here above and setting δV = 0 in H 1/2 we obtain hence that 
δV has to be identically nil in the space L∞

loc

(
R+;H 1/2

)∩ L2
loc

(
R+;H 3/2

)
.

From now on we use the notation ‖·‖s = ‖�s ·‖L2 , (�s · | �s ·)L2 = ( · | ·)s for any s ∈ R.

A.3.1. Step 1: the L2 energy bound
the bound we provide in this first step are relatively simple, hence we will sometimes omit to 

specify in detail every step required in order to prove them.
We multiply the equation (A.16) for δV and we integrate in space in order to deduce the 

differential inequality

1

2

d

dt
‖δV ‖2

L2 + c ‖∇δV ‖2
L2 �

∣∣(B2 (V1, δV ) | δV )L2

∣∣+ ∣∣(B2 (δV,V2) | δV )L2

∣∣
+ ∣∣(B1 (V1, δV ) | δV )L2

∣∣+ ∣∣(B1 (δV,V2) | δV )L2

∣∣+ ∣∣(L δV | δV )L2

∣∣ . (A.17)
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The following estimates are immediate to deduce∣∣(B2 (V1, δV ) | δV )L2

∣∣� ‖V1‖L∞ ‖δV ‖L2 ‖∇δV ‖L2 ,

� α ‖∇δV ‖2
L2 + C

α
‖V1‖2

H
3/2 ‖δV ‖2

L2 ,∣∣(B2 (δV,V2) | δV )L2

∣∣� ‖∇V2‖L2 ‖δV ‖2
L4 ,

� α ‖∇δV ‖2
L2 + C

α
‖∇V2‖2

L2 ‖δV ‖2
L2 ,∣∣(B1 (V1, δV ) | δV )L2

∣∣+ ∣∣(B1 (δV,V2) | δV )L2

∣∣� (‖V1‖L2 + ‖V2‖L2

)‖δV ‖2
L4 ,

� α ‖∇δV ‖2
L2

+ C

α

(
‖V1‖2

L2 + ‖V2‖2
L2

)
‖δV ‖2

L2 ,∣∣(L δV | δV )L2

∣∣� α ‖∇δV ‖2
L2 + C

α
‖δV ‖2

L2 .

(A.18)

Whence considering the estimates (A.18) in (A.17), selecting an 0 < 4α < c/2 and applying a 
Gronwall inequality we can deduce the following rather crude bound, for any t > 0

‖δV (t)‖2
L2 + c

2

t∫
0

‖∇δV (τ)‖2
L2 dτ � C ‖δV0‖2

L2 exp

⎧⎨⎩C

t∫
0

φ (τ)dτ

⎫⎬⎭ ,

where

φ =
(

1 + ‖V1‖2
L2 + ‖V2‖2

L2

)(
1 + ‖V1‖2

H
3/2 + ‖V2‖2

H
3/2

)
.

The function φ ∈ L1
loc (R+) thanks to the results proved in Section 4, whence we conclude the 

proof of the first step.

A.3.2. Step 2: the �1/2L2 energy bound
With a procedure which is now familiar we multiply (A.16) for �δV and integrate in space in 

order to deduce the energy inequality

1

2

d

dt
‖δV ‖2

1/2
+ c ‖∇δV ‖2

1/2
�
∣∣(B2 (V1, δV ) | δV )1/2

∣∣+ ∣∣(B2 (δV,V2) | δV )1/2

∣∣
+ ∣∣(B1 (V1, δV ) | δV )1/2

∣∣+ ∣∣(B1 (δV,V2) | δV )1/2

∣∣+ ∣∣(L δV | δV )1/2

∣∣ . (A.19)

Since as far as concerns energy estimates we can identify the bilinear form B2 with the transport 
form up to a constant we will do so in order to simplify the notation of the proof. We consider at 
firs the term 

∣∣(B2 (V1, δV ) | δV )1/2

∣∣ which, as explained we identify with 
∣∣(V1 · ∇δV | δV )1/2

∣∣. 
With a standard integration by parts we argue that∣∣(V1 · ∇δV | δV )1/2

∣∣� ∣∣(∇V1 ⊗ δV | δV )1/2

∣∣+ ∣∣(V1 ⊗ δV | ∇δV )1/2

∣∣ .
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We analyze at first the term 
∣∣(∇ V1 ⊗ δV | δV )1/2

∣∣, since the operator �1/2 is self-adjoint in L2

we argue that

∣∣(∇ V1 ⊗ δV | δV )1/2

∣∣= ∣∣∣∣∫ ∇ V1 ⊗ δV �δV dx

∣∣∣∣ ,
� ‖∇ V1‖L2 ‖δV ‖L4 ‖∇δV ‖L4 ,

while since �1/2L2 embeds continuously in L4 we deduce that

∣∣(∇ V1 ⊗ δV | δV )1/2

∣∣� α ‖∇δV ‖2
1/2

+ C

α
‖∇V1‖2

L2 ‖δV ‖2
1/2

. (A.20)

Using Lemma 2.6 instead∣∣(V1 ⊗ δV | ∇δV )1/2

∣∣� ‖V1 ⊗ δV ‖1/2 ‖∇δV ‖1/2 ,

�
(‖V1‖L∞ ‖δV ‖1/2 + ‖V1‖1/2 ‖δV ‖L∞

)‖∇δV ‖1/2 .
(A.21)

Since H 3/2 ↪→ L∞ we deduce that

‖V1‖L∞ � ‖V1‖H
3/2 , (A.22)

while using (2.1) and the inequality ‖v‖1/2 � C ‖v‖1/2

L2 ‖∇v‖1/2

L2 we deduce

‖V1‖1/2 ‖δV ‖L∞ � C ‖V1‖1/2

L2 ‖∇V1‖1/2

L2 ‖δV ‖1/2

1/2
‖∇δV ‖1/2

1/2
. (A.23)

Whence with (A.22) and (A.23) the inequality (A.21) becomes

∣∣(V1 ⊗ δV | ∇δV )1/2

∣∣� C
(
‖V1‖H

3/2 ‖δV ‖1/2 + ‖V1‖1/2

L2 ‖∇V1‖1/2

L2 ‖δV ‖1/2

1/2
‖∇δV ‖1/2

1/2

)
‖∇δV ‖1/2 ,

� α ‖∇δV ‖2
1/2

+ C

α

(
‖V1‖2

H
3/2 + ‖V1‖2

L2 ‖∇V1‖2
L2

)
‖δV ‖2

1/2
.

(A.24)

The term (B2 (δV,V2) | δV )1/2, on which we perform the identification B2 (δV,V2) ∼ δV ·
∇V2, can be bounded as∣∣(δV · ∇V2 | δV )1/2

∣∣� C ‖δV · ∇V2‖−1/2 ‖∇δV ‖1/2 ,

� C ‖∇V2‖L2 ‖δV ‖1/2 ‖∇δV ‖1/2 ,

� α ‖∇δV ‖2
1/2

+ C

α
‖∇V2‖2

L2 ‖δV ‖2
1/2

.

(A.25)

Next we consider the bilinear interactions generated by B1 (which we identify as B1 (A,B) ∼
A ⊗ B for the energy estimates). The following estimates are immediate
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∣∣(V1 ⊗ δV | δV )1/2

∣∣� ‖V1 ⊗ δV ‖−1/2 ‖∇δV ‖1/2 ,

� α ‖∇δV ‖2
1/2

+ C

α
‖V1‖2

L2 ‖δV ‖2
1/2

,∣∣(δV ⊗ δV2 | δV )1/2

∣∣� α ‖∇δV ‖2
1/2

+ C

α
‖V1‖2

L2 ‖δV ‖2
1/2

.

(A.26)

Lastly we assert that we can bound

∣∣(L δV | δV )1/2

∣∣� α ‖∇δV ‖2
1/2

+ C

α
‖δV ‖2

1/2
. (A.27)

At this point considering the bounds (A.20), (A.24)–(A.27) in (A.20) and selecting α > 0
sufficiently small so that c − 5α � ĉ > 0 we can deduce the inequality

1

2

d

dt
‖δV (t)‖2

1/2
+ ĉ ‖∇δV (t)‖2

1/2
� Cα h(t)‖δV (t)‖2

1/2
,

where

h(t) =
(

1 + ‖V1 (t)‖2
L2 + ‖V2 (t)‖2

L2

)(
1 + ‖V1 (t)‖2

H
3/2 + ‖V2 (t)‖2

H
3/2

)
,

whence applying a Gronwall inequality we deduce

‖δV (t)‖2
1/2

+ 2ĉ

t∫
0

∥∥∇δV
(
t ′
)∥∥2

1/2
dt ′ � Cα ‖δV0‖2

1/2
exp

⎧⎨⎩
t∫

0

h
(
t ′
)

dt ′
⎫⎬⎭ .

Thanks to the results proved in Section 4 we know hence that h ∈ L1
loc (R+), whence we de-

duce the uniqueness of the weak solutions in the energy space L∞
loc

(
R+;H 1/2

)∩ L2
loc

(
R+;H 3/2

)
, 

concluding. �
A.4. Proof of Lemma 5.4

Let us recall that the following Leibniz rule applies

∂α (a · ∇b) =
∑

β+γ=α

κβ,γ ∂βa · ∇∂γ b,

where the κβ,γ are positive and finite and their explicit value is irrelevant in our context.
Whence ∣∣∣∣∫ ∂α (a · ∇b) ∂αc dx

∣∣∣∣� ∑
β+γ=α

κβ,γ

∣∣∣∣∫ ∂βa · ∇∂γ b · ∂αc dx

∣∣∣∣ . (A.28)

We divide now the right hand side of the above inequality in three cases
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• If |β| , |γ |� 1 we can bound the right hand side of (A.28), restricted on such set, as

∑
β+γ=α

|β|,|γ |�1

κα,β

∣∣∣∣∫ ∂βa · ∇∂γ b · ∂αc dx

∣∣∣∣
�

∑
β+γ=α

|β|,|γ |�1

κβ,γ

∥∥∂βa
∥∥1/2

L2

∥∥∇∂βa
∥∥1/2

L2

∥∥∂αc
∥∥1/2

L2

∥∥∇∂αc
∥∥1/2

L2

∥∥∇∂γ b
∥∥

L2 ,

�
∑

β+γ=α
|β|,|γ |�1

(
κ4
β,γ ε̃

∥∥∇∂αc
∥∥2

L2 + C

ε̃

∥∥∂βa
∥∥2

L2

∥∥∇∂βa
∥∥2

L2

∥∥∂αc
∥∥2

L2 + C

ε̃

∥∥∇∂γ b
∥∥2

L2

)
,

�

⎛⎜⎜⎝ ∑
β+γ=α

|β|,|γ |�1

κ4
β,γ

⎞⎟⎟⎠ ε̃
∥∥∇∂αc

∥∥2
L2 + C

ε̃

⎛⎝ ∑
1�|β|<k

∥∥∂βa
∥∥2

L2

∥∥∇∂βa
∥∥2

L2

⎞⎠∥∥∂αc
∥∥2

L2

+C

ε̃

⎛⎝ ∑
1�|γ |<k

∥∥∇∂γ b
∥∥2

L2

⎞⎠ .

Accordingly to the hypotheses (5.2) we can assert that there exists a constant ck depending 
only on the length of the multi-index α such that

∑
1�|β|<k

∥∥∂βa
∥∥2

L2

∥∥∇∂βa
∥∥2

L2 � ck

k−1∑
�=1

F 2
� G2

�,

∑
1�|γ |<k

∥∥∇∂γ b
∥∥2

L2 � ck

k−1∑
�=1

G2
�.

Whence since the values κβ,γ are finite, for any ε > 0 we can select a ε̃ sufficiently small, 
which again depends on k only, so that⎛⎜⎜⎝ ∑

β+γ=α
|β|,|γ |�1

κ4
β,γ

⎞⎟⎟⎠ ε̃ <
ε

8
.

We hence proved that

∑
|β|+|γ |=|α|
|β|,|γ |�1

κα,β

∣∣∣∣∫ ∂βa · ∇∂γ b · ∂αc dx

∣∣∣∣
� ε

8

∥∥∇∂αc
∥∥2

L2 + Cck

ε

(
k−1∑

F 2
� G2

�

)∥∥∂αc
∥∥2

L2 + Cck

ε

k−1∑
G2

�. (A.29)

�=1 �=1
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• If β = 0 and γ = α the right-hand side of (A.28) restricted in such set can be bounded as

κ0,α

∣∣∣∣∫ a · ∇∂αb · ∂αc dx

∣∣∣∣� κ0,α ‖a‖1/2

L2 ‖∇a‖1/2

L2

∥∥∇∂αb
∥∥

L2

∥∥∂αc
∥∥1/2

L2

∥∥∇∂αc
∥∥1/2

L2 ,

�
(
κ4

0,αε̃
∥∥∇∂αc

∥∥2
L2 + ε̃

∥∥∇∂αb
∥∥2

L2

)
+ C

ε̃
‖a‖2

L2 ‖∇a‖2
L2

∥∥∂αc
∥∥2

L2 .

(A.30)

Thanks to the hypotheses (5.2) we assert that

‖a‖2
L2 ‖∇a‖2

L2 � F 2
0 G2

0,

and moreover we can choose ε̃ sufficiently small so that 2 max
{
κ4

0,α,1
}

ε̃ <
ε

8
, whence 

(A.30) becomes

κ0,α

∣∣∣∣∫ a · ∇∂αb · ∂αc dx

∣∣∣∣� ε

8

(∥∥∇∂αc
∥∥2

L2 + ∥∥∇∂αb
∥∥

L2

)
+ C

ε
F 2

0 G2
0

∥∥∂αc
∥∥2

L2 . (A.31)

• If β = α and γ = 0 the right hand side of (A.28) becomes

κα,0

∣∣∣∣∫ ∂αa · ∇b · ∂αc dx

∣∣∣∣� ∥∥∂αa
∥∥1/2

L2

∥∥∇∂αa
∥∥1/2

L2 ‖∇b‖L2

∥∥∂αc
∥∥1/2

L2

∥∥∇∂αc
∥∥1/2

L2 ,

� ε̃
(∥∥∇∂αa

∥∥2
L2 + ∥∥∇∂αc

∥∥2
L2

)
+ C

ε̃
‖∇b‖2

L2

(∥∥∂αa
∥∥2

L2 + ∥∥∂αc
∥∥2

L2

)
.

Whence considering the hypotheses (5.2) and selecting a ε̃ sufficiently small we deduce

κα,0

∣∣∣∣∫ ∂αa · ∇b · ∂αc dx

∣∣∣∣
� ε

8

(∥∥∇∂αa
∥∥2

L2 + ∥∥∇∂αc
∥∥2

L2

)
+ C

ε
G2

0

(∥∥∂αa
∥∥2

L2 + ∥∥∂αc
∥∥2

L2

)
. (A.32)

Summing hence (A.29), (A.31) and (A.32), and setting Ck � Cck we deduce the inequality 
(5.3). �
A.5. Proof of Lemma 5.5

Again as in the proof of Lemma 5.4 we exploit Leibniz formula∣∣∣∣∫ ∂α (a b) ∂αc dx

∣∣∣∣= ∑
β+γ=α

κβ,γ

∣∣∣∣∫ ∂βa ∂γ b ∂αc dx

∣∣∣∣ , (A.33)

and we divide the proof in three cases:
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• Suppose |β| , |γ | � 1, whence the right hand side of (A.33) restricted on such set can be 
bounded as

∑
β+γ=α

κβ,γ

∣∣∣∣∫ ∂βa ∂γ b ∂αc dx

∣∣∣∣� ∑
β+γ=α

κβ,γ

∥∥∂βa
∥∥

L4

∥∥∂γ b
∥∥

L4

∥∥∂αc
∥∥

L2 ,

�
∑

β+γ=α

κβ,γ

∥∥∂βa
∥∥1/2

L2

∥∥∇∂βa
∥∥1/2

L2

∥∥∂γ b
∥∥1/2

L2

∥∥∇∂γ b
∥∥1/2

L2

× ∥∥∂αc
∥∥

L2 ,

while using the Hypotheses 5.2 we deduce

∑
β+γ=α

κβ,γ

∣∣∣∣∫ ∂βa ∂γ b ∂αc dx

∣∣∣∣� Ck

(
k−1∑
�=1

G
1/2

�−1G
1/2

� G
1/2

k−�−1G
1/2

k−�

)∥∥∂αc
∥∥

L2 . (A.34)

• If β = α and γ = 0 then

∣∣∣∣∫ ∂αa b ∂αc dx

∣∣∣∣� ∥∥∂αa
∥∥

L4 ‖b‖L2

∥∥∂αc
∥∥

L4 ,

� C

ε̃

∥∥∂αa
∥∥

L2

∥∥∂αc
∥∥

L2 ‖b‖2
L2 + ε̃

(∥∥∇∂αa
∥∥2

L2 + ∥∥∇∂αc
∥∥2

L2

)
,

and since

∥∥∂αa
∥∥

L2

∥∥∂αc
∥∥

L2 � ‖∇a‖Hk−1 ‖∇c‖Hk−1 � G2
k−1,

we deduce

∣∣∣∣∫ ∂αa b ∂αc dx

∣∣∣∣� ε̃
(∥∥∇∂αa

∥∥2
L2 + ∥∥∇∂αc

∥∥2
L2

)
+ C

ε̃
G2

k−1 ‖b‖2
L2 . (A.35)

• If β = 0 and γ = α then the bound we look for is the following

∣∣∣∣∫ a ∂αb ∂αc dx

∣∣∣∣� ε̃
(∥∥∇∂αb

∥∥2
L2 + ∥∥∇∂αc

∥∥2
L2

)
+ C

ε̃
G2

k−1 ‖a‖2
L2 , (A.36)

and whose proof is identical but symmetric of the one performed above, and hence omitted.

Inserting the results given in (A.34), (A.35) and (A.36) in (A.33), selecting ε̃ sufficiently small 
and C sufficiently large we deduce (5.4). �
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