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Abstract

As complete genomes become easier to attain, even from previously difficult-to-sequence species, and as
genomic resequencing becomes more routine, it is becoming obvious that genomic structural variation is
more widespread than originally thought and plays an important role in maintaining genetic variation in
populations. Structural variants (SVs) and associated gene presence–absence variation (PAV) can be
important players in local adaptation, allowing the maintenance of genetic variation and taking part in
other evolutionarily relevant phenomena. While recent studies have highlighted the importance of struc-
tural variation in Mollusca, the prevalence of this phenomenon in the broader context of marine organisms
remains to be fully investigated.
Here, we describe a straightforward and broadly applicable method for the identification of SVs in fully

assembled diploid genomes, leveraging the same reads used for assembly. We also explain a gene PAV
analysis protocol, which could be broadly applied to any species with a fully sequenced reference genome
available. Although the strength of these approaches have been tested and proven in marine invertebrates,
which tend to have high levels of heterozygosity, possibly due to their lifestyle traits, they are also applicable
to other species across the tree of life, providing a ready means to begin investigations into this potentially
widespread phenomena.
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1 Introduction

It is becoming apparent from whole genome resequencing that
intraspecific genome variation, once mostly thought to be a
prerogative of prokaryotes, is more widespread than previously
expected in eukaryotes. These phenomena, collectively referred to
as structural variations (SV), encompass any large scale difference in
genome architecture and, in addition to translocations, duplica-
tions, inversions, and copy number variations, they also include
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insertions and deletions [1]. Insertions and deletions are particu-
larly consequential because they include regions of a species’
genome which are subject to presence–absence variation (PAV)
either between homologous chromosomes within an individual or
between individuals. The outcome of such variation is that the
genetic complement of two individuals belonging to a single species
or population may differ from one another. This deviates from the
commonly held idea that variation between individuals is primarily
the result of allelic variation of a common genomic repertoire. In
genome assemblies of diploid organisms, PAV can be determined
by the observation of large genomic regions present in a hemizy-
gous state, that is, only present in one of the two homologous
chromosomes. These loci can be readily identified by their reduced
read coverage which exists at approximately half that of flanking
homozygous regions. On a broader population level, any genomic
region affected by PAV could be present in zero, one, or two copies
(found in a nullizygous, hemizygous, or homozygous state) across
different individuals.

Unexpectedly, not only do genomic regions subject to PAV
include intergenic or intronic sequence, but they may also include
protein-coding genes which retain full functionality, with a poten-
tial impact on phenotypic diversity [2] and adaptation [3, 4]. In this
respect, the gene repertoire of any given species can be divided into
two different categories: (1) core genes, which are thought to carry
out functions indispensable for survival and are shared by all indi-
viduals, and (2) dispensable genes, which may provide accessory
functions and are only found in a subgroup of individuals. Alto-
gether, the full complement of core and dispensable genes found
across all the individuals belonging to the same species define the
pangenome [5]. While this concept has been long applied to
microbial and viral genomes [6, 7], broad scale genomic PAV has
also been observed in a number of plants, microalgae and fungi
[3, 8–11], where the accessory functions provided by dispensable
genes have been linked with an improved ability to colonize new
ecological niches, to withstand biotic and abiotic stress, or to escape
host immune response in the case of pathogenic organisms. Even
though pangenomic studies have been only very recently extended
to metazoans, gene PAV has already been noted in a number of
lineages, including in humans [12–14]. Following early observa-
tions collected for single genes [15], a subsequent genome-wide
approach allowed for the first description among marine animals of
the presence of a pangenome in the Mediterranean mussel Mytilus
galloprovincialis [16].

The scale of PAV varies widely between species. In plants [10],
and some animal species, variable regions, which can be readily
identified thanks to their hemizygous state (i.e., for diploid species,
regions with half the expected sequencing coverage), can encom-
pass large proportions of the genome. For example, hemizygous
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regions account for more than 35% of the reference genome assem-
bly of M. galloprovincialis, which results in the presence of more
than 20,000 dispensable genes [16]. However, in other animals,
such as humans, PAV accounts for a much smaller fraction of the
genome. Typically, less than 0.1% of the human genome varies
between individuals and a small fraction of genes (i.e., 240 out of
the ~20,000 genes annotated in the human genome) are potentially
subject to homozygous deletions [12]. The rate of dispensable to
core genes is generally used to describe the “openness” of a pan-
genome. Even though this definition is somewhat arbitrary, gen-
omes such as those of the mussel, plants and bacteria, where a high
proportion of dispensable genes have been detected, are considered
“open” pangenomes. In contrast, genomes with a relatively lower
dispensable to core gene proportion are defined as “closed” pangen-
omes. While the presence of “open” pangenomes has been previ-
ously associated with an improved potential for adaptation in
bacteria [4], the possibility that accessory genes may also be asso-
ciated with neutral or slightly deleterious effects on fitness [17]
reveals that a consensus about the functional role of microbial
pangenomes is still far from being reached by the scientific com-
munity. Although dispensable genes are characterized by an enrich-
ment of functions linked with immune defense and survival in
M. galloprovincialis [16], it is unclear whether this seemingly adap-
tive role for PAV is common to other marine species that share
similar life traits. This remains an open question of great ecological
and evolutionary relevance.

Due to the relatively recent inclusion of metazoans among the
targets of pangenomic studies, no consolidated method for the
analysis of SVs and PAV have been developed and broadly validated
to date in these organisms, which (unlike bacteria) have complex
diploid genomes. The standard method for detecting genomic
regions subject to PAV between individuals is the use of whole
genome resequencing (WGR). In this approach, a sample of indi-
viduals from a population or species are resequenced and compared
to a reference genome assembly of the target species. This allows for
the identification of genomic loci that are subject to presence–
absence variation between each sequenced individual and the refer-
ence assembly. Through this iterative comparative approach, the
true genomic complement of the population or species can be
approached as more individuals are sampled.

While WGR remains the only method to determine the com-
plete genomic complement of a population or species, it is expen-
sive and time consuming, and is not an efficient option to gain a first
insight into the level of PAV that may exist in a population. More-
over, it does not necessarily provide information on PAV between
homologous chromosomes within an individual. We have
established a pipeline which can be applied to any well-assembled
genome, and which leverages the long reads used in the initial
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assembly to identify genomic loci that are subject to PAV between
the homologous chromosomes of diploid individuals rather than
between individuals. As previously mentioned, PAV between
homologous chromosomes results in stretches of hemizygous
DNA that can be identified using preexisting reads. This means
that no additional sequencing is required to gain a preliminary
understanding of the level of hemizygosity in the sequenced
individual [18]. This method accounts for regions of tandem dupli-
cation and false positives due to genome assembly artifacts, produc-
ing robust yet conservative estimates of hemizygosity through a
mapping and coverage estimation-based approach.

The stark differences in PAV raise many interesting questions
for evolutionary biology. In an era where genomes are generally
generated from single individuals, it is useful to consider whether
they are representative of populations as a whole, and the methods
described here provide a ready initial assessment scheme. In concert
with the method for the detection of hemizygous regions in diploid
genome assemblies detailed in this chapter, we also describe here a
protocol for the use of IlluminaWGR data for the detection of gene
PAV among individuals. While the costs of third generation
sequencing technologies, such as those offered by Oxford
Nanopore and Pacific Biosciences are rapidly dropping, price con-
siderations still prevent the broad applicability of such methods to
large scale resequencing projects. For many research groups the use
of short reads remains the preferred choice for high-throughput
nonmodel species genomics. The reliability of the short-read based
method presented here has been proven on mollusks, and in partic-
ular in M. galloprovincialis [16]. However, this approach will be
just as applicable to other species, as long as the quality of both the
raw resequencing data and of the annotated reference genome are
sufficient.

The ready nature of the approach we describe could be helpful
in ascertaining the extent to which phenomena such as genomic
and genic PAVare coupled to particular environments or life history
traits. This approach could be particularly useful in understanding
heterozygosity in marine broadcast spawners. Marine species have
been shown to possess higher levels of heterozygosity than other
species [19]. This could be due to large effective population sizes,
rapid dispersal, high levels of genetic outcrossing and panmixture,
coupled with local variations in environment, although factors such
as local sperm viability do impact “real world” genetic diversity
levels [20]. However, genetic variation is ultimately the result of
mutational events, and when many mutations are retained rather
than purged from genomes within a population over evolutionary
timescales, this will result in high levels of heterozygosity. Mutation
rate will be further impacted by the rate of transpositional activity
or low fidelity error correction mechanisms, which we have previ-
ously shown to be likely involved in PAV in mollusks [18].
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This approach provides new means for raising and addressing
questions regarding the origin, maintenance and prevalence of PAV
in nonmodel species, which may be more suitable for addressing
these issues than more typical laboratory organisms. It also provides
a means of linking these investigations with gene PAV, the adaptive
nature of this phenomenon, and processes of gene family expansion
and contraction. As genomic sequences become readily available
across the tree of life, and as long read sequencing reduces in price,
it will only become easier to gain a more representative understand-
ing of the level of PAV in all species, and to reflect on the contribu-
tion of these phenomena to the evolution of marine life as we
know it.

2 Materials

2.1 Target Selection The procedures described in Subheading 3.1 involve the analysis of
a near complete or complete (chromosomal) haploid genome
assemblies produced from diploid species using both PacBio long
reads (seeNote 1) and Illumina short reads. Care should be taken to
ensure that the sequenced individual was not the product of selec-
tive breeding as this would likely reduce the level of structural
variation that would be expected from comparable individuals
from outbreeding or wild populations. Target species/individuals
should be selected based on the availability of the following.

1. A high-quality genome assembly (see Note 2 for additional
recommendations).

2. High quality PacBio long read libraries (good results were
attained with >40� coverage, and we have not tested this to
determine a minimum required level) derived from the same
individual from which the genome assembly was constructed.

3. High quality Illumina short read libraries (good results were
attained with >20� coverage) derived from the same individ-
ual from which the genome assembly was constructed. Please
see Note 3 for additional recommendations.

On the other hand, the analyses described in Subheading 3.2
can be applied to any fully sequenced and annotated genome,
regardless of the use of long reads during the de novo assembly
process. The choice of the target species should be based on the
following criteria.

1. Availability of a full genome assembly with associated gene
annotations in a .gff file format. Since the accuracy of gene
model annotations will be crucial to allow a proper interpreta-
tion of PAV data, we suggest to evaluate the completeness of
the set of the annotated genes in the target species with
BUSCO [21], selecting the appropriate taxonomic dataset
available from the most recent release of OrthoDB [22].
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Availability of high quality Illumina WGR short read libraries
(good results were attained with>20� coverage) derived from one
or more individuals different from the one used for the generation
of the genome assembly. Please see Note 2 for additional
recommendations.

2.2 Software All computational procedures should be performed on a Linux-
based system and the following software should be installed prior to
commencement.

bbduk [23]: https://sourceforge.net/projects/bbmap

bedmap [24]: https://github.com/bedops

bedtools [25]: https://github.com/arq5x/bedtools2

BUSCO [21]: https://busco.ezlab.org

Bwa [26]: http://bio-bwa.sourceforge.net

bwa mem [27]: https://github.com/lh3/bwa

fastp [28]: https://github.com/OpenGene/fastp

FastQC [29]: https://github.com/s-andrews/FastQC

jellyfish [30]: https://github.com/gmarcais/Jellyfish

mosdepth [31]: https://github.com/torfinnnome/mosdepth

Numpy [32]: https://numpy.org

Pandas [33]: https://pandas.pydata.org

pbmm2 [34]: https://github.com/PacificBiosciences/pbmm2

pbsv [35]: https://github.com/PacificBiosciences/pbsv

Python: https://www.python.org

samtools [36]: https://github.com/samtools/samtools

Scipy [37]: https://www.scipy.org

Tandem Repeats Finder [38]: https://tandem.bu.edu/trf/trf.html

3 Methods

3.1 Allelic Structural

Variation Detection

Within Assembled

Genomes

Identify tandem repeats in genome assembly and convert output to
zero-based six field bed file.

1. trf genome.fa 2 7 7 80 10 50,500 -d -h

2. TRFdat_to_bed.py --dat genome.fa.2.7.7.80.10.50.500_mod.

dat --bed genome.fa.2.7.7.80.10.50.500.bed

3. awk ’{print $1"\t"$2-1"\t"$3"\t"$4}’ genome.

fa.2.7.7.80.10.50.500.bed | sed ’s/Sequence://’ | awk

’ { p r i n t $ 0 " \ t " $ 3 - $ 2 " \ t 1 " } ’ >g e n o m e .

fa.2.7.7.80.10.50.500_0based_6field.bed

Align PacBio reads to genome assembly with the minimap2
[39] wrapper pbmm2.
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1. pbmm2 align -j 16 genome.fa pacbio_reads.fofn genome.

aligned.bam --sort --median-filter --sample sample1

Identify structural variants in genome assembly (see Note 4).

1. p b s v d i s c o v e r - - t a n d e m - r e p e a t s g e n o m e .

fa.2.7.7.80.10.50.500_0based_6field.bed genome.aligned.

bam genome.svsig.gz

2. pbsv call -j 16 genome.fa genome.svsig.gz genome.var.vcf

Extract deletions (DELs) and insertions (INSs) for which two
alleles can be detected to avoid likely false positives that occur due
to genome assembly errors.

1. grep DEL genome.var.vcf | grep PASS | grep -v ’1/1’ | awk

’{print $1"\t"$2-1"\t"$2+length($4)-1"\t"$3}’ | awk

’{print $0"\t"$3-$2"\t1"}’ >genome.var.DEL.6field.bed

2. grep INS genome.var.vcf | grep PASS | grep -v -P ’1/1’ |

awk ’{print $1"\t"$2-1"\t"$2+length($5)-1"\t"$3}’ | awk

’{print $0"\t"$3-$2"\t1"}’ >genome.var.INS.6field.bed

Remove adapters and low quality regions from Illumina
libraries. This step could be carried out using several different
tools as an alternative to bbduk, reported in the example below
(see Note 5 for additional recommendations).

1. bbduk.sh in1=reads_1.fastq in2=reads_2.fastq out1=read-

s_clean_trimmed_1.fq out2=reads_clean_trimmed_2.fq ref=a-

dapters.fa ktrim=r k=25 mink=11 hdist=1 qtrim=r trimq=30

tpe tbo threads=8

Map processed reads to genome assembly, merge resulting bam
files if more than one library is independently mapped (step 2) and
convert to fasta format.

1. bwa mem -t 16 genome.fasta reads_clean_trimmed_1.fastq

reads_clean_trimmed_2.fastq | samtools sort -@16 -o read-

s_bwa_aligned.bam -

2. samtools merge mergedBamFile.bam *.bam

3. samtools view -@ 8 -F 4 -h mergedBamFile.bam >all_mapping.

sam

4. reformat.sh in=all_mapping.sam out=all_mapping.fa

Produce kmer histogram of mapped reads.

1. jellyfish count -t 8 -C -m 21 -s 16G all_mapping.fa -o

all_reads.jf

Detecting Structural Variants in Marine Organisms 59
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2. jellyfish histo -o all_reads.histo all_reads.jf

Extract reads that map to deletions and that are completely
contained within a deletion.

1. samtools view -@ 8 -F 4 -h -b -L genome.var.DEL.6field.bed

mergedBamFile.bam >del_mapping.bam

2. bedmap --echo --fraction-map 1 <(bam2bed <del_mapping.bam)

genome.var.DEL.6field.bed >del_reads.bed

3. cut -f1-6 del_reads.bed >del_reads.6field.bed

4. fastaFromBed -fi genome.fa -bed del_reads.6field.bed -fo

del_reads.fa

Produce kmer histogram of deletion mapping reads to compare
against kmer histogram of all mapped reads.

1. jellyfish count -t 8 -C -m 21 -s 16G del_reads.fa -o

del_reads.jf

2. jellyfish histo -o del_reads.histo del_reads.jf

Produce bam file of reads mapped to deletions.

1. cut -f4 del_reads.bed | sort -u >del_reads.names

2. samtools view mergedBamFile.bam | fgrep -w -f del_reads.

names >del_reads.sam

3. samtools view -H mergedBamFile.bam >del_reads_header.sam

4. cat del_reads.sam >>del_reads_header.sam

5. samtools view -@8 -S -b del_reads_header.sam

>del_reads_header.bam

6. samtools index -@8 del_reads_header.bam

Determine median coverage of deletion mapped reads.

1. mosdepth -t 8 -m -b del_reads.6field.bed genome del_-

reads_filtered.bam

Produce histogram of deletion coverages (rounded to whole
number) so that each deletion has its coverage counted only once.

1. zcat genome.regions.bed.gz | awk ’BEGIN{OFS=FS="\t"}

{$6=sprintf("%.0f",$5) }1’ | cut -f6 | sort -n | uniq -c

| sed -e ’s/^ *//’ -e ’s/\ /\t/’ | awk ’{print $2"\t"$1}’ |

head -200 >deletion_coverage.txt
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Determine read coverage at every nucleotide of the genome
and split the output file by chromosome.

1. genomeCoverageBed -d -ibam mergedBamFile.bam >genome.cov

2. awk ’{print>$1".cov"}’ genome.cov

Calculate median coverage using a 1000 bp sliding window and
a step of 1 nt then count how many windows have each coverage
value (rounded to whole number). Script (median_sliding_win-
dow.gawk) can be found in Note 6.

1. for i in *cov ; do cat $i | sh median_sliding_window.gawk

| sed ’s/\ /\t/g’ >‘echo $i | sed ’s/cov/median/’‘ ; done

2. cat *median | awk ’BEGIN{OFS=FS="\t"}{$4=sprintf("%.0f",

$3) }1’ | cut -f4 | sort -n | uniq -c | sed -e ’s/^ *//’ -e

’s/\ /\t/’ | awk ’{print $2"\t"$1}’ >coverage_count.txt

3.2 Gene Presence–

Absence Variation

Detection and Analysis

Some useful scripts to run the pipeline of analysis described below
can be found online at the following link: https://github.com/
Carmen-Tuc/PAV_pipeline.

Recover all the short read Illumina libraries derived from WGR
experiments carried out on the target species of interest (seeNote 1
for further recommendations about the selection of the data to be
analyzed). Although the procedure described below could be
applied, with some modifications, to other types of sequencing
reads, the reliability of this analysis pipeline has only been tested
so far with Illumina short reads (see Note 7 for further details).

Perform quality control on reads and trim them accordingly.
This task can be performed with a number of different tools,
including FastQC [40], that we are using in the example below.
See Note 5 for further recommendations.

# perform quality control

fastqc read1.fq read2.fq

# perform trimming

fastp -i read1 file.fq -I read2 file.fq -o read1.trimmed.fq -O

read2.trimmed.fq --detect_adapter_for_pe -V -f 5 -t 3 -F 5 -T

3 -h report.html -w 16 -x -n f -5 -3 -p -l 75 -M 24

Map the reads on the reference genome, making sure to allow
the nonunique mapping of reads (see Note 8). Each sequencing
library should be mapped separately from the others. We recom-
mend the use of bwa [27], paired with samtools [41], for this task.

# index the genome

bwa index genome.fna
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# map trimmed reads on the reference, piping the result into

# samtools view for bam conversion

bwa mem -M -t 64 genome.fna read1.trimmed.fq read2.trimmed.fq

| samtools view -bS - > mapping.bam

# sort the bam file

samtools sort -@ 64 -O bam -o mapping.sorted.bam mapping.bam

Produce a coverage file for each set of Illumina reads mapped.
This file should link each position of the genome with read
mapping coverage. Make sure to include sites that display
coverage ¼ 0.

# produce the depth file

samtools depth -aa mapping.sorted.bam > genome.depth

Extract the coordinates for all genes and corresponding exons
from the genome annotation.

# extract meaningful rows and columns from the gff annotation

awk ‘{ if ($3 == “exon”) print ($0) }’ genome.gff | cut -f

1,4,5,9 > filtered_annotation.tsv

# clean the last column, reducing it to the exon id only.

# this command may vary depending on the format of the

annotation

cut -d "|" -f 1,7 filtered_annotation.tsv | sed ’s/ID=exon-

gnl|//g’ | cut -d ";" -f 1 > exons_coordinates

# input row example:

MTYJ01000001.1 Genbank exon 13344 13541 . + .

ID=exon-gnl|WGS:MTYJ|mrna.BV898_00003.1-1;Parent=rna-gnl|WGS:

MTYJ|mrna.BV898_00003.1;gbkey=mRNA;locus_tag=BV898_00003;or-

ig_protein_id=gnl|WGS:MTYJ|BV898_00003.1;orig_transcrip-

t_id=gnl|WGS:MTYJ|mrna.BV898_00003.1;partial=true;product=hy-

potheticalprotein;start_range=.,13344

# output row example:

MTYJ01000001.1 13344 13541 BV898_00003.1-1

Run a BUSCO analysis [21] on the extracted transcript
sequences obtained from the genome, making sure to select the
most appropriate dataset available in OrthoDB, and create a list of
genes flagged as “complete”.

busco -m transcriptome -l $lineage -c 64 -i transcript.fa -o

busco_exons -f
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awk ‘$2 == “Complete”’ full_table.tsv | cut -f 3 | cut -d “:”

-f 1 > complete_busco.list

Load the coverage file in a data analysis environment such as R
or python. In the following example, python will be used with the
numpy [32] and pandas [33] modules. Estimate the average cover-
age for the exon regions of each gene (if alternatively spliced exons
are present, make sure to include the longest exons available. See
Note 9 for a simple python code to achieve this computation and
Note 10 for an explanation about the need to exclude intronic
regions from these calculations.

Plot the distribution of the exon coverages of the complete set
of BUSCO genes. As this set only includes single-copy genes, the
graph produced should display a gaussian shaped curve, with its
peak approximately corresponding to the expected genome
sequencing depth (see Note 11 for additional details). Estimate
the median coverage of the BUSCO genes and divide it by eight
to obtain a coverage threshold for calling absent genes (seeNote 12
for additional details).

def readlist(filename):

with open(filename, “r”) as input_list:

return([x.rstrip() for x in input_list.readlines()]

complete_busco_genes = read_list(“complete_busco.list”)

exons_busco_coverage = total_exons[total_exons.ID_gene.isin

(complete_busco_genes)].groupby("ID_gene").apply(flatten_ex-

ons)

sns.distplot(exons_busco_coverage)

threshold = exons_busco_coverage.median()/8

Plot the exon coverage for all genes annotated in the reference
genome and observe the peaks in the generated graph. The pres-
ence of genes with zero coverage and of a hemizygous peak in
addition to the homozygous peak indicates the detection of gene
PAV (see Note 13 for additional details).

# Update xlim accordingly to the sequencing depth

xlim = 100

sns.distplot(coverage_total_exons[coverage_total_exons<xlim])

For troubleshooting purposes, we recommend to run the same
analysis using the Illumina short reads library originally used for the
de novo assembly of the reference genome itself. In this case, no
absent gene should be identified (see Note 14 for additional
details).
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Please note that this protocol has some limitations in PAV
detection for genes subjected to copy number variations and, in
particular, for genes associated with transposable element activity
(see Note 15).

The users might want to optionally collect unmapped reads
resulting from the bwa mem mapping step. As these may belong
to regions which are not found in the reference genome, the de
novo assembly of unmapped paired-end reads can be used to gen-
erate a collection of alternate contigs, building the pangenome of
the species of interest. See Note 16 for some suggestions.

3.3 PAV Gene

Functional Enrichment

Analysis

Perform enrichment analysis by hypergeometric test [42] on the
union set of the dispensable genes identified in all the analyzed
resequenced genomes, using the complete set of genes annotated
in the reference genome as a background (this will constitute the
“universe” dataset, see below). To achieve this, at least one type of
annotation will be needed. While multiple alternative functional
annotation resources could be used, we recommend Gene Ontol-
ogy (GO) terms, which can be further subdivided in three main
categories: Biological Process, Molecular Functions, and Cell Com-
ponent [43, 44]. For functional enrichment analysis in nonmodel
species, we suggest using PFAM [45] in addition to GO terms (see
Note 17).

While these annotations are usually already available from the
genome annotation file, they can be also obtained with InterProS-
can [46, 47], which should be run on the proteome resulting from
the translation of the coding sequences associated with gene model
annotations.

A simple python script to perform functional enrichment tests
is available online (https://gitlab.com/54mu/enrichment_test).
This analysis requires a “universe” dataset (the complete set of
genes annotated in the reference genome) and a subset of genes
to test for enrichment (which in this case comprises all the dispens-
able genes identified with the previous steps). The universe dataset
needs to be a table matching gene ids and feature ids, one per line,
as reported in the example below. It is also important for each
match to be unique.

# extract from a universe file for GO enrichment.

...

LOC105326593 GO:0065003

LOC105326593 GO:0070062

LOC105326593 GO:1903561

LOC105344258 GO:0000212

LOC105344258 GO:0001516

LOC105344258 GO:0001525

...
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Tyr GO:0042470

Tyr GO:0046872

Tyr GO:0050149

Tyr GO:0055114

Pepck GO:0000287

Pepck GO:0003729

Pepck GO:0004550

Pepck GO:0004611

Pepck GO:0004613

. . .

The subset file must contain the list of unique ids of the
dispensable genes subject to PAV. The last parameter required to
run the analysis is the number of unique features in the universe
(in this case the total number of genes annotated in the reference
genome).

Enriched annotations can be filtered by the user based on
arbitrary p-value thresholds, which may be also combined with a
threshold of observations for any given annotation in the dispens-
able gene subset, to filter out annotations linked with a very low
number of genes.

4 Notes

1. This procedure may potentially also work with long reads
generated with Oxford Nanopore technologies (ONT), that
is, obtained with MinION, GridION, or PromethION plat-
forms. Since we have not tested the performance of the proto-
col with this type of data, in case of availability of ONT long
reads, we suggest testing alternative SV detection tools in
addition to psvb. Among these, NanoSV [48], SVIM [49]
and cuteSV [50] have been previously indicated as suitable for
SV detection using ONT data.

2. We here define a “high quality” genome as a genome whose
assembly approaches a chromosome-scale quality. Ideally, such
a genome would display a low amount of genomic sequence
located in unplaced scaffolds and a very high completeness,
which can be generally estimated either with gene model-
centric tools, such as BUSCO [21], or with k-mer based meth-
ods, such as Merqury [51].

Most importantly, a high quality reference genome ana-
lyzed with the hemizygous regions and PAV detection proto-
cols must be entirely devoid of exogenous contaminations, that
is, contigs and scaffolds deriving from other associated organ-
isms, such as symbionts, parasites, and pathogens, as these may
lead to artifacts (i.e., contaminant genes might be wrongly
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identified as dispensable genes part of the pangenome of the
species of interest). The overwhelming majority of the refer-
ence genomes deposited in public repositories, such as
Ensembl, NCBI Genomes and others, are expected to meet
these quality requirements. Nevertheless, we recommend extra
caution, especially when no other genomes from closely related
species are available as a reference, since the discrimination
between novel orphan genes, horizontally transferred genes
and exogenous contaminants is often not a trivial task [52].

3. Illumina genomic DNA libraries can be obtained with a num-
ber of different commercial kits and sequenced using different
strategies. These can affect in a significant way both the accu-
racy of read mapping and the evenness of read coverage across
the reference genome assembly. The protocols described in this
chapter were extensively tested on regular paired-end libraries
sequenced on HiSeq and NovaSeq series platforms with a
2 � 100, 2 � 125 or 2 � 150 strategies, which usually allow
the attainment of a relatively uniform distribution of reads on
the full length of chromosomes, with the exception of local
peaks with very high coverage in highly repetitive regions. The
use of particularly short reads (e.g., <50 base pairs) generated
with single-end sequencing might lead to a decrease in
mapping accuracy, determining an increase in the fraction of
reads mapping to multiple genomic sites. This might have a
negative effect on the quantification of the sequencing cover-
age of some loci, most notably those that include paralogous
genes.

At the same time, we discourage the use of paired-end
libraries which derive from chromosome conformation capture
approaches (such as Hi-C or Dovetail Genomics Omni-C™)
and include long-range connectivity information, as these may
lead to an uneven distribution of mapped reads, not suitable for
downstream PAVanalyses. On the other hand, we have success-
fully tested this protocol on 10� Genomics Illumina
libraries [18].

4. Due to the limitations of pbsv, deletions larger than 100 kb will
be missed. We recommend checking the length distribution of
the insertions identified in the target genome to evaluate
whether deletions larger than this threshold are likely to be
present. In the case of genomes including a high amount of
large hemizygous regions, the output of this protocol might
result in an underestimate of total hemizygous genomic DNA
content.

5. The trimming parameters may be modified based on the quality
of the raw sequencing data available. In particular, note that
Illumina short reads generated with different library prepara-
tion kits might include different adapter sequences and

66 Marco Sollitto et al.

14



barcodes. Make sure to check the technical documentation
provided by the manufacturers to identify the most appropriate
list of adapter sequences to be used. We recommend using
stringent trimming parameters to discard all possible sources
of bias. Discarding all the reads whose length, following the
trimming procedure, is lower than 50 nucleotides, might be
also beneficial in some cases, as these reads may result in
ambiguous mappings on multiple sites.

6.

median_sliding_window.gawk script

#!/usr/bin/sh

gawk -v wsize=1000 ’

BEGIN {

if (wsize % 2 == 0) { m1=wsize/2; m2=m1+1; } else {

m1 = m2 = (wsize+1)/2; }

}

function roundedmedian() {

asort(window, a);

return (m1==m2) ? a[m1] : int(0.5 + ((a[m1] + a[m2])

/ 2));

}

function push(value) {

window[NR % wsize] = value;

}

NR < wsize { window[NR]=$3; next; }

{ push($3);

$3 = roundedmedian();

print $0;

}’

7. Short reads generated with other sequencing platforms (e.g.,
with BGISEQ platforms) may work as well, as long as the
sequencing error rate is in line with those expected from Illu-
mina approaches. We do not recommend using reads generated
with sequencing methods that are known to suffer from rela-
tively high error rates, in particular in correspondence with
homopolymeric sequence stretches, such as 454 Life Sciences
pyrosequencing and Thermo Fisher Scientific Ion Torrent, as
they may introduce significant biases in read mapping profiles.
This protocol might be implemented in the future to also allow
the mapping of resequencing data obtained with third genera-
tion methodologies (i.e., nanopore sequencing by Oxford
Nanopore and SMRT sequencing by Pacific Biosciences),
even though significant modifications might be required to
take into account their different length and error rates of the
reads generated with these approaches.

Detecting Structural Variants in Marine Organisms 67

15



8. This can be achieved by selecting the -M option in bwa mem.
We have previously shown that this is necessary in order to
avoid erroneously obtaining long stretches of genomic
sequences with coverage ¼ 0 in the presence of repeats. Not
selecting this option would therefore result in an inflation of
PAV calls.

9. import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

def flatten_exons(gene):

# by using a coverage map this function returns the average

# coverage of the exonic regions of a gene (passed as a

# pandas groupby object)

global cov_map

contig = gene.contig.values[0]

start = min(gene.start.values)-1

end = max(gene.end.values)

size = end - start

mask = np.full([size], False)

pairs= np.array([gene.start.values, gene.end.values])

startendarray = pairs.flatten(’F’)

for i in range(0, startendarray.size, 2):

this_exon = np.arange(startendarray[i]-start,starten-

darray[i+1]-start)

mask[this_exon] = True

sub_cov_map = cov_map[contig][start:start+size]

try:

return sub_cov_map[mask].mean()

except Exception as e:

return np.nan

coverage_file = pd.read_csv("/path/genome.depth", sep = "\t",

names = ["contig", "position", "coverage"])

cov_map = coverage_file.groupby("contig")["coverage"].apply

(np.array).to_dict()

total_exons = pd.read_csv("/path/exons_coordinates", sep =

"\t", names = ["contig", "start", "end", "ID_gene"])

coverage_total_exons = total_exons.groupby("ID_gene").apply

(flatten_exons)

10. While the fragments included in Illumina paired-end sequenc-
ing data derive from the random fragmentation of genomic
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DNA, reads are not necessarily expected to be evenly
distributed across the genome assembly. In particular, due to
the mapping strategy used in this protocol (see Note 8), a
significant number of reads may be aligned to multiple geno-
mic locations, resulting in local mapping spikes. We expect
such spikes to be found in genomic regions encompassing
repeats, and therefore to be mostly associated with intergenic
regions. However, some species are known to include a con-
siderable amount of heterochromatic introns, which may also
include short repeats that could lead to the nonspecific
mapping of short reads [53]. Since anomalous mapping may
lead to an artefactual inflation of read coverage estimates at the
gene level, we recommend to perform such calculations based
on exonic regions only.

11. While the theoretical sequencing depth of any resequenced
genome can be easily calculated by dividing the total amount
of sequence data generated (i.e., the total number of reads
multiplied by their average read) by the size of the genome,
we recommend using the strategy explained in this protocol to
obtain a more reliable estimate of the mapping coverage that
would be expected for any single-copy core gene in the genome
of a diploid organism. As a matter of fact, several factors may
cause some discrepancies between the theoretical and actual
genome sequencing coverage: namely, the presence of a high
amount of reads mapping on mitochondrial (and plastidial)
genomes, the presence of exogenous contamination and the
occurrence of low quality, unmappable reads. By only taking
into account the coverage observed in exonic regions of vali-
dated single-copy genes, the method we propose disregards the
aforementioned confounding factors and provides a much
more reliable estimate.

The distribution of the coverage of BUSCO genes is
expected to follow a Gaussian curve, centered on the actual
genome-wide sequencing depth, which identifies the “homo-
zygous peak,” as shown in the example provided in Fig. 1.

Note that this could be also achieved by the use of an
approach based on genome-wide k-mer distribution, as
explained in Subheading 3.1. However, we noted that the
identification of a clear homozygous peak may become difficult
in genomes characterized by high heterozygosity rates and
resequenced with low coverage (i.e., <25�).

12. This is an arbitrary threshold, which has been previously shown
to work well for PAV detection in M. galloprovincialis, as it
displayed high correlation between in silico gene presence–
absence calls and PCR confirmation [16]. In any given rese-
quenced genome of a diploid organism, gene coverage
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(calculated on exons only) would be expected to follow a
distribution similar to the one shown in the example below
(Fig. 2).

In brief, a main “homozygous peak” of coverage,
corresponding to the one previously identified from the analy-
sis of BUSCOs, should be observed. This peak indicates genes
present with two alleles in the diploid genome. A second
“hemizygous peak” should be observed at a coverage equal
to exactly half of the “2n” peak. This peak indicates genes
present with a single allele in the diploid genome. The relative
height of the two peaks can be used to estimate the rate of
genes encoded by hemizygous genomic regions in any rese-
quenced individual. Note that species where PAV is very rare
are not expected to display a visible hemizygous peak. Finally, a
third peak should be observed at zero coverage, marking dis-
pensable genes that are present in the reference genome, but
absent in the resequenced individual.

We have empirically noted that whenever a relatively low
sequencing coverage is used for resequencing (e.g., <50�),
the two Gaussian curves cannot be well separated, but rather
result in a valley where the upper- and lower-end tails of the
two curves are partially overlapping, which does not permit to
discriminate with certainty the homozygous or hemizygous
state of a given gene (see Fig. 2). With sequencing coverage
<30�, the hemizygous peak will simply appear as a “shoulder”
on the side of the homozygous peak. The same consideration
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Fig. 1 Expected distribution of the coverage of BUSCO genes in a diploid organism resequenced with a paired-
end Illumina short reads library and 36� coverage. The vertical bar indicates the median coverage observed
for all BUSCOs. Note the Gaussian distribution around the “homozygous peak”
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applies to the ability to discriminate between the lower-end tail
of the hemizygous peak and the “gene absence peak”. This
issue is most likely linked with the cross-mapping of a few reads
derived from paralogous core genes on local regions with high
pairwise sequence homology. While higher sequencing depths
increase the confidence level of presence–absence calls, we here
provide a conservative way of estimating absent genes by using
as a threshold 1/8th of the coverage of the homozygous peak.
This means that only genes showing an exon sequencing cov-
erage lower than 25% of the expected coverage of a dispensable
gene found in a hemizygous genomic region will be called as
absent.

13. This protocol has been extensively tested on the genome of
diploid organisms only. In the case of target genomes with
different ploidy levels, multiple peaks might be observed
(e.g., four peaks, denoting genes present with one, two, three
or four alleles, should be present in a tetraploid species). In
such cases, we recommend setting the threshold for PAV detec-
tion at 1/4th of the “single allele” peak coverage. Please note
that small peaks can be occasionally observed in diploid gen-
omes at coverages which are multiples of the homozygous
peak. These may indicate the presence of nearly identical,
recently duplicated, paralogous genes. We do not expect this
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Fig. 2 Expected distribution of the sequencing coverage of all genes in a resequenced genome of a diploid
species with widespread PAV. This example shows a genome resequenced with 36� coverage using a paired-
end Illumina short read library. The homozygous and hemizygous peaks are placed at 36� and 18�,
respectively. The threshold for gene PAV calling is set at 4.5� (i.e., all genes showing a coverage lower
than 4.5� are called as absent)
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factor to represent a relevant issue in most cases, unless the
target species has been subjected to recent whole genome
duplication events.

14. We recommend running this test to check the correct setting of
all parameters. The mapping of Illumina short read libraries
used to perform the de novo assembly of the reference genome
against the reference genome itself should, by definition, not
produce any gene with zero coverage. On the other hand,
depending on the level of hemizygosity of the sequenced indi-
vidual, the hemizygous peak might be visible. See an example of
the expected sequencing coverage in Fig. 3.

15. The allowance of read multimapping (see Note 8), applied in
this protocol to avoid the artefactual identification of PAV
within highly repetitive genomic regions, may lead to the
impossibility of detecting PAV for genes present with multiple
identical or nearly identical paralogous gene copies, which may
be subject to copy number variation. Although we have previ-
ously reported that the activity of transposable elements is
likely associated with hemizygous genomic regions in several
molluscan reference genomes [18], no significant enrichment
of gene families linked with reverse transcriptase, integrase,
transposase and other TE-related enzymatic activities has
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Fig. 3 Expected distribution of the sequencing coverage of all genes in the reference genome of a diploid
species with widespread PAV, based on the mapping of a paired-end Illumina short read library generated
from the same individual used for the de novo genome assembly. This example shows a genome resequenced
with 56� coverage. The homozygous and hemizygous peaks are placed at 56� and 28�, respectively. The
threshold for gene PAV calling is set at 7� (i.e., all genes showing a coverage lower than 4.5� are called as
absent). Note that no absent genes can be detected in the reference genome
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been identified associated with dispensable genes in
M. galloprovincialis with the protocol explained in Subheading
3.2 [16]. In our interpretation, this discrepancy is linked with
the cross-mapping of reads that originated from identical gene
copies placed in distinct genomic locations. The protocol
described in Subheading 3.1 might be more indicative of
PAV detection in these particular cases, thanks to the possibility
of exploiting flanking unambiguous sequence to accurately
map the reads to the correct genomic locations.

16. Unmapped reads, collected from all the individual resequenced
genomes analyzed, can be de novo assembled using several
different algorithms, using a recursive reassembly approach
[16]. For this task, we recommend paying attention to the
assembly of contaminant contigs, which may derive from a
series of different sources, in particular in marine filter-feeding
organisms. Considering that most pangenomic contigs assem-
bled using unmapped reads are expected to be present in
hemizygous genomic regions in the resequenced individuals,
the estimated coverage of the hemizygous peak (see Note 12)
can be used as a guidance to set appropriate coverage thresh-
olds to identify contigs which belong to the target species.
Both contigs showing excessively high or particularly low cov-
erage compared with expectations should be flagged as suspect
and discarded. In addition, nucleotide composition, and GC
content in particular, can be used as a complementary informa-
tion to further detect possible contaminants. In this respect,
BlobTools [54] can be very useful. While it is unlikely that
contaminant contigs will have both the same coverage and
the same GC content expected for hemizygous regions of the
target species, we recommend extra caution to avoid including
suspect sequences in the pangenome assembly. Therefore, fur-
ther controls, such as the use of Kraken 2 [55] or BLASTn-
based filtering against the complete genome assembly of
known contaminants could be applied.

We also recommend including in the collection of pange-
nomic contigs only those exceeding a length of 1 kb, as those
shorter than this threshold may correspond to local intergenic
or intronic regions characterized by high heterozygosity.

The obtained pangenomic contigs may be then subject to
gene annotation, making sure to apply the same annotation
pipeline used for the reference genome, providing a list of
dispensable genes absent from the reference assembly, but pres-
ent in one or more resequenced genomes of the same species.

17. Considering that GO terms tend to be strongly biased toward
model species [56] and that orphan, taxonomically restricted
genes without detectable primary sequence homology are
highly abundant in the genomes of marine invertebrates [57],
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we suggest to use Hidden Markov Model (HMM)-based con-
served protein domain annotations to improve the inference of
functional enrichment in nonmodel species. Several alternative
resources, such as PFAM [45], InterPro [46, 47], and others,
may be used for this purpose. Due to the BLAST-independent
nature of HMM searches, these allow to improve the annota-
tion rate of genes lacking significant primary sequence homol-
ogy with entries deposited in public repositories.
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