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a b s t r a c t 

We show how the recent works on data-driven open-loop minimum-energy control for linear systems 

can be exploited to obtain closed-loop control laws in the form of linear dynamic controllers that are 

relatively optimal. Besides being stabilizing, they achieve the optimal minimum-energy trajectory when 

the initial condition is the same as the open-loop optimal control problem. The order of the controller 

is N − n , where N is the length of the optimal open-loop trajectory, and n is the order of the system. 

The same idea can be used for obtaining a relatively optimal controller, entirely based on data, from 

open-loop trajectories starting from up to n linearly independent initial conditions. 

© 2023 European Control Association. Published by Elsevier Ltd. All rights reserved. 

1

p

a

e

o

t

a

c

t

o

m

i  

t

o

s

e

i

(

a

t

e

2

o

e

B

i

l

o

p

s

i

s

p

i  

r

fi

d

o

[

m

i  

o

h

0

. Introduction 

Model-based control (MBC) approaches have been widely ex- 

loited over the years, exhibiting their ability to provide effective 

nd reliable control laws in a large variety of control tasks. How- 

ver, their implementation is strictly constrained by the existence 

f a dynamic model of the system to be controlled, not often easy 

o derive or identify. To overcome this intrinsic limitations of MBC 

pproaches, the control community is recently focusing on the so- 

alled data-driven control (DDC), i.e., the family of model-free con- 

rol solutions in which the synthesis of controllers is entirely based 

n input-output data collections. 

The key issue in data-driven control is how to replace process 

odels with data. A first solution in this regard was postulated, 

n the case of linear systems, by Willems et al. [18] , who states

hat a linear system can be dynamically represented by a finite set 

f system trajectories, provided that these trajectories come from 

ufficiently excited dynamics. This lemma has been more or less 

xplicitly exploited for the design of data-driven controls. 
� This work has been partially supported by the Italian Ministry for Research 

n the framework of the 2017 Program for Research Projects of National Interest 

PRIN), Grant no. 2017YKXYXJ. It was also carried out within the PNRR research 

ctivities of the consortium iNEST (Interconnected North-Est Innovation Ecosys- 

em) funded by the European Union Next-GenerationEU (Piano Nazionale di Ripresa 

 Resilienza (PNRR) – Missione 4 Componente 2, Investimento 1.5 – D.D. 1058 

3/06/2022, ECS_0 0 0 0 0 043). This manuscript reflects only the Authors’ views and 

pinions, neither the European Union nor the European Commission can be consid- 

red responsible for them. 
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In [3] , for example, authors propose an off-line approach lead- 

ng to optimal open-loop input sequences from data-batch col- 

ected in preliminary experiments. Here, explicit formulas for the 

pen-loop minimum energy control problem, based entirely on ex- 

erimental data, are derived for linear, unconstrained discrete-time 

ystems. A less restricted experimental framework is presented 

n Baggio and Pasqualetti [4] , while some applications on complex 

ystems, such as power-grid networks and brain networks, are re- 

orted in Baggio et al. [2] . 

Data-driven closed-loop solutions are instead proposed 

n De Persis and Tesi [13] , Rotulo et al. [17] where linear quadratic

egulator (LQR) problems are faced respectively with infinite and 

nite optimization time horizons. Further results on the data- 

riven LRQ approach applied on nonlinear systems, and in case 

f data corrupted by noise, can be found in De Persis and Tesi 

14] , De Persis and Tesi [15] . Data-driven solutions to address the 

odel predictive control (MPC) problem are instead proposed 

n Berberich et al. [5] , Coulson et al. [11 , 12] , Yang and Li [19] . A

ne-shot robust controller synthesis, based on an expert operator’s 

rajectory is instead proposed in Blanchini et al. [7] . 

In the present work, we deal with open-loop optimal control 

equences obtained by the sole experimental data, and specifically, 

y sequences of inputs and the corresponding states. The aim is to 

xploit such open-loop sequences to get a closed-loop control law. 

n a previous work [16] , we employed the state-space partitioning 

echnique described in Blanchini and Pellegrino [10] , to get a static, 

onlinear, state-feedback controller having the property (besides 

eing stabilizing), of guaranteeing the achievement of the optimal 

rajectory when starting from the same initial condition of the op- 

imal open loop trajectory. Here, based on the dynamic relatively 

ptimal control (ROC) [8] , we show how to synthesize a linear dy- 
rved. 

ta-driven dynamic relatively optimal control, European Journal of 
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amic controller having the same properties. As a result, we get 

 data-driven dynamic ROC. The remaining of the paper is orga- 

ized as follows: Section 2 recalls how the dynamic ROC can be 

sed for synthesizing a closed-loop controller starting from opti- 

al open-loop input and state sequences; Section 3 , based on [16] , 

rovides an explicit, data-driven, formula for the minimum energy 

ontrol sequence leading the state to zero from an arbitrary initial 

tate and shows how to recover the corresponding state trajectory; 

ection 4 provides a generalization to the case of multiple initial 

onditions; two numerical examples are provided in Section 5 , and 

onclusions are drawn in Section 6 . 

. Dynamic relatively optimal control 

The Relatively Optimal Control (ROC) [8] is a kind of control 

hat, besides being stabilizing, guarantees the optimality of cer- 

ain trajectories, specifically, those starting from a given (or a set 

f given) nominal initial conditions . Both linear dynamic [8,9] , and 

on-linear static [10] implementations of ROC for discrete-time lin- 

ar systems have been proposed, as well as a continuous-time 

olution based on the Youla–Ku ̌cera parameterization [6] . For the 

ake of completeness, we report next the essentials of the ROC, 

rom Blanchini and Pellegrino [8] . 

Consider the time-invariant discrete-time linear system 

 (k + 1) = Ax (k ) + Bu (k ) , (1)

here A ∈ R 

n ×n , B ∈ R 

n ×m , while x (k ) ∈ R 

n and u (k ) ∈ R 

m denote

espectively the state and the input at time k ∈ N . For a given hori-

on K, and initial state x ini , the following open-loop control prob- 

em can be formulated: 

J opt ( x ini ) = min 

K−1 ∑ 

k =0 

l ( x (k ) , u (k ) ) 

ubject to: (1) k = 0 . . . K − 1 

x (0) = x ini , x (K) = 0 , (2) 

here l ( ·, ·) is a convex function of its arguments, and the decision 

ariables are the control actions u (0) , . . . , u (K − 1) . 

Let the optimal state and input sequences obtained by solving 

he above problem, be arranged in the matrices: 

 = [ x (0) x (1) . . . x ( K − 1) ] 

U = [ u (0) u (1) . . . u ( K − 1) ] , (3) 

nd choose a (K − n ) × K matrix 

 = [ 0 z(1) z(2) . . . z( K − 1) ] 

uch that 

 = 

[
Z 

X 

]
= 

[
0 z(1) z(2) . . . z(K − 1) 

x (0) x (1) x (2) . . . x (K − 1) 

]
, (4) 

s invertible. Such a choice is possible provided that X is full row 

ank. 

Now, consider the dynamic compensator 

(k + 1) = Qz(k ) + Rx (k ) (5) 

 (k ) = Sz(k ) + T x (k ) (6) 

here Q , R , S, T are achieved as the unique solution of the linear

quation 

ZP 

U 

]
= 

[
Q R 

S T 

] [
Z 

X 

]
, (7) 
2

here the square matrix P is the K–Jordan block associated with 

he 0 eigenvalue: 

 = 

⎡ 

⎢ ⎢ ⎣ 

0 0 . . . 0 0 

1 0 . . . 0 0 

0 1 . . . 0 0 

: : . . . : : 
0 0 . . . 1 0 

⎤ 

⎥ ⎥ ⎦ 

. (8) 

The main result of Blanchini and Pellegrino [8] states that the 

bove compensator (whose order is K − n ) is relatively optimal, 

amely, it is stabilizing and results in the optimal trajectory X 

hen the initial states of the system and the compensator are, re- 

pectively, x (0) = x ini and z(0) = 0 . Notice that from (7) and X P =
 X + B U (which holds true by construction), it follows that 

Q R 

BS A + BT 

] [
Z 

X 

]
= 

[
Z 

X 

]
P, (9) 

mplying that the closed-loop matrix is similar to the nilpotent 

atrix P . In other words, an asymptotically stable, in fact dead- 

eat, control is achieved. Regarding the choice of K, the only con- 

traint is K ≥ n , which in the case of K = n leads to a static com-

ensator of limited significance. Therefore, we are more interested 

n considering the case K > n . Indeed, since the design parameter K

s the number of steps allowed to reach the origin, taking it small 

ay cause excessive control exploitation we avoid taking K not too 

mall. Clearly, the cost of the problem (2) is monotonic decreasing 

ith respect to K, so we have a potential benefit. 

In the following, we apply the dynamic ROC to obtain a closed- 

oop control law from data-driven, open-loop, optimal trajectories. 

. Data-driven minimum energy control 

The present section reports some results on data-driven min- 

mum energy control from Pellegrino et al. [16] and, specifically, 

rovides explicit formulas for getting the optimal input and state 

rajectory directly from data. From that trajectories, then, the dy- 

amic ROC can be synthesized. 

For a given horizon K, the minimum-energy control problem to 

ero is that of finding, among the input sequences that drive the 

tate from x (0) = x ini to x (K) = 0 , the one of minimum energy, i.e.,

he one minimizing 
∑ K−1 

k =0 ‖ u (k ) ‖ 2 2 . Clearly, the problem is a special 

ase of (2) , corresponding to l ( x (k ) , u (k ) ) = ‖ u (k ) ‖ 2 2 . Let us denote 

with slight abuse) by u the sequence 
[
u (K − 1) � , . . . , u (0) � 

]� 
, and 

y u ∗ the optimal one. With the same notation, the optimal input 

equence u ∗ can be expressed as the minimum 2-norm solution of 

he following equation: 

 = A 

K x ini + 

[
B AB . . . A 

K−1 B 

]
︸ ︷︷ ︸ 

R K 

u, (10) 

here R K is the K-steps reachability matrix. For A and B (and thus 

 K ) known, the solution to the above problem is well-known to 

e [1] 

 

∗ = −R 

† 
K 

(
A 

K x ini 

)
, (11) 

here † denotes the Moore–Penrose pseudo-inverse. 

Here, we are interested in solving Eq. (10) relying on experi- 

ental data only. In addition, since the ROC technique described 

n the previous section requires the optimal open loop state trajec- 

ory, besides the optimal input sequence, we need to compute the 

ptimal state sequence from data as well. The mentioned issues 

re dealt with in the following subsections. When the optimal in- 

ut and state sequences have been computed based on data, the 

OC technique can be applied, leading to a closed-loop, stabilizing, 

ata-driven control law. An example is reported in Section 5 . 
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.1. Optimal input sequence from data 

The experimental data employed is similar to that of Baggio 

t al. [3] , in which a set of N ≥ n experiments is available, each

tarting from x 0 = 0 and lasting K steps. Denoting by u i the i th

arbitrary) input sequence , and by x i the state reached at time K

f the i th experiment, the matrices 

U = [ u 1 . . . u N ] , and X = [ x 1 . . . x N ] , (12) 

re constructed. We remark that matrix U is (mK) × N (since u i 
enotes an input sequence of length K), while X is n × N. Here, ac- 

ording to Baggio et al. [3] , we assume that U is a full rank matrix.

learly, we have: 

 i = R K u i , i = 1 , . . . , N. (13) 

he previous can be written as X = R K U , and the solution of prob-

em min ‖ X − R K U ‖ 2 F , i.e., 

 

∗
K = X U 

† , (14) 

s an estimate of the K-steps reachability matrix. Under the as- 

umption of N = Km [3] , and rank 
[
X � U 

� ] = rank 
[
U 

� ], R ∗K exactly 

atches the reachability matrix. Note that the full rank property 

f the U matrix is a sufficient condition to ensure this match. 

In the following, we will employ such an estimate in place of 

he unknown reachability matrix, and we will denote it by R K . 

Due to the term A 

K x ini , substituting Eq. (14) in Eq. (11) is not

ufficient to get a solution based on data only. A possibility would 

e to use the results of Baggio and Pasqualetti [4] , which ex- 

ends [3] to more general problems and less restrictive experimen- 

al setups. As a simpler alternative, we propose to collect N se- 

uences of length 2 K: 

 (2 K − 1) � , . . . , u (K) � 
 ︷︷ ︸ 

ˆ u � 
i 

, u (K − 1) � , . . . , u (0) � ︸ ︷︷ ︸ 
u � 

i 

 (1) , . . . , x (K) ︸︷︷︸ 
x i 

, x (K + 1) , . . . , x (2 K) ︸ ︷︷ ︸ 
ˆ x i 

nd construct the following matrices: 

 = [ u 1 , . . . , u i , . . . , u N ] , ˆ U = 

[
ˆ u 1 , . . . , ˆ u i , . . . , ˆ u N 

]

 = [ x 1 , . . . , x i , . . . , x N ] , ˆ X = 

[
ˆ x 1 , . . . , ̂  x i , . . . , ̂  x N 

]
, 

here U and X are the same of Eq. (12) , while ˆ U and 

ˆ X corre- 

pond to trajectories of length K, starting (in general) from non- 

ero states. Then, by construction, ∀ i = 1 . . . N we have: 

ˆ 
 i = A 

K x i + R K ̂  u i , 

hich can be written in compact form as 

 

K X = 

ˆ X − R K 
ˆ U , (15) 

nd, in view of Eq. (14) , as 

 

K X = 

ˆ X − X U 

† ˆ U . (16) 

hus, the right-hand side of Eq. (16) can be used to compute the 

erm A 

K x ini for any x ini in the column space of X . Specifically, let

∈ R 

N be such that 

 ini = X α. (17) 

hen, we have 

 

K x ini = A 

K X α = 

(
ˆ X − X U 

† ˆ U 

)
α. 

sing the least-norm solution for α in Eq. (17) , i.e., α = X † x ini , we

et 

 

K x ini = 

(
ˆ X − X U 

† ˆ U 

)
X 

† x ini . (18) 
3 
inally, by substituting in Eq. (11) , namely u ∗ = −R 
† 
K 

(
A 

K x ini 

)
, and 

ecalling that R K = XU 

† , we get: 

 

∗ = 

(
X U 

† 
)† (

X U 

† ˆ U − ˆ X 

)
X 

† x ini , (19) 

hich gives a data-driven open-loop minimum energy control se- 

uence leading the state to zero in K steps from x ini . The formula 

rovides the optimal sequence when x ini belongs to the column 

pace of X . In particular, if X is rank n , then x ini can be arbitrary. 

.2. Optimal state trajectory from data 

To get the closed-loop control law by means of the technique 

escribed in Section 2 , besides the optimal input sequence u ∗, 

iven by Eq. (19) , the corresponding optimal state trajectory is 

eeded. A such trajectory can be recovered from u ∗ and the data 

btained from the same N sequences collected before. 

It is sufficient to define the matrices U k , ˆ U k , X k , and 

ˆ X k , similarly

s before, but based on subsequences of length 2 k , for k = 1 . . . K −
 . Let δk denote the starting index of the subsequences of length 

 k , and define 

 k = 

[
k u 1 , . . . , 

k u i , . . . , 
k u N 

]
, 

ˆ 
 k = 

[
k ˆ u 1 , . . . , 

k ˆ u i , . . . , 
k ˆ u N 

]
, 

 k = 

[
k x 1 , . . . , 

k x i , . . . , 
k x N 

]
, 

ˆ 
 k = 

[
k ˆ x 1 , . . . , 

k ˆ x i , . . . , 
k ˆ x N 

]
, 

here k u i = 

[
u (δk + k − 1) � , . . . , u (δk ) 

� ]� 
, k ˆ u i = 

[
u (δk + 2 k − 1) � , 

. . . , u (δk + k ) � 
]� 

, k x i = x (δk + k ) , and 

k ˆ x i = x (δk + 2 k ) . 

Hence, by letting U K = U , X K = X , ˆ U K = 

ˆ U , and 

ˆ X K = 

ˆ X we can

rite 

 

k X k = 

ˆ X k − R k ̂
 U k , k = 1 , . . . , K, (20) 

here R k is the k -step reachability matrix, corresponding to the 

rst k columns of R K : 

 k = R K 

[
I k 
0 

]
= X U 

† 

[
I k 
0 

]
, 

here I k denotes the identity matrix of dimension k . Eq. (20) holds 

rrespective of the choice of the subsequences (i.e., of indices δk ). 

owever, it is convenient to choose the subsequences in such a 

ay that rank [ X] k = n, ∀ k . This is always possible, provided that

ank [ X] = n , and can be achieved by taking δk = K − k , leading to

 k = X, ∀ k . The full-rank condition on the X k guarantees that any

nitial state x ini can be written as a linear combination of the 

olumns of any of the X k . As a consequence, the optimal state tra- 

ectory, in terms of data, is given by: 

 (k ) = 

(
ˆ X k − R k ̂

 U k 

)
X 

† 

k 
x ini + R k u 

∗
k 

k = 1 , . . . , K, (21) 

here u ∗
k 

is the vector composed by the first k steps of the op- 

imal input sequence: u ∗
k 

= 

[
u ∗(k − 1) � , . . . , u ∗(0) � 

]� 
. Finally note 

hat from (19) and (21) , we can derive a data-driven relatively op- 

imal control for the initial condition x ini by completing the matrix 

as in (4) and adopting (7) . 

Notice that for a given initial state x ini and a K-steps input se- 

uence u , the arrival to zero condition can be expressed as 

 U 

† u = −
(

ˆ X − X U 

† ˆ U 

)
X 

† x ini . 

s a consequence, the minimum energy problem already discussed 

an be stated equivalently in the following quadratic programming 

QP) form: 
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Fig. 1. (a) Optimal trajectory corresponding to the optimal input sequence in (28) in blue. Trajectory obtained applying the resulting controller starting from x (0) = −x ini / 2 = 

[0 1] � in green. Trajectory obtained applying the resulting controller starting from x (0) = [4 0 . 5] � in red. (b) Optimal trajectory corresponding to the optimal input 

sequences in (29) and (30) respectively in blue and green. Trajectory obtained applying the resulting controller starting from x (0) = [4 0 . 5] � in red. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

s

T

e  

t

t

x

w  

s

4

a

t

i

X

t

t

X

T

M

w

Z

a

c

t  

Fig. 2. Cart and pole system. 

P
f

t

t

e

i

a

t

c

f  

s

(

g  

l

i  

t  

l

r

min J = ‖ 

u ‖ 
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2 

ubject to: 

X U 

† u = −
(

ˆ X − X U 

† ˆ U 

)
X 

† x ini . (22) 

his formulation allows the use of different cost functions, thus, for 

xample, the LQR-type cost J = 

∑ 

x � (k ) Q x (k ) + u � (k ) R u (k ) . Fur-

hermore, it admits the introduction of state constraints given that 

he state at time k ≤ K can be written as 

 (k ) = 

(
ˆ X k − R k ̂

 U k 

)
X 

† 

k 
x ini + R k u k , (23) 

here u k is the vector composed by the first k steps of the input

equence: u k = 

[
u (k − 1) � , . . . , u (0) � 

]� 
. 

. Relative optimality from multiple initial conditions 

The linear implementation of the relatively optimal control [8] , 

llows to obtain a single dynamic controller which is relatively op- 

imal from several, linearly independent, initial states x (i ) 
ini 

= x (i ) (0) , 

 = 1 . . . r ≤ n . Indeed, denoting by 

 

(i ) = 

[
x (i ) (0) x (i ) (1) . . . x (i ) (K i − 1) 

]
U 

(i ) = 

[
u 

(i ) (0) u 

(i ) (1) . . . u 

(i ) (K i − 1) 
]
, (24) 

he optimal state and input trajectory (of length K i ), define the ma- 

rices: 

 = 

[
X 

(1) X 

(2) . . . X 

(r) 
]

U = 

[
U 

(1) U 

(2) . . . U 

(r) 
]
. (25) 

hen, it is sufficient to complete X as: 

 = 

[
Z 

X 

]
= 

[
Z 

(1) Z 

(2) Z 

(3) . . . Z 

(r) 

X 

(1) X 

(2) X 

(3) . . . X 

(r) 

]
, (26) 

here each matrix Z 

(i ) has the form 

 

(i ) = 

[
0 z (i ) (1) z (i ) (2) . . . z (i ) ( K i − 1) 

]
, 

nd in such a way that M is invertible. The relatively optimal 

ompensator, guaranteeing optimality from the set of initial condi- 

ions x (i ) 
ini 

, i = 1 . . . r, is given by the unique solution of (7) , where
4 
 = diag 
{
P 

(i ) 
}

is a diagonal block matrix whose blocks have the 

orm (8) . 

The data-driven methodology shown in the previous sec- 

ion can be readily applied to the case of multiple initial condi- 

ions, leading to a dynamic compensator that guarantees minimum 

nergy trajectories (possibly of different lengths) from each of the 

nitial conditions. As far as the energy of the control sequence from 

 generic initial state x (0) is concerned, the following considera- 

ions apply. Consistently with the relatively control framework, the 

losed-loop control is optimal, and thus, minimum energy, only 

rom x (i ) 
ini 

, i = 1 . . . r (and for the null initial state of the compen-

ator). However, since the closed-loop system is linear, the cost 

the energy) is a convex function of the initial state. Thus, if the 

eneric initial state x (0) can be written as x (0) = 

∑ r 
i αi x 

(i ) , it fol-

ows that the cost from x (0) is bounded by 
∑ r 

i =1 | αi | J (i ) , where J (i ) 

s the (optimal) cost from x (i ) 
ini 

. In particular, for x (0) belonging to

he convex hull of the x (i ) 
ini 

, i = 1 . . . r, the cost is bounded by the

argest cost associated with all the vertices ( Fig. 1 ). 

Finally, we point out that, as shown in the numerical example, 

esorting to a set of initial conditions spanning the whole state 
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Fig. 3. (a) Optimal trajectory obtained solving the data-driven ROC problem on the cart and pole system ( Fig. 2 ), starting from x ini = [1 0 0 0] � (blue). Trajectory obtained 

by applying the same compensator starting from x ini = [0 0 0 1] � (red). (b) Optimal trajectories obtained solving the data-driven ROC problem on the cart and pole 

system ( Fig. 2 ) starting from the two linearly independent initial conditions x (1) 
ini 

= [1 0 0 0] � (blue), and x (2) 
ini 

= [0 0 0 1] � (red). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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pace can lead to compensators being less sensitive to the initial 

onditions. 

. Numerical examples 

We consider the double integrator: 

 (k + 1) = 

[
1 1 

0 1 

]
x (k ) + 

[
0 

1 

]
u (k ) . (27)

e set K = 9 and perform N = 20 experiments lasting 2 K = 18

teps, starting from x 0 = 

[
0 0 

]� 
and applying randomly chosen 

nputs. The collected states and inputs are then used to construct 

he U, ˆ U , X and 

ˆ X matrices of Eq. (19) . We choose x ini = 

[
0 2 

]� 
,

nd we solve the minimum-energy control problem by applying 

q. (19) , thus obtaining the minimum energy input sequence that 

eads the system to x (9) = 0 starting from x (0) = x ini . The obtained

ptimal (open-loop) control sequence is: 

 

∗ = [ −0 . 889 − 0 . 722 − 0 . 556 − 0 . 389 

−0 . 222 − 0 . 056 0 . 111 0 . 278 0 . 4 4 4 ] , (28) 

hile the resulting optimal trajectory, say x ∗, obtained by applying 

21) , is shown in blue in Figure 1 . We then synthesize the dynamic

ompensator by applying (7) , where X = [ x ∗(0) . . . x ∗(K − 1) ] and 

 = [ 0 z(1) . . . z (K − 1) ] is randomly chosen and such that M = 

Z 

X 

]
is invertible 1 . The compensator is of order K − n , and, as ex- 

ected, results in the optimal trajectory x ∗ of Fig. 1 . The closed- 

oop trajectories starting from any initial state αx ini , aligned with 

 ini , are optimal as well, e.g., the one starting from −x ini / 2 (repre-

ented in green in Fig. 1 ). However, closed-loop trajectories starting 

rom non-nominal initial conditions may exhibit undesirable be- 

aviour, e.g., the one represented in red which is obtained by ap- 

lying the same dynamic controller starting from the initial condi- 

ion x (0) = 

[
4 0 . 5 

]� 
. This is not surprising, since the ROC, albeit 
1 To avoid numerical issues, we set a threshold on the condition number of the 

esulting matrix M. 

t

o  

g

5

tabilizing, does not guarantee global optimality. Such a sensitivity 

n the initial conditions is undesirable and may vary according to 

he random choice of Z . However, the problem can be avoided by 

mploying a set of initial conditions, as stated in Section 4 . 

We choose a set of two linearly independent initial states x (1) 
ini 

= 

0 2 
]� 

, x (2) 
ini 

= 

[
2 0 

]� 
(thus, the set of initial states spans the 

hole state-space R 

2 ), we set K 1 = K 2 = K = 9 , and we solve the

ame minimum-energy control problem from each of the initial 

tates. The resulting optimal open-loop control sequences are, re- 

pectively: 

 

(1) = [ −0 . 889 − 0 . 722 − 0 . 556 − 0 . 389 

−0 . 222 − 0 . 056 0 . 111 0 . 278 0 . 4 4 4 ] (29) 

 

(2) = [ −0 . 133 − 0 . 1 − 0 . 067 − 0 . 033 

0 0 . 033 0 . 067 0 . 1 0 . 133 ] , (30) 

hus leading to the optimal trajectories X 

(1) , and X 

(2) shown re- 

pectively in blue and in green in Fig. 1 . We therefore synthesize 

he dynamic compensator by applying (7) , with X = 

[
X 

(1) X 

(2) 
]
, 

nd Z = 

[
Z 

(1) Z 

(2) 
]

randomly chosen such that M = 

[
Z 

X 

]
is in- 

ertible. The obtained compensator is of order 2 K − n and, besides 

esulting in the optimal trajectories from x (1) 
ini 

and x (2) 
ini 

, it exhibits a 

etter behaviour from non-nominal initial conditions, e.g., the red 

rajectory in Fig. 1 obtained starting from x (0) = 

[
4 0 . 5 

]� 
(the 

ame non-nominal initial condition of the red trajectory of Fig. 1 ). 

Finally, we report results obtained by applying the proposed 

ata-driven ROC approach to a cart and pole system ( Fig. 2 ). We

enote by x = 

[
s ˙ s θ ˙ θ

]� 
the state vector, where s , ˙ s , θ , ˙ θ

enote, respectively, the position and the speed of the cart, and 

he angular position and the angular speed of the pole. 

The zero-order-hold sampling of the linearized system leads to 

he following state-space representation (the parameters are: mass 

f the cart 0.3 kg, mass of the pole 0.1 kg, length of the pole 1 m,

ravity acceleration 9.81 m s −2 , friction neglected, sampling time 
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Fig. 4. Comparison of the control input trajectories obtained applying respectively 

the compensator of order K − n (blue), and the compensator of order 2 K − n (yel- 

low) starting from the same x ini = [0 0 0 1] � . (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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.2 s): 

 (k + 1) = Ax (k ) + Bu (k ) , (31)

here 

 = 

⎡ 

⎢ ⎣ 

1 0 . 2 0 . 06259 0 . 00425 

0 1 0 . 59844 0 . 06259 

0 0 0 . 74961 0 . 18301 

0 0 −2 . 3938 0 . 74961 

⎤ 

⎥ ⎦ 

, B = 

⎡ 

⎢ ⎣ 

0 . 065953 

0 . 65251 

−0 . 06381 

−0 . 61004 

⎤ 

⎥ ⎦ 

, (32) 

nd u is the force F applied to the cart. 

We set K = 9 , performing N = 20 experiments lasting 2 K = 18

teps, starting from x 0 = 

[
0 0 0 0 

]� 
, and applying randomly 

hosen inputs. We compute the U, ˆ U , X and 

ˆ X matrices of Eq. 

19) , and we repeat the same procedure used in the double in- 

egrator example. The closed-loop trajectory obtained by applying 

he compensator of order K − n , solution of Eq. (19) , starting from

 ini = 

[
1 0 0 0 

]� 
is reported in blue in Fig. 3 . 

Fig. 3 also shows, in red, the trajectory obtained from the non- 

ominal initial condition x ini = 

[
0 0 0 1 

]� 
. 

We then consider the two linearly independent initial states 

 

(1) 
ini 

= 

[
1 0 0 0 

]� 
, x (2) 

ini 
= 

[
0 0 0 1 

]� 
and obtain a 

ompensator of order 2 K − n . The resulting closed-loop trajecto- 

ies can be observed in Fig. 3 . The red trajectory exhibits a bet-

er behaviour compared with the one of Fig. 3 , obtained starting 

rom the same initial state. The control actions are different as 

ell, as it is clear from Fig. 4 . Indeed, as expected, the input tra-

ectory of the compensator of order 2 K − n (yellow), starting from 

 ini = 

[
0 0 0 1 

]� 
, is characterized by less intense control ac- 

ions than the one of the compensator of order K − n (blue), start- 

ng from the same x ini . 

. Conclusions 

In this paper, we derived a novel data-driven approach to ob- 

ain closed-loop control laws from open-loop data-driven optimal 
6 
ontrol sequences. The approach is based on the dynamic ROC, 

hich leads to a linear, dynamic, and globally stabilizing controller, 

tarting from optimal state and control sequences. It can be ap- 

lied whenever an open-loop, optimal control sequence is avail- 

ble that leads the system to zero from a given initial state. The 

pproach can handle more than a single optimal control sequence 

nd, differently, from the static approach [16] , is not based on the 

artition of the state space, thus it is suitable for high-order sys- 

ems. 
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