Article Polyvinylidene Fluoride Aerogels with Tailorable Crystalline Phase Composition

Jorge Torres Rodriguez ^{1, 2}, Diana E. Bedolla ^{3, 4}, F. D'Amico³, Ann-Kathrin Koopmann^{1, 2}, Lisa Vaccari ^{3, 4}, Giulia Saccomano^{3, 5}, Richard Kohns^{1, 2}, and Nicola Huesing ^{1, 2,*}

¹ Paris-Lodron University of Salzburg, Department of Chemistry and Physics of Materials, Jakob Haringer-Str. 2A, 5020 Salzburg, Austria

² Salzburg Center for Smart Materials, Jakob Haringer-Str. 2A, 5020 Salzburg, Austria

³ Elettra-Sincrotrone Trieste, SS14 Km 163.5, 34149 Trieste, Italy

⁴ Area Science Park, Padriciano 99, 34149 Trieste Italy

⁵ Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio 6/1, 34127 Trieste, Italy

* Correspondence: nicola.huesing@plus.ac.at

Sample	PVDF	PVDF/H2O	Ŷъил	YELOU	t_{gel}
Sumple	(wt.%.)	1 (01/1120	~DMF	~EtOH	(min)
P12	12				30
Р9	9		1	0	45
P7	7	0			-
P5	5				-
P3	3				-
P12E0.2	12				21
P9E0.2	9	0	0.8	0.2	23
P7E0.2	7	0			27
P5E0.2	5				45
P12E0.4	12		0.6	0.4	15
P9E0.4	9	0			18
P7E0.4	7	0			25
P5E0.4	5				45
P12E0.5	12		0.5	0.5	10
P9E0.5	9	0			12
P7E0.5	7	0			15
P5E0.5	5				16
P12E0.2H0.75		0.75		0.2	3
P12E0.2H0.80		0.80			5
P12E0.2H0.86		0.86			8
P12E0.2H0.92	10	0.92	0.0		10
P12E0.2H1.0	12	1.0	0.8		10
P12E0.2H1.5		1.5			11
P12E0.2H3.0		3.0			13
P12E0.2H6.0		6.0			18

Table S1. Detailed description of the prepared samples and their compositions

Sample	Sbet (m² g-1)ª	Pore diameter (nm) ^ь	Pore volume (cm ³ g ⁻¹) ^c	$ ho_b$ (g cm ⁻³) ^d	$ ho_s$ (g cm ⁻³) ^e	Porosity (%)
P12E0.2	113	19	0.54	0.125	1.49	92
P9E0.2	136	23	0.80	0.096	1.37	93
P7E0.2	160	21	0.86	0.086	1.58	94
P5E0.2	152	22	0.85	0.077	1.40	95

Table S2. Textural properties of the PVDF aerogels prepared using ethanol as nucleation agent

^aSpecific surface area obtained by N₂ sorption using the BET method

^bDetermined from the desorption curve using the BJH method

^cDetermined from the adsorption curve using the BJH method

dbulk density calculated by dimensions and weight

eskeletal density calculated using a He pycnometer

The relative content of the crystalline phases ($F(\alpha + \beta + \gamma)$) in the PVDF aerogels was calculated using the following equation [1]:

$$F(\beta + \gamma) = \frac{A_{\beta,\gamma}}{\left(\frac{k_{\beta,\gamma}}{k_{\alpha}}\right)A_{\alpha} + A_{\beta+\gamma}} * 100\%$$

Where A_{α} and A_{β} are the corrected baseline absorbance at 761 cm⁻¹ and 840 cm⁻¹, respectively. k_{α} is $6.1x10^4 cm^2 mol^{-1}$ and $k_{\beta,\alpha}$ is $7.7x10^4 cm^2 mol^{-1}$ are the corresponding absorption coefficients. $F(\beta)$ and $F(\gamma)$ are calculated by using the intensity of the absorption peaks of 1275 cm⁻¹ and 1234 cm⁻¹[2], for the β , and γ phases, respectively, according to the following equations:

$$F(\beta) = F(\beta + \gamma) * \frac{A_{1275}}{A_{1275} + A_{1234}} x * 100\%$$
$$F(\gamma) = F(\beta + \gamma) * \frac{A_{1234}}{A_{1275} + A_{1234}} * 100\%$$

Finally, the relative content of α -PVDF (F(a)) was calculated using $F(a) = 1 - F(\beta) - F(\gamma)$.

Figure S2. SEM micrographs displaying the morphological differences between the samples with variable phase composition. The P12E0.2 sample has a bimodal morphology of spherulites and leaf-like particles; the P12E0.2H1.5 aerogel has solely spherulites; the P12E0.2H6.0 has mostly leaf-like particles with small signs of tiny spherulites.

- 1. Zhou, H.; Wang, H.; Liu, Z.; Yang, H.; Yuan, C.; Wang, Y. Facilitated Phase Transformation of PVDF in Its Composite with an Ionic Liquid. *Polymer (Guildf)*. **2021**, *220*, doi:10.1016/j.polymer.2021.123564.
- Gregorio, Jr., R.; Cestari, M. Effect of Crystallization Temperature on the Crystalline Phase Content and Morphology of Poly(Vinylidene Fluoride). J. Polym. Sci. Part B Polym. Phys. 1994, 32, 859–870, doi:10.1002/polb.1994.090320509.