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We propose a hybrid variant of the level-based learning swarm optimizer (LLSO) for solving 
large-scale portfolio optimization problems. This solver fills the gap due to the inadequacy of 
the particle swarm optimization algorithm for high-dimensional instances. We aim to extend 
the classical mean-variance formulation by maximizing a modified version of the Sharpe ratio 
subject to cardinality, box, and budget constraints. The algorithm involves a projection operator 
to deal with these three constraints simultaneously. Further, we implicitly control transaction 
costs thanks to a rebalancing constraint handled by a suitable exact penalty function. In addition, 
we develop an ad hoc mutation operator to modify candidate exemplars in the highest level of 
the swarm. The experimental results, using three large-scale data sets, show that including this 
procedure improves the accuracy of the solutions. Then, a comparison with other variants of the 
LLSO algorithm and two state-of-the-art swarm optimizers points out the outstanding performance 
of the proposed solver in terms of exploration capabilities and solution quality. Finally, we assess 
the profitability of the portfolio allocation strategy in the last five years using an investable pool 
of 1119 constituents from the MSCI World Index.

1. Introduction

The mean-variance portfolio selection problem developed by Markowitz underpins the modern portfolio theory. According to 
this approach, the portfolio returns distribution’s mean and variance represents the investment profit and the risk, respectively. A 
portfolio is efficient if it provides the maximum return for a given level of risk or, equivalently, if it has the minimum risk for a given 
level of return. Therefore, the efficient frontier is provided by the set of optimal mean-variance trade-offs in the risk-return space.

In recent years, many developments of the basic model have been investigated (see, for instance, [19]). On the one hand, 
researchers have defined new risk measures to describe better investor attitudes [24]. On the other hand, the issues linked to 
portfolio management have been addressed by introducing several constraints to handle portfolio weights (a detailed list is given 
in [27]). In this context, some authors have studied the multi-objective formulation of the mean-variance portfolio optimization 
problem, in which the expected portfolio return is maximized and, at the same time, its variance is minimized (see, for instance, 
[22]). The scope is to provide heuristics able to generate accurate dotted representations of the set of efficient portfolios in a few 
iterations.
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Instead, in the single-objective counterpart, one usually aims to approximate the efficient frontier by minimizing the risk for 
different values of the desired mean return of the portfolio. Another standard practice is to optimize a sum of the portfolio mean and 
variance, weighted by a risk aversion parameter. In this case, one varies the sensitivity of the investor to build up the set of optimal 
portfolios [14].

A third formulation maximizes the so-called Sharpe ratio, defined the ratio between the investment’s excess return with respect 
to a risk-free rate and its standard deviation, in order to directly identify the best portfolio on the efficient frontier [46].

From a rational investor’s point of view, using the Sharpe indicator in periods of market downturns is questionable because it 
leads to preferring riskier portfolios. A solution to this issue is to multiply, instead of dividing, this quantity by the standard deviation 
when the excess rate of return of the portfolio is negative (see [21]). In this way, the performance measure is coherent with agent 
preferences even if the risk premia are negative. A first application of this modified Sharpe ratio for a passive portfolio optimization 
problem with an investable universe of almost fifty assets has been proposed in [23].

In this paper, we focus on using the modified Sharpe ratio for active investments with an upper threshold on the portfolio size. 
We analyze the asset allocation problem from the perspective of an institutional investor who operates in large equity markets 
composed of hundreds or thousands of constituents and selects a restricted pool of stocks to build up a portfolio with a suitable 
performance with respect to the benchmark. In our portfolio design, we also consider the following standard real-world constraints. 
First, a budget constraint ensures that all the available capital is invested; next, bound constraints prescribe lower and upper bounds 
on the fraction of capital invested in each asset; finally, a turnover constraint implicitly controls the effect of the transaction costs on 
the rebalancing phases. The resulting mixed-integer optimization problem belongs to the general family of cardinality-constrained 
portfolio optimization problems which are NP-hard, and finding possible optimal solutions becomes computationally challenging 
[29]. For this reason, on the one hand, exact methods were proposed to supply optimal solutions, but they demand a significant 
amount of computation time when the problem size increases ([35] and [6]). On the other hand, heuristic approaches can identify 
approximate and sometimes optimal solutions within reasonable computation time even when the problem size is huge [41].

Many other real-world and engineering applications can also be modelled as highly constrained optimization problems ([16] and 
[37]). The lack of a universal optimizer [20] suggests the development of efficient algorithmic designs which exploit the problem-

specific features. For this purpose, hyper-heuristic, memetic, and ensemble algorithms have been recently introduced (see [7] and 
[42]). It is worth noting that these meta-heuristics are all linked and address the same topic from different perspectives. More 
specifically, the first type of solvers consists of different search algorithms equipped by a coordination engine that selects and 
activates the various algorithms for the problem at hand. The second class combines the benefits of ad hoc local search heuristics and 
multi-agent systems in the algorithmic framework. Finally, an ensemble of strategies involves multiple and complementary search 
techniques to handle the optimization problem issues.

Within the context of memetic optimizers, swarm optimization algorithms, inspired by the self-organizing interaction among 
agents, have become popular in portfolio selection theory [18]. In particular, the particle swarm optimization (PSO) algorithm has 
been widely employed to solve real-world financial problems since its first proposal ([15], [46] and [12]) due to its effectiveness 
in reaching optimal solutions. However, the algorithm above does not work efficiently when the problem size is large, leading 
to population stagnation and premature convergence [31]. To improve PSO performance for large-scale optimization problems, 
several authors have designed many variants, such as competitive swarm optimizer [10], social learning particle swarm optimizer 
[11] and level-based learning swarm optimizer (LLSO) [44]. In particular, the latter one has shown better exploitation ability in 
different environments. For this reason, we propose its use to solve our portfolio optimization problem. LLSO is inspired by the 
teaching concept that teachers should treat students differently according to their cognitive and learning abilities. Based on that, the 
general idea of the LLSO is to sort the swarm individuals in ascending order with respect to their fitness and then separate them 
into distinct levels. The best individuals are stored at a higher level and are not updated, preserving the most valuable information 
conveyed in the swarm. Unlike PSO, which uses the historically best positions to update the particles, LLSO employs predominant 
particles in the current swarm to guide the learning of the worst particles and to enhance the swarm diversity. Thus, particles 
in lower levels have more individuals in the upper levels to learn from and are focused on exploring the search space; those in 
higher levels mainly concentrate on the exploitation task. Even though LLSO shows promising capabilities in dealing with large-scale 
optimization problems, it is overly sensitive to its parameters. To mitigate this influence, an adaptive variant, henceforth ALLSO, has 
been introduced in [38], which takes advantage of a swarm aggregation indicator to estimate the evolution state of the swarm. Two 
adaptive adjustment strategies are then applied to identify the best configuration setting for each generation.

Due to the fact that the swarm optimization algorithms are usually blind to the constraints, they have to be equipped with 
constraint-handling techniques [28] to be effective in real-world applications. A class of constraint-handling methods widely used in 
literature is represented by the penalty function methods, where a penalty term reduces the fitness value of the infeasible candidates. 
However, despite its simplicity, this method usually requires the definition of problem-dependent parameters that significantly 
impact algorithm performance. To overcome this issue, adaptive penalty techniques have been developed, in which the parameters 
are automatically set by using information gathered from the violated constraints at the current generation. We refer the reader to 
[2] for a more exhaustive overview of adaptive penalty techniques.

Therefore, to tackle the presented large-scale cardinality-constrained portfolio optimization problem, our memetic algorithm 
combines an improved ALLSO with a novel hybrid constraint-handling technique, in which we integrate a projection operator 
into the self-adaptive penalty scheme developed by [13]. Moreover, to further improve the algorithm’s exploitation power and the 
solutions’ quality, we introduce a novel mutation procedure, applied to the best individuals in the first level, which generalizes the 
one inspected in [23].
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• we develop a memetic algorithm integrating the ALLSO with an ad hoc mutation operator and a novel hybrid constraint-handling 
technique to solve large-scale cardinality-constrained portfolio optimization problems;

• we use a modified version of the Sharpe ratio as the objective function in active portfolio optimization;

• we introduce a novel initialization procedure for population-based heuristics to effectively address the low degree of feasibility 
in our portfolio rebalancing problem;

• we validate the profitability of the investment strategy in the last five years using a pool of 1119 assets from a global equity 
market index.

Let us now give a more precise overview of the paper’s contents. The following section describes the investment framework, 
focusing on the portfolio optimization problem. In Section 3, we introduce the developed solver. More precisely, we first explain 
the adaptive LLSO and then detail the proposed methods, namely the novel mutation operator and the hybrid constraint-handling 
technique. In the last part of the section, we summarise the entire procedure. In Section 4, we show the experimental results; in the 
last section, we depict the conclusions and future perspectives.

2. Portfolio design

2.1. Investment framework

We consider a frictionless market in which no short selling is allowed, and all investors act as price takers. Assuming that 𝑛 assets 
represent the investable universe, a portfolio is identified with the vector of assets weights 𝒙 = (𝑥1, … , 𝑥𝑛) ∈ℝ𝑛, where 𝑥𝑖 ∈ℝ denotes 
the proportion of capital invested in asset 𝑖, with 𝑖 = 1, … , 𝑛. Let 𝑅𝑖 be the random variable which stands for the rate of return of asset 
𝑖, with expected value 𝜇𝑖. Hence, the random variable 𝑅𝑝(𝒙) =

∑𝑛
𝑖=1 𝑅𝑖𝑥𝑖 indicates the rate of return of portfolio 𝒙. The expected rate 

of return of portfolio 𝒙 is then defined as

𝜇𝑝(𝒙) =
𝑛∑

𝑖=1
𝑥𝑖𝜇𝑖 (2.1)

and its standard deviation, also called volatility, is given by

𝜎𝑝(𝒙) =

√√√√ 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑥𝑗 (2.2)

where (𝐶)𝑖𝑗 = 𝑐𝑖𝑗 is the covariance between stocks 𝑖 and 𝑗, with 𝑖, 𝑗 = 1, … , 𝑛.

Since investors perceive large deviations from the portfolio mean value as damaging, (2.2) represents the so-called portfolio risk.

In such a setting, the portfolio choice is made only with respect to the expected portfolio rate of return and the portfolio risk, as 
stated in the following definition.

Definition 2.1. Given two portfolios 𝒙, 𝒚, we say that 𝒙 is preferred to 𝒚 if and only if 𝜇𝑝(𝒙) ≥ 𝜇𝑝(𝒚) and 𝜎𝑝(𝒙) ≤ 𝜎𝑝(𝒚), with at least 
one strict inequality.

In other words, an investor prefers one portfolio to another if it has a higher expected rate of return and lower risk. This decision 
making approach is known as mean-variance analysis.

2.2. Objective function

According to the mean-variance analysis, we can use the so-called Sharpe ratio to identify the best investment among efficient 
portfolios. As stated before, it is defined as the ratio between the excess return of an investment with respect to a risk-free rate, 𝑟𝑓 , 
and its standard deviation

𝑆𝑅(𝒙) =
𝜇𝑝(𝒙) − 𝑟𝑓

𝜎𝑝(𝒙)
. (2.3)

This performance measure evaluates the compensation earned by the investor per unit of both systematic and idiosyncratic risks [9]. 
Thus, higher values of 𝑆𝑅 indicate more promising portfolios.

From a theoretical point of view, this choice is justified by the fact that several widely used performance measures are increasing 
functions of the Sharpe ratio ([33] and [34]). Moreover, when the numerator in (2.3) is positive, this indicator is coherent with the 
risk-return profile of a rational investor. From a practical point of view, it can be easily calculated and its interpretation is simpler 
than most of recently proposed complex performance measures [1].

However, as pointed out in [21], the reliability of this performance measure decreases when the excess rate of return is negative. 
In that case, one would prefer higher-risk portfolios using the Sharpe ratio. To overcome this issue, in our portfolio selection problem 
we adopt as objective function the following modification of (2.3), the so-called modified Sharpe ratio

𝜇𝑝(𝒙) − 𝑟𝑓
323

𝑀𝑆𝑅(𝒙) =
𝜎𝑝(𝒙)sign(𝜇𝑝(𝒙)−𝑟𝑓 )

(2.4)
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where sign(𝑧) is the sign function of 𝑧 ∈ ℝ. Observe that if the portfolio excess return is non-negative, the modified Sharpe ratio 
is equal to the Sharpe ratio. Otherwise, it multiplies the portfolio excess return by the standard deviation. In this manner, even in 
adverse conditions, portfolios with lower risk and higher excess return will be preferred.

2.3. Constraints

In our portfolio model, we consider the following constraints.

• Budget. All the available capital needs to be invested. In terms of portfolio weights, this translates to

𝑛∑
𝑖=1

𝑥𝑖 = 1. (2.5)

• Cardinality. We assume that the portfolio includes up to 𝑘 assets, where 𝑘 ≤ 𝑛. To model the inclusion or the exclusion of the 𝑖-th 
asset in the portfolio, a binary variable 𝛿𝑖 is introduced as

𝛿𝑖 =
{

0, if asset 𝑖 is excluded

1, if asset 𝑖 is included
(2.6)

for 𝑖 = 1, … , 𝑛. The resulting vector of selected assets is 𝜹 = (𝛿1, … , 𝛿𝑛) ∈ {0, 1}𝑛, and the cardinality constraint can be written as

𝑛∑
𝑖=1

𝛿𝑖 ≤ 𝑘. (2.7)

• Box. A balanced portfolio should avoid extreme positions and foster diversification. Hence, we impose a maximum and a mini-

mum limit for portfolio weights, that is

𝛿𝑖𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝛿𝑖𝑢𝑖, 𝑖 = 1,… , 𝑛 (2.8)

where 𝑙𝑖 and 𝑢𝑖 are the lower and the upper bounds for the weight of the 𝑖-th asset, respectively, with 0 < 𝑙𝑖 < 𝑢𝑖 ≤ 1 to exclude 
short sales.

• Turnover. To control the effect of the transaction costs in the portfolio rebalancing phases, we consider a portfolio turnover 
constraint. Let 𝒙0 be a vector containing the current portfolio positions [36]. Then, the portfolio turnover constraint is

𝑛∑
𝑖=1
|𝑥𝑖 − 𝑥0, 𝑖| ≤ 𝑇𝑅 (2.9)

where 𝑇𝑅 denotes the maximum turnover rate, which lies between 0 and 1. Note that if 𝑇𝑅 = 0 rebalancing is not allowed, and 
more trades are allowed when 𝑇𝑅 increases.

The pairs (𝜹, 𝒙) ∈ {0, 1}𝑛×ℝ𝑛 that satisfy (2.5), (2.7), (2.8) and (2.9) form the feasible set  . Then, our portfolio optimization problem 
can be written as

max
𝜹,𝒙

𝑀𝑆𝑅(𝒙)

s.t. (𝜹,𝒙) ∈  .
(2.10)

Remark 2.2. To simplify the following treatment, we reformulate our maximization problem into the equivalent minimization 
problem

min
𝜹,𝒙

𝑓 (𝒙)

s.t. (𝜹,𝒙) ∈ 
(2.11)

where 𝑓 (𝒙) = −𝑀𝑆𝑅(𝒙).

3. Optimization algorithm

3.1. Adaptive level-based learning swarm optimizer

The algorithm evolves a swarm of 𝑁𝑃 candidate solutions using the so-called level-based population structure [44], according to 
324

which the evolution process is defined as follows.
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1. At each iteration 𝑔, the individuals in the swarm are first sorted ascending based on their fitness and grouped into 𝑁𝐿𝑔 levels, 
each one containing 𝐿𝑃𝑔 = ⌊𝑁𝑃∕𝑁𝐿𝑔⌋ particles. In the last level, there are ⌊𝑁𝑃∕𝑁𝐿𝑔⌋ +𝑁𝑃%𝑁𝐿𝑔 particles.1 Better individuals 
belong to higher levels, and a higher level corresponds to a smaller level index. Thus, 𝐿1 represents the best level, while 𝐿𝑁𝐿𝑔

is the worst one.

2. To preserve the most valuable information conveyed in the current swarm, individuals belonging to 𝐿1 are not updated and 
enter directly in the next generation. The 𝑝-th particle in level 𝐿𝑙, denoted by 𝒙𝑙, 𝑝(𝑔), where 𝑙 = 3, … , 𝑁𝐿𝑔 and 𝑝 = 1, … , 𝐿𝑃𝑔 , 
is allowed to learn from two particles 𝒙𝑙1 , 𝑝1 (𝑔), 𝒙𝑙2 , 𝑝2 (𝑔) randomly extracted from two different higher levels 𝐿𝑙1

and 𝐿𝑙2
with 

𝑙1 < 𝑙2, and 𝑝1 and 𝑝2 are randomly chosen from {1, … , 𝐿𝑃𝑔}. For 𝑙 = 2, we sample two particles from 𝐿1 in such a way that 
𝒙𝑙1 , 𝑝1 (𝑔) is better than 𝒙𝑙1 , 𝑝2 (𝑔) in terms of fitness function. Thus, the update rule for particle 𝒙𝑙, 𝑝(𝑔) is given component-wise by

𝑣
𝑙, 𝑝
𝑖
(𝑔 + 1) = 𝑟1𝑣

𝑙, 𝑝
𝑖
(𝑔) + 𝑟2

(
𝑥
𝑙1 , 𝑝1
𝑖

(𝑔) − 𝑥
𝑙, 𝑝
𝑖
(𝑔)
)
+ 𝜙𝑔𝑟3

(
𝑥
𝑙2 , 𝑝2
𝑖

(𝑔) − 𝑥
𝑙, 𝑝
𝑖
(𝑔)
)

(3.1)

𝑥
𝑙, 𝑝
𝑖
(𝑔 + 1) = 𝑥

𝑙, 𝑝
𝑖
(𝑔) + 𝑣

𝑙, 𝑝
𝑖
(𝑔 + 1) (3.2)

for 𝑖 = 1, … , 𝑛, where 𝑣𝑙, 𝑝
𝑖
(𝑔) denotes the 𝑖-th component of the velocity of particle 𝑝 in level 𝐿𝑙 at generation 𝑔, and 𝑟1, 𝑟2, 𝑟3 are 

real numbers randomly generated within [0, 1]. The parameter 𝜙𝑔 ∈ [0, 1] controls the influence of the less performing exemplar 
𝒙𝑙2 , 𝑝2 (𝑔) on 𝒗𝑙, 𝑝(𝑔).

Based on [38], both the parameters involved in the learning process at generation 𝑔, namely 𝑁𝐿𝑔 and 𝜙𝑔 , are adaptively adjusted 
based on the evolution state of the swarm by an aggregation indicator, which is defined as

𝑠(𝑔) =
𝑓𝑔 − 𝑓

(
𝒙𝑔𝑏𝑒𝑠𝑡(𝑔)

)
𝑓
(
𝒙𝑔𝑏𝑒𝑠𝑡(𝑔)

)
+ 𝜉

(3.3)

where 𝑓𝑔 is the average fitness of the population at generation 𝑔, 𝑓
(
𝒙𝑔𝑏𝑒𝑠𝑡(𝑔)

)
denotes the historically global best fitness up to 

iteration 𝑔, and 𝜉 is a small positive value to avoid zero denominators.

Remark 3.1. When 𝑠(𝑔) is high, particles are far from the current global best solution. Thus, the swarm is in an exploration phase. 
On the contrary, when 𝑠(𝑔) is low, particles are close to the global best solution 𝒙𝑔𝑏𝑒𝑠𝑡(𝑔) and the swarm is in an exploitation phase.

To guarantee a control on the number of levels, 𝑁𝐿𝑔 takes values in the set {𝑁𝐿𝑚𝑖𝑛, … , 𝑁𝐿𝑚𝑎𝑥}, where 𝑁𝐿𝑚𝑖𝑛, 𝑁𝐿𝑚𝑎𝑥 ∈ ℕ are 
predefined lower and upper bounds. Moreover, to balance the level selection diversity and the exemplar diversity, 𝑁𝐿𝑔 can be 
modified only when the relative improvement of the global fitness between generation 𝑔 and generation 𝑔 − 1, given by

𝑡(𝑔) =
𝑓
(
𝒙𝑔𝑏𝑒𝑠𝑡(𝑔 − 1)

)
− 𝑓

(
𝒙𝑔𝑏𝑒𝑠𝑡(𝑔)

)
𝑓
(
𝒙𝑔𝑏𝑒𝑠𝑡(𝑔)

)
+ 𝜉

, (3.4)

slows down or stops, which corresponds to the cases 𝑡(𝑔) < 𝑡(𝑔 − 1) or 𝑡(𝑔) = 0 respectively. The update of 𝑁𝐿𝑔 then follows the rule

𝑁𝐿𝑔 =

{
2 ⋅𝑁𝐿𝑔−1 if 𝑠(𝑔) < 𝛿
1
2 ⋅𝑁𝐿𝑔−1 if 𝑠(𝑔) ≥ 𝛿

(3.5)

where 𝛿 is a threshold in terms of the aggregation indicator to control the adjustment of 𝑁𝐿𝑔 .

When 𝑁𝐿𝑔 is out of the range, it is adjusted as follows

𝑁𝐿𝑔 =
⎧⎪⎨⎪⎩
𝑁𝐿𝑟𝑎𝑛𝑑 if 𝑟 < 𝑝𝑥

𝑁𝐿𝑚𝑎𝑥 if 𝑟 ≥ 𝑝𝑥 and 𝑁𝐿𝑔 >𝑁𝐿𝑚𝑎𝑥

𝑁𝐿𝑚𝑖𝑛 if 𝑟 ≥ 𝑝𝑥 and 𝑁𝐿𝑔 <𝑁𝐿𝑚𝑖𝑛

(3.6)

where 𝑁𝐿𝑟𝑎𝑛𝑑 is uniformly sampled from {𝑁𝐿𝑚𝑖𝑛, … , 𝑁𝐿𝑚𝑎𝑥}, 𝑟 is a real number randomly generated within [0, 1], and 𝑝𝑥 is a fixed 
probability employed to reset 𝑁𝐿𝑔 .

The update for 𝜙𝑔 is designed in the following way

𝜙𝑔 = 0.35 + 0.1 ⋅ 1
1 + 10 ⋅ 𝑠(𝑔)

(3.7)

where 𝑠(𝑔) is the value of aggregation indicator given in (3.3).

A preliminary numerical analysis reveals that a clamping procedure, limiting the magnitude of the velocity 𝒗𝑙, 𝑝(𝑔), provides a 
better exploration of the search space (in this regard, see also [30]). This function can be written component-wise as

𝑣
𝑙, 𝑝
𝑖
(𝑔) = min{max{𝑣𝑙, 𝑝

𝑖
(𝑔), 𝑣𝑚𝑖𝑛

𝑖 }, 𝑣𝑚𝑎𝑥
𝑖 } (3.8)
325

1 We denote by ⌊𝑥⌋ the floor of 𝑥 and by 𝑥%𝑦 the rest of the division of 𝑥 by 𝑦.
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where 𝑣𝑚𝑖𝑛
𝑖

and 𝑣𝑚𝑎𝑥
𝑖

are the minimum and the maximum velocity allowed for component 𝑖, with 𝑖 = 1, … , 𝑛. In the experiments, 
recalling equation (2.8), we set 𝑣𝑚𝑎𝑥

𝑖
= 𝑢𝑖 and 𝑣𝑚𝑖𝑛

𝑖
= −𝑣𝑚𝑎𝑥

𝑖
.

3.2. Mutation operator

Instead of directly moving the individuals of the first level to the next generation, we propose to mutate them using an operator 
that combines two perturbation strategies properly developed for our portfolio optimization problem.

More specifically, one technique is inspired by the swap operator proposed in [25] and works as follows. First, we fix the 
maximum allowed number of non-null positions that could become zero, namely 𝑘𝑠𝑤𝑎𝑝

𝑚𝑎𝑥 . Then, for each particle 𝒙1, 𝑝(𝑔) in level 𝐿1
subject to swapping, we randomly sample from 

{
1,… , 𝑘

𝑠𝑤𝑎𝑝
𝑚𝑎𝑥

}
the number 𝑘s𝑤𝑎𝑝 of non-null positions that will be set to zero. At this 

point, for 𝑗 = 1, … , 𝑘𝑠𝑤𝑎𝑝, let 𝑎𝑗 and 𝑏𝑗 be two randomly chosen positions in 𝒙1, 𝑝(𝑔), such that 𝑥1, 𝑝𝑎𝑗
(𝑔) = 0 and 𝑙𝑏𝑗 ≤ 𝑥

1, 𝑝
𝑏𝑗

(𝑔) ≤ 𝑢𝑏𝑗 . Thus, 
the modified individual, �̂�1, 𝑝(𝑔), is defined component-wise as

�̂�
1, 𝑝
𝑖

(𝑔) =

⎧⎪⎪⎨⎪⎪⎩

𝑥
1, 𝑝
𝑖

(𝑔), if 𝑖 ≠ 𝑎𝑗 and 𝑖 ≠ 𝑏𝑗

𝑙𝑎𝑗 +
𝑥
1, 𝑝
𝑏𝑗

(𝑔) − 𝑙𝑏𝑗

𝑢𝑏𝑗 − 𝑙𝑏𝑗
(𝑢𝑎𝑗 − 𝑙𝑎𝑗 ), if 𝑖 = 𝑎𝑗

0, if 𝑖 = 𝑏𝑗 .

(3.9)

In this paper, based on the preliminary experiments, 𝑘𝑠𝑤𝑎𝑝
𝑚𝑎𝑥 = ⌊0.05 ⋅ 𝑘⌋, where 𝑘 represents the maximum number of assets included 

in the portfolio.

Remark 3.2. This generalisation, allowing multiple swaps at the same time, improves the search capabilities of the original swap 
operator.

The other perturbation scheme focuses solely on the non-null components. For each 𝒙1, 𝑝(𝑔) to be mutated, let 𝐼1, 𝑝+ (𝑔) = {𝑖 ∶
𝑥
1, 𝑝
𝑖

(𝑔) > 0} then, for all 𝑖 ∈ 𝐼
1, 𝑝
+ (𝑔), we define the interval

𝑊
1, 𝑝
𝑖

(𝑔) =
[
𝑥
1, 𝑝
𝑖

(𝑔) − Δ𝑖(𝑔), 𝑥
1, 𝑝
𝑖

(𝑔) + Δ𝑖(𝑔)
]

(3.10)

where Δ(𝑔) =
(
1 − 𝑔

𝑔𝑚𝑎𝑥+1

)
(𝐮− 𝐥), with 𝑔𝑚𝑎𝑥 be the maximum allowed number of iterations. The mutated component �̂�1, 𝑝

𝑖
(𝑔) is ran-

domly generated from the interval 𝑊 1, 𝑝
𝑖

(𝑔) ∩
[
𝑙𝑖, 𝑢𝑖

]
. For 𝑖 ∉ 𝐼

1, 𝑝
+ (𝑔), we set �̂�1, 𝑝

𝑖
(𝑔) = 0. By narrowing the range over time, this procedure 

increases the exploration around the particles in 𝐿1.

Remark 3.3. By construction, the solutions modified by both the perturbation operators have at most 𝑘 non-null positions and satisfy 
the box constraints.

For each particle in 𝐿1, the probability of applying the generalised swap operator decreases as the iteration counter increases 
according to the following rule

𝑝𝑠𝑤𝑎𝑝(𝑔) =
1

1 + exp(−0.005 ⋅ 𝑔)
. (3.11)

In the initial stages, the proposed mutation favours the global search, using the generalised swap operator to identify the most 
promising subset of non-null decision variables. With the progress of the generations, the role of the refinement operator increases 
and, in the late stages, the algorithm focuses primarily on the local search.

The pseudo-code of the developed mutation procedure is reported in Algorithm 1.

3.3. Solution coding and hybrid constraint-handling procedure

Let us introduce some notation. Let 𝑖 denote a closed convex subset of ℝ+, with 𝑖 = 1, … , 𝑛, and 𝐾 =
{
𝑖1,… , 𝑖𝑘

}
be any subset of 

indices of 𝐼 = {1, … , 𝑛} with cardinality 𝑘 ∈ℕ, so that 𝐼 ⧵𝐾 is its complement in 𝐼 . For all 𝒙 ∈ℝ𝑛, let 𝒙𝐾 be defined component-wise 
as

𝒙𝐾, 𝑖 =
{

𝑥𝑖, if 𝑖 ∈𝐾

0, if 𝑖 ∈ 𝐼 ⧵𝐾
(3.12)

and let 𝜋𝐾 ∶ ℝ𝑛 →ℝ𝑘 be the projection such that 𝜋𝐾 (𝒙) =
(
𝑥𝑖1

,… , 𝑥𝑖𝑘

)
.

We start by presenting the following proposition (in this regard, see also [45]).

Proposition 3.4. Let 𝒚 ∈ℝ𝑛, with 𝑛 ≥ 2. Then, the optimal 𝐾 for the problem

1
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min
𝒙𝐾∶𝑥𝑖∈𝐶𝑖 2

‖𝒙𝐾 − 𝒚‖2 (3.13)
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Algorithm 1: Mutation procedure.

Input : 𝒙1, 𝑝(𝑔), 𝒍, 𝒖, 𝑘𝑠𝑤𝑎𝑝
𝑚𝑎𝑥 , 𝑔, Δ(𝑔)

Output : �̂�1, 𝑝(𝑔)

1 Set �̂�1, 𝑝(𝑔) = 𝒙1, 𝑝(𝑔)

2 Set 𝐼0 =
{
𝑖∶ 𝑥

1, 𝑝
𝑖

(𝑔) = 0
}

3 Set 𝐼+ =
{
𝑖∶ 𝑙𝑖 ≤ 𝑥

1, 𝑝
𝑖

(𝑔) ≤ 𝑢𝑖

}
4 Calculate 𝑝s𝑤𝑎𝑝(𝑔) according to (3.11)

5 if 𝑟𝑎𝑛𝑑() ≤ 𝑝s𝑤𝑎𝑝(𝑔) then

6 𝑘𝑠𝑤𝑎𝑝 →
{
1,… , 𝑘

𝑠𝑤𝑎𝑝
𝑚𝑎𝑥

}
7 for 𝑗 = 1 to 𝑘𝑠𝑤𝑎𝑝 do

8 𝑎𝑗 → 𝐼0

9 𝑏𝑗 → 𝐼+

10 �̂�
1, 𝑝
𝑎𝑗

(𝑔) = 𝑙𝑎𝑗
+

𝑥
1, 𝑝
𝑏𝑗

(𝑔) − 𝑙𝑏𝑗

𝑢𝑏𝑗 − 𝑙𝑏𝑗
(𝑢𝑎𝑗

− 𝑙𝑎𝑗
)

11 �̂�
1, 𝑝
𝑏𝑗

(𝑔) = 0

12 end

13 else

14 for 𝑖 in 𝐼+ do

15 𝑙𝑏 =max
(
𝑥
1, 𝑝
𝑖

(𝑔) − Δ𝑖(𝑔), 𝑙𝑖
)

16 𝑢𝑏 =min
(
𝑥
1, 𝑝
𝑖

(𝑔) + Δ𝑖(𝑔), 𝑢𝑖
)

17 �̂�
1, 𝑝
𝑖

(𝑔) → [𝑙𝑏, 𝑢𝑏]
18 end

19 end

is the set 𝐾∗ of indices corresponding to the 𝑘 largest components of 𝒚.

The proof of this result is reported in Appendix A.

In other words, the proposition states that 𝒙𝐾∗ is the vector with at most 𝑘 non-null components which has minimum Euclidean 
distance from 𝒚 among all 𝒙𝐾 , with 𝐾 ⊂ 𝐼 of cardinality 𝑘.

Thanks to this projection, which implicitly enforces cardinality fulfilment, we can remove the vector of binary variables 𝜹 from 
the coding scheme of the solutions and we reformulate the portfolio optimization problem (2.11) only in terms of 𝒙𝐾∗ . To this end, 
we introduce the set

 =

{
𝒙 ∈ℝ𝑛 ∶ 𝑥𝑖 = 0 or 𝑥𝑖 ∈

[
𝑙𝑖, 𝑢𝑖

]
for 𝑖 ∈𝐾∗, 𝑥𝑖 = 0 for 𝑖 ∈ 𝐼 ⧵𝐾∗,

𝑛∑
𝑖=1

𝑥𝑖 = 1

}
, (3.14)

that is the set of the points satisfying all the constraints apart from the turnover condition. Further, let 𝜓(𝒙) represent the value of 
the turnover function at 𝒙, which is given by

𝜓(𝒙) =
𝑛∑

𝑖=1
|𝑥𝑖 − 𝑥0,𝑖|− 𝑇𝑅. (3.15)

Then, the constrained optimization problem can be rewritten as

min
𝒙∈ 𝑓 (𝒙)

s.t. 𝜓(𝒙) ≤ 0.
(3.16)

The following proposition, whose proof is given in Appendix A, establishes the equivalence between problem (3.16) and the mixed-

integer optimization problem (2.11).

Proposition 3.5. We assume that 
(
𝜹∗, 𝒙∗

)
is a global solution to problem (2.11), then 𝒙∗

𝐾∗ is a global solution to problem (3.16). Conversely, 
if 𝒙∗ is a global solution to (3.16), then 

(
𝜹∗, 𝒙∗

)
is a global solution to (2.11), with

𝛿∗𝑖 =

{
1 if 𝑖 ∈𝐾∗

0 otherwise.

As previously observed, the standard ALLSO algorithm can only deal with unconstrained problems; thus, we propose to incorpo-

rate a hybrid constraint-handling technique in order to solve problem (3.16).

The building block of our procedure is based on the following lemma.

Lemma 3.6. Let 𝒍 =
(
𝑙1,… , 𝑙𝑛

)
and 𝒖 =

(
𝑢1,… , 𝑢𝑛

)
be such that 𝑙𝑖 ≤ 𝑢𝑖 for 𝑖 = 1, … , 𝑛. Let 𝒚 ∈ℝ𝑛 and define [𝒍, 𝒖] =

{
𝒙 ∈ℝ𝑛 ∶ 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖

}
. 
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Then, the orthogonal projection of 𝒚 onto [𝒍, 𝒖] is given component-wise by
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𝑃[𝒍,𝒖], 𝑖(𝒚) = min{max{𝑦𝑖, 𝑙𝑖}, 𝑢𝑖} (3.17)

with 𝑖 = 1, … , 𝑛.

The derivation of the orthogonal projection 𝑃[𝒍,𝒖] can be found in [3]. We now provide the main result concerning the projection 
phase. We refer the reader to Appendix A for the proof.

Proposition 3.7. Let 𝒚 ∈ℝ𝑛, with 𝑛 ≥ 2, and 𝐾∗∗ =
{
𝑖 ∈𝐾∗ ∶ 𝑦𝑖 > 0

}
, with 𝐾∗ being the optimal set in Proposition 3.4. Assume that  in 

(3.14) is non-empty. Then, the orthogonal projection of 𝒚 onto  is

𝑃(𝒚) = 𝜋−1
𝐾∗∗

(
𝑃[𝜋𝐾∗∗ (𝒍), 𝜋𝐾∗∗ (𝒖)](𝜋𝐾∗∗ (𝒚 − 𝜂∗𝟏)

)
(3.18)

where 𝜋−1
𝐾

(𝒛) is the pre-image of 𝒛 ∈ℝ||𝐾∗∗|| under 𝜋𝐾 and 𝜂∗ ∈ℝ is a solution of

𝑘∑
𝑖=1

𝑃[𝜋𝐾∗∗ (𝒍), 𝜋𝐾∗∗ (𝒖)](𝒚 − 𝜂𝟏) = 1. (3.19)

Let 𝑔 = {𝒙𝑝(𝑔) ∈ℝ𝑛 ∶ 𝑝 = 1,… ,𝑁𝑃 } be the swarm at generation 𝑔, with 𝑔 = 1, … , 𝑔𝑚𝑎𝑥. Then, the proposed ALLSO variant maps 
the individuals in 𝑔 , which are updated using (3.1) and (3.2), onto the set  by means of the projector defined in (3.18). The resulting 
mutated swarm is denoted by ̌𝑔 . Successively, we apply the self-adaptive penalty approach by [13] to handle the turnover constraint 
and to guarantee the global optimality of solutions. More precisely, the objective function value at each projected individual in ̌𝑔 , 
namely 𝑓 (�̌�𝑝), is normalized according to the formula

𝑓 (�̌�𝑝) = 𝑓 (�̌�𝑝) − 𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

where 𝑓𝑚𝑖𝑛 = min
�̌�𝑝∈̌𝑔

𝑓 (�̌�𝑝) and 𝑓𝑚𝑎𝑥 = max
�̌�𝑝∈̌𝑔

𝑓 (�̌�𝑝). Similarly, the corresponding normalized constraint violation is given by

Ψ
(
�̌�𝑝
)
=
⎧⎪⎨⎪⎩

max{𝜓(�̌�𝑝),0}
𝜓𝑚𝑎𝑥

, if 𝜓𝑚𝑎𝑥 > 0

0, otherwise

where 𝜓𝑚𝑎𝑥 denotes the maximum of 𝜓(�̌�𝑝) over all the mutated solutions in ̌𝑔 which do not satisfy the turnover constraint.

Finally, the penalty function is

𝐹
(
�̌�𝑝
)
=
⎧⎪⎨⎪⎩
𝑓
(
�̌�𝑝
)

if 𝜓(�̌�𝑝) ≤ 0
𝑓 (�̌�) +𝑅𝑓Ψ

(
�̌�𝑝
)

if 𝜓(�̌�𝑝) > 0 and 𝑓 (�̌�𝑝) ≤ 𝑓 (�̌�)
𝑓 (�̌�𝑝) +𝑅𝑓Ψ

(
�̌�𝑝
)

if 𝜓(�̌�𝑝) > 0 and 𝑓 (�̌�𝑝) > 𝑓 (�̌�) ,
(3.20)

where 𝑅𝑓 represents the feasibility ratio for ̌𝑔 , that is the percentage of individuals in ̌𝑔 satisfying the turnover constraint. In (3.20), 
the reference point �̌� is a point belonging to ̌𝑔 that satisfies the turnover constraint and has the lowest objective function value 
found so far. As in [13], if the population has no feasible points, 𝑓 (�̌�) is initially and temporarily set to 𝑓𝑚𝑎𝑥, so that 𝑓 (�̌�𝑝) ≤ 𝑓 (�̌�) for 
all �̌�𝑝 ∈ ̌𝑔 and 𝑓 (�̌�) = 1. The value of 𝑓 (�̌�) is updated only when the first feasible point is encountered.

We conclude this subsection by stating the following theorem, whose proof is omitted since it is similar to the one presented in 
[13].

Proposition 3.8. The problem

min
𝒙∈𝐹 (𝒙)

with 𝐹 as in (3.20), is equivalent to the problem (3.16).

3.4. Initialisation strategy and complete algorithm

Following the financial literature [5], we consider a portfolio optimization problem of high dimensions if it involves more than 
400 securities. For this kind of problems, the common strategies of seeking a search space coverage by initializing the particles 
uniformly throughout the space as well as by increasing the size of the swarm are inefficient, because the search space grows 
exponentially with the dimension [39]. Moreover, the presence of highly constrained feasible regions in the search space exacerbates 
even more the initialization issue [17].

To effectively address the low degree of feasibility in our portfolio rebalancing problem due to the complexity of the turnover 
328

constraint, we propose a direct initialization of the candidate solutions in a neighbourhood of 𝒙0.
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Let 𝑑𝑚𝑖𝑛
𝑖

and 𝑑𝑚𝑎𝑥
𝑖

be the minimum and the maximum allowed weight changes for 𝒙0, 𝑖 respectively, with 𝑖 = 1, … , 𝑛. Let 𝐷𝑝 denote 
the total portfolio weight allowed to be re-allocated in 𝒙0 for defining the 𝑝-th candidate solution 𝒙𝑝(0), with 𝑝 = 1, … , 𝑁𝑃 . Then, for 
each 𝑝,

1. we randomly select 𝐷𝑝 within 
[
0, 𝑇𝑅∕2

]
;

2. we select a subset 𝐽− of 𝑘′ assets from the 𝑘 assets with positive weight in 𝒙0, so that

𝑥
𝑝
𝑗
(0) = 𝑥0, 𝑗 − 𝑑𝑗 , for 𝑗 ∈ 𝐽−

where 𝑑𝑗 is randomly sampled in 
[
𝑑𝑚𝑖𝑛
𝑗

, 𝑑𝑚𝑎𝑥
𝑗

]
in such a way that ∑𝑗∈𝐽− 𝑑𝑗 =𝐷𝑝, and 𝑥𝑝

𝑗
(0) = 0 or 𝑙𝑗 ≤ 𝑥

𝑝
𝑗
(0) ≤ 𝑢𝑗 ;

3. we select a subset 𝐽+ of 𝑘′′ assets from the 𝑛 − 𝑘 assets with zero weight in 𝒙0, with 𝑘′′ ≤ 𝑘′, so that

𝑥
𝑝
𝑗
(0) = 𝑥0, 𝑗 + 𝑑𝑗 , for 𝑗 ∈ 𝐽+

where 𝑑𝑗 is randomly sampled in 
[
𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥

]
in such a way that ∑𝑗∈𝐽+ 𝑑𝑗 =𝐷𝑝, and 𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗 ;

4. for 𝑗 ∈ 𝐼 ⧵
(
𝐽− ∪ 𝐽+), we set 𝑥𝑝

𝑗
(0) = 𝑥0, 𝑗 .

The portfolios assembled using this scheme satisfy cardinality, box and turnover constraints. In this way, the initialization strategy 
encourages the swarm to focus on exploitation rather than exploration, thereby allowing it to identify promising solutions, even in 
problems with high dimension and small feasible regions.

Regarding the initial velocities, we set them all equal to the zero vector, that is 𝒗𝑝(0) = 𝟎, for 𝑝 = 1, … , 𝑁𝑃 .

The pseudocode of the proposed LLSO variant with adaptive parameters update, mutation of the particles in the first level 
and hybrid constraint-handling technique, shortly ALLSO-MUT-H, is reported in Algorithm 2. It can be noticed that, setting 𝒙0 = 𝟎
and 𝑇𝑅 = 1, ALLSO-MUT-H can also tackle portfolio optimization problems with no rebalancing. In this case, only the orthogonal 
projector is needed to move the unfeasible solutions to the feasible region.

A list of the main symbols used in this paper is given in Table 8.

Algorithm 2: ALLSO-MUT-H.

Input : 𝒙0 , 𝒍, 𝒖, 𝑘, 𝑇𝑅, 𝑁𝐿𝑚𝑖𝑛 , 𝑁𝐿𝑚𝑎𝑥 , 𝑁𝑃 , 𝛿, 𝑝𝑥, 𝜉
Output : 𝒙𝑔𝑏𝑒𝑠𝑡

1 Set 𝑔 = 0 and 𝑁𝐿𝑔 = 20
2 Initialize the swarm 𝑔 = {𝒙𝑝(𝑔)∶ 𝑝 = 1,… ,𝑁𝑃 } and the velocities 𝒗𝑝(𝑔)
3 for 𝑖 = 1 to 𝑁𝑃 do

4 Project 𝒙𝑝(𝑔) onto  using (3.18)

5 Calculate the turnover violation using (3.15)

6 end

7 Calculate the penalty 𝐹 for particles in 𝑔

8 Sort 𝑔 by 𝐹 value and divide it in 𝑁𝐿𝑔 levels

9 Set 𝒙𝑔𝑏𝑒𝑠𝑡(𝑔) = 𝒙1(𝑔)
10 while 𝑔 < 𝑔𝑚𝑎𝑥 do

11 𝑔 = 𝑔 + 1
12 Set 𝐿1 =

{
𝒙𝑝(𝑔)∶ 𝑝 ∈𝐿1

}
13 for 𝑝 = 1 to 𝐿𝑃𝑔 do

14 Use Algorithm 1 to generate the mutated particle �̂�1, 𝑝(𝑔) from 𝒙1, 𝑝(𝑔)
15 Project �̂�1, 𝑝(𝑔) onto  using (3.18)

16 Calculate the turnover violation using (3.15)

17 end

18 Set 𝐿1
𝑚𝑢𝑡

=
{
�̂�𝑝(𝑔)∶ 𝑝 ∈𝐿1

}
19 Calculate the penalty 𝐹 for 𝐿1 ∪𝐿1

𝑚𝑢𝑡
and update 𝐿1 based on 𝐿1

𝑚𝑢𝑡
using 𝐹

20 Sort 𝐿1 by the 𝐹 value

21 Calculate the swarm aggregation indicator using (3.3) and update 𝜙𝑔 using (3.7)

22 for 𝑝 =𝐿𝑃𝑔+1 to 𝑁𝑃 do

23 Update 𝒗𝑝(𝑔) using (3.1) and clamp it using (3.8)

24 Update 𝒙𝑝(𝑔) using (3.2)

25 Project 𝒙𝑝(𝑔) onto 
26 Calculate the turnover violation using (3.15)

27 end

28 Set ̌𝑔 be the set of updated particles

29 Calculate 𝜙 for 𝑔 ∪ ̌𝑔 and update 𝑔 based on ̌𝑔 using 𝐹
30 Sort 𝑔 by 𝐹 value

31 Calculate 𝐹 for the set {𝒙𝑔𝑏𝑒𝑠𝑡(𝑔),𝒙1(𝑔)
}

and update 𝒙𝑔𝑏𝑒𝑠𝑡(𝑔)
32 Calculate the relative improvement 𝑡(𝑔) of 𝒙𝑔𝑏𝑒𝑠𝑡(𝑔) using (3.4)

33 if 𝑡(𝑔) < 𝑡(𝑔 − 1) or 𝑡(𝑔) = 0 then

34 Update 𝑁𝐿𝑔 using (3.5) and (3.6)

35 end
329



Information Sciences 634 (2023) 321–339M. Kaucic, F. Piccotto, G. Sbaiz et al.

Table 1

Parameter settings of the algorithms used in the comparisons.

Algorithm Parameter settings Reference

DLLSO 𝑆 = {4,6,8,10,20,50}, 𝑁𝑃 = 500, 𝜙 = 0.4 [44]

ALLSO 𝑁𝐿𝑚𝑖𝑛 = 2, 𝑁𝐿𝑚𝑎𝑥 = 50, 𝑁𝑃 = 500, 𝛿 = 0.01,

𝑝𝑥 = 0.01, 𝜉 = 10−6 [38]

RLLPSO 𝑆 = {4,6,8,10,20,50}, 𝑁𝑃 = 500, 𝜙 = 0.4,

𝛼 = 0.4, 𝛾 = 0.8, 𝜀 = 0.9, 𝜉 = 10−6 [40]

PSO 𝜔𝑚𝑖𝑛 = 0.4, 𝜔𝑚𝑎𝑥 = 0.9, 𝑐1,𝑚𝑖𝑛 = 𝑐2,𝑚𝑖𝑛 = 0.5,

𝑐1,𝑚𝑎𝑥 = 𝑐2,𝑚𝑎𝑥 = 2.5, [32], [12]

FA 𝛼 = 0.5, 𝛽𝑚𝑖𝑛 = 0.2, 𝛾 = 1 [43]

Table 2

Data sets from [8] with the corresponding number of weeks, the number of market con-

stituents (𝑛) used in the estimation of parameters, and the cardinality thresholds.

Data set name Weekly prices Assets (𝑛) Cardinality threshold (𝑘)

⌊30% ⋅ 𝑛⌋ ⌊15% ⋅ 𝑛⌋ ⌊5% ⋅ 𝑛⌋
S&P 500 290 457 137 68 22

Russell 2000 290 1318 395 197 65

Russell 3000 290 2151 645 322 107

4. Experimental analysis

This section is divided into two parts. On the one hand, we point out the strengths and weaknesses of using the proposed algorithm 
to tackle large-scale cardinality-constrained portfolio optimization problems. On the other hand, we assess the profitability of the 
investment strategy in a real-world case study by varying the size of portfolios.

As a first task, we study the impact of the developed mutation operator on the LLSO-type algorithms, all equipped with our hybrid 
constraint-handling technique. For this purpose, we compare the dynamic LLSO (DLLSO) [44], the adaptive LLSO (ALLSO) [38], and 
the reinforcement learning level-based particle swarm optimization (RLLPSO) algorithm [40]. These are the most recent solvers 
proposed in the literature, that employ the level-based learning paradigm into the PSO framework. Their superiority in solution 
accuracy with respect to several state-of-the-art algorithms has already been proved theoretically and empirically for unconstrained 
optimization problems. Hence, we inspect the best variant of the LLSO-type algorithm for our constrained optimization problems. 
To highlight the benefits of our hybrid self-adaptive penalty approach, we compare the ALLSO-MUT-H with an ALLSO equipped by 
our mutation operator and the exact 𝓁1-penalty proposed in [12]. At the same time, we consider two other state-of-the-art swarm 
optimizers, namely PSO and FA [43], both endowed with the adaptive penalty by [12]. It is worth noting that the self-adaptive 
method [13] and the adaptive penalty [12] guarantee the convergence to optimal solutions.

In the numerical experiments, we follow the suggestions in the reference papers to set up the parameters of each algorithm, and 
the complete list of parameter values is reported in Table 1.

4.1. Algorithmic comparisons

For the algorithmic comparisons, we use three data sets from the OR-Library [8], namely S&P 500, Russell 2000, and Russell 
3000, which represent large capital market indices. Table 2 summarizes the data sets employed in the experimental analysis. The 
second and third columns report the number of assets involved and the number of observations for each data set, respectively. The 
last columns show the cardinality thresholds used in the experiments. In particular, we explore the cases where 𝑘 is 30%, 15%, and 5%
of the size 𝑛 of the corresponding data set. Since the results are similar, in the following analysis we describe only the outcomes for 
the cardinality threshold equal to 30% of the size of the corresponding data set. The cases regarding the last two columns of Table 2

are addressed in the supplementary file. For calculating the expected rates of return, we adopt a historical approach based on all the 
information available, consisting of 290 weekly prices for each asset. Since our investable universes have more decision variables 
than observations, the estimator of the associated covariance matrices is biased. We employ the shrinkage estimator proposed in [26]

to reduce this effect. One can appreciate the difference between these estimators for the three data sets in the supplementary file.

For a fair comparison of the solvers, we adopt the following assumptions.

• All the algorithms have the same initial population of 500 individuals for each test set.

• We set 𝑑𝑚𝑖𝑛
𝑖

= 0.0005 and 𝑑𝑚𝑎𝑥
𝑖

= 0.0050 in the initialization strategy.
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• For each algorithm, we perform 30 independent runs with 2000 generations, which represents the terminal condition.
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Table 3

Statistics regarding the best values of the objective function over 30 runs.

Data set Statistics DLLSO-H DLLSO-MUT-H ALLSO-H ALLSO-MUT-H RLLPSO-H RLLPSO-MUT-H
S
&

P
5
0
0

mean -0.1526 -0.1670 -0.1524 -0.1672 -0.1523 -0.1622

std 0.0004 0.0015 0.0003 0.0014 0.0004 0.0023

min -0.1532 -0.1718 -0.1529 -0.1698 -0.1532 -0.1662

max -0.1517 -0.1643 -0.1517 -0.1638 -0.1509 -0.1546

R
u
ss

e
ll

2
0
0
0 mean -0.1920 -0.2104 -0.1925 -0.2124 -0.1929 -0.2049

std 0.0010 0.0042 0.0011 0.0037 0.0013 0.0043

min -0.1932 -0.2193 -0.1946 -0.2196 -0.1963 -0.2146

max -0.1895 -0.2003 -0.1895 -0.2039 -0.1903 -0.1959

R
u
ss

e
ll

3
0
0
0 mean -0.2059 -0.2247 -0.2091 -0.2301 -0.2082 -0.2271

std 0.0011 0.0031 0.0015 0.0025 0.0010 0.0043

min -0.2085 -0.2328 -0.2120 -0.2352 -0.2111 -0.2358

max -0.2042 -0.2192 -0.2067 -0.2260 -0.2065 -0.2196

Table 4

Relative change of the mutated algorithms versus non-mutated counterparts. 
The 𝑝-values for the paired 𝑡-tests are displayed in brackets. Note that in all 
cases the 𝑝-values are under the significance level 𝛼 = 0.05, indicating the 
rejection of the null hypothesis of equality of the means, against the alternative 
left-sided hypothesis.

DLLSO-MUT-H ALLSO-MUT-H RLLPSO-MUT-H

Data set vs. vs. vs.

DLLSO-H (%) ALLSO-H (%) RLLPSO-H (%)

S&P 500 9.4432 9.7153 6.5109

(2.8638 ⋅ 10−30) (8.6384 ⋅ 10−31) (7.5328 ⋅ 10−20)

Russell 2000 9.5859 10.3564 6.2501

(6.2697 ⋅ 10−21) (2.7589 ⋅ 10−23) (3.2532 ⋅ 10−15)

Russell 3000 9.1309 10.0823 9.1097

(1.2435 ⋅ 10−23) (7.4039 ⋅ 10−29) (5.6022 ⋅ 10−20)

Moreover, all the portfolios from a given test set employ the following parameter setting.

• The risk-free value in (2.4) is set to zero.

• The box thresholds in (2.8) are 𝑙𝑖 = 0.001 and 𝑢𝑖 = 0.05 for each asset.

• Regarding the turnover constraint (2.9), 𝑇𝑅 is set equal to 0.20.

• The vector of current positions 𝒙0 in (2.9) is fixed for all the compared algorithms and in all simulations by randomly sampling 
once from each set of feasible portfolios.

4.1.1. Mutation effects on LLSO variants

We recall that in the following analysis 𝑘 is set always equal to 30% of the size of the corresponding data set, and we refer the 
interested reader to the supplementary file for the other cases.

Table 3 shows four performance metrics linked to the best objective function value over 30 runs, on the three public data sets. 
The best results are highlighted in bold font. We note that the ALLSO-MUT-H outperforms the competitors in all the case studies, 
presenting the lowest mean objective function value. Further, we remark that all the inspected LLSO variants are able to find feasible 
solutions. Focusing on the mutation benefits, we observe from Table 4 that the mutation has a significant impact on the performance 
of solvers. Specifically, although mutation-based optimizers present higher volatility than their counterparts, they always show lower 
results in terms of minimum-maximum range of the best solutions. Fig. 1 shows the convergence and the diversity analyses of the 
compared solvers on the three data sets. From the first set of graphs, we note that the three mutated algorithms are able to reach 
significantly lower objective function values, and the ALLSO-MUT-H performs better than the others. Moreover, the algorithms 
without mutation show population stagnation around 100 generations, meaning that they converge to a local minimum and are 
not able to further explore the search space. This is confirmed by the results showed in the logarithmic scale plots of the diversity 
measures. We can observe that the ALLSO-MUT-H and the DLLSO-MUT-H are able to escape from the local minima, due to the 
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oscillatory behaviour of the swarm diversity.
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Fig. 1. Convergence and diversity analyses on the three data sets. Graphs in the first row show the behaviour of algorithms in terms of mean best value of the objective 
function, while in the row below are displayed the logarithmic scale plots of the diversity scores.

Table 5

Comparison with state-of-the-art swarm optimization algorithms implementing the exact 𝓁1 -penalty frame-

work proposed in [12].

Data set Statistics PSO-𝓁1 FA-𝓁1 ALLSO-MUT-𝓁1 ALLSO-MUT-H

S
&

P
5
0
0 feasible sol. (%) 0 0 100 100

mean CV 3.1572 ⋅ 10−12 3.1572 ⋅ 10−12 0 0

mean 𝐹𝓁1
-0.1325 -0.1325 -0.1325 -0.1672

R
u
ss

e
ll

2
0
0
0

feasible sol. (%) 63 100 100 100

mean CV 1.1661 ⋅ 10−5 0 0 0

mean 𝐹𝓁1
-0.1717 -0.1639 -0.1639 -0.2124

R
u
ss

e
ll

3
0
0
0

feasible sol. (%) 83 100 0 100

mean CV 7.4015 ⋅ 10−12 0 0.0326 0

mean 𝐹𝓁1
-0.1862 -0.1291 -0.1487 -0.2301

4.1.2. Comparison with state-of-the-art swarm optimization algorithms

In the previous subsection, we have analysed the impact of the mutation on the capabilities of LLSO-based algorithms, finding 
that the ALLSO-MUT-H is the more efficient choice in terms of convergence and quality of solutions. We recall also that we adopt 
the same parameter setup presented above in Table 1. We exhibit the statistics of the comparison in Table 5, where are displayed 
the percentage of feasible solutions provided by the different solvers over the 30 runs; the mean of the constraint violation function 
CV for the non-feasible solutions; the average value of the penalty function 𝐹𝓁1

over 30 runs. Notice that, the penalty function 
corresponds to the objective function when the solutions are feasible. Looking at the results, we can argue that the ALLSO-MUT-H 
reaches the best mean value of the penalty function in all the data sets, and it always provides feasible solutions. This insight is 
confirmed by the convergence analysis plots in Fig. 2, which show the benefits of our constraint-handling technique in terms of 
accuracy of solutions. Moreover, the diversity graphs suggest that our solver is the sole algorithm able to exhibit exploration and 
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exploitation phases alternatively.
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Fig. 2. Plots in the first row show the behaviour of the algorithms in terms of mean best value of the penalty function, while in the second row are presented the 
logarithmic scale graphs of the diversity.

4.2. Real-world application

4.2.1. Data description and investment setting

The constituents of the MSCI World index, on 31st January 2022, form our investable pool. The data set has been downloaded from 
DataStream and consists of monthly prices covering the period from January 2012 to January 2022 for a total of 121 months. Stocks 
with missing observations were disregarded, and thus the final data set includes 1119 stocks. For the performance comparisons, we 
introduce a value-weighted benchmark index with the same constituents and, as in the previous analysis, we set 𝑟𝑓 = 0.

The portfolio design employs the following parameter setting. For the cardinality constraint (2.7), we consider 𝑘∈{335, 167, 55, 22}, 
corresponding to 𝑘% = 30%, 15%, 5% and 2% of the pool size, respectively. As stated in the introductory part of Section 4.1, we recall 
that the box thresholds in (2.8) are 𝑙𝑖 = 0.001 and 𝑢𝑖 = 0.05 for each asset 𝑖, with 𝑖 = 1, … , 1119, and the turnover rate in (2.9) is set 
equal to 0.20, as in [23].

We use a rolling time window procedure to rebalance optimal portfolios every month, from January 2017 to January 2022, to 
point out the effects of the market changes on the behaviour of the investments and, as a consequence, the total number of ex-post 
dates is 61. We solve the corresponding problem instances by employing overlapping 60-months windows, which are updated every 
month by removing the oldest data and including the latest information.

In each quoted window, as already pointed out above, we adopt a historical approach to calculate expected rates of return, and to 
reduce the bias in the estimation of the covariance matrix 𝐶 , we take advantage of the shrinkage estimator proposed in [26]. Let us 
denote by 𝒙𝑡 the optimal portfolio at the ex-post month 𝑡, with 𝑡 = 1, … , 61. Due to the time dependence of the considered investment 
plan, we rewrite the turnover constraint (2.9) as follows

𝑛∑
𝑖=1
|𝑥𝑡,𝑖 − 𝑥𝑡− ,𝑖| ≤ 𝑇𝑅 . (4.1)

In the previous equation, 𝒙𝑡− = (𝑥𝑡− ,1, … , 𝑥𝑡− ,𝑛) represents the portfolio to be rebalanced [36], which is defined for 𝑡 = 2, … , 61 as

𝑥𝑡− , 𝑖 =
𝑥𝑡−1, 𝑖𝑅

𝑔

𝑡−1, 𝑖∑𝑛
𝑗=1 𝑥𝑡−1, 𝑗𝑅

𝑔

𝑡−1, 𝑗
(4.2)

with the denominator being the gross portfolio return at month 𝑡 − 1.2 At time 𝑡 = 1, we set 𝒙𝑡− = 𝟎 and 𝑇𝑅 = 1.

Let us assume a self-financing strategy with an initial wealth 𝑊0 = 10, 000, 000 $. Then, we explicitly evaluate the magnitude of 
the trading through the cost function 𝜆(𝒙𝑡, 𝒙𝑡− ) introduced in [4]. As reported in Table 6, we consider the transaction cost structure 
characterized by decreasing cost rates as the traded value increases.
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2 The gross return of asset 𝑖 at month 𝑡 is defined as 𝑅𝑔

𝑖,𝑡
= 𝑆𝑖,𝑡

𝑆𝑖,𝑡−1
, where 𝑆𝑖,𝑡 is the price of the 𝑖-th asset at the end of month 𝑡.
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Table 6

Structure of transaction costs.

Trading segment ($) Fixed fee ($) Proportional cost (%)

0 – 7,999 40 0

8,000 – 49,999 0 0.5

50,000 – 99,999 0 0.4

100,000 – 199,999 0 0.25

≥ 200,000 400 0

4.2.2. Ex-post performance measures

The following measures (see [22] and [23]) are considered to evaluate the profitability of the investment strategies. Let 𝑟𝑜𝑢𝑡𝑝,𝑡 be 
the ex-post portfolio rate of return realized at time 𝑡, with 𝑡 = 1, … , 61. First, we consider the so-called ex-post Sharpe ratio, defined 
as

𝑆𝑅𝑜𝑢𝑡 = 𝜇𝑜𝑢𝑡

𝜎𝑜𝑢𝑡
(4.3)

where 𝜇𝑜𝑢𝑡 and 𝜎𝑜𝑢𝑡 are the mean and the standard deviation of the ex-post portfolio rates of return, respectively.

The second measure employed in the analysis is the so-called Omega ratio, defined as the ratio between the gains over a threshold 
level and the losses under a threshold level. In this study, we set both thresholds equal to zero, that is

𝑂𝑚𝑒𝑔𝑎 =

∑61
𝑡=1 𝑟

𝑜𝑢𝑡
𝑝,𝑡 1{𝑟𝑜𝑢𝑡𝑝,𝑡 >0}

−
∑61

𝑡=1 𝑟
𝑜𝑢𝑡
𝑝,𝑡 1{𝑟𝑜𝑢𝑡𝑝,𝑡 <0}

(4.4)

where 1𝐴 is the indicator function on 𝐴.

The information gathered from these performance measures draws a complete picture of the ex-post portfolio return distribution. 
In particular, the ex-post Sharpe ratio describes the central part of the portfolio return distribution, while the Omega ratio considers 
the behaviour of profits and losses.

Further, to measure the profitability of the investment at time 𝑡, we compute the net wealth as

𝑊𝑡 =𝑊𝑡−1

(
1 + 𝑟𝑜𝑢𝑡𝑝,𝑡

)
− 𝜆(𝒙𝑡,𝒙𝑡− ). (4.5)

Then, we compare the profitability of the investments using the so-called compound annual growth rate, which in our case is 
calculated as

𝐶𝐴𝐺𝑅 =
(

𝑊61
𝑊0

) 12
61

− 1 (4.6)

where 𝑊0 represents the initial wealth and 𝑊61 is the final wealth.

To evaluate the capacity of a strategy to avoid high losses, we introduce the drawdown measure, which can be written

𝐷𝐷𝑡 =min
{
0,

𝑊𝑡 −𝑊𝑝𝑒𝑎𝑘

𝑊𝑝𝑒𝑎𝑘

}
(4.7)

where 𝑊𝑝𝑒𝑎𝑘 is the maximum amount of wealth reached by the strategy until time 𝑡. In particular, we consider the mean and the 
standard deviation of the drawdown measure over time.

Finally, we propose to measure the effect of the costs on the available capital in the out-of-sample period by

Λ% = 1
61

61∑
𝑡=1

𝜆(𝒙𝑡,𝒙𝑡− )
𝑊𝑡−1

⋅ 100. (4.8)

4.2.3. Ex-post performance analysis

In the ex-post analysis, we investigate how the performance of the proposed asset allocation model changes by varying the 𝑘
parameter in (2.7).

First, we remark that, for any ex-post dates, the proposed hybrid LLSO variant identifies feasible solutions for all the portfolio 
sizes. The empirical results are summarised in Table 7, where the number of assets of the considered strategies is also displayed. 
Note that for each value of 𝑘, the proposed investments provide better performances than the value-weighted benchmark. This result 
implies that introducing a cardinality constraint in the portfolio model allows to choose a subset of the most profitable assets in the 
investable pool.

In terms of the return-risk profile, strategies with 𝑘% = 30%, 15%, and 5% show comparable performances, while the strategy 
with 𝑘% = 2% has a lower Sharpe ratio, which is due to its large volatility. Similar conclusions can be made about the Omega ratio, 
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which expresses the gain-loss profile of the strategies. Despite better performance with respect to Sharpe and Omega ratios, strategies 
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Table 7

Performance of the proposed cardinality-constrained portfolio allocation model for 
different cardinalities in comparison to the benchmark.

𝑘% 30% 15% 5% 2% Benchmark

num. assets 335 167 55 22 1119

Sharpe ratio 0.4917 0.4794 0.4467 0.2878 0.1731

Omega ratio 3.3269 3.2428 3.0360 2.0980 1.5388

CAGR 1.1148 1.6899 2.1118 2.2502 1.3460

std 0.0052 0.0052 0.0054 0.0077 0.0066

mean DD -0.0066 -0.0057 -0.0050 -0.0072 -0.0070

std DD 0.0070 0.0064 0.0060 0.0106 0.0089

mean 𝜆 ($) 16,046 10,713 6,571.7 3,121.9 –

Λ% 0.1536 0.1011 0.0610 0.0290 –

Fig. 3. Ex-post evolution of net wealth of the benchmark and of the proposed cardinality-constrained portfolio allocation model with different cardinalities.

involving portfolios with a larger number of assets generate less wealth. Moreover, we observe that reducing cardinality leads to 
more profitable portfolio strategies.

Concerning the drawdown measures, the 5% asset allocation model is the most conservative, while the one with 𝑘% = 2% is the 
worst. Thus, the performance deteriorates by reducing portfolio size below a critical threshold.

As highlighted in the last two rows of Table 7 and in Fig. 3, the impact of transaction costs for strategies with small 𝑘 is negligible. 
On the contrary, portfolios with many assets have more fluctuations in the rebalancing phases, leading to higher trading commissions 
with a significant impact on the wealth generated.

Summing up, we can infer that the strategy with 𝑘% = 5% shows the best balance between risk-adjusted performance measures 
and capability to generate net profits.

5. Conclusions and future works

In this paper, we have developed a swarm optimization algorithm for solving a large-scale cardinality-constrained portfolio 
optimization problem, where a modified Sharpe ratio performance measure represents the objective function. We have considered 
four real-world constraints: cardinality, box, budget, and turnover constraints. Due to the properties of the model inspected, we have 
proposed a variant of the LLSO equipped with a hybrid procedure to manage the constraints efficiently. Moreover, a novel mutation 
operator has been introduced to improve the accuracy of solutions. Our solver capabilities have been compared with those of two 
variants of the LLSO as well as other state-of-the-art swarm optimization algorithms endowed with an 𝓁1-penalty function. Numerical 
experiments on three publicly available large-scale data sets showed the outperformance of our hybrid procedure. From the financial 
point of view, we have analyzed the sensitivity of the portfolio model to the cardinality constraint with data from the last five 
years of the MSCI World index. We have found that portfolios of small size are more competitive with respect to the value-weighted 
benchmark index, also in periods of market downturns. Specifically, the losses are reduced, and the cost impact on the available 
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capital is marginal compared to the profits.
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The developed algorithm has a direct application to solving financial management problems. However, it could be easily modified 
for large-scale parameter optimization, such as for training feed-forward neural networks. Moreover, since the projection paradigm 
has already been used profitably to tackle real-world problems in the engineering field like sensor networks, radiation therapy 
treatment planning, computerized tomography, magnetic resonance imaging, and optics to name a few, in our future research we 
plan to extend our portfolio optimization model by including other constraints. On the one hand, we will consider the so-called risk-

budgeting constraints to control the portfolio risk exposition explicitly. On the other hand, based on the European Green Deal and 
the ESG Disclosure requirements for funds and investments, we will add sustainable-policy constraints to guarantee a minimum level 
of ESG rating to the investment. The inclusion of these new constraints in the optimization model requires an adequate adaptation 
of the hybrid-constraint handling technique, by considering novel projection schemes. Another possible research direction to fill the 
gap in handling the tail-risk is represented by the introduction of alternative performance measures in the optimization framework, 
like the conditional value-at-risk and its related measures.
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Appendix A. Proofs of the main results

Proof of Proposition 3.4. We rewrite problem (3.13) in the following way

min
𝒙𝐾∶𝑥𝑖∈𝐶𝑖

{
1
2
∑
𝑗∈𝐾

(𝑥𝑗 − 𝑦𝑗 )2
}

+ 1
2
∑

𝑗∈𝐼⧵𝐾
𝑦2𝑗 ,

that is equivalent to

min
𝒙𝐾∶𝑥𝑖∈𝐶𝑖

{
1
2
∑
𝑗∈𝐾

(𝑥𝑗 − 𝑦𝑗 )2
}

− 1
2
∑
𝑗∈𝐾

𝑦2𝑗 +
1
2
∑
𝑗∈𝐼

𝑦2𝑗 . (A.1)

We note that the last term in (A.1) does not depend on 𝑥𝑗 , 𝑗 ∈𝐾 , so we can focus our attention on the first two terms, i.e.

min
𝜋𝐾 (𝒙)∶𝑥𝑖∈𝐶𝑖

1
2
‖𝜋𝐾 (𝒙− 𝒚)‖2 − 1

2
‖𝜋𝐾 (𝒚)‖2 .

By contradiction, we suppose that there is a 𝐾 ′ different from 𝐾∗, where we recall that 𝐾∗ is the set of indices corresponding to the 
𝑘 largest components of 𝒚. At this point, we define

𝑓 (𝜋𝐾 (𝒚)) ∶= −1
2
‖𝜋𝐾 (𝒚)‖2 + min

𝜋𝐾 (𝒙)∶𝑥𝑖∈𝐶𝑖

1
2
‖𝜋𝐾 (𝒙− 𝒚)‖2

and

𝑔(𝑡) ∶= 𝑓 ((1 − 𝑡)𝜋𝐾∗ (𝒚) + 𝑡𝜋𝐾′ (𝒚)) with 𝑡 ∈ [0,1] .

Then we have,

𝑓 (𝜋𝐾′ (𝒚)) − 𝑓 (𝜋𝐾∗ (𝒚)) = 𝑔(1) − 𝑔(0) =

1

∫
0

𝑔′(𝑡) d𝑡
336

and



Information Sciences 634 (2023) 321–339M. Kaucic, F. Piccotto, G. Sbaiz et al.

𝑔′(𝑡) = ∇𝑓 ((1 − 𝑡)𝜋𝐾∗ (𝒚) + 𝑡𝜋𝐾′ (𝒚)) ⋅ (−𝜋𝐾∗ (𝒚) + 𝜋𝐾′ (𝒚)) ,

where ∇𝑓 (𝜋𝐾 (𝒚)) = −𝜋𝐾 (𝒚) + 𝜋𝐾 (𝒚) − 𝜋𝐾 (𝒙∗) = −𝜋𝐾 (𝒙∗) and 𝜋𝐾 (𝒙∗) = argmin
𝜋𝐾 (𝒙)∶𝑥𝑖∈𝐶𝑖

1
2
‖𝜋𝐾 (𝒙 − 𝒚)‖2. Now, since 𝑖 ⊂ ℝ+, we have that 

∇𝑓 (𝜋𝐾 (𝒚)) is non-positive in all components. Moreover, −𝜋𝐾∗ (𝒚) + 𝜋𝐾′ (𝒚) ≤ 0 due to the fact that 𝜋𝐾∗ (𝒚) is the projection of 𝒚 onto 
the set of its largest components. As a result, we obtain 𝑔′(𝑡) ≥ 0, which implies 𝑓 (𝜋𝐾′ (𝒚)) ≥ 𝑓 (𝜋𝐾∗ (𝒚)). This means that 𝐾∗ must be 
the optimal choice. □

Proof of Proposition 3.5. The proof of the first part of the proposition follows by defining 𝒙∗
𝐾∗ such that 𝒙∗

𝐾∗ = 𝜹∗ ⊗ 𝒙∗, where ⊗
stands for the Hadamard product.

On the contrary, if 𝒙∗ solves (3.16), then 𝒙∗
𝐾∗ = 𝒙∗. By taking

𝛿∗𝑖 =

{
1 if 𝑖 ∈𝐾∗

0 otherwise

we deduce that 
(
𝜹∗, 𝒙∗

)
solves (2.11). □

Proof of Proposition 3.7. The result follows from Theorem 6.27 in [3], where the hyperplane is represented by the budget constrain 
(2.5) and the box is [𝜋𝐾∗∗ (𝒍), 𝜋𝐾∗∗ (𝒖)]. We recall also that 𝜋𝐾∗∗ (𝒛) = (𝑧𝑖1 , … , 𝑧𝑖𝑘 ) with 𝑧𝑖𝑗 > 0 and 𝑖𝑗 ∈𝐾∗∗.

Appendix B. An approach based on an exact 𝓵𝟏-penalty function

In this appendix we introduce a procedure based on the exact 𝓁1-penalty function for solving cardinality-constrained portfolio 
optimization problems. We adapt the approach discussed in [12] to the algorithms used in the comparison analysis of Subsection 4.1

and thus we define the constraint violations as follows

𝐶𝑉1 =
|||||

𝑛∑
𝑖=1

𝑥𝑖 − 1
|||||

𝐶𝑉2 = max

{
𝑛∑

𝑖=1
𝛿𝑖 − 𝑘,0

}

𝐶𝑉3 =
𝑛∑

𝑖=1
max

{
𝛿𝑖𝑙𝑖 − 𝑥𝑖,0

}
𝐶𝑉4 =

𝑛∑
𝑖=1

max
{
𝑥𝑖 − 𝛿𝑖𝑢𝑖,0

}
𝐶𝑉5 =

𝑛∑
𝑖=1

||𝛿𝑖(1 − 𝛿𝑖)||
𝐶𝑉6 = max

{
𝑛∑

𝑖=1

||𝑥𝑖 − 𝑥0,𝑖||− 𝑇𝑅, 0

}
.

In this manner, we introduce the exact 𝓁1-penalty function

𝐹𝓁1
(𝒙,𝜹;𝜺) = 𝑓 (𝒙) + 1

𝜀0

[
𝜀1𝐶𝑉1 + 𝜀2𝐶𝑉2 + 𝜀3𝐶𝑉3 + 𝜀4𝐶𝑉4 + 𝜀5𝐶𝑉5 + 𝜀6𝐶𝑉6

]
(B.1)

where 𝜺 =
(
𝜀0, 𝜀1,… , 𝜀6

)
, with 𝜀 > 0 for all 𝑖.

The initial parameters vector 𝜺0 is set to 𝜺0 =
(
𝜀00, 𝜀

0
1,… , 𝜀06

)
= (10−4, 1, … , 1) ∈ℝ7, where 𝜀00 is chosen in order to privilege feasible 

solutions, and the other parameters are equally penalized for all constraint violations.

The vector 𝜺 is updated by checking the decrease of the function 𝑓 (𝒙) and the violation of the constraints. More precisely, on the 
one hand, every 5 iterations the entry 𝜀0(𝑔) is updated according to the rule

𝜀0(𝑔 + 1) =
⎧⎪⎨⎪⎩
min{3 ⋅ 𝜀0(𝑔), 1} if 𝑓 (𝒙(𝑔)) ≥ 𝑓 (𝒙(𝑔 − 1))
max{0.6 ⋅ 𝜀0(𝑔), 10−15} if 𝑓 (𝒙(𝑔)) < 0.9 ⋅ 𝑓 (𝒙(𝑔 − 1))
𝜀0(𝑔) otherwise.

(B.2)

On the other hand, every 10 iterations the entries 𝜀𝑖(𝑔), 𝑖 = 1, … 6, are updated following the scheme

𝜀𝑖(𝑔 + 1) =
⎧⎪⎨⎪⎩
min{2 ⋅ 𝜀𝑖(𝑔), 104} if 𝐶𝑉𝑖(𝑔) > 0.95 ⋅𝐶𝑉𝑖(𝑔 − 1)
max{0.5 ⋅ 𝜀𝑔

𝑖
, 10−4} if 𝐶𝑉𝑖(𝑔) < 0.9 ⋅𝐶𝑉𝑖(𝑔 − 1)

𝜀𝑖(𝑔) otherwise,

(B.3)
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The above quoted strategy privileges optimality of solutions possibly at the expenses of their feasibility, due to the fact that 
𝜀0(𝑔 + 1) in (B.2) is increasing in 𝐹𝓁1

(𝒙, 𝜹; 𝜺(𝑔 + 1)) when the function value 𝑓 (𝒙(𝑔)) increases. Moreover, to favour feasibility of 
solutions possibly at the expenses of their optimality, the penalty parameter 𝜀𝑖(𝑔+1) in (B.3) is increased when the relative constraint 
violation in the 𝑔-th generation increases with respect to the previous one.

The procedure is also equipped by a splitting and refining technique for the positions of the particles. In particular, at each 
iteration, a particle 𝑝 is split in its components 𝒙𝑝(𝑔) and 𝜹𝑝(𝑔) that are updated separately. For the vector 𝜹𝑝(𝑔) we employ the 
following updating rule

𝛿
𝑝
𝑖
(𝑔 + 1) =

{
1 if 𝑥

𝑝
𝑖
(𝑔) ∈ [𝑙𝑖, 𝑢𝑖]

0 otherwise

for 𝑖 = 1, … , 𝑛. Then, 𝜹𝑝(𝑔 + 1) is kept fixed and 𝐹𝓁1
(𝒙, 𝜹𝑝(𝑔 + 1); 𝜺(𝑔 + 1)) is minimized with respect to 𝒙, obtaining �̃�𝑝(𝑔 + 1). Finally, 

�̃�
𝑝(𝑔 + 1) is refined getting

𝑥
𝑝
𝑖
(𝑔 + 1) =

𝑥
𝑝
𝑖
(𝑔 + 1)𝛿𝑝

𝑖
(𝑔 + 1)∑𝑛

𝑖=1 𝑥
𝑝
𝑖
(𝑔 + 1)𝛿𝑝

𝑖
(𝑔 + 1)

, (B.4)

for 𝑗 = 1, … , 𝑁𝑃 .

Appendix C. Nomenclature

Table 8

Table of notation.

Symbol Description

𝑛 Number of assets in the investable universe

𝒙 𝑛 × 1 vector of asset weights

𝑅𝑖 Random variable representing the rate of return of asset 𝑖

𝜇𝑖 Expected value of 𝑅𝑖

𝑅𝑝(𝒙) Random variable representing the rate of return of portfolio 𝒙

𝜇𝑝(𝒙) Expected rate of return of portfolio 𝒙

𝐶 𝑛 × 𝑛 covariance matrix of the 𝑛 stocks

𝜎𝑝(𝒙) Volatility (standard deviation) of portfolio 𝒙

𝑆𝑅(𝒙) Sharpe ratio of portfolio 𝒙

𝑀𝑆𝑅(𝒙) Modified Sharpe ratio of portfolio 𝒙

𝑘 Maximum number (≤ 𝑛) of assets included in the portfolio

𝑘% Fraction of assets making up the portfolio

𝜹 𝑛 × 1 vector of binary variables denoting inclusion/exclusion from a portfolio

𝑙𝑖 Lower bound for the 𝑖-th portfolio weight, 𝑖 = 1,… , 𝑛

𝑢𝑖 Upper bound for the 𝑖-th portfolio weight, 𝑖 = 1,… , 𝑛

𝒙0 𝑛 × 1 vector containing the current portfolio positions to rebalance

𝑇𝑅 Maximum turnover rate

𝑁𝑃 Number of candidate solutions in the swarm

𝑀𝐴𝑋𝐺𝐸𝑁 Maximum number of generations

𝑁𝐿𝑔 Number of levels in generation 𝑔

𝐿𝑃𝑔 Number of particles in each level at generation 𝑔

𝒙𝑙,𝑝(𝑔) 𝑛 × 1 vector denoting the 𝑝-th particle in level 𝐿𝑙 at generation 𝑔

𝒗𝑙,𝑝(𝑔) 𝑛 × 1 vector denoting the 𝑝-th velocity in level 𝐿𝑙 at generation 𝑔

𝜙𝑔 Adaptive control parameter at generation 𝑔

𝑠(𝑔) Swarm aggregation indicator at generation 𝑔

𝑡(𝑔) Relative improvement between two consecutive generations

�̂�𝑙, 𝑝(𝑔) 𝑛 × 1 vector denoting the 𝑝-th mutated individual in level 𝐿𝑙 at generation 𝑔

𝜙(𝒙) Turnover constraint violation of candidate solution 𝒙

𝐹 (𝒙) Penalty function value for candidate solution 𝒙

𝐶𝑉𝑗 Constraint violation for the 𝑗-th constraint in the exact 𝓁1-penalty function approach

𝜺 6 × 1 vector of the exact 𝓁1-penalty function parameters

𝐹𝓁 (𝒙,𝜹;𝜺) Exact 𝓁1-penalty function value for candidate solution 𝒙
338
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Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .ins .2023 .03 .115.
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