
Negative refraction for anti-plane elastic waves in canonical quasicrystalline
laminates
Zhijiang Chen a, Lorenzo Morini a, Massimiliano Gei b,∗

a School of Engineering, Cardiff University, The Parade, Cardiff CF24 3AA, UK
b Department of Engineering and Architecture, University of Trieste, via A. Valerio 6/1, I-34127 Trieste, Italy

A R T I C L E I N F O

Dedicated to Natasha and Sasha Movchan in oc-
casion of their 60th birthday.

Keywords:
Fibonacci laminate
Quasiperiodicity
Metamaterial
Canonical frequency

A B S T R A C T

Elastic anti-plane shear waves can be refracted negatively when they are transmitted across an interface
between a homogeneous substrate and a transverse periodic laminate. To achieve pure negative refraction, the
frequency of the source should be lower than the upper limit of the second transition zone of the harmonic
spectrum of the laminate. An effective way to control the location of transition zones is to consider a canonical
configuration for the laminate, a concept that originates from the properties of quasicrystalline sequences
among which the Fibonacci one is a particular case. We give a detailed account of the classification in three
families of canonical configurations and the role of canonical frequency. We exploit the knowledge of the
scaling factor of the self-similar structure of the layout of transition zones for laminates of this kind to provide a
quantitative tool to predict the relevant frequencies to accomplish negative refraction. We also investigate how
the change of other parameters of the elementary cell may affect the values of those frequencies. The obtained
results show that the features of quasicrystalline sequences may be profitably exploited for the realisation of
elastic metamaterials.
1. Introduction

In the last two decades, negative refraction of elastic waves at an
interface between two dissimilar media and its adoption for innovative
applications for vibration control have attracted a significant interest
from the scientific community. As it has been illustrated in several
studies performed by Professors N.V. Movchan, A.B. Movchan and their
collaborators (Farhat et al., 2009, 2010; Brun et al., 2010; Jones et al.,
2011; Colquitt et al., 2013; Carta et al., 2017; Tallarico et al., 2017),
this phenomenon can be usually observed when elastic waves impinge
different types of tailored-designed micro-architected interfaces. Re-
cently, the problem of oblique incidence of an anti-plane shear wave at
the interface between a substrate and a periodic two-phase laminate has
received considerable attention (Nemat-Nasser, 2015; Srivastava, 2016;
Willis, 2016; Srivastava and Willis, 2017; Morini et al., 2019a). These
studies indicate that, when the layering direction is perpendicular
to the interface, it is possible to use a laminate to achieve negative
refraction. Conversely, only positive refraction is observed when layers
are aligned to the interface with the substrate (Srivastava and Nemat-
Nasser, 2014). According to Willis (2016) and Srivastava (2016), to
obtain negative refraction when only one mode is transmitted (a cir-
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cumstance that we will also refer to as pure negative refraction) it
is necessary to couple the incident wave with the laminate mode
belonging to the second Brillouin zone as it will be clarified later in
the text. Minimum wave frequency and threshold angle of incidence
can be determined to reach the second Brillouin zone depending on
the properties of the elastic system.

In this paper, with the goal of deepening the understanding of
the phenomenon of refraction of elastic anti-plane shear waves in
laminates, we study wave transmission across the substrate–laminate
interface by considering, for the latter, periodic cells generated fol-
lowing the Fibonacci sequence (Morini et al., 2019a). Inspired by
the concept of canonical configuration in periodic quasicrystalline-
generated rods, recently formulated by Gei et al. (2020), we introduce
the notion of canonical laminate, that is achieved when the properties
of the two selected phases of the composite obey certain mixing rules.

The relevant feature of a canonical laminate is that its frequency
spectrum is both symmetric and periodic, with a special frequency,
called canonical frequency, controlling both phenomena. Moreover, by
changing the index of the Fibonacci sequence, the set of layouts of stop
and pass bands of the elements of the sequence display a self-similar
behaviour in the neighbourhood of certain frequencies with a ratio that
1
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Fig. 1. (a) Elementary cells for Fibonacci sequences 2, 3 and 4; (b) reflection and refraction of an anti-plane shear wave approaching the interface between an elastic substrate
and a Fibonacci laminate 4.
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can be quantitatively estimated in terms of the invariant function of the
sequence.

For the problem of pure negative refraction, the focus on the spec-
trum is on the first two pass bands at low frequencies, therefore the
investigation of self similarity in this range could be particularly useful
to select the most suitable periodic cell for the laminate to enhance
negative refraction.

The paper is structured to introduce step-by-step all the relevant
concepts to reach a full understanding of the important role that a
canonical laminate may have for the problem of pure negative re-
fraction. In the first part, the principle underpinning transmission and
reflection of waves at the substrate–laminate interface is studied in
detail. In particular, it is clarified with an example why the first two
pass bands of the frequency spectrum associated with wave propagation
orthogonal to the layering direction are important and how they are
connected to the second Brillouin zone to secure a negatively refracted
wave component in the laminate. Then, we define the notion of canon-
ical laminate and show what are the properties brought about by a
canonical configuration that can be fully explained by the invariant
function of the sequence, i.e. independent of the index of the element
of the sequence1. In particular, the scaling factor of the first two pass
bands is obtained and is exploited as a tool to predict the change in
their limits at a change of the index of the sequence. To complete the
framework, a section is added in which the effect of changing (i) the
materials of the two phases at same canonical ratio and (ii) the total
length of the periodic cell is analysed.

1 The invariant exists for any quasicrystalline sequence of which the
ibonacci one is a particular case, see Poddubny and Ivchenko (2010).
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2. Refraction of anti-plane shear waves across an interface be-
tween a substrate and a transverse periodic quasicrystalline-
generated laminate

2.1. Floquet-Bloch waves in periodic laminates

We investigate a set of infinite two-phase periodic laminates whose
elementary cells are generated adopting the standard Fibonacci se-
quence 𝑖 based on the recursive rule 𝑖 = 𝑖−1𝑖−2, whose initial
ondition is 0 = 𝐵 and 1 = 𝐴, where 𝐴 and 𝐵 are the two
omogeneous constituents. The natural number 𝑖 is the index of the
lement 𝑖.

For each phase, shear modulus 𝜇𝑋 , mass density 𝜌𝑋 and thickness
𝑋 are defined (here and henceforth, 𝑋 ∈ {𝐴,𝐵}). The total length
f cell 𝑖 is given by 𝐿𝑖 = 𝑛(𝐴)𝑖 ℎ𝐴 + 𝑛(𝐵)𝑖 ℎ𝐵 , where 𝑛(𝐴)𝑖 and 𝑛(𝐵)𝑖 are

the number of laminae 𝐴 and 𝐵 included in the cell, respectively,
and the total number of laminae corresponds to the Fibonacci number
𝑛𝑖 = 𝑛(𝐴)𝑖 + 𝑛(𝐵)𝑖 (see Fig. 1(a)).

By assuming the co-ordinate system displayed in Fig. 1, in which 𝑧
is the out-of-plane axis, the non-zero displacement of anti-plane shear
wave is denoted by 𝑢𝑧(𝑥, 𝑦, 𝑡) and satisfies the following wave equation
within any of the phases of the elementary cell (the subscript 𝑋 is
dropped to ease the notation)

𝜇
(

𝜕2𝑢𝑧
𝜕𝑥2

+
𝜕2𝑢𝑧
𝜕𝑦2

)

= 𝜌
𝜕2𝑢𝑧
𝜕𝑡2

. (1)

The harmonic solution to Eq. (1) has the form

𝑢𝑧 = 𝑤(𝑥) 𝑒𝑖(𝜔𝑡−𝐾𝑥𝑥−𝐾𝑦𝑦), (2)

where 𝜔 is the circular frequency, 𝐾𝑥 and 𝐾𝑦 are the wave numbers
nd the amplitude function 𝑤(𝑥) is periodic. Displacement 𝑢𝑧 and shear
tress 𝜎 are continuous across all the interfaces. Solving Eq. (1), we
𝑥𝑧



i
i
w

c

𝑀

M
i
t
r

b
t

Fig. 2. Laminate 2 combining PMMA and steel. (a), (b) Plots of real solutions of the dispersion equation in the graph 𝐾𝑦𝐿2 vs 𝐾𝑥𝐿2 for several given frequencies; in particular,
(a) 𝑓 ∈ [20, 261.34] kHz, for each selected frequency and selected 𝐾𝑥𝐿2, either none or one mode of propagation is displayed, (b) 𝑓 ∈ [270, 296.63] kHz, for each selected frequency
and selected 𝐾𝑥𝐿2, either one or two modes of propagation are displayed. (c) Plot of trace 𝑡2(𝑓, 0), the grey point marks the upper limit of the first pass band, the red one that
of the first stop band and the green one that of the second pass band.
o
p
𝜃

𝐾

√

E
(
e


3
p
a
p

get, in each phase, the connection (Lekner, 1994; Brun et al., 2010;
Willis, 2016)

[

𝜎𝑥𝑧(𝑥)

𝑢𝑧(𝑥)

]

=

⎡

⎢

⎢

⎢

⎣

cos[𝑞(𝜔,𝐾𝑦)(𝑥 − 𝑥𝑙)] −𝜇𝑞(𝜔,𝐾𝑦) sin[𝑞(𝜔,𝐾𝑦)(𝑥 − 𝑥𝑙)]
sin[𝑞(𝜔,𝐾𝑦)(𝑥 − 𝑥𝑙)]

𝜇𝑞(𝜔,𝐾𝑦)
cos[𝑞(𝜔,𝐾𝑦)(𝑥 − 𝑥𝑙)]

⎤

⎥

⎥

⎥

⎦

[

𝜎𝑥𝑧(𝑥𝑙)

𝑢𝑧(𝑥𝑙)

]

,

(3)

where the 2 × 2 matrix therein is the transmission matrix across the
phase. In Eq. (3), 𝑞(𝜔,𝐾𝑦) =

√

(𝜔∕𝑐)2 −𝐾2
𝑦 , where 𝑐 is the phase speed

n the relevant material, namely 𝑐𝑋 =
√

𝜇𝑋∕𝜌𝑋 , the vector on the r.h.s.
s evaluated at the left-hand interface of the lamina concerned (i.e. 𝑥𝑙),
hile 𝑥𝑙 ≤ 𝑥 ≤ ℎ𝑋 + 𝑥𝑙.

Therefore, the global transmission matrix 𝑀𝑖 corresponding to the
ell 𝑖 is the result of the product

𝑖 =
𝑛𝑖
∏

𝑝=1
[𝑀𝑋 ]𝑝 (𝑋 ∈ {𝐴,𝐵}). (4)

atrix 𝑀𝑖 possesses two relevant properties: (i) it is unimodular,
.e. det𝑀𝑖 = 1; (ii) as a consequence of the recursion rule valid for
he Fibonacci sequence, it can be generated through the recursive
elationship 𝑀𝑖 = 𝑀𝑖−2𝑀𝑖−1 (𝑖 ≥ 2).

Floquet–Bloch waves in periodic laminates are governed uniquely
y the trace of transmission matrix, i.e. 𝑡𝑖(𝜔,𝐾𝑦) = tr𝑀𝑖(𝜔,𝐾𝑦), through
he equation

cos
(

𝐾𝑥𝐿𝑖
)

= 1
2
𝑡𝑖(𝑓,𝐾𝑦), (5)

where, with a slight abuse of notation, the frequency 𝑓 = 𝜔∕(2𝜋) is
used to replace the circular frequency.
3
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2.2. Pure negative refraction across an interface between a substrate and a
transverse laminate

Wave transmission across the interface between a homogeneous
elastic substrate and a transverse periodic laminate is a coupled prob-
lem (Fig. 1(b)). On the one hand, the possible number of transmitted
modes depends on both the frequency of the incoming wave 𝑓 and
the properties of the laminate, included in the function 𝑡𝑖; on the
ther hand, the function cos

(

𝐾𝑥𝐿𝑖
)

in Eq. (5) depends, in turn, on the
roperties of the substrate, the frequency and the angle of incidence
inc, as

𝑥 = 𝐾0 sin 𝜃inc = (2𝜋𝑓∕𝑐0) sin 𝜃inc. (6)

In Eq. (6), 𝐾0 is the wave number of the incoming wave and 𝑐0 =
𝜇0∕𝜌0 the speed of shear waves in the substrate. This means that

as the transmission matrix is already known, the quantity 𝐾𝑦 will be
solved from Eq. (5). An effective plot to represent the real solutions of
q. (5) is the diagram 𝐾𝑥𝐿𝑖 vs 𝐾𝑦𝐿𝑖 similar to those reported in Figs. 2
a) and (b) (Nemat-Nasser, 2015; Srivastava, 2016; Willis, 2016; Morini
t al., 2019a).

The isofrequency curves plotted in Figs. 2(a)(b) are for a laminate
2 which combines polymethylmethacrylate (PMMA) (material 𝐴, ℎ𝐴 =
mm) and steel (material 𝐵, ℎ𝐵 = 1.3 mm) whose characteristic

arameters are listed in Table 1. The analysis of both Figs. 2(a), (b)
llows to understand how to achieve pure negative refraction in this
eriodic laminate as a prototype example.

In particular, we consider the range of frequencies corresponding
o the second Brillouin zone (i.e. 𝜋 < 𝐾 𝐿 < 2𝜋) and explore, within
𝑥 𝑖



𝑓

Table 1
Properties of the materials adopted in the case studies.

Steel Iron Copper Aluminium Nylon PMMA Polyethylene

𝜇 (GPa) 80 52.5 44.7 26 4 3 0.117
𝜌 (kg/m3) 8000 7860 8940 2700 1150 1180 930

this interval, the number of real solutions of Eq. (5) at varying 𝐾𝑥𝐿𝑖.
We can find that for a frequency lower than 93.24 kHz (in Fig. 2(a),
𝑓 = 93.24 kHz is the grey line, dashed in the range of interest, emerging
from point (𝜋, 0)), there could be either none or one solution (none
corresponds to total reflection). For instance, for 𝑓 = 70 kHz, the value
of the threshold 𝐾𝑥𝐿𝑖 where the branch arises, denoted by �̄�𝑥𝐿𝑖, is
4.481. One solution is confirmed for frequency 𝑓 between 93.24 and
261.34 kHz, whereas in the range 𝑓 ∈ [261.34, 296.63] kHz, the real
branches can be either one or two; for 𝑓 > 296.63 kHz, two real
solutions are available (a higher frequency at which the number of
solutions increases of one may be found, but we are not going further
in the investigation because not relevant for our purposes).

The angle of refraction is defined through the direction of Poynting
vector  whose in-plane components 𝑥 and 𝑦 share the same direc-
tions with components 𝑣𝑔𝑥 = 𝜕𝜔∕𝜕𝐾𝑥 and 𝑣𝑔𝑦 = 𝜕𝜔∕𝜕𝐾𝑦 of the group
velocity, respectively. In Fig. 2(a), it is easy to recognise that for the
branches in the first Brillouin zone (i.e. 0 < 𝐾𝑥𝐿𝑖 < 𝜋), the mentioned
components are both positive, so is the angle of refraction. On the
contrary, in the second Brillouin zone, 𝑣𝑔𝑥 turns out to be negative
whereas 𝑣𝑔𝑦 is still positive, therefore the angle becomes negative too,
which is our goal. It is worth noticing that, in contrast to what observed
in Fig. 2(a), for the range of frequencies considered in Fig. 2(b) there
exist coexisting solutions with both positive and negative refractions
(beam splitting). In this range, negative refraction may also take place
in the first Brillouin zone. Therefore, pure negative refraction is possible
in principle only up to a well defined frequency for the problem at hand
(𝑓 = 296.63 kHz in the analysed case), otherwise multiple waves are
transmitted and the uniqueness is lost.

According to the definition introduced by Morini et al. (2019a),
the two intervals [0, 93.24] kHz and [261.34, 296.63] kHz are transition
zones (TZs) for the laminate 2; there, the number of real solutions of
the dispersion equation depends on the frequency and increases of one
unity reaching the upper limit of the zone (from 0 to 1 in the former
interval, from 1 to 2 in the latter). For a frequency not sitting in a TZ,
the number of solutions is fixed whatever the value of 𝐾𝑥𝐿𝑖. It goes
without saying that a threshold �̄�𝑥𝐿𝑖 does exist for each frequency
belonging to a TZ and the number of possible transmission modes
depends on the comparison between 𝐾𝑥𝐿𝑖 = 𝐾0 sin 𝜃inc𝐿𝑖 (see Eq. (6))
and �̄�𝑥𝐿𝑖 (note that the comparison is given in dimensionless form,
however the length 𝐿𝑖 is irrelevant as it appears in both sides of the
equation).

As values �̄�𝑥𝐿𝑖 are read on the abscissa of the graph, where 𝐾𝑦 = 0,
the limits of the TZs can be obtained from the analysis of the uniaxial
problem in which the wave propagates orthogonally to the laminate,
a condition that is mathematically governed by function 𝑡𝑖(𝑓, 0). In the
particular case of the laminate 2, the function 𝑡2(𝑓, 0) is sketched in
Fig. 2(c) where it is not difficult to reach the following conclusion:
TZs coincide to pass bands displayed by 𝑡2(𝑓, 0) (𝑡𝑖(𝑓, 0) in general),
accordingly, their limits can be easily calculated. The three points
sketched in the figure mark the limit of the first two pass bands (or TZs)
and correspond exactly to 93.24, 261.34 and 296.63 kHz, respectively.
For a generic laminate 𝑖, we will refer to the three relevant frequencies
as 𝑓 1st

𝑖 (upper limit of the first TZ), 𝑓 2nd
𝑖 (upper limit of the first stop

band) and 𝑓𝑖 (upper limit of the second TZ).

Summarising, if the normalised wave number of incident wave 𝐾𝑥𝐿𝑖
4

enters the second Brillouin zone, pure negative refraction could be d
obtained. The minimum frequency for wave number 𝐾𝑥𝐿𝑖 > 𝜋 is

𝑓min
𝑖 =

𝑐0
2𝐿𝑖

(7)

(note that this value is for an incoming wave approaching the interface
almost parallel to it, 𝜃inc → 𝜋∕2; for lower – and more likely – angles,
the value of the minimum frequency increases). Thus, the conditions
that must be simultaneously fulfilled to achieve pure negative refraction
are:

(i) the frequency 𝑓 of the incoming wave should satisfy 𝑓min
𝑖 < 𝑓 <

�̃� (here it is understood that the angle of incidence 𝜃inc is free);
(ii) if 𝑓 < 𝑓 1st

𝑖 , then it should be 𝐾𝑥𝐿𝑖 > 2𝜋−�̄�𝑥𝐿𝑖; if 𝑓 1st
𝑖 ≤ 𝑓 ≤ 𝑓 2nd

𝑖 ,
𝐾𝑥𝐿𝑖 > 𝜋 should be satisfied; if 𝑓 2nd

𝑖 < 𝑓 < 𝑓𝑖, it should be 𝐾𝑥𝐿𝑖 >
2𝜋 − �̄�𝑥𝐿𝑖.

From Fig. 2, we may also conclude that total reflection of the shear
wave occurs, for 𝑓 < 𝑓 1st

𝑖 , if 2𝜋 − �̄�𝑥𝐿𝑖 > 𝐾𝑥𝐿𝑖 > �̄�𝑥𝐿𝑖.
The number of transmitted modes across the interface depends on

the comparison between 𝐾𝑥 and �̄�𝑥: the former is determined by the
frequency, the wave speed in substrate, the angle of incidence and the
total length of the cell; the latter by function 𝑡𝑖(𝑓, 0) (i.e. cos(�̄�𝑥𝐿𝑖) =
𝑡𝑖(𝑓, 0)∕2), thus, the propagation of waves orthogonally to the laminate
should be analysed further.

3. Canonical configurations for the laminate

3.1. Transmission matrix and canonical laminates

In this section, we analyse the transmission matrix for an anti-
plane shear wave propagating orthogonally to the common direction of
interfaces (𝐾𝑦 = 0) along a quasicrystalline-generated laminate with the
goal of extending the concept of canonical configuration and canonical
frequency proposed by Gei et al. (2020) in uniaxial wave propagation of
periodic standard Fibonacci bars to the current type of microstructure.

If we set 𝐾𝑦 = 0 into Eq. (1), the equation specialises to 𝜇 𝜕2𝑢𝑧∕𝜕𝑥2 =
𝜌 𝜕2𝑢𝑧∕𝜕𝑡2, that is the one-dimensional Helmholtz equation governing
harmonic longitudinal waves in bars whose solution is represented by
Eq. (2), duly specialised.

The properties of global transmission matrix for the cell provide the
following recursion rule for traces 𝑡𝑖,2 i.e.

𝑡𝑖+1 = 𝑡𝑖−1𝑡𝑖 − 𝑡𝑖−2 (𝑖 ≥ 2). (8)

Through the new set of variables (Morini and Gei, 2018; Morini et al.,
2019b)

�̃�𝑖 = 𝑡𝑖+2, �̃�𝑖 = 𝑡𝑖+1, �̃�𝑖 = 𝑡𝑖,

and its substitution into Eq. (8), the following nonlinear map  setting
out the evolution of 𝑡𝑖 can be established

𝑅𝑖+1 =  (𝑅𝑖) = (�̃�𝑖�̃�𝑖 − �̃�𝑖, �̃�𝑖, �̃�𝑖), (9)

where 𝑅𝑖 = (�̃�𝑖, �̃�𝑖, �̃�𝑖) is a triplet whose entries are the traces of three
consecutive indices.

The initial conditions to begin iteration of the map are

𝑡0 = 2 cos
(

2𝜋𝑓
ℎ𝐵
𝑐𝐵

)

, 𝑡1 = 2 cos
(

2𝜋𝑓
ℎ𝐴
𝑐𝐴

)

,

𝑡2 = 2 cos
(

2𝜋𝑓
ℎ𝐵
𝑐𝐵

)

cos
(

2𝜋𝑓
ℎ𝐴
𝑐𝐴

)

− 𝛽 sin
(

2𝜋𝑓
ℎ𝐵
𝑐𝐵

)

sin
(

2𝜋𝑓
ℎ𝐴
𝑐𝐴

)

,

(10)

where coefficient 𝛽 is the impedance mismatch

𝛽 =
𝜇𝐵𝑐𝐴
𝜇𝐴𝑐𝐵

+
𝜇𝐴𝑐𝐵
𝜇𝐵𝑐𝐴

.

2 To ease the notation, in this section the quantity 𝑡𝑖(𝑓, 0) will be simply
enoted by 𝑡 .
𝑖
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Fig. 3. Stop- and pass-band layout (pass bands in light blue) for canonical Fibonacci laminates with four different impedance mismatches, but same canonical ratio 𝐶 (1) = 1. (a)
Material 𝐴: iron, material 𝐵: copper, 𝛽 = 2.0002; (b) 𝐴: steel, 𝐵: aluminium, 𝛽 = 3.351; (c) 𝐴: PMMA, 𝐵: steel, 𝛽 = 13.520; (d) 𝐴: steel, 𝐵: polyethylene, 𝛽 = 76.706. In each plot,
equences 0 to 8 are displayed and the maximum value of the frequency is 4𝑓c.
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The function of the frequency

(𝑓 ) = �̃�2𝑖 +�̃�
2
𝑖 +�̃�

2
𝑖 −�̃�𝑖�̃�𝑖�̃�𝑖−4 = (𝛽2−4) sin2

(

2𝜋𝑓
ℎ𝐴
𝑐𝐴

)

sin2
(

2𝜋𝑓
ℎ𝐵
𝑐𝐵

)

(11)

is the (Kohmoto’s) invariant of the sequence that is independent of
index 𝑖. In the three-dimensional space described by the orthogonal
cartesian system 𝑂�̃��̃��̃�,

�̃�2 + �̃�2 + �̃�2 − �̃��̃��̃� − 4 = 𝐼(𝑓 ) (12)

is the equation of a cubic, represented by a surface. Points 𝑅𝑖 obtained
by iterating map  belong to this surface for any given frequency 𝑓 .
The set of points generated through the iteration defines an orbit on the
surface. Orbits can be either 𝑝-point periodic or non-periodic (Morini
and Gei, 2018; Gei et al., 2020). In the former case, the discrete
rajectory repeats itself after 𝑝 applications of  , i.e.  𝑝(𝑅𝑖) = 𝑅𝑖.

Surface (12) possesses six saddle points 𝑃𝑘 (𝑘 = 1,… , 6), opposite
in pairs, whose coordinates are 𝑃1,4 = (0, 0,±𝛼1), 𝑃3,6 = (0,∓𝛼2, 0),
𝑃2,5 = (±𝛼3, 0, 0), where the top sign is associated with the lowest index
and 𝛼𝑗 (𝑗 = 1, 2, 3) depend on frequency and value of the invariant. The
saddle points are all part of a six-Point Periodic Orbit (PPO), which
means that  6(𝑃𝑘) = 𝑃𝑘, ∀𝑘. Then, according to Gei et al. (2020), one
f the following three conditions must be satisfied to achieve a ‘closed’
rbit on the surface

1) �̃�0 = �̃�0 = 0, (2) �̃�0 = �̃�0 = 0, (3) �̃�0 = �̃�0 = 0. (13)

he above three conditions imply that two out of three traces in
q. (10) vanish at some frequencies. The configurations for which this
5

T

ccurs are the canonical configurations and the frequencies are called the
anonical frequencies. Substituting Eqs. (10) in Eqs. (13), the following
elationships are derived:

(1) =
1 + 2𝑗
1 + 2𝑘

, 𝐶 (2) =
1 + 2𝑗
2𝑞

, 𝐶 (3) =
2𝑞

1 + 2𝑘
(𝑗, 𝑘, 𝑞 ∈ N), (14)

respectively, where

𝐶 =
𝑐𝐴ℎ𝐵
𝑐𝐵ℎ𝐴

(15)

is the canonical ratio. The superscript simply indicates the index, say (𝑟),
of the condition concerned in Eq. (13), which defines the associated
𝑟−th Family (𝑟 = 1, 2, 3) of canonical configurations. In parallel with
the problem of canonical rods, it is significant to notice that indices 𝑗,
𝑘 and 𝑞 are such that fractions on the right-hand sides of the equalities
in Eq. (14) must be in lowest terms. Family no. 1 corresponds to an
dd/odd ratio, while odd/even and even/odd ratios are associated with
amilies no. 2 and 3, respectively. The canonical frequencies for each
amily can be written as 𝑓 (𝑟)

c𝑛 = 𝑓 (𝑟)
c (1 + 2𝑛) (𝑛 ∈ N), where

(1)
c =

𝑐𝐴
4ℎ𝐴

(1 + 2𝑘) =
𝑐𝐵
4ℎ𝐵

(1 + 2𝑗) , 𝑓 (2)
c =

𝑐𝐴
4ℎ𝐴

2𝑞 =
𝑐𝐵
4ℎ𝐵

(1 + 2𝑗) ,

(3)
c =

𝑐𝐴
4ℎ𝐴

(1 + 2𝑘) =
𝑐𝐵
4ℎ𝐵

2𝑞. (16)

ll conditions (14) force the functions 𝑡𝑖(𝑓, 0) for canonical laminates to
e periodic, a property that leads to periodic stop- and pass-band layouts.
he period of all traces corresponds to 4𝑓 , while, due to the properties
c
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of traces themselves, the period of both the frequency spectra and the
invariant 𝐼(𝑓 ) is 2𝑓c.

Examples of sketch of pass bands and stop bands are displayed in
ig. 3 by assuming different materials 𝐴 and 𝐵 (listed in the caption) for
equences 0 to 8. For simplicity, 𝐶 (1) = 1 (Family no. 1) in all plots
ith total thickness for 𝐿2 = 0.0043 m; thus, the thicknesses ℎ𝐴 and ℎ𝐵
epend on both canonical ratio and phase speed in the two materials.
or instance, ℎ𝐴 ≈ 0.0014 m and ℎ𝐵 ≈ 0.0029 m for the combination
MMA (𝐴) and steel (𝐵) (see Table 1).

For all combinations, the represented domain is 𝑓 ∈ [0, 4𝑓c]. The
pattern is clearly symmetric, actually there are two axes of symmetry at
1/4 and 3/4 of the domain that correspond to 𝑓c and 3𝑓c, respectively.

he impedance mismatch 𝛽 governs the density of stop bands: if 𝛽 = 2,
he laminate behaves as a homogeneous waveguide and the whole
requency range is in a pass band (see Fig. 3(a) where 𝛽 is very close
o 2). Conversely, for a high 𝛽, stop bands dominate the spectrum, that
s the case displayed in Fig. 3(d).

The other important feature of the layout is the scaling of the self-
imilar structure of patterns in the vicinity of the canonical frequency.
owever, note that self similarity can also be noted at 𝑓 = 0 and
= 4𝑓c. This is because at both 𝑓 = 0 and 𝑓 = 4𝑓c, a one-PPO

ccurs, i.e.  (𝑅𝑖) = 𝑅𝑖, or, in other words, 𝑓 = 0 and 𝑓 = 4𝑓c are
oth fixed points. This example shows that other periodic orbits do exist
n surface (12) at a canonical configuration. The general method to
nalyse scaling about a frequency where a periodic orbit occurs has
een presented by Gei et al. (2020). For the goal of the paper, that is to
xploit the concept of canonical configurations to predict the behaviour
f the laminate in the problem of pure negative refraction, the focus
hould be on the first two pass bands at low frequencies as they coincide
ith the first two TZs for the laminate. Therefore, scaling at 𝑓 = 0 plays
n important role. For this case, an alternative method to obtain the
caling parameter based on the invariant (11) is presented in the next
ection.

In closing this part, it is worth remarking that for canonical ratios
elonging to other families, considerations similar to those noted earlier
or Family no. 1 can be proposed.

.2. Scaling of traces at low frequencies

The layout of pass bands for a canonical configuration in the neigh-
ourhood of 𝑓 = 0 can be studied locally through the scaling of
he observed self-similar structure. As the origin is a fixed point, by
ndicating with 𝜅 the scaling factor, it is expected that in this range
he following approximations are valid, i.e.

𝑖+2(𝑓 ) ≈ 𝑡𝑖+1(𝜅𝑓 ) ≈ 𝑡𝑖(𝜅2𝑓 ). (17)

o estimate 𝜅, we can exploit the fact that 𝐼(𝑓 ) links three consecutive
races and its Maclaurin expansion is, at the lowest order,

(𝑓 ) ≈ (𝛽2 − 4)𝐶2
(

2𝜋ℎ𝐴
𝑐𝐴

)4
𝑓 4. (18)

he next step is to observe that the Maclaurin expansion of any function
𝑖(𝑓 ) to the 2nd order can be represented as

𝑖 ≈ 2 − 𝜂𝑖𝑓
2, (19)

here 𝜂𝑖 is a coefficient that can be written in general as

𝑖 = [𝑛2𝑖−1 + 𝑛𝑖−2𝐶(𝑛𝑖−2𝐶 + 𝑛𝑖−1𝛽)]
(

2𝜋ℎ𝐴
𝑐𝐴

)2
. (20)

However, taking into account Eqs. (17), the traces following 𝑡𝑖 are

𝑡 ≈ 2 − 𝜂 𝜅2𝑓 2, 𝑡 ≈ 2 − 𝜂 𝜅4𝑓 2, (21)
6

𝑖+1 𝑖 𝑖+2 𝑖
so that, in the neighbourhood of the origin, Eq. (11)2 takes the form

𝑖(𝜅2𝑓 )2+𝑡𝑖(𝜅𝑓 )2+𝑡𝑖(𝑓 )2−𝑡𝑖(𝜅2𝑓 ) 𝑡𝑖(𝜅𝑓 ) 𝑡𝑖(𝑓 )−4 = (𝛽2−4)𝐶2
(

2𝜋ℎ𝐴
𝑐𝐴

)4
𝑓 4.

(22)

A lengthy, but straightforward, calculation reveals that the l.h.s. of
Eq. (22) is a term in 𝑓 4 at lowest order, therefore an equation can be
set up to provide the value of 𝜅 as a function of the other involved
parameters. 𝜅 is strongly dependent on 𝐶, in the sense that for 𝐶 → 0,
𝜅 → 𝜙, where 𝜙 is the ‘golden ratio’ 𝜙 = (

√

5 + 1)∕2, independently
of the other quantities. In any case, a careful evaluation of the scaling
parameter has demonstrated that 𝜅 remains in the neighbourhood of 𝜙
independently of the index 𝑖 assumed in Eq. (22).

To describe the behaviour of traces at slightly higher frequencies,
the approach presented so far can be extended by noticing that, to the
fourth order, traces may be represented as

𝑡𝑖 ≈ 2 − 𝜂𝑖𝑓
2 + 𝜁𝑖𝑓

4, (23)

where, similarly to 𝜂𝑖, coefficients 𝜁𝑖 can also be written explicitly, and
further expansion of the invariant provides

𝐼(𝑓 ) ≈ (𝛽2 − 4)𝐶2

[

(

2𝜋ℎ𝐴
𝑐𝐴

)4
𝑓 4 − 1 + 𝐶2

3

(

2𝜋ℎ𝐴
𝑐𝐴

)6
𝑓 6

]

. (24)

Let us assume a second scaling parameter 𝜅1 governing the change in
the fourth order terms of the two traces following 𝑡𝑖, i.e.

𝑡𝑖+1 ≈ 2 − 𝜂𝑖𝜅
2𝑓 2 + 𝜁𝑖𝜅

4
1𝑓

4, 𝑡𝑖+2 ≈ 2 − 𝜂𝑖𝜅
4𝑓 2 + 𝜁𝑖𝜅

8
1𝑓

4. (25)

e can repeat the procedure followed before and obtain an equation
n 𝑓 6 in both 𝜅 and 𝜅1. Coupling this with the equation only in 𝜅
btained previously, it turns out that also 𝜅1 depends, in general, on the
arameters of the problem and, similarly to 𝜅, obeys the limit 𝜅1 → 𝜙

for 𝐶 → 0. This confirms once again that the golden ratio governs
scaling at low frequencies.

Fig. 4 displays how the scaling works for two material combinations:
PMMA/steel for Figs. 4(a), (b) and steel/aluminium for Figs. 4(c), (d).
In both parts (a) and (c), a set of ‘scaled’ traces in the neighbourhood
of the origin are drawn; in particular, in both panels the horizontal
domain is that of 𝑡6, while functions 𝑡5, 𝑡7 and 𝑡8 are scaled accordingly
by adopting 𝜙 as a factor. Those plots show that when 𝑡𝑖 ≈ −2, the
upper limit of the first pass band (i.e. frequency 𝑓 1st

𝑖 ) and the lower
limit of the second one (i.e. frequency 𝑓 2nd

𝑖 ) are captured very well by
the theory. A slightly worst match is obtained for the upper limit of
the second pass band (i.e. frequency 𝑓𝑖), but this issue can be explained
well by the fact that the involved frequencies are relatively far from the
origin and the scaling is much more effective at relatively high index 𝑖.

In parts (b), (d) of the same figure, the first two pass bands for the
traces represented alongside are sketched together with red markers
indicating prediction of the their limits obtained by scaling up or down
the corresponding exact values for 6 (black markers). The two plots
once again demonstrate that scaling is an effective tool to control the
breadth of the first two pass bands. For the point of view of the laminate
as an elastic device, the quantitative estimate of the scaling of the self
similar pattern of TZs at low frequencies may help to select the index
of the most suitable elementary cell to achieve pure negative refraction
when coupled to an isotropic substrate.

4. Analysis of the boundaries of the first two transition zones at
low frequencies

In closing the previous section, we have recalled that knowledge
of the first two TZs at low frequencies (or, alternatively, of the three
frequencies 𝑓 1st

𝑖 , 𝑓 2nd
𝑖 and 𝑓𝑖) is the key information to assess if pure

negative refraction may occur for a given substrate–laminate combina-
tion. We intend to continue the investigation into the limits of TZs and

the role of canonical frequency by briefly dealing with three issues.



o
a
f
t
n
i
o

Fig. 4. Scaling of traces at low frequencies in the vicinity of 𝑓 = 0. Plot of traces for (a) 𝐶 = 1∕5, 𝛽 = 13.520 and (c) 𝐶 = 1, 𝛽 = 3.351; in both plots, the adopted scaling factor is
𝜙. (b), (d) Plot of the first two pass bands with prediction of their limits (indicated by red markers) obtained using the scaling factor 𝜙 starting from the exact limits of the pass
bands for 6 (black markers).
Fig. 5. Plots of functions (a) 𝑓 1st
𝑖 ∕𝑓c, (b) 𝑓 2nd

𝑖 ∕𝑓c and (c) 𝑓𝑖∕𝑓c as a function of impedance mismatch 𝛽 (canonical ratio 𝐶 = 1).
The first one to address is to verify how the change of the materials
f the two phases 𝐴 and 𝐵 modifies the value of the three frequencies
t fixed canonical ratio 𝐶. The quest arises from the fact that it is clear
rom Fig. 3 that (i) an increase of the impedance mismatch 𝛽 promotes
he presence of stop bands to the detriment of pass bands and (ii) the
umber of TZs within the interval [0, 𝑓c] for same canonical ratio and
ndex 𝑖 is independent of 𝛽 (this is why we notice that in all four panels
f Fig. 3 the second TZ for cell 2 (resp. 3) is always centred at 2𝑓c

(resp. 𝑓c)). Thus, the values of the ratios between each of the three
relevant frequencies and the canonical one (i.e. 𝑓 1st

𝑖 ∕𝑓c, 𝑓 2nd
𝑖 ∕𝑓c and

𝑓𝑖∕𝑓c) can be employed to evaluate the influence of parameter 𝛽 on the
limits of the first two TZs. To this end, Fig. 5 reports the corresponding
plots for 𝐶 = 1. The numerical results have been obtained by changing
the thicknesses ℎ𝐴 and ℎ𝐵 to accommodate the change in material
properties (cf. Eq. (15)). In the figure, it may be observed that at an
increasing 𝛽, 𝑓 1st

𝑖 and 𝑓𝑖 decrease w.r.t. 𝑓c, except for cell 2 (see
7

Fig. 5(a) and (c)); conversely, 𝑓 2nd
𝑖 ∕𝑓c increases for 2 and 3, reaching

2𝑓𝑐 and 𝑓𝑐 in the limit of infinite contrast, respectively; for higher
indices of the sequence, the same ratio decreases. A behaviour similar
to the latter is also followed by 𝑓𝑖∕𝑓c, that reaches the values 2 and 1,
respectively, for 𝛽 → ∞.

Second, we wonder: what happens if the two phases, 𝐴 and 𝐵, swap?
As 𝛽 does not change, the spectrum is the same, but scaled according to
the change of value of 𝑓c brought about by the swap (see Eq. (16)). As
a consequence, the three frequencies are in the same proportion with
𝑓c.

The third observation stems from the fact that in Eq. (7) the speed 𝑐0
is a property of the substrate, then the length 𝐿𝑖 in the same equation
could be selected to tune the frequency. In particular, with the aim
of widening the possibility of pure negative refraction, it could be
useful to maximise quantity 𝐿𝑖𝑓𝑖. As the total length of the cell is

(𝐴) (𝐵)
𝐿𝑖 = 𝑛𝑖 ℎ𝐴 + 𝑛𝑖 ℎ𝐵 (see Section 2.1), then ℎ𝐵 can be solved from
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the definition of canonical ratio, Eq. (15), yielding ℎ𝐵 = 𝐶𝑐𝐵ℎ𝐴∕𝑐𝐴.
Therefore, with the help of Eqs. (14) and (16), 𝐿𝑖𝑓c can be calculated
or the three Families of canonical laminates as follows:

𝑖𝑓
(1)
c = 1

4
[(1 + 2𝑘)𝑛(𝐴)𝑖 𝑐𝐴 + (1 + 2𝑗)𝑛(𝐵)𝑖 𝑐𝐵],

𝐿𝑖𝑓
(2)
c = 1

4
[2𝑞𝑛(𝐴)𝑖 𝑐𝐴 + (1 + 2𝑗)𝑛(𝐵)𝑖 𝑐𝐵], 𝐿𝑖𝑓

(3)
c = 1

4
[(1 + 2𝑘)𝑛(𝐴)𝑖 𝑐𝐴 + 2𝑞𝑛(𝐵)𝑖 𝑐𝐵],

(26)

espectively, where note that indices 𝑗, 𝑘, 𝑞 are those defining the
anonical ratio in Eq. (14). Thus, the two materials 𝐴 and 𝐵 can be
elected in order to maximise the value obtained from the correspond-
ng equation among the three listed in (26); for instance, 𝐿3𝑓 1st

3 , 𝐿3𝑓 2nd
3

and 𝐿3𝑓3 are higher for the combination 𝐴: steel, 𝐵: PMMA, than the
opposite one with the same canonical ratio. Therefore, the canonical
frequency can be used as a key quantity to investigate the influence
of impedance mismatch in maximising the relevant frequencies for
assessing whether or not pure negative refraction may take place.

We close this section by recalling that our focus was mainly placed
on pure negative refraction and then, for the classification presented
in Section 2.2, on the first two TZs of the spectrum. However, for a
canonical laminate the layout of the TZs is symmetric and periodic,
therefore this feature can be exploited at high frequency to determine
the number of transmitted waves (either positive or negative refracted)
by linking the frequency to the corresponding one in the first period.

5. Conclusions

A method to accomplish pure negative refraction for harmonic elas-
tic anti-plane shear dynamics is wave transmission across an interface
between a substrate and a composite laminate whose lamination direc-
tion is orthogonal to the interface. Previous studies have shown that the
goal is achievable if the frequency of the impinging wave is compatible
with propagation of the refracted wave within the second Brillouin
zone of the laminate (this has been reviewed in the first Section of
the manuscript). Therefore, the study of the dispersion properties of
the composite is a fundamental task to be carried out in detail. The
control of those properties is particularly easy for a special class of
laminates, called canonical, that can be studied by considering sets of el-
ementary cells generated by a quasicrystalline sequence (the Fibonacci
sequence in this case). For waves propagating orthogonally to the
lamination direction, canonical laminates display a periodic stop- and
pass-band layout, the periodicity being governed by a special frequency
called canonical frequency. The key features leading to the definition of
such special configurations are (i) the recursive relationship existing
between three consecutive traces of transmission matrices, (ii) the
existence of an invariant function and (iii) the nonlinear trace map
that can be written from the recursive rule: the canonical configurations
correspond to periodic orbits of the trace map and this takes place at
well-defined frequencies, namely, the canonical frequencies. The theory
shows that there are three families of canonical laminates.

For the problem of pure negative refraction, the focus is on the first
two pass bands of the spectrum that possess the same limits of the first
two transition zones at low frequencies for the laminate if we consider
wave propagation in any direction. The self-similar pattern displayed
by them at increasing index of the sequence can be quantitatively
described through a scaling factor that can be estimated by performing
Maclaurin expansions of trace functions and substituting them in the
expression of the invariant. Through this parameter, the breadths of
the two transition zones can be predicted by scaling backward and/or
forward the corresponding values of a given configuration taken as a
reference. It is also shown how the impedance mismatch of the laminate
affects the limits of the transition zones at constant canonical ratio
and how to modify the dispersive properties of the elementary cell by
8

changing its total length.
The concept of canonical laminate sheds a new light on the way
to achieve pure negative refraction in periodic elastic composites as
it helps to control the relevant frequencies which govern the phe-
nomenon. It is envisaged that the methodology set out in this paper
could be extended to other types of periodic waveguides composed of
micro-architected materials.
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