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ABSTRACT
The paper presents a framework for probabilistic assessment of likelihood of infection from airborne
diseases in confined spaces which are continuously occupied for relatively long periods (e.g., school
classrooms). The proposed approach is based on a combination of computational fluid dynamics
(CFD) pre-calculations and analytical post-processing, to define relevant indices of infection proba-
bility. Thepractical applicability of themethod is demonstrated througha case study,wheredifferent
ventilation scenarios are considered for a school classroom. Corresponding infection probability
indices are determined globally for the group of occupants. Furthermore, since the method does
not rely on the well-mixing assumption, local probability indices are determined for each occupied
location. The obtained results confirm the intuition that an increase of ventilation and/or air filtra-
tion reduces the overall likelihood of infection, though the observed positive effect is not uniform
within the space. The presented methodology can also be considered as complementary to simpler
approaches.

1. Introduction

The coronavirus pandemic which started in 2019 has
emphasized the relation between the airborne disper-
sion of droplets exhaled by an infected person and the
spread of respiratory infections (Morawska and Cao 2020;
Liu et al. 2008). It is known that SARS-CoV-2 remains viable
and suspended in aerosols for several hours, having a
half-life of the order of 1.1 hours (Morawska and Milton
2020; Prather, Wang, and Schooley 2020; van Doremalen
et al. 2020; Wang et al. 2021), whereas the contact with
fomites, such asworkplace surfaces, represent a less likely
transmission mode (Kampf et al. 2020; Meyerowitz et al.
2021). In this context, public buildings and, more gen-
erally, structures accessible to public represent a poten-
tially critical situation, particularly in case of long-lasting
presence of groups of occupants (e.g., school and univer-
sity buildings, retail buildings, restaurants, concert halls,
health-care settings, passenger ships, conference rooms,
offices, auditoriums, sport centres, etc.) (Atkinson et al.
2009; Blocken et al. 2021; Cirrincione et al. 2020; Hu et al.
2022; Li and Tang 2022; Mizumoto and Chowell 2020;
Ronchi and Lovreglio 2020; Bruinen de Bruin et al. 2020;
Prem et al. 2020; Schade et al. 2021; Sharma, Bahga, and
Gupta 2023; Szałański, Cepiński, and Sayegh 2023).

Aerosols, defined as small droplets or particles sizing
at most 5 μm, can be associated with a higher infection
risk than largerparticles, becauseaerosols can remain sus-
pended inair for long timeperiods anddisperseoverwide
areas (Asadi et al. 2020; Cole and Cook 1998; Rencken
et al. 2021; Sonkin 1951). The probability of transmit-
ting an airborne infection in confined spaces is consid-
ered strongly dependent on airflow characteristic, venti-
lation parameters, geometry and distribution of people
location in the space itself (Wang et al. 2022). Building
factors and ventilation strategies play a central role in
the removal of airborne infectious agents and have a
consequent effect on the infection probability in con-
fined spaces (Atkinson et al. 2009; Escombe et al. 2007;
Schade et al. 2021). The effectiveness of ventilation sys-
tems is considered crucial for the containment of the
infection probability in confined spaces (Atkinson et al.
2009; Cole and Cook 1998; Dai and Zhao 2020; Morawska
et al. 2020; Szałański, Cepiński, and Sayegh 2023). For
instance, Liu et al. (2008) investigate by numerical simula-
tion the transmission of aerosol particles containing SARS
virus between vertically-adjacent flats in a high-rise build-
ing. Their results show that, under favourable environ-
mental conditions and with one-sided ventilation (one
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window open, door closed), the buoyancy forces origi-
nating from the indoor-outdoor temperature difference
induce a streamof contaminated air from the lower flat to
theupper adjacent flat. The aforementioned transmission
route was associated with the onset of small-scale SARS
clusters occurred in several high-rise residential buildings
in Hong Kong during the SARS epidemic in 2003 (Liu et al.
2008). Hu et al. (2022) analyse the SARS-CoV-2-infection
risk and building energy consumption for different types
of indoor spaces (shopping centres, restaurants, gyms,
subway, railway station and others) using an improved
Wells-Riley model accounting for dynamic quanta gen-
eration and pulmonary ventilation rate and a building
energy consumption model based on the concept of
equivalent fresh air volume. The study shows that signifi-
cant energy savings could be attained by optimizing the
rate of mechanical ventilation in terms of reducing the
energy consumption while at the same time maintain-
ing adequate prevention and control on the spreading of
the SARS-CoV-2 infection. Szałański, Cepiński, and Sayegh
(2023) assess the effect of leakages in in the heat recov-
ery system of air-handling units on SARS-CoV-2 infec-
tionprobability by exploiting theWells-Rileymodel (Riley,
Murphy, and Riley 1978; Riley 2001), for different types of
indoor spaces.

Simulation tools have already been used to assess
the effectiveness of mitigation measures against air-
borne virus diffusion, also in crowded situations (Abbas
and Gursel Dino 2022; Fang et al. 2020; Gao, Niu, and
Morawska 2008; Gao et al. 2016; Huang et al. 2022;
Mirzaie et al. 2021; Mizumoto and Chowell 2020; Saari
et al. 2006; Sharma, Bahga, and Gupta 2023). Lu et al.
(1996) provide one of the first studies where Computa-
tional Fluid Dynamics (CFD) is used to predict the dis-
persion of aerosol particles in a ventilated indoor envi-
ronment. A standard k-ε turbulence model is used to
simulate the airflow, while a Lagrangian particle-tracking
approach allows modelling the dispersion of aerosol par-
ticles. The Lagrangian approach allows predicting the dis-
persion of respiratory droplets, tracking their movement
through space, thereof attempting to evaluate the asso-
ciated infection probability (Peng, Chen, and Liu 2020;
Vuorinen et al. 2020; Wang et al. 2022). Chung and Dunn-
Rankin (1998) simulate the turbulent airflow distribution
and the particle dispersion inside a small-scale model
room under forced ventilation to assess the overall air
ventilation efficiency in indoor spaces. For turbulent flow
simulation they exploit a k-ε model, and particle dis-
persion is simulated using a Lagrangian approach. The
numerical results are successfully validated by compar-
ison against experimental measurements. Zhao et al.
(2004) numerically investigate the efficiency of mixing
and displacement ventilation for a model room, in terms

of effectiveness in removing airborne aerosol particles
of different diameters. The turbulent airflow within the
room is modelled by the RNG – k-ε approach, which
is widely adopted for indoor airflow simulations (Chen
1995). The study by Zhao et al. (2004) shows that aerosol
particles in the considereddiameter rangeof 1–10 μmare
significantly affected only by the drag force, by the buoy-
ancy force, by the Brownian force and by the shear-lift
force (Li and Ahmadi 1992). According to Chen, Yu, and
Lai (2006), the RNG– k-εmodel ismore suitable for indoor
airflow simulation, and better agreement between simu-
lated results andmeasured data has been achieved, com-
pared to the standard k-ε andother turbulence or laminar
models (Chen 1995; Posner, Buchanan, and Dunn-Rankin
2003). A different contaminant dispersion model is used
by Abbas and Gursel Dino (2022) to predict the disper-
sion of infectious aerosol within a classroom. In particular,
a CFD solver coupled with a zero-equation turbulence
model provides the airflow distribution to an Eulerian
model,which in turn returns the concentrationof the con-
taminant throughout the computational domain. Wang
and Chow (2015) use both a Lagrangian model and an
Eulerian (drift-flux) model to simulate the dispersion of
infectious airborne particles in a hospital environment,
accounting for the presence and for the movements of
the occupants. Sharma, Bahga, and Gupta (2023) simu-
late the airflow field and the dispersion of SARS-Cov-2
infected aerosol throughout twomechanically-ventilated
university lecture rooms. The virus particles are modelled
as a passive scalar (Eulerian approach) and resulting data
are coupled with the Wells-Riley infection model (Riley,
Murphy, and Riley 1978; Riley 2001).

Regarding the probabilistic modelling for the assess-
ment of infection probabilities in confined spaces, tak-
ing into account also the statistical variation of sources
of infection in the room, Iddon et al. (2022) recently
presented an approach aiming at the quantification
of the proportion of population newly infected. The
approach by Iddon et al. (2022) relies on the well-
mixing assumption and on the assumption of com-
mon properties for all the occupants in the considered
space.

According to the current state of the art, it can be
noticed that, on the one side, CFD has been used to simu-
late the details of dispersion of aerosols, and, on the other
side, probabilistic approaches have been devised on the
basis of simplified models for the underlying flow field
and particle dispersion characteristics.

In this context, the present paper aims at making
some steps forward, by presenting a framework for
the probabilistic assessment of the likelihood of infec-
tion in confined spaces that are continuously occupied
for relatively long periods. The approach is based on
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the combination of CFD pre-calculations and analyti-
cal post-processing, to define relevant indices of infec-
tion probability. The use of CFD calculations aims at
making a step forward with respect to the use of well-
mixing assumption, and it allows having local informa-
tion within the considered space. Then, the probabilis-
tic post-processing presented in this study allows taking
into account different relevant characteristic properties
for the occupants, and, thanks to the combination with
CFD pre-calculations, it provides specific information for
occupants in different positions within the considered
space.

The proposed framework is demonstrated via a case
study, where different ventilation scenarios for a school
classroom are compared on the basis of the calculated
infection probability indices. Schools and classrooms
have already been considered a challenge for strategies
aiming to reduce the concentration of airborne infectious
aerosol in spaces characterized by dense and long-lasting
occupancy (Mirzaie et al. 2021; Abbas and Gursel Dino
2022) in view of the possible occurrence of overcrowd-
ing (Bartolucci, Templeton, andBernardini 2022;D’angelo
et al. 2021; D’Orazio, Bernardini, and Quagliarini 2021;
Haug et al. 2020). For the specific case study presented in
the paper, the simple Wells-Riley infection model is used
(Riley, Murphy, and Riley 1978; Riley 2001), targeting the
case of possible infections due to SARS-CoV-2. However,
the approach presented herein is based on an unsteady
local application of the Wells-Riley model, which is made
possible by leveraging on the capabilities given by the
coupling with CFD-based particle tracking simulations.
From a modelling perspective, this allows making a step
forward with respect to some shortcomings that have
been highlighted in relation to the common use of the
Wells-Rileymodel underwell-mixing assumption (Noakes
et al. 2006).

The paper is organised as follows. Section 2 describes
the developed framework for the evaluation of infec-
tion probability indices in confined spaces. The section
describes how CFD pre-calculations are used to provide
relevant input data for the subsequent analytical post-
processing, and it also provides details on the developed
infection probability indices. Section 3 presents the afore-
mentioned case study. Background information and cal-
culation results are presented and discussed. The pre-
sented results show how to derive global and local infec-
tion probability indices, allowing for the classification
of different occupied positions in terms of likelihood of
infection. Furthermore, different ventilation scenarios are
ranked according to the likelihood of spreading the infec-
tion through theoccupants. Finally, section4provides the
concluding remarks.

2. Methodology for the determination of
infection probability indices

2.1. Overview

The proposed assessment methodology is based on a
combination of CFD pre-calculations and a subsequent
analytical post-processing of the obtained data, to define
relevant infection probability indices for given scenarios.
The wording “probability indices” is used herein rather
than using the wording “probabilities” only to reflect
the fact that final probability estimations from the pro-
posed approach, and actually also from any other similar
approach, are inevitably affected by the assumptions and
simplifications embedded in the modelling.

In extreme summary, the developed approach can be
outlined as follows:

(1) Given a ventilation scenario and relevant boundary
conditions, CFD pre-calculations are carried out for
the considered scenario. The scope of this step is to
obtain the background flow field that is used for the
subsequent analysis in step (2);

(2) Simulations of particle dispersions are performed
considering exhalation from each occupant, using
the background field determined in (1) as forcing
field. The scope of this step is to determine how saliva
droplets exhaled from each given occupant disperse
in the room and eventually arrive at the other occu-
pants of the room;

(3) The viral dose inhaled by each occupant is quantified
bypost-processing the results obtained from step (2);

(4) Probabilistic indices of infection are calculated on
the basis of the results from step (3) by exploiting
an infection model and by considering all possible
cases of initially infected/not infected occupants in
the room.

The approach aims to reduce thebottleneckdue to the
computational timewhich is typical of direct case-by-case
application of CFD simulations. More details regarding
the main steps are reported in the following and in the
relevant sub-sections.

The key input for the determination of infection prob-
ability indices through the analytical probabilistic model
described in section 2.3 is represented by the so-called
viral dose inhaled by the generic susceptible occupant
within a given exposure time. The virus is transported
by saliva droplets exhaled by the infectious occupants in
the occupied space. The probabilistic model takes into
account the distribution of susceptible and infectious
occupants in the given confined space, according to the
probability that each available location is occupied by
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an infectious occupant at the beginning of the exposure
time. Calculations based on the probabilistic model are
relatively simple andquick tobeapplied, once the inhaled
viral dose is quantified.

To quantify the viral dose inhaled by a susceptible
occupant within a given exposure time, resort is made to
CFDpre-computations of particle dispersions (see section
2.4) combinedwith some reasonable simplifying assump-
tions. The concentration of the saliva droplets exhaled by
each generic occupant is calculated in front of the other
occupants, at each time instant. One major assumption
is that the dispersion of saliva droplets does not influ-
ence the background flow field (so-called 1-way coupling
regime). Furthermore, it is assumed that the volume con-
centration of the exhaled saliva droplets is sufficiently
low to prevent their mutual interaction. As for the first
assumption, the distinction between the 1-way or 2-way
coupling regimes was addressed by Elghobashi (1994).
The distinction between the two regimes depends on the
particle loading and on the dimensionless particle Stokes
number Stp ≡ τp/τK , where τp is the particle relaxation
time (see, e.g., Kuerten (2016)) and τK is the Kolmogorov
time scale (see, e.g., Pope (2000)). In the scenarios consid-
ered in the present work, the maximum volume fraction
of saliva droplets occurs during exhalation, just in front of
the mouth of the room’s occupants where, based on the
data reported in Table 2 for the considered case study (see
section 3), the volume fraction is ∼1.38 · 10−12 m3 saliva
/ m3 air. According to the results of Elghobashi (1994),
for a volume fraction lower than ∼10−6 the flow-particle
interaction is essentially 1-way, irrespectiveof the valueof
the particle Stokes number (see, e.g., Figure 1 in Kuerten
(2016)). Regarding the second assumption, the particle-
particle interaction becomes relevant only for even larger
values of the particle loading (Kuerten 2016). In view of
the above, the present flow-particle interaction can be
considered as 1-way and the particle-particle interaction
can be neglected. These two assumptions allow carrying
out a limited number of reference CFD pre-computations
that are used to subsequently determine relevant parti-
cle concentrationsby superpositionof contributions from
the considered infectious occupants. More specifically,
one main CFD simulation is required to determine the
background flow field, considering the relevant bound-
ary conditions associated to the considered ventilation
scenario. Subsequently, simulations of particle dispersion
can be performedby exploiting the available background
field, which acts as a forcing term for the movement of
particles (see section 2.4).

The information gathered from the CFD pre-computa-
tions is the concentration of saliva droplets at time t,
released by the occupant n and arriving in front of the
occupant j, normalized by the pulmonary ventilation

Figure 1. Views of the classroom computational domain: (a)
open view from the outside, (b) open view from the access door,
(c) detailed view of the mesh in the proximity of an occupant.

rate of occupant n, i.e. C′
jn(t). This information can be

plugged into the analytical probabilistic model at the
post-processing stage and, combined with information
related to other relevant parameters of the model for
the considered scenario, it allows determining relevant
infection probability indices.

2.2. Quantitative infectionmodel

The fundamental feature of quantitative infection mod-
els, as for the present work, is that the probability P that
a susceptible individual develops the infection due to an
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exposure of time length t depends on the quantity of air-
borne virus inhaled within the considered exposure time,
i.e. the viral dose. Such models can be shortly referred to
as dose–response models (e.g., Iddon et al. (2022), Sze To
and Chao (2010), Watanabe et al. (2010)).

The approach presented in this work is generally appli-
cable by using any dose–response model that provides
the functional link between the individual probability
of infection and the inhaled dose. However, to provide
quantitative results for the example case study in section
3, use will be made of the Wells-Riley model (Riley, Mur-
phy, and Riley 1978; Riley 2001), recast in the form of
dose–response model (e.g., Iddon et al. (2022)), and this
specific model is presented in the following.

The Wells-Riley model (Riley, Murphy, and Riley 1978;
Riley 2001) is a classic model used to quantify the infec-
tion probability due to the airborne transmission of infec-
tious, respiratory diseases (Noakes et al. 2006; Sze To and
Chao 2010). The model was originally developed for esti-
mating the infection probability in confined spaces, for
tuberculosis and measles.

The Wells-Riley model (Riley, Murphy, and Riley 1978;
Riley 2001) can be formulated in terms of inhaled viral
dose, as follows (see also Iddon et al. (2022)):

P = 1 − e−ci·D(t) (1)

where P is the infection probability, D(t) [RNA copies] is
the viral dose inhaled within the exposure time t, and
the infectivity coefficient ci [(RNA copies)−1] is a model
parameter to link the inhaled viral dose and the infection
probability according to the model (1). The form (1) cor-
responds to an exponential dose–response model (e.g.,
Watanabe et al. (2010)). It is noted that the original Wells-
Riley model (Riley, Murphy, and Riley 1978; Riley 2001)
is based on the concept of quanta, where quanta essen-
tially correspond to the product ci · D(t) in (1). According
to the model (1), one quantum corresponds to 1/ci viral
copies and it is the viral dose leading to a probability of
63.2% to develop the infection. The customary applica-
tion of the Wells-Riley model (Riley, Murphy, and Riley
1978; Riley 2001) relates, implicitly or explicitly, the coef-
ficient ci to the source of infection. In addition, a common
value for ci is generally assumed for a given viral species,
irrespective of the characteristics of the susceptible per-
son inhaling the virus. Nevertheless, it is reasonable to
consider that the dependence between the inhaled viral
dose and the infection probability, which is controlled by
ci in themodel (1), may depend, at least in principle, both
on the specific considered virus and on the susceptibility
to infection of a specific person or community. There-
fore, herein, it is proposed to consider that, in general,
the coefficient ci reflects the characteristics of the virus

and the characteristics of the susceptible person inhal-
ing the virus, thus ci is conceptually associated with the
susceptible individual inhaling the virus.

Quantitative infection models have been commonly
applied under the assumption of well-mixing conditions
within the considered confined space (e.g., Riley, Murphy,
and Riley 1978; Buonanno, Morawska, and Stabile 2020a,
2020b; Iddon et al. 2022). When steady state and well-
mixing conditions are assumed, the Wells-Riley model
(Riley, Murphy, and Riley 1978; Riley 2001) takes the fol-
lowing form:

P = 1 − e−ci· NSOI ·rQvent
·p·t (2)

where NSOI is the number of individuals that are sources
of infection (SOIs) in the room, r [RNA copies/h] is the rate
of emission of viral copies for each SOI, Qvent [m3/h] is
the room ventilation rate with germ-free air, p [m3/h] is
the pulmonary inhalation rate of each susceptible indi-
vidual (SUI), and t [h] is the considered exposure time.
The quantity NSOI · r/Qvent [RNA copies/m3] represents
the steady state concentration of viral copies in the air
within the confined space. The quantity p · t [m3] repre-
sents the total inhaled volume of air in the considered
exposure time by the considered SUI, considering con-
stant inhalation rate. Therefore, the inhaled does D(t)
within the exposure time corresponds to (NSOI · r/Qvent) ·
p · t.

However, Noakes et al. (2006) show that risk assess-
ments made using well-mixing assumption may signifi-
cantly underestimate the real risk for people close to the
infection source.

Therefore, the probabilistic approach proposed in
the present investigation (section 2.3) is based on an
unsteady local application of the Wells-Riley exponen-
tial dose–response model, where the viral dose inhaled
by susceptible individuals is determined from the time-
domain analysis of a so-called breath volume, located in
close proximity in front of the mouth of the susceptible
person.

According to Buonanno, Morawska, and Stabile
(2020a, 2020b), the rateof emissionof virus fromeachSOI,
r, can also be reformulated as follows:

r = cv · v · C (3)

where cv [RNA copies /mLof saliva] is the viral load associ-
ated with saliva droplets, v [m3 of air/h] is the pulmonary
exhalation rate from the infector, and the concentration
C [mL of saliva / m3 of air] takes into account the quantity
of saliva per exhaled air volume.

In general, the concentration C appearing in equa-
tion (3) depends on the distribution of droplets size and
on the overall number of particles per unit volume of
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air. In this study, the droplets are modelled as spheres
with diameter dp, and the distribution of diameters is
simplified by a discrete distribution for a finite set of
nd diameters (Buonanno, Stabile, and Morawska 2020b).
Under these assumptions, the concentration C can be
determined as follows:

C =
nd∑
i=1

N(dp,i) · Vp(dp,i) (4)

where N(dp,i) [droplets / m3 of air] is the number of
droplets having diameter dp,i per unit volume of air, and
Vp(dp,i) [mL of saliva / droplet] is the volume of a spherical
saliva droplet of diameter dp,i.

2.3. Probabilistic model for assessing infection
probability indices

A probabilistic model is proposed to assess the infec-
tion susceptibility for the occupants of a confined space
through the definition of probability indices. The model
accounts for the probability that individuals may enter
the room as infected (SOIs), for the actual arrangement of
the classroom, for the different (fixed) positions that can
be occupied by SOIs and SUIs and for the exposure time.

In the developed model, the inhaled viral dose within
the exposure time t is determined for each suscepti-
ble occupant, considering the contributions from the
assumed infected people (SOIs) in the room from the
beginning of the assessment. The determination of the
share of inhaled dose due to the emission from differ-
ent SOIs is based on the assumption of superposition.
From the fluid dynamics perspective, using superposi-
tion corresponds to the assumption of saliva droplets not
affecting the airflow and not interacting with each other.

The presented approach provides indices related to
infection probability starting from information regarding
the dose inhaled by susceptible individuals due to the
exhalations from infected occupants.

The main infection probability index that is deter-
mined from the presented model is the probability that
at least one SUI gets infected considering an exposure
time t, i.e. PSbI(t). This probability is obtained by consid-
ering all possible combinations of infected/susceptible
occupants in the room. Each of these combinations is
referred to as a ’layout’, it is conveniently defined by a
binary vectork representingSUIswith zeros andSOIswith
ones, and it is associated with a probability of occurrence
Pk that depends on the probabilities PI,j that each occu-
pant enters the room at time t = 0 as a SOI. By direct
application of total probability theorem, the probability
PSbI(t) can be obtained by combining the probabilities
Pk and the conditional infection probabilities PSbI|k(t).

This latter probability is obtained considering the condi-
tional infectionprobability for eachoccupant, PSbI,j|k(t). In
turn, the probability PSbI,j|k(t) is obtained from the dose
inhaled by each susceptible occupant, Dj|k(t), through
an assumed dose–response model. In the case study
presented in this paper (see section 3), the exponential
dose–response model (1) is used. However, any other
dose–responsemodel providing the infection probability
given the inhaled dose is equally applicable. The inhaled
dose Dj|k(t) is obtained by superposition of relevant con-
tributions Djn(t) due to each SUI in the room for the
considered layout. Herein, the basic contributions Djn(t)
are assumed to be obtained from CFD and particle track-
ing pre-calculations (see section 2.4). Nevertheless, the
doseDj|k(t) and/or the basic contributionsDjn(t) can also
be obtained from more simplified models (e.g., based
on well-mixing assumption – see (2)). The probabilities
obtained in the developed approach can also be used to
determine the limiting infection probability for a hypo-
thetical infinite exposure time, PSbI,lim. In addition, the
probabilities obtained in the developed approach allow
determining also the expected (mean) number of infec-
tion transmissions considering an exposure time t, both
in terms of result conditional to a given layout, N̄SbI|k(t),
as well as in terms of marginal value N̄SbI(t).

Details of relevant formulae for the determination of
the various quantities, and corresponding derivation, are
reported in the following section 2.3.1.

2.3.1. Detailed derivation
In the following, an individual entering the room at t =
0 as not infected is referred to as a ‘target’. Conversely,
an individual entering the room at t = 0 as infected is
referred to as a ‘source’. A target is a susceptible individ-
ual, SUI, whereas a source is a SOI, i.e. an infected indi-
vidual who contributes to the spreading of the virus. SUIs
may get infected as a consequence of the exposure to the
virus. Instead, SOIs, by definition, cannot ‘get infected’,
because they already are. In the considered model, sus-
ceptible occupants getting infected are not considered
infectious within the exposure time t, because the con-
sidered exposure time is assumed to be shorter than the
incubation period.

A series of definitions that are relevant for the subse-
quent description of the probabilistic model are reported
in Table 1.

For each scenario, the room layout is characterised by
a combination of SUIs and SOIs among the available loca-
tions. Thus, a layout is identified by a binary vector k of
indicators kn (n = 1, . . . ,NP), as follows:

kn =
{
0 if the n − th occupant is a SUI (a target)
1 if the n − th occupant is a SOI (a source)

(5)
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Table 1. Main definitions relevant to the description of the prob-
abilistic model.

Quantity Definition

NP Number of occupants, fixed at NP corresponding locations
during the exposure time.

cv,n Number concentration of virus copies in the saliva droplets
exhaled by the source n, expressed as number of copies
per mL of saliva.

ci,j Coefficient used in the Wells and Riley exponential
dose-response model (see (1)) associated with the
occupant j.

pj Inhalation volume flow rate of the occupant in the j-th
position, expressed in m3/h of inhaled air.

vn Exhalation volume flow rate of the occupant in the n-th
position, expressed in m3/h of exhaled air.

Cjn(t) Concentration of saliva droplets at time t, released by
the occupant n and arriving in front of the occupant j,
expressed as mL of saliva per m3 of air.

C′
jn(t) Concentration of saliva droplets at time t, released by

the occupant n and arriving in front of the occupant
j, expressed as mL of saliva per m3 of air, per unit
exhalation flow rate of the occupant in the n-th position.

Djn(t) Viral dose inhaled by the occupant j within an exposure
time t, due to saliva droplets exhaled by occupant n,
expressed in RNA copies.

k Binary vector defining the scenario in terms of combination
of SOIs and SUIs in the available locations (a ‘layout’).

Pk Probability of occurrence of a given layout k.
Dj|k(t) Viral dose inhaled by the occupant j within an exposure

time t, for a given layout k, expressed in RNA copies.
PI,j Probability that the occupant j is a source (i.e. already

infected at t = 0)
PSbI,j|k(t) Probability that the occupant j gets infected considering

an exposure time t, conditional to a given layout k.
PSbI,j(t) Marginal probability that the occupant j gets infected

considering an exposure time t.
PSbI,j|kj=0(t) Probability that the occupant j gets infected considering

an exposure time t, conditional to entering the room as
a target (i.e. a SUI) at t = 0.

PSnI|k(t) Probability that no SUI gets infected considering an
exposure time t, conditional to a given layout k.

PSbI|k(t) Probability that at least one SUI gets infected considering
an exposure time t, conditional to a given layout k,
where PSbI|k(t) = 1 − PSnI|k(t).

PSnI(t) Marginal probability that no SUI gets infected considering
an exposure time t.

PSbI(t) Marginal probability that at least one SUI gets infected
considering an exposure time t, where PSbI(t) =
1 − PSnI(t).

N̄SbI|k(t) Expected (mean) number of infection transmissions
considering an exposure time t, conditional to a given
layout k.

N̄SbI(t) Marginal expected (mean) number of infection
transmissions considering an exposure time t.

Therefore, for a roomwithNP locations, there are 2NP pos-
sible layouts. The ‘layout 0’ (k = 0) refers to a situation
where all the occupants are SUIs for t = 0. The ‘layout
1’ (k = 1) identifies a situation where, for t = 0, all the
occupants are SOIs.

Assuming the independence of the presence of
sources among different available locations, and consid-
ering a layout k, the probability of occurrence of the
considered layout can be determined as

Pk =
NP∏
j=1

[(PI,j)kj · (1 − PI,j)
1−kj ] (6)

where the probability PI,j corresponds to the probability
that an occupant in the j-th location enters the room at
time t = 0 as infected, and it is associated with the over-
all diffusion of the infection in the considered reference
communities.

The viral dose inhaled by the target occupant j within
an exposure time t due to saliva droplets exhaled by the
source occupant n is determined as

Djn(t) =
⎧⎨
⎩

∫ t

0
cv,n · Cjn(τ ) · pjdτ for j �= n

0 for j = n
(7)

It is noted that the definition ofDjn(t) for j = n as reported
in (7) is conventional. However, since, by definition, a SOI
cannot ‘get infected’, final results are not influenced by
the actual definition used for Djn(t) when j = n.

The concentration Cjn(t) in (7) can be determined from
the corresponding normalized concentrationC′

jn(t) as fol-
lows

Cjn(t) = C′
jn(t) · vn (8)

The terms C′
jn(t) represent the link between the present

probabilistic model and the pre-processing based on
CFD and particle tracking. In fact, the normalized time-
dependent concentrations C′

jn(t) are pre-calculated by
the combined CFD and particle tracking approach, and
this is carried out only once. Afterwards, thewhole proba-
bilistic calculations are based on post-processing of such
data, as described in the present section.

With reference to (7), it is noted that, for each generic
occupant, by mass conservation, the value of inhalation
and exhalation rates are the same, i.e.

ph = vh (h = 1, . . . ,NP) (9)

while the ratesmay differ among occupants. On the basis
of (9), it would be possible to use a single symbol for
both rates. However, two different symbols are retained
in the description of themodelwith the intention ofmore
clearly highlighting the part of formulation related to the
‘source’ individuals (exhalation rate, vn) and the part of
formulation related to the ‘target’ individuals (inhalation
rate, pj).

For a given layout k, the determination of Dj|k(t) is
based on the superposition of contributions from each
source in the considered layout. Therefore,

Dj|k(t) =
∑
q

Djq(t) (10)

where q are the indices of sources in the considered lay-
out, i.e. indices such that kq = 1. Alternatively, taking into
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account the definition of kn (see (5)), Dj|k(t) can be equiv-
alently rewritten as:

Dj|k(t) =
NP∑
n=1

Djn(t) · kn (11)

Targets (i.e. SUIs, kj = 0) may get infected depend-
ing on the viral dose inhaled within the exposure time,
whereas sources (i.e. SOIs, kj = 1), by definition, cannot
‘get infected’. As a result, the definition of the inhaled
dose Dj|k(t) is relevant only for SUIs, i.e. when kj = 1.

Assuming to use a generic dose–response model, the
probability of infection can be determined as a function
of the inhaled dose as follows

PSbI,j|k(t) =
{
0 if kj = 1
fP(Dj|k(t)) if kj = 0

(12)

where the function P = fP(D) is, in general, the assumed
dose–response model.

When the dose–responsemodel is specifically defined
according to (1), the infection probability for each SUI can
be determined as follows

PSbI,j|k(t) =
{
0 if kj = 1
1 − e−ci,j·Dj|k(t) if kj = 0

(13)

where it is recalled that kj = 1 if the occupant in the j-
th position is a SOI (i.e. a source), whereas kj = 0 if the
occupant in the j-th position is a SUI (i.e. a target). It is
highlighted that, to take into accountpossible differences
in the characteristics of the occupants in terms of infec-
tion sensitivity to the inhaled virus, the coefficient ci,j is
considered to be possibly dependent on the specific j-th
target.

Themarginal probability PSbI,j(t) can be obtained from
the conditional probability PSbI,j|k(t) and the probability
of occurrence of each possible layout, Pk , by considering
all possible layouts, as follows

PSbI,j(t) =
∑
k

PSbI,j|k(t) · Pk (14)

The marginal probability PSbI,j(t) implicitly accounts also
for cases where the occupant in the j-th position is
infected at t = 0, i.e. those cases such that kj = 1. In such
cases, by definition, the occupant in the j-th position is
a SOI and cannot ‘get infected’. Hence, PSbI,j|k(t) = 0 as
consistently defined in (12)/(13).

In the assessment of a room arrangement, it is also rel-
evant to assess the probability of getting infected due
to the stay in the confined space, when the occupant
entered the roomas non-infected (i.e. as a SUI). Therefore,
for an occupant in the generic j-th location, it is mean-
ingful to assess the probability of getting infected, con-
ditional to the fact that the occupant entered the room

in a susceptible state at t = 0, i.e. conditional to kj = 0.
Herein, this probability is denoted as PSbI,j|kj=0(t) and it
can be determined as follows:

PSbI,j|kj=0(t) =
∑

k:kj=0(PSbI,j|k(t) · Pk)∑
k:kj=0 Pk

(15)

The denominator in equation (15) represents the proba-
bility of having a layout where the j-th occupant is a SUI
(i.e. a target), i.e. the probability that the occupant of the
j-th position entered the room at t = 0 as a target. At
the same time, by definition (see (12)/(13)), PSbI,j|k(t) = 0
whenever the j-th occupant is a source (kj = 1). Therefore:

∑
k:kj=0

(PSbI,j|k(t) · Pk) =
∑
k

(PSbI,j|k(t) · Pk) = PSbI,j(t)

(16)
In addition, the probability that the j-th occupant

entered the room as a SUI (i.e. a target) can be linked to
the probability PI,j that the occupant entered the room as
a SOI (i.e. a source), as follows:∑

k:kj=0

Pk = 1 − PI,j (17)

By combining equations (15)–(17), the probability
PSbI,j|kj=0(t) can be equivalently determined as:

PSbI,j|kj=0(t) = PSbI,j(t)

1 − PI,j
(18)

The probability that no SUI gets infected for a given
layout k considering an exposure time t can be deter-
mined as:

PSnI|k(t) =
∏
j:kj=0

(1 − PSbI,j|k(t)) (19)

In (19), the product considers positions of the layout k
occupied by SUIs (kj = 0). However, if the occupant of
the generic j-th location is a source, it is PSbI,j|k(t) = 0 by
definition (see (12) /(13)). Thus, PSnI|k(t) in (19) can be
equivalently rewritten as:

PSnI|k(t) =
NP∏
j=1

(1 − PSbI,j|k(t)) (20)

The marginal probability that no target gets infected
considering an exposure time t, PSnI(t), can be deter-
mined from the combination of the conditional proba-
bility PSnI|k(t) and the probability of occurrence of each
different layout, Pk , as:

PSnI(t) =
∑
k

PSnI|k(t) · Pk (21)

Therefore, the probability that at least one target gets
infected considering an exposure time t, PSbI(t), can be
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determined as:

PSbI(t) = 1 − PSnI(t) = 1 −
∑
k

PSnI|k(t) · Pk

=
∑
k

(1 − PSnI|k(t)) · Pk =
∑
k

PSbI|k(t) · Pk (22)

where use has been made of the fact that
∑
k
Pk = 1 and

PSbI|k(t) = 1 − PSnI|k(t).
The probability PSnI(t) can be used as amerit figure, i.e.

as an index tobekept ashighaspossible, for the classifica-
tion of a given room arrangement (in terms of ventilation,
occupation, layout of furniture, etc.) with respect to the
limitation of the propagation of an airborne viral infec-
tion. Conversely, for the same purpose, the probability
PSbI(t) can be used as a demerit figure, i.e. as an index to
be kept as small as possible.

If, for a given layout k, there is at least one target (a
SUI) and at least one source (a SOI) in the room (namely
k �= 0, 1) and if the arrangement allows saliva droplets to
reach a target from a source, then, there is at least one
function Djn(t) increasing with the exposure time t. As a
result, under these conditions, theprobability that at least
one occupant will get infected in the limit of an infinite
exposure time is equal to 1.

For the special cases k = 0 and k = 1, it is PSbI|k(t) = 0
at any time. For k = 0, all occupants are SUIs (i.e. targets)
and cannot get infected because there are no SOIs (i.e.
sources) in the room. For k = 1, all occupants are SOIs (i.e.
sources), therefore they are already infected at t = 0 and,
by definition, they cannot ‘get infected’.

The limit of PSbI(t) as the exposure time tends to infin-
ity, PSbI,lim, can be determined as

PSbI,lim = lim
t→+∞ PSbI(t)

= lim
t→+∞

∑
k

PSbI|k(t) · Pk

= lim
t→+∞

⎡
⎣ ∑
k �=0,1

(PSbI|k(t) · Pk)

+
∑
k=0,1

(PSbI|k(t) · Pk)
⎤
⎦

=
∑
k �=0,1

(1 · Pk) +
∑
k=0,1

(0 · Pk) =
∑
k �=0,1

(1 · Pk)

=
∑
k

(1 · Pk) −
∑
k=0,1

(1 · Pk)

= 1 − (Pk=0 + Pk=1)

= 1 −
⎛
⎝ NP∏

j=1

(1 − PI,j) +
NP∏
j=1

(PI,j)

⎞
⎠ (23)

It is noted that the limit probability PSbI,lim from (23) corre-
sponds to the probability that there are at least a SOI and
at least a SUI in the room, under the additional assump-
tion that the room arrangement is such to allow saliva
droplets to reach at least a SUI from at least a SOI and that
the dose–response model provides a unit probability of
getting infected for an infinite inhaled dose. According to
these assumptions, it can be noticed that the limit proba-
bility PSbI,lim does not dependon the specific details of the
used dose–response model. PSbI,lim depends only on the
probabilities PI,j, i.e. the probabilities for the occupants of
entering the room at t = 0 as a SOI.

Additional merit or demerit metrics can also be used
for the assessment of given scenarios. For instance, Iddon
et al. (2022) used the expected number of transmissions,
with correspondingly associated proportion of popula-
tion newly infected.

According to the approach presented herein, the
expected (mean) number of infection transmissions con-
ditional to a given layout considering an exposure time t,
N̄SbI|k(t), can be determined as follows:

N̄SbI|k(t) =
∑
j:kj=0

PSbI,j|k(t) (24)

Also in this case, noting that, by definition (see (12)/(13)),
PSbI,j|k(t) = 0whenever the j-th occupant is a source (kj =
1), it follows that:

N̄SbI|k(t) =
NP∑
j=1

PSbI,j|k(t) (25)

Therefore, the marginal expected (mean) number of
transmissions considering an exposure time t, N̄SbI(t), can
be determined as

N̄SbI(t) =
∑
k

N̄SbI|k(t) · Pk =
NP∑
j=1

PSbI,j(t) (26)

where use has also been made of (16).
The proportion of population newly infected, as

defined by Iddon et al. (2022), can be determined by
dividing N̄SbI|k(t) and N̄SbI(t) by the total number of occu-
pants NP, to obtain a conditional or marginal quantity,
respectively. Accordingly, and taking into account (25)
and (26), theproportionofpopulationnewly infected rep-
resents the average value of PSbI,j|k(t) or PSbI,j(t), respec-
tively, across the occupants.

For the presented approach, cv,n, ci,j, pj and vn are
considered as deterministic parameters. Therefore, all
obtained results are conditional to the assumed values
of these parameters. However, the framework can be
extended to explicitly account also for a probabilistic
description of these parameters. This can be done by
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introducing further averaging using specified distribu-
tions for these additional parameters among SOIs and
SUIs. In this respect, it is worth noting the example of
the probabilistic model by Iddon et al. (2022), where the
viral load is considered as a random variable with given
distribution.

As a complement to the present section, Appendix 5
shows an example application, only from the point of
view of the probabilistic model, to a simplified case of a
room with three occupants.

2.4. Model of particle dispersion

The combined use of CFD simulations and discrete par-
ticle tracking allows evaluating how infectious droplets
disperse through the indoor air.

The discrete particle model has been already applied
to study the dispersion of virus and bacteria in confined
spaces (Zhang, Tu, and Ling 2008; Casagrande and Piller
2020). The respiratory aerosols are composed of inner
particles and outer mucus (Feng, Zhang, and Lan 2012).
The evaporation of the latter influences the aerosols’
dispersion and deposition. However, the shrinkage time
from the original respiratory aerosols to particles is rapid
(about 0.5 s), especially for particles whose size is smaller
than 20 μm (Nicas, Nazaroff, and Hubbard 2005). There-
fore, in the present study, heat transfer and evapora-
tion related to saliva droplets have been neglected, and
respiratory aerosols are modelled as particles with con-
stant size. The low volumetric loading ratio of respira-
tory aerosol also suggests that the assumption of one-
way coupling is sound for indoor airflows, as the particle
motion essentially does not affect the background airflow
(Kuerten 2016). Furthermore, the particle-particle colli-
sions can be neglected due to the large inter-particle
distance. According to Lai and Nazaroff (2000), the low
velocity of indoor airflows supports the assumption that
the airborne particles experience a plastic and adhesive
collision against the solid walls. In addition, the colli-
sion is assumed to be instantaneous, the presence of
the interstitial fluid is neglected and the surface rough-
ness is ignored. The thermophoretic transport can also
be neglected in the modelling of indoor airflows, due to
the size of the airborne particles and due to the airflow
velocities.

The kinematic and dynamic equations governing the
motion of a particle are as follows (Kuerten 2016):

dxp
dt

= up (27)

ρp · dup
dt

= −∇p + 1
2

· ρ · CD · Ap
Vp

· |u − up| · (u − up)

+ (ρp − ρ) · g + ρ · Ca ·
(
Du
Dt

− dup
dt

)
(28)

where xp and up are the particle position and velocity
vector, respectively. The symbols Ap and Vp in (28) rep-
resent the cross-flow area and the volume of a particle,
respectively. With reference to the right hand side of
equation (28):

• u is the velocity vector of the background flow field,
and Du

Dt corresponds to its material derivative, i.e. DuDt =
∂u
∂t + u · ∇u;

• The first term is the force acting on a particle due
to a local pressure gradient in the surrounding fluid.
It is noted that the pressure p denotes the absolute
pressure without hydrostatic contribution;

• The second term describes the drag force, where
the drag coefficient CD is determined according to
Schiller’s model (Schiller 1935);

• The third term combines the effect of weight and
buoyancy. It is noted that the buoyancy term appears
because the pressure p in the first term does not con-
tain the hydrostatic contribution;

• The fourth term represents so-called added mass
effects, which are related to the acceleration of the
fluid and of the particle. Since particles are considered
to be spherical, an added mass coefficient Ca = 0.5 is
used.

In principles, particles may experience also lift-type
forces (Rubinow and Keller 1961; Saffman 1965). How-
ever, in the considered scenarios, the Reynolds number
for shear flow which is used to determine the shear lift
force, in accordance with Saffman (1965), is significantly
smaller than 1 throughout the flow domain (as reported
in the Supplementary Material for the scenario 20 of the
case study – see section 3), suggesting that the shear lift
force can be safely neglected. Moreover, the rotation lift
force associated to the Magnus effect caused by a rela-
tive rotation between the particle and the fluid (Rubinow
and Keller 1961), is neglected in the present simulations
due to the very small values of the rotational Reynolds
number (as reported in the Supplementary Material for
the scenario 20 of the case study – see section 3).

The particle tracking is simulated by the numerical
integration of the ODE system (27)-(28) for each particle.
To this purpose, the required background flow field u is
obtained fromCFD computations. The Eulerianmodel for
the air flow and for the temperature distribution relies
on the Reynolds-Averaged Navier-Stokes (RANS) turbu-
lence closure. Only the long-term averaged (Reynolds-
averaged) components of all flow quantities are explic-
itly solved for, while the turbulent fluctuations are linked
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to their long-term counterparts via a turbulence model.
The long-term quantities attain a steady state that is
reached by advancing in time an unsteady model (an
unsteady model is used merely for computational pur-
poses, because it provides easier convergence of the iter-
ative solvers). The applied particle model is discussed in
detail in the Supplementary Material.

All CFD simulations are carried out by means of Sim-
center STAR-CCM+ R©, version 2021.1.3 by Siemens Digi-
tal Industries Software. Validation of the numericalmodel
is reported inAppendix 1. The realizable k-εmodel is used
to simulate the 3D turbulent airflow field, and relevant
information is detailed in Appendix 2.

3. Case study

The case study focuses on a single school classroom, and
its corresponding internal airflow field is predicted by
CFD simulations. Amesh-sensitivity analysis is reported in
Appendix 3.

In the case study, the target is to consider possible
infections due to SARS-CoV-2. In this respect, six scenar-
ios, differing only for the ventilation strategy, are com-
pared and ranked according to the probability PSbI(t)
that at least one susceptible occupant develops the
infection considering an established exposure time (see
section 2.3).

From CFD (Lagrangian) simulations, the concentration
of saliva droplets is calculated within control volumes
directly located in front of the nose and of the mouth of
each occupant. This information is used as input for the
probabilisticmodel, in accordancewith themethodology
described in section 2.3.

Additional information regarding the present case
study are provided as Supplementary Material in the
online version of this article, as follows:

• The full geometrical model of the classroom (see
section 3.1 hereinafter), in 3dm format;

• Details of the setup of CFD simulations used to deter-
mine the background flow field and to simulate parti-
cles dispersion (see sections 3.3 and 3.4 hereinafter);

• A code in MATLAB language, with associated input
data, to reproduce results of the probabilistic post-
processing (see section 3.5 hereinafter).

3.1. Main characterizing data

The case study and associated numerical model used for
the present investigation are developed in accordance
with the available guidelines and regulations for arrange-
ment and operation of classrooms in the Italian educa-
tion system from the point of view of indoor comfort

and energy efficiency (Italian Parliament 2005; Ministry
of Economic Development et al. 2015; President of Ital-
ian Republic 2013), accounting for regulations on the
containment of COVID-19 pandemic (Italian Parliament
2020, 2021). The case study is an adaptation from a real
classroom located in a secondary school building in the
province of Trieste (North-Eastern Italy), whose construc-
tiondatesback to theperiod1946−1960, and the analysis
is carried out considering winter season.

The classroom sizes a gross area of 8.67 m× 6.00
m = 52.02 m2, with a net indoor height equal to 3.00 m.
Four windows are open on the wall, facing outside, each
having a transparent surface of 1.68 m2. A visual charac-
terization of the classroom is provided in Figure 1. The
classroom layout encompasses a total of 17 occupants: 16
students and one teacher. The four green blocks below
the windows sills in Figure 1 represent the classroom
heaters.

Heaters are a common heating system in Italian school
buildings.Moreover, inmost classrooms clean air is exclu-
sively provided by natural ventilation (Fuoco et al. 2015).
Therefore, the conditionwhere all windows anddoors are
closed (airtight) and the classroom heaters are active, can
be considered as a reference (most severe) condition as
for the risk of infection. Furthermore, all occupants are
assumed not to wear face masks. The contamination pre-
dicted by the present simulations can be easily rescaled
to represent the case where the infected occupants wear
face masks: in this case, a reduction of the viral dose
inhaled by a SUI can be evaluated by applying filtration
efficiency coefficients to exhalation and inhalation acts
(Dai and Zhao 2020).

The inter-personal distance resulting from the selected
number of occupants reflects relevant literature and reg-
ulatory indications: 1.80 m2 in-plan area per occupant
in Primary and Secondary School buildings from Italian
Interministerial Decree 18December 1975, andminimum
inter-personal distance of 1.5-2.0 m from Welsch et al.
(2021) or 1.0m from Italian National LawNo. 35 of 22May
2020.

Furthermore, all the fomiteswithin the school building
must be frequently sterilized and, in any case, steriliza-
tion should be carried out every day before the beginning
of the lessons. Dispensers of cleansing gel/solution are
expected to be made available in every teaching and
working spacewithin the school. Therefore, infection due
to contacts with contaminated surfaces is neglected.

The boundary conditions assigned in the simulation
consider internal walls, door, ceiling and floor as adia-
batic surfaces, while external walls are characterized by a
thermal transmittance UOP = 1.25 W m−2 K−1. The ther-
mal transmittanceof thewindows, including frames, is set
to UW = 5.00 W m−2 K−1. These parameters have been
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set accounting for a diffuse condition in Italian educa-
tional buildings that are operating since the early 1960s
and have not yet been subject to major refurbishment
interventions. As previously reported, four heaters are
located under each window sill of the considered class-
room. Water circulating through heaters is set at 65 °C in
winter.

Five portable air cleaners (PACs) are assumed to be
located in the classroom, close to adiabatic internal walls.
Three PACs are located at the back of the last row of stu-
dent seats. The remaining two PACs are positioned close
to the wall behind the teacher and close to the classroom
corners. PACs are placed on small supporting tables, and
each supporting table has a height of 0.45 m from the
floor (see Figure 2 reported later in this section).

Following Feng, Zhang, and Lan (2012), the tempera-
ture of students’ and teacher’s body is set at 31 °C. The
occupants’ mouth are the sources of water droplets for
infected subjects.

In the determination of the background flow field
through CFD calculations, occupants’ breathing is negle-
cted. This allows attaining a steady background flow field
within the classroom that significantly improves the com-
putational efficiency during calculations.

Instead, occupants’ breathing is considered in Lagran-
gian particle tracking simulations, in terms of a mean
exhalation velocity that is used as ejection velocity of
particles. The mean exhalation velocity is assumed equal
to 1.0 m/s in accordance with both nasal and mouth
breathing determined through experimental campaigns
(Girardin, Bilgen, and Arbour 1983; Tang et al. 2013).

According to Adams (1993) the pulmonary ventilation
rates, averaged between males and females, are equal
to 0.49, 0.54, 1.38, 2.35 and 3.30 m3 h−1 for five differ-
ent activity levels (resting, standing, light exercise, mod-
erate exercise, and heavy exercise, respectively). Naftali
et al. (1998) assume for their CFD simulations of airflow
through the nasal cavity that normal adults under rest
conditions breath a tidal volume of about 0.5 litres with
a breathing rate of 15min−1. For the present investiga-
tion, relevant pulmonary ventilation rates (p,v) have been
assumed to be ranging from 0.5 m3 h−1 to 1.25 m3 h−1,
consistently with the low activity level of the occupants
during class hours and with their young age (excluding,
possibly, the teacher).

In the present investigation, the distribution of the
diameter of droplets forming the exhaled aerosol is
reflected by N(dp,i) in equation (4), and it was taken from
Buonanno, Stabile, and Morawska (2020b).

With reference to the SARS-CoV-2 viral load, data avail-
able in literature suggest a concentration of virus copies
in exhaled saliva droplets, cv , which is variable during
the evolution of the disease. Prentiss, Chu, and Berggren
(2022) report literature data ranging from 102 to 1010

RNA copies/mL, while Buonanno, Stabile, and Morawska
(2020b) report that cv attains values of 108-109 RNA
copies/mL of saliva in the first disease days, increasing up
to 1011 RNAcopies/mLof saliva in later stages (Buonanno,
Stabile, and Morawska 2020b; Pan et al. 2020).

Regarding the coefficient of infectivity, ci, which is
used to link the inhaled dose and the infection probabil-
ity, Buonanno, Stabile, and Morawska (2020b) adopt ci in

Figure 2. Position of control volumes associated to each occupant within the classroom, and PACs identification number.
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the range 0.01–0.1 (RNA copies)−1, based on the data by
Watanabe et al. (2010) for SARS-CoV-1, which is claimed
to have similar characteristics to SARS-CoV-2 (van Dore-
malen et al. 2020). Abbas and Gursel Dino (2022) adopt
ci = 1/280 (RNA copies)−1, also referring to data reported
byWatanabe et al. (2010). In a recent study, Prentiss, Chu,
andBerggren (2022) use information about fiveCOVID-19
superspreading events to estimate values of the charac-
teristic number of virions needed to induce infection, N0

(which can be linked to the inverse of ci herein), of about
300–2000 virions. The values of N0 provided by Prentiss,
Chu, and Berggren (2022) are obtained from the applica-
tion of a dispersion model for the airborne virus, based
on the well-mixing assumption and accounting for dif-
ferent mechanisms of decay of the virus (gravitational
settling, virus inactivation, attenuation and dilution). The
reference model parameter used by Prentiss, Chu, and
Berggren (2022) include the breathing rate and the con-
centration of viral copies in saliva droplets. This latter is
assumed constant throughout all the considered events
and equal to cv = 107 RNA copies/mL of saliva. Abbas
and Gursel Dino (2022), based on the experimental study
by Leung et al. (2020), assume an emission rate r (see
equation (3)) of 3.54×104 virus particles per hour, for their
numerical investigation about the spreading of airborne
SARS-CoV-2 infection in a classroom.

Data in literature indicate wide ranges for parameters
required for quantitative infectionmodelling, such as pul-
monary ventilation rates (p,v) and coefficients cv and ci.
Recognizing (see equations (2) and (3)) that these param-
eters play their role in the Wells-Riley model through the
product Sq = r · ci = cv · v · C · ci, which is named ‘quanta
emission rate’ by Prentiss, Chu, and Berggren (2022), it
has been decided to assume cv = 109.5 RNA copies/mL
of saliva and ci = 10−1.5 (RNA copies)−1, which lead
to values of Sq per index patient of ∼120 h−1. Pren-
tiss, Chu, and Berggren (2022), for the events consid-
ered in their study, calculate Sq for the cases of virus
emission by speaking (range 136 h−1–757 h−1, average
461 h−1) and by breathing (range 3 h−1–17 h−1, aver-
age 10 h−1). Therefore, the value ∼120 h−1 associated
with the parameters used in the present investigation can
be considered (heuristically) consistent with the young

age of most of the occupants of the considered class-
room, who spend part of the exposure time listening and
part talking, i.e. in an intermediate state between breath-
ing and speaking. For comparison, Prentiss, Chu, and
Berggren (2022) report scenario-averaged values of Sq for
an event occurring in a Korean fitness centre (152 h−1)
and for three events associated with bus rides of differ-
ent durations (133 h−1, 36 h−1 , 62 h−1), all with one index
patient.

Based on the reported information, Table 2 summa-
rizes the parameters used for the model in the present
case study.

The assessment is carried out for six scenarios that dif-
fer in terms of activation/flow-rate of PACs and in terms
of airtightness of the windows. Specific details regarding
the considered scenarios are provided in section 3.2. At
the same time, somecommonconditions are assumed for
all scenarios addressed in the study, namely: all the class-
room occupants (students and teacher) are sitting and
remain seated, heaters are active, and indoor surfaces and
indoor air are sterile at the initial time instant (t = 0).

To evaluate the concentration of droplets, spherical
control volumes with radius of 5 cm are positioned in
front of the face of each occupant, at 1.07 m and 1.15
m above ground, for students and teacher, respectively.
The position of the considered control volumes is shown
in Figure 2. The figure reports also the position and the
identification number of each PAC.

The definition of relevant values for the probability
PI,j (see (6)) was based on the combination of informa-
tion related to the average daily number of infected peo-
ple, the proportion of infected people based on age and
the associated reference populations. Two age groups
have been considered, namely, 6-19 years, relevant to
students, and 20-69 years, relevant to the teacher. First,
the average daily number of infected people was deter-
mined starting from daily values of infected people reg-
istered in Italy for the whole population, i.e. irrespective
of age, in the period from 1st May 2020 to 30th April
2022 (INFN 2022). Then, the distribution of age in positive
people (INFN 2022) was used to estimate the propor-
tion of infected people for each considered age group.
These two data have been used to estimate the average

Table 2. Main simulation parameters.

Parameter Units Reference value for simulations Notes

cv RNA copies/mL of saliva 109.5 Based on range 108–1011

ci (RNA copies)−1 10−1.5 Based on range 0.01–0.1
p,v m3 h−1 0.875 Based on range 0.50–1.25
N droplets/cm3 0.236 (dp = 0.80 μm), 0.068 (dp = 1.80 μm), 0.007

(dp = 3.50 μm), 0.011 (dp = 5.50 μm)
Corresponding to (see (4)): C = 1.386·10−6 mL of
saliva / m3 of air

Heaters’ operation
temperature

°C 65
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Table 3. Probabilities PI,j for each age group, and relevant data
used in the estimations.

Age group [years] 6–19 20–69
Average daily number of infected people for
all ages (Period: 1st May 2020 – 30th April
2022)

461’706 461’706

Proportion of infected people by age group [%] 15.33 67.19
Estimated average daily number of infected
people by age group

70’780 310’233

Italian population by age group 7’717’150 38’114’518
Estimated PI,j [%] 0.9172 0.8139

daily number of infected people for each considered age
group. Finally, the obtained values were divided by the
overall Italian population corresponding to each group
as of 1st January 2022 (ISTAT 2022). Relevant data and
obtained values of PI,j for the two considered age groups
are reported in Table 3.

In the application of the probabilistic model in section
2.3 for the present case study, all relevant calculation
parameters have been set the same for all occupants,
without distinguishing between students and teacher.
The only exception is the probability PI,j, which was set
differently for the students and for the teacher, in accor-
dance with data in Table 3.

3.2. Definition of ventilation scenarios

The assessment of infection probability indices for the
considered classroom has been performed for six differ-
ent ventilation scenarios.

In a set of three ventilation scenarios, PACs are
switched off, whereas they are switched on,with different
flow rates, in the remaining three scenarios. The supply
vents of the PACs are modeled as mass-flow inlet bound-
aries, while the suction vents of the PACs are treated as
mass-flow outlets, where the pressure is prescribed to
attain the samemass-flow rate released through the PACs
supply vents. Lee et al. (2022) have shown that portable
air cleaning devices with HEPA filters classed not lower
than H13 have an extremely high purification efficiency.
Therefore, in this study, thepurificationefficiencyof PACs,
when switched on, is assumed to be 100%, meaning that
all droplets are assumed to be removed from the air pass-
ing through the PACs. When switched on, each PAC is
assumed to deliver a flow rate corresponding to 160m3/h
or 320 m3/h, when operating at low or high flow rate,
respectively. When switched-on, PACs are assumed to
release a heat rate of 50 W each, which is considered
to be uniformly distributed over their surface. The main
information regarding PACs operation is summarised in
Table 4.

In addition to considering different operational states
for PACs, the considered six scenarios also address the

Table 4. PACs parameters for the considered ventilation
scenarios.

Parameter Units
Reference
value Notes

Flow rate through
suction and
supply vent

m3/h 0; 160; 320 switched off, low flow-rate,
high flow-rate – Values for
single PAC

effect of different windows characteristics. The contribu-
tion of windows to the ventilation scenarios is linked to
their air permeability, and relevant information in this
respect have been taken from the specifications by the
CEN standard EN 12207 (European Committee for Stan-
dardization 2016). Accordingly, three alternative condi-
tions are considered, corresponding to different win-
dows performance classes. Specifically, one ideal condi-
tion was considered where windows are perfectly air-
tight. Two additional conditions have been also consid-
ered, with windows of Class 3 and Class 2, where air-
flows of about 8.1 m3/h and 14.4 m3/h, respectively, are
supplied through each window. These three alternative
conditions adequately represent different cases of Ital-
ian educational heritage, corresponding to recently built
buildings (ideally air-tight) or buildings dating back to
1990s (Class 3) and 1960s (Class 2).

The six scenarios considered in this case study are
reported in Table 5, together with the corresponding sce-
nario ID. The scenario ID depends on the activation of
PACs and, if active, on their imposed flow-rate and on the
level of classroom envelope airtightness ensured by win-
dows. Specifically, the ID is composed of two digits, in the
form ID = PW, where:

• The first digit P refers to the operation of PACs. It is
equal to 0 for PACs switched off, to 1 for PACs oper-
ating at low flow-rate and to 2 for PACs operating at
high-flow rate;

• The second digit W refers to the level of airtightness
of the windows. It is equal to 0 for air-tight windows,
it is equal to 1 for weakly permeable windows and it is
equal to 2 for highly-permeable windows.

In the comparison of the ventilation scenarios, which
will be reported in section 3.5, two reference exposure

Table 5. Considered ventilation scenarios.

ID Description

00 PACs switched off, air-tight windows
01 PACs switched off, weakly permeable windows
02 PACs switched off, highly-permeable windows
10 PACs operating at low flow-rate, air-tight windows
20 PACs operating at high flow-rate, air-tight windows
21 PACs operating at high flow-rate, weakly permeable windows
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times will be considered, namely 1 h and 5 h. In case of 5-
hour exposure time, an intense ventilation, lasting10min,
is assumed to be applied every hour. This is intended to
reflect the behaviour that is expected in themanagement
of classrooms in case of risk of infection, where periodic
ventilation of the room is obtained by, e.g., opening the
windows.

From a numerical perspective, particle dispersion sim-
ulations are carried out for an exposure time of 1 h, dur-
ing which the dispersion of the aerosol exhaled by the
SOIs is tracked by the Lagrangianmodel. Instead, data for
the 5-hour exposure are generated at a post-processing
stage, by joining relevant time traces corresponding to
five identical 1-hour exposure time windows. In perform-
ing the joining of data, it is assumed that the room is
ventilated during each 10-minute hourly break. Conse-
quently, it is assumed that, for the first 50 min of each
hour, the SUIs accumulate viral dose according to the
reference 1-hour Lagrangian simulation and they do not
accumulate additional viral doses during the 10-minute
break.

The considered ventilation scenarios aim to verify the
applicability and to demonstrate the usefulness of the
proposed probabilistic assessment technique. Neverthe-
less, they are not entirely representative of the actual ven-
tilation that could be expected in a real classroom, where
the windows would likely be opened by the occupants
whenever the air quality degraded below an acceptable
limit. For instance, in the reference scenario 00 in Table 5
with airtight door and windows, assuming an emission
rate of CO2 of 0.55 gCO2/min per person, an outdoor con-
centration of CO2 of 400 p.p.m. and under well-mixing
conditions, the concentration of CO2 within the class-
room would rise to about 2500 p.p.m. in one hour. By
comparison, Di Gilio et al. (2021) measure CO2 concen-
trations in 11 naturally ventilated classrooms in Southern
Italy and show that the mean concentration of CO2 is
about 1750p.p.m. in all classrooms and always lower than
4000 p.p.m.

3.3. Example patterns of airflow field

This section provides some examples regarding the sim-
ulated airflow in the scenarios 00 and 20. Figure 3 shows
the distribution of the vertical velocity component w on
three plane sections, for the example scenarios. As for the
scenario 00 (Figure 3a), the regions of relatively large w
correspond to the thermal plumes induced by the buoy-
ancy forces in the surroundings of warm surfaces (heaters
and occupants). The thermal plumes are less evident in
the scenario 20 (Figure 3b), as the horizontal jets gener-
ated by the air cleaners induce a predominantly horizon-
tal velocity field, while impairing the formation of thermal

Figure 3. Vertical velocity componentw on three plane sections.
(a) scenario 00with inactive PACs, (b) scenario 20with active PACs.

plumes. Regions of relatively high vertical velocity are
caused by the interaction of the nearly horizontal jets
generated by the air cleaners with the obstacles present
in the classroom.

3.4. Example patterns of infected aerosol

This section provides some examples regarding the dis-
tribution of infected aerosol in the scenarios 00 and 20.
In the reported examples, a single SOI placed at posi-
tion 11 exhales contaminated droplets, assuming amean
breathing rate v = 0.875 m3 h - 1 (see Table 2). Based on
themean rate v and the concentrationC of saliva droplets
(see Table 2), the mean exhalation rate of saliva can be
determined as v · C = 1.2 · 10 - 6 mL of saliva / h.

The example isosurfaces shown in Figure 4 corre-
spond to a non-dimensionalmass-concentration of saliva
droplets in air of 5·10−4 at time t = 60 s after the initia-
tion of the release. In this respect, themass-concentration
of saliva droplets is scaled by the reference concentration
Cref defined as

Cref = ρp · C (29)
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Figure 4. Example isosurfaces of non-dimensional mass-
concentration of saliva droplets at simulation time t = 60s
corresponding to 5·10−4. Exhalation rate corresponding to 0.875
m3 h−1. The source of infection is the student in position 11. (a)
scenario 00 with inactive PACs, (b) scenario 20 with active PACs.

where C [mL of saliva / m3 of air] is the concentration of
saliva per exhaled air volume (see (4)), while ρp denotes
the density of saliva which is taken as ρp = 0.001kg/mL.

If PACs are switched off (scenario 00 – Figure 4a), the
dispersion of the plume of contaminated saliva droplets
is governed by buoyancy. As a result, the droplets move
mainly upwards rather than horizontally, and the teacher
is less directly involved. Conversely, for the scenario 20
(Figure 4b), the emitted plume of infected droplets is
pulled towards thenearest PACand runsover the teacher,
increasing the likelihood of infection for the teacher.

Figure 5 shows the distribution of non-dimensional
mass concentration of saliva droplets on a horizontal
plane section at the height of control volumes for stu-
dents (1.07 m from floor level), 60 s after the SOI’s first
release of particles (i.e. at simulation time t = 60s). In the
scenario 00 (Figure 5a) the contaminant is entrapped in a
rising thermal plume (see Figure 3a) and it does not signif-
icantly disperse horizontally. Conversely, in the scenario
20 (Figure 5b) the contaminant moves with the airflow,
predominantly induced by the air cleaners, and higher
concentrations at breathing height are evident through-
out thewhole part of the classroom located in front of the
SOI.

Figure 5. Distribution of non-dimensional mass-concentration
of saliva droplets on a horizontal plane section at the height of
control volumes for students (1.07 m from floor level), at simula-
tion time t = 60s. Exhalation rate corresponding to 0.875m3 h−1.
The source of infection is the student in position 11. (a) scenario
00 with inactive PACs, (b) scenario 20 with active PACs.

Figure 6 shows the time dependence of the accumu-
lated viral dose emitted from the student in position 11
and inhaled either by the teacher (Figure 6a and b) and
by the student in position 31 (Figure 6c and d), consid-
ering both the case of 1-hour and 5-hour exposure time.
The activation of the PACs at the highest considered flow-
rate (scenario 20) determines a significant reduction of
the accumulated dose for the student in position 31 com-
pared to the scenario 00,while theopposite occurs for the
teacher. This is due to the fact that, when the PACs are
active (scenario 20), the cloud of high viral concentration
shown in Figure 4 is drawn towards the teacher, and this
causes a higher viral concentration in front of the teacher
itself, compared to the condition where no PAC is active
(scenario 00).

3.5. Assessment of infection probability indices and
ranking of ventilation scenarios

The probability index PSbI(t) that at least one SUI gets
infected considering a given exposure time t (see section
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Figure 6. Time histories of accumulated viral dose inhaled by the teacher (exposure time: (a) 1 h, (b) 5 h) and by the student at position
31 (exposure time: (c) 1 h, (d) 5 h), when the student at position 11 is the only SOI, with p = 0.875 m3 h−1, cv = 109.5 RNA copies/mL of
saliva. The considered scenarios are scenario 20 (dashed line) and scenario 00 (solid line), according to Table 5.

2.3) has been calculated for the scenarios reported in
Table 5 and considering two reference exposure times,
namely 1 h and 5 h (this latter with 10 min intense ven-
tilation every hour – see section 3.2).

As already described, for the application of the prob-
abilistic model from section 2.3, all relevant calculation
parameters (see section 3.2) have been set the same for
all occupants, without distinguishing between students
and teacher, with the exception of PI,j. The probability
PI,j is an exception, because it was set differently for the
students and for the teacher, in accordance with data in
Table 3.

In addition, it is valuable to look at the obtained out-
comes for each scenario also in relative terms, by taking
into account the limit probability PSbI,lim (see (23)). The
value of the probability PSbI,lim is the same for all scenar-
ios, under the additional assumption that, for each sce-
nario, the virus removal effectiveness of the ventilation
strategy is less than 100%. A rational relative effective-
ness of each ventilation scenario, εv(t), can be defined as
follows :

εv(t) = 1 − PSbI(t)

PSbI,lim
(30)

From the expression of PSbI,lim in (23), and from the
assumed values of PI,j for students and teacher (see
Table 3), PSbI,lim for the considered cases is obtained as

PSbI,lim = 14.4% (31)

The index εv(t) is considered to be an indicator that
may be more representative than the absolute probabil-
ity index PSbI(t). The considered improvement of εv(t)
over PSbI(t) comes from the fact that εv(t) takes into
account the normalization by the limiting probability
PSbI,lim, where PSbI,lim is representative of effects on infec-
tion probability indices coming from external factors, i.e.
terms PI,j, see (23).

The obtained results for PSbI(t), εv(t) and N̄SbI(t) are
reported in Table 6, considering p = 0.875 m3 h−1,
cv = 109.5 RNA copies/mL of saliva, ci = 10−1.5 (RNA
copies)−1. The table reports also themaximumof N̄SbI|k(t)
across all layouts k.
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Table 6. Evaluation metrics for the considered scenarios depending on exposure time t: probability PSbI(t) that
at least one SUI gets infected, effectiveness index εv(t), expected number of infection transmissions N̄SbI(t), and
maximum conditional expected number of infection transmissions N̄SbI|k(t) across all layouts k. The ranking of the
scenarios is also reported, based on PSbI(t) for 5-hour exposure time.

Scen.00 Scen.01 Scen.02 Scen.10 Scen.20 Scen.21
PSbI [%]; PSbI [%]; PSbI [%]; PSbI [%]; PSbI [%]; PSbI [%];
εv [%]; εv [%]; εv [%]; εv [%]; εv [%]; εv [%];
N̄SbI ; N̄SbI ; N̄SbI ; N̄SbI ; N̄SbI ; N̄SbI ;

Exp. time [h] max(N̄SbI|k) max(N̄SbI|k) max(N̄SbI|k) max(N̄SbI|k) max(N̄SbI|k) max(N̄SbI|k)

1 10.32; 6.20; 5.91; 5.24; 3.63; 3.25;
28.39; 56.96; 59.00; 63.63; 74.78; 77.47;
0.209; 0.0942; 0.0912; 0.0676; 0.0412; 0.0367;
6.63 4.11 4.06 3.17 2.43 1.89

5 13.53; 11.66; 10.66; 10.97; 9.01; 7.93;
6.12; 19.07; 26.02; 23.87; 37.49; 44.94;
0.574; 0.301; 0.305; 0.216; 0.138; 0.117;
11.36 9.52 9.49 7.27 5.93 4.47

Ranking based on PSbI(t) for t = 5h VI V III IV II I

Results in Table 6 show that the ventilation scenarios
with active PACs operating at high flow rate (scenarios
20 and 21) are the most effective in limiting the infection
probability. The highest values for the parameter εv(t)
and the lowest values for PSbI are attained for the scenario
21, the onewith the largest overall ventilation among the
considered scenarios.

The proposed methodology allows addressing infec-
tion probability indices also on a local basis, i.e. depend-
ing on the position within the classrooms. Herein, this
probability is referred to as PSbI,j(t) (see (14)). From results
in Table 6, it can be seen that theworst and best scenarios
in terms of probability PSbI(t = 5 h) are scenarios 00 and
21, respectively. This result is consistent with intuition, as
the scenarios 00 and 21 represent the conditions of min-
imum (absent) and maximum ventilation, respectively.
Figure 7a andb show PSbI,j(t = 5 h) for these extreme sce-
narios, while Figure 7c represents the probability index
PSbI,j(t) for the scenario 01. Figure 7 also shows results of
PSbI,j(t = 5 h) normalized by the corresponding value for
scenario 00 (see Figure 7d for scenario 21 and Figure 7e
for scenario 10).

The spatial distribution of the probability index PSbI,j(t)
allows identifying the seats within the classroom that
could be potentially associated with the highest likeli-
hood of infection for specific ventilation scenarios. Com-
paring Figure 7a and b, referring to 5-hour exposure time,
the positive effect of the increase of ventilation is evident.

Scenarios 01 and 21, where a Class 3 permeability is
assumed for the windows according to CEN standard EN
12207 (European Committee for Standardization 2016),
are representative of a significant part of Italian school
building heritage (Almeida, Ramos, and Pereira 2017;
Secchi et al. 2017; Stabile et al. 2016). Among the two
scenarios, scenario 21 provides information regarding
the effect of installation of PACs. Therefore, it is valu-
able to look at the difference between the probability

indices PSbI,j(t) for scenario 01 (reference) and scenario 21
(retrofitting), as shown in Figure 8. Figure 8a shows abso-
lute differences of infection probability indices between
scenario 21 and scenario 01, while Figure 8b reports the
same differences normalised by using the values of sce-
nario 01 as reference.

In the scenario 01, the region of maximum infec-
tion probability extends in close proximity and in front
of the door, due to the convergence of the airflow
towards the only outflow surface from the classroom.
The pattern for the scenario 21 is markedly different: the
region of maximum PSbI,j(t) surrounds the student 43,
who intercepts an air stream of high particle concen-
tration drawn towards the PACs 2 and 3 (see Figure 2),
lying just behind and on either side of student 43 (see
Figure 2).

Overall, the PACs induce a reduction of the infection
probability indices for all sitting positions. A reduction of
infection probability indices is observed also when the
windows are considered permeable.

As anticipated in section 2.3, the infection probabil-
ity index PSbI(t) can be used as a demerit figure to rank
different ventilation scenarios. Equivalently, the com-
panion complementary probability index PSnI(t) = 1 −
PSbI(t) can be used as a merit figure, for the same pur-
pose. Froman engineering design perspective, ranking of
different ventilation scenarios could be considered as a
fundamental purpose.

It is finally necessary to remember that the ranking
of ventilation scenarios is linked to the assumed values
of model parameters. These parameters are associated
with an intrinsic level of uncertainty, and different val-
ues ofmodel parametersmay lead to different outcomes.
Therefore, it is interesting to investigate also the robust-
ness of the obtained ranking with respect to variations in
the assumedvalues of calculationparameters. This aspect
is addressed in Appendix 4, where the six considered
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Figure 7. Infection probability indices PSbI,j considering 5-hour exposure time. Absolute values: (a) scenario 00, (b) scenario 21, (c)
scenario 01. Values normalized by results for scenario 00: (d) scenario 21, (e) scenario 01.
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Figure 8. Differences of infection probability indices PSbI,j between scenario 01 and scenario 21, considering 5-hour exposure time: (a)
absolute values, (b) values normalized by PSbI,j for scenario 01.

ventilation scenarios (Table 5) have been ranked consid-
ering the 5-hour exposure time and considering varia-
tions in model parameters.

4. Conclusions

The containment of the spreading of airborne diseases
requires implementing some risk control options, such as
increasing the distance between individuals and reduc-
ing the effect of the exhaled airflows by wearing face
masks or other personal protective equipment. Never-
theless, the infection probability may still be high when
people stay in relatively close contact for a sufficiently
long exposure time in confined spaces. In view of the
above, the first aim of this work has been the devel-
opment of an efficient methodology for the probabilis-
tic assessment of the likelihood of infection in confined
spaces which are continuously occupied for relatively
long periods. The approach is based on a combination of
a limited number of CFD pre-calculations for droplets dis-
persion and an analytical post-processing of the obtained
data, exploiting superposition, to define relevant indices
of infection probability. The separation betweenCFDpre-
computations and subsequent analytical post-processing
also allows quick re-assessment of scenarios in case of
changes in relevant calculation parameters, e.g., due to
changes in the epidemiological situation, or in case there
is an interest in assessing the effects of face masks, etc.

The present framework is applicable to generic con-
fined spaces, although the probabilistic procedure has
been tested on a case study of a naturally-ventilated
classroom in the winter season. Most classrooms in the
Italian school buildings are naturally ventilated. While a
weak ventilation is continuously guaranteed by the per-
meability ofwindows and fixtures,most of the air renewal

is attained by opening the windows, usually when the
indoor air quality has excessively worsened due to the
increase of CO2 concentration. During the winter sea-
son, the windows remain closed for most of the lesson
time, facilitating the accumulation of biological pollu-
tants, as bacteria and viruses, within the classrooms. The
various ventilation scenarios considered in the presented
case study differ by the permeability of the windows and
by the possible activation of five Portable Air Cleaners
(PACs). Theproposedmethodologyhasbeenused to rank
the considered ventilation scenarios based on calculated
infection probability indices. The obtained results con-
firm the intuition that an increase of ventilation and/or air
filtration reduces the overall likelihood of infection. The
most effective ventilation scenarios among those tested
were those with PACs operating at high flow rate. Results
also suggest a similarity in terms of performance between
the PACs activation at a low flow rate and a condition of
high permeability of the windows. In addition, the capa-
bilities of the proposed approach allowed to observe that
the positive effect of increasing ventilation is not uniform
within the space. This is a consequence of the fact that
the operation of PACs induces a global modification of
the background flow field, which affects the dispersion of
the infected aerosol within the room.

From a methodological perspective, the presented
approach could be used, in principle, for absolute assess-
ment as well as for relative, i.e. comparative, assessment.
At the same time, absolute assessment is more challeng-
ing than relative assessment. In fact, modelling assump-
tions and simplifications tend to have a more significant
effect on absolute assessment results compared to results
from relative assessment. To be confident with abso-
lute assessment results, it is necessary to achieve a suf-
ficient level of confidence on each part of the modelling,
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which typically requires application experience, revisions,
updates, validations, etc. Relative assessment, especially
when it is aimed at providing a ranking among difference
alternatives, tend to bemore robust with respect tomod-
elling assumptions and simplifications. The presented
case study proved the approach to be practical for assess-
ing alternative ventilation scenarios in terms of their asso-
ciated infection probability indices. Furthermore, a spe-
cific analysis showed the robustness of the results of rank-
ing among different ventilation scenarios, with respect to
assumptions in some of the input parameters.

It is also worth adding a note on the relation between
the presented approach and simpler approaches, based
on, e.g.,well-mixing assumption, from thepoint of viewof
design and/or analysis. Compared to simpler approaches,
the presented approach provides more detailed infor-
mation, but it also requires more computational effort
and input parameters. Despite the presented approach
is much more efficient than repeated brute force CFD-
based simulations, the required computation effort can
still represent a limitation of the methodology. From a
practical perspective, this means that the computational
effort associated with the use of CFD simulations lim-
its the possibility of using such an approach for wide
parametric studies. Therefore, results of CFD computa-
tions with subsequent probabilistic post-processing pro-
vide probabilistic indices that are essentially conditional
to those parameters that cannot or are impractical to be
varied and to be considered in probabilistic terms. At the
same time, the impact of this limitation depends on the
specific intended use, and the presented approach can
be considered as a complementary tool with respected
to simpler approaches. For instance, in amulti-tier design
and analysis framework, simpler approaches may be
more suitable for initialwidepreliminary screening, based
on global parameters, while the presented approachmay
be more suitable for subsequent detailed analyses on a
selected set of scenarios.

The modularity of the presented framework makes it
naturally open to further developments and improve-
ments related to the basic components (CFD model,
dose–response model, probabilistic post-processing),
while keeping the overall methodological approach. A
transversal topic that would be worth being addressed,
is the introduction of uncertainty for those parameters
that have been considered as deterministic in the pre-
sented study. In this respect, the introduction of uncer-
tainty in parameters that are relevant only to the proba-
bilistic post-processing stage is relatively straightforward,
as this essentially requires further averaging and thepost-
processing is computationally fast. The introduction of
uncertainty in parameters that affect the results of CFD
pre-calculations requires more efforts, due to the need

to cope with the practical limits related to computational
time.
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Appendices

1. Validation of the numerical model

The incompressible Navier-Stokes equations with Reynolds
AveragedNavier-Stokes turbulencemodellingare solvednume-
rically with the commercial solver Simcenter STAR-CCM+ R©,
version 2021.1.3 by Siemens Digital Industries Software.

For validation purposes, the experimental test by Chen, Yu,
and Lai (2006) is reproduced by numerical simulation. A model
room, as shown in Figure A1, is ventilated by a forced air-flow
supplied from a vent opening in the upper part of a side wall,
while an outlet vent is located in the lower part of the oppo-
site wall. Both vents are square with dimensions 0.04 m× 0.04
m, with centres located at x = 0 m, y = 0.2 m, z = 0.36 m and
x = 0.8 m, y = 0.2 m, z = 0.04 m, respectively. The size of the
room is 0.8m× 0.4m× 0.4m in terms of length (along x), width
(along y) and height (along z), respectively. Hollow glass, silver
coated sphereswith ameandiameter of 10 μmare injectedwith

a solid particle disperser. The density of the particles is 1.4×103

kg m−3.
Chen, Yu, and Lai (2006) measure both the airflow velocity

and the particle concentration with a phase Doppler anemom-
etry (PDA) system. Olive oil droplets are used as tracers for
the measurement of the fluid velocity components. The airflow
mean velocity at the supply vent is 0.225 m/s.

The comparison between numerical and experimental res-
ults for the x-velocity component is illustrated in Figure A2,
where data acquired along three evenly-spaced vertical sam-
pling lines (see FigureA1) are considered and several turbulence
models are compared. Among the considered turbulencemod-
els, the Reynolds Stress (RSM) and the standard k−ε turbulence
models attain the best agreement with the experimental data.
The standardand theRealizable k−εmodels and theRSMmodel
give rise to a relatively intense recirculation zone underneath
the ceiling jet, which is not evident in the experimental data.
Table A1 reports a quantitative comparison between numerical
and experimental results in terms of the following root-mean-
square-error metric:

εU =
√√√√ 1

N

N∑
j=1

(Unum,j − Uexp,j)
2 (A1)

where, for given profile position, N is the number of available
points, and Unum,j [m/s] and Uexp,j [m/s] are the numerical and
experimental, respectively, values of horizontal velocity compo-
nent.

In view of the obtained results, both the RSM and the k−ε

turbulence models appear capable of reproducing the velocity
profiles with a degree of accuracy that is deemed adequate for
the purposes of the present investigation.

The steady-state concentration of the dispersed particles,
scaled by the inlet concentration, is sampled along the afore-
mentioned vertical sampling lines and results are shown in
Figure A3. All considered models underestimate the particle
concentration. The Realizable k−εmodel provides better agree-
ment with the experimental data in the region of the ceiling jet,

Figure A1. Sketch of the model room.
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Figure A2. Comparison of experimental (Chen, Yu, and Lai 2006) and numerical x-component of velocity along the three considered
sampling lines.

Table A1. Comparison between numerical and experimental
results for horizontal velocity component, in terms of metric εU
[m/s], for different turbulence models at the three considered
profile positions.

Profile position x [m] k-ε Realizable k-ε Standard RSM

0.2 0.022 0.0099 0.0096
0.4 0.027 0.016 0.011
0.6 0.016 0.013 0.017

Table A2. Comparison between numerical and experimental
results for scaled particle concentration, in terms of metric εC/Ci
[-], for different turbulence models at the three considered profile
positions.

Profile position x [m] k-ε Realizable k-ε Standard RSM

0.2 0.069 0.086 0.083
0.4 0.077 0.114 0.109
0.6 0.060 0.089 0.078

although the corresponding position is not accurately captured.
Globally, the considered models reproduce the large-scale vari-
ation of the concentration along the sampling lines, though the
details are missed. Table A2 reports a quantitative comparison
between numerical and experimental results in terms of the
root-mean-square-errormetric εC/Ci [-], that is defined as εU (see
(A.1)), but replacing the velocity component U with the scaled
particle concentration C/Ci .

2. Turbulencemodelling

The incompressible Navier-Stokes equations with Reynolds
AveragedNavier-Stokes turbulencemodellingare solvednume-
rically with the commercial solver Simcenter STAR-CCM+ R©,
version 2021.1.3 by Siemens Digital Industries Software.

The air is considered as a Newtonian ideal gas, and its weak
density variations are mainly caused by the uneven temper-
ature distribution throughout the classroom. Therefore, the
Boussinesq approximation is used to represent the effect of
the buoyancy forces (Kundu and Cohen 2002). The Realiz-
able k − ε turbulence model (RKE) provides the influence

of the unresolved turbulent velocity fluctuations on the cor-
responding time-averaged quantities (Shih et al. 1995). The
RKE model enforces certain mathematical constraints on the
turbulent stresses: the turbulent normal stresses must be
non-negative,

(u′
t)
2 ≥ 0 (A2)

while the turbulent shear stresses must obey the Schwartz
inequality,

u′
i · u′

j ≤
√

(u′
i)
2 · (u′

j)
2 (A3)

This goal is fulfilled by re-defining the dependence of the tur-
bulent viscosity μt on the turbulent kinetic energy k and on its
dissipation rate ε, while also providing some modifications to
the model transport equation for ε (Pope 2000).

The 2-Layer near-wall treatment is applied (Neeraj Mohan
and Pattamatta 2015). Accordingly, the flow domain is subdi-
vided into a viscosity-affected region and into a fully turbulent
region based on a threshold value for the wall-distance turbu-
lent Reynolds number Red ,

Red ≡
√
k · d
ν

(A4)

where d denotes the distance from the nearest wall. In the fully-
turbulent region, Red > 200, the RKE model provides k, ε and
μt . For Red ≤ 200 the turbulent dissipation rate is prescribed
according to thewall-distance d (Wolfshtein 1969), while k is still
determined by the RKEmodel. Further details on the RKEmodel
with the 2-Layer near-wall treatment are available in Neeraj
Mohan and Pattamatta (2015).

The calculation of the turbulent heat flux qt relies on
the gradient-diffusion hypothesis (Pope 2000), whose main
assumption is that qt is parallel to the mean temperature gra-
dient and proportional to it via a turbulent thermal conductivity
kt , which, in turn, is related to the turbulent viscosity μt :

kt = μt · cp
σt

(A5)

where σt = 0.9 denotes the turbulent Prandtl number.
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Table A3. Most relevant features of the considered
computational meshes.

Mesh N PH [%] δ [mm] ϑ [°] < y+ > [-] max(y+) [-]

1 1’554’356 86.87 5.86 36.81 34 325
2 2’994’130 90.00 4.67 35.36 27 319
3 5’824’743 91.97 3.57 35.57 24 256

3. Assessment of the sensitivity to the
computational mesh

A set of three computational meshes is generated and numeri-
cal simulations of the airflowandparticle distribution are carried
out on each mesh. The calculated values of selected quanti-
ties are then compared among the three meshes to infer the
corresponding order of convergence and an estimate of the
uncertainty of grid convergence via theGrid Convergence Index
(CGI) (Roache 1994). The considered meshes are generated via
the snappyHexMesh utility of the open-source CFD package
OpenFoam. Themeshgenerationalgorithmprogresses through
three stages. In stage 1, the cells of a background hexahedral
mesh are progressively split, resulting into a polyhedralmesh. In
the optional second stage the mesh is morphed to better con-
form to the boundary of the computational domain. In a third
optional stage cell layers are grown on wall boundaries. The
aforementioned stages are governed via user-supplied parame-
ters. As for thismesh-sensitivity study themesh-generationgov-
erning parameters are kept fixed while the background mesh
is progressively refined. At each refinement stage the number
of computational cells grows by a factor of approximately 1.9.
Table A3 reports the most relevant features of the considered
computational meshes, namely: the number of computational
cells N, the percentage PH of hexahedral cells, the minimum
distance δ between the centroids of neighbor cells, the maxi-
mum skewness angle ϑ for interior cells, the surface-averaged
(< y+ > ) and themaximum (max(y+)) values of y+ on the solid
enclosure of the classroom.

The ventilation scenario 21 of the considered case study
(see Table 5) is simulated to assess the uncertainty related to
grid convergence. The quantities used in the present analysis to
quantify the uncertainty in the airflow calculations are reported

in Table A4 and correspond to mass-averaged values over the
entire domain. For each quantity, the estimated order of con-
vergence p, the GCI index for both the intermediate and the
fine grid, and the relative difference between the solutions com-
puted on the intermediate and fine meshes, εh, are calculated
according to Roache (1994), except for the substitution of the
‘factor of safety’ 3.0 with the ‘factor of safety’ 1.25, as suggested
by NPARC (2022) for cases where three meshes are used to
estimate the order of convergence p.

In view of the obtained results, it was decided to use the
intermediatemesh in the reported simulationsof the case study.

4. Robustness of scenarios ranking

In section 3.5, ranking of different scenarios has beenperformed
on the basis of the probability index PSbI(t), as determined by

Table A4. Estimated order of convergence and GCI.

Quantity
Order of

convergence

GCI for the
intermediate-grid

solution (%)

GCI for the
fine-grid

solution (%) εh (%)

Mass-averaged
turbulent
kinetic
energy

1.42 16.6 12.6 3.7

Mass-averaged
kinetic
energy

1.35 5.4 4.1 1.1

Mass-averaged
temperature

1.51 1.1 0.8 −0.25

Table A5. Ranking matrix, with values in [%]. Exposure time: 5 h,
with 10 min intense ventilation every hour.

Scen. ID I II III IV V VI

00 0.00 0.00 0.00 0.02 3.32 96.66
01 0.00 0.00 0.00 0.00 96.68 3.32
02 0.00 0.00 53.62 46.36 0.00 0.02
10 0.00 0.00 46.38 53.62 0.00 0.00
20 25.81 74.19 0.00 0.00 0.00 0.00
21 74.19 25.81 0.00 0.00 0.00 0.00

Figure A3. Comparison of experimental (Chen, Yu, and Lai 2006) andnumerical scaled particle concentration along the three considered
sampling lines.
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using the assumed reference values of calculation parameters.
However, as reported in section 3.1, calculation parameters are
associated with an intrinsic level of uncertainty, and different
values of model parameters may lead to different outcomes in
terms of ranking of ventilation scenarios.

The scope of this Appendix is to investigate the robust-
ness of the obtained ranking with respect to variations in the
assumedvaluesof calculationparameters. The analysis is carried
out considering only variations in parameters cv , ci , p and v. All
calculations are carried out assuming the same values of param-
eters for all occupants in the room, as done in the case study in
section 3.

Specifically, the following discretizations have been used:

• cv : uniformly discretized in logarithmic scale, with 41 values
in the range 108–1011 RNA copies/mL of saliva;

• ci : uniformly discretized in logarithmic scale, with 41 values
in the range 10−2–10−1 (RNA copies)−1;

• p, v: uniformly discretized in linear scale, with 41 values in the
range 0.5–1.25 m3 h−1 and using p = v (see (9)).

Accordingly, a total of 413 = 68921 combinations of modified
calculation parameters have been considered, and calculations
were carried out considering the case of 5-hour exposure time
(with intense ventilation for 10min every hour, as in section 3.5).
For each combination of parameters, each ventilation scenario
has been given a ranking based on the obtained probability
PSbI(t = 5h).

From the obtained data, it is possible to define a square
Ns × Ns ranking matrix R, where Ns = 6 is the number of ven-
tilation scenarios, and the generic element Rsr corresponds to
the fraction of considered combinations of parameters where
the s-th scenario has been ranked in the r-th position.

Table A5 reports the obtained ranking matrix.
The results reported in Table A5 allow for amore robust com-

parison of the ventilation efficiency of the different considered
scenarios.

The ventilation scenarios where PACs operate at the highest
flow-rate (20 and 21) always reach the best ranking. Moreover,
the ventilation scenario 02 ranks third in terms of PSbI, whereas
the scenario 10 ranks fourth. According to Table A5, the two sce-
narios have nearly the same fraction of combinations ranking
either third or fourth, suggesting a similarity in terms of per-
formance between the PACs activation at a low flow-rate and
a condition of high permeability of the windows.

5. Example case of roomwith three occupants

The scope of the section is to clarify the application of the gen-
eral probabilistic model (see section 2.3) to a case which is mini-
mally simple, yet it contains themain essential features that can
be found in more complex cases.

Therefore, a simplified notional case of a room with three
occupants is considered. The occupants are numbered 1, 2 and
3. The details of their location in the room, as well as the geom-
etry of the hypothetical room are irrelevant for the scope of the
discussion herein.

For the considered 3-occupants example case, there are
eight possible layouts, i.e. eight possible combinations of
infected/not infected occupants at initial time, as reported in
Table A6. For each layout, Table A6 reports the corresponding

representative vector k (see (5)) and the corresponding proba-
bility of occurrence Pk (see (6)). The order used for the layouts is
irrelevant to the final results. In this example, it hasbeendecided
to order the layouts on the basis of the number of SOIs in the
room. Hence, layout #1 has no SOIs, layouts #2–#4 have exactly
one SOI, layouts #5–#7 have exactly two SOIs, and, finally, layout
#8 has exactly three SOIs.

It is assumed that relevant CFD and associated particle dis-
persion pre-calculations have been carried out, to provide the
normalized concentrations C′

jn(t) (see (8)). In this case, there
are 3× 3 = 9 normalized concentration functions C′

jn(t) with
j, n = 1, 2, 3. Correspondingly, there are nine doses Djn(t) with
j, n = 1, 2, 3 (see (7)). For instance, the dose inhaled by the occu-
pant j = 1 within an exposure time t due to the saliva droplets
exhaled by the occupant n = 3 is:

D1,3(t) =
t∫

0

cv,3 · C1,3(τ ) · p1dτ =
t∫

0

cv,3 · C′
1,3(τ ) · v3 · p1dτ

(A6)

DosesDjn(t) can be properly superimposed to get the total dose
inhaled by each SOI in each layout (see (10) and (11)).

For layout #1 (see Table A6), there are no SOIs and all occu-
pants are SUIs. Therefore, according to expectation, and in line
with (10) and (11), the inhaled dose is zero at each time instant
for all the occupants, i.e.

k = [0, 0, 0] →
⎧⎨
⎩
D1|k(t) = 0
D2|k(t) = 0
D3|k(t) = 0

(A7)

The corresponding probabilities of infection for each SUI are
also identically zero (see (12) and (13)), i.e.

k = [0, 0, 0] →
⎧⎨
⎩
PSbI,1|k(t) = 0
PSbI,2|k(t) = 0
PSbI,3|k(t) = 0

(A8)

For layouts #2-#4 (see Table A6), there is one SOIs and two
SUIs. In this case, each SUI inhales the dose due to the saliva
droplets exhaled by the unique SOI in the room. For instance,
in case of layout #2, the only SOI is occupant 1, and the dose
inhaled by the two SUIs (occupants 2 and 3) are (see (10) and
(11)):

k = [1, 0, 0] →
{
D2|k(t) = D2,1(t)
D3|k(t) = D3,1(t)

(A9)

The infection probability for each occupant can be determined
as follows (see (12) and (13))

k = [1, 0, 0] →
⎧⎨
⎩
PSbI,1|k(t) = 0
PSbI,2|k(t) = fP(D2|k(t)) = 1 − e−ci,2·D2|k(t)

PSbI,3|k(t) = fP(D3|k(t)) = 1 − e−ci,3·D3|k(t)

(A10)
where, first, the results have been reported in terms of general
dose-responsemodel (see (12)) and then in terms of the specific
Wells-Riley exponential model (see (13)). Similar considerations
apply to layouts #3 and #4.

For layouts #5–#7 (see Table A6), there are two SOIs and
one SUIs. In this case, the unique SUI inhales the dose obtained
by the superposition of contributions from the two SOIs in the
room. For instance, in case of layout #5, the occupant 1 is a SUI,
while occupants 2 and 3 are SOI. Accordingly, the dose inhaled
by occupant 1 is (see (10) and (11))

k = [0, 1, 1] → D1|k(t) = D1,2(t) + D1,3(t) (A11)
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Table A6. Possible layouts and corresponding probabilities of
occurrence for the 3-occupants example case. The symbol ‘I’ indi-
cates SOIs, while the symbol ‘-’ indicates a SUI.

Layout
index Occ.1 Occ.2 Occ.3 k Pk

#1 – – – [0,0,0] (1 − PI,1) · (1 − PI,2) · (1 − PI,3)
#2 I – – [1,0,0] PI,1 · (1 − PI,2) · (1 − PI,3)
#3 – I – [0,1,0] (1 − PI,1) · PI,2 · (1 − PI,3)
#4 – – I [0,0,1] (1 − PI,1) · (1 − PI,2) · PI,3
#5 – I I [0,1,1] (1 − PI,1) · PI,2 · PI,3
#6 I – I [1,0,1] PI,1 · (1 − PI,2) · PI,3
#7 I I – [1,1,0] PI,1 · PI,2 · (1 − PI,3)
#8 I I I [1,1,1] PI,1 · PI,2 · PI,3

The infection probability for each occupant can be determined
as follows (see (12) and (13))

k = [0, 1, 1] →
⎧⎨
⎩
PSbI,1|k(t) = fP(D1|k(t)) = 1 − e−ci,1·D1|k(t)

PSbI,2|k(t) = 0
PSbI,3|k(t) = 0

(A12)
where, also in this case, first, the result has been reported in
terms of general dose-response model (see (12)) and then in
terms of the specific Wells-Riley exponential model (see (13)).

Similar considerations apply to layouts #6 and #7.
In case of layout #8 (see Table A6) all occupants are SOI.

Therefore, the determination of inhaled doses is not relevant,
and the probability of getting infected for each occupant is zero
by definition (see (12) and (13)), i.e.

k = [1, 1, 1] →
⎧⎨
⎩
PSbI,1|k(t) = 0
PSbI,2|k(t) = 0
PSbI,3|k(t) = 0

(A13)

It is noted that the knowledge of PSbI,1|k(t), PSbI,2|k(t) and
PSbI,3|k(t) for each given layout k allows also a direct determi-
nation of the corresponding conditional expected (mean) num-
ber of infection transmissions considering an exposure time t,
N̄SbI|k(t), as follows (see (24) and (25))

N̄SbI|k(t) = PSbI,1|k(t) + PSbI,2|k(t) + PSbI,3|k(t) (A14)

The conditional probabilities PSnI|k(t) that no SUI gets infected
for eachgiven layoutk considering an exposure time t (see (20)),
and the corresponding conditional probabilities PSbI|k(t) (see
Table 1) that at least one SUI gets infected for each given layout
k considering an exposure time t, can be determined as shown
in Table A7. It is noted that, in reporting results in Table A7, the
outcomes from the general formulation (20) have already been
simplified accounting for cases with probabilities PSbI,j|k(t) = 0.

The marginal probability PSbI(t) that least one SUI gets
infectedconsideringanexposure time t canbeobtainedaccord-
ing to (22), using probabilities Pk (see Table A6) and PSbI|k (see
Table A7), as follows

PSbI(t) =
∑
k

PSbI|k(t) · Pk

= PSbI|k=[0,0,0](t) · Pk=[0,0,0] + PSbI|k=[1,0,0](t) · Pk=[1,0,0]

+ PSbI|k=[0,1,0](t) · Pk=[0,1,0] + PSbI|k=[0,0,1](t) · Pk=[0,0,1]

+ PSbI|k=[0,1,1](t) · Pk=[0,1,1] + PSbI|k=[1,0,1](t) · Pk=[1,0,1]

+ PSbI|k=[1,1,0](t) · Pk=[1,1,0] + PSbI|k=[1,1,1](t) · Pk=[1,1,1]

= PSbI|k=[1,0,0](t) · Pk=[1,0,0] + PSbI|k=[0,1,0](t) · Pk=[0,1,0]

+ PSbI|k=[0,0,1](t) · Pk=[0,0,1] + PSbI|k=[0,1,1](t) · Pk=[0,1,1]

+ PSbI|k=[1,0,1](t) · Pk=[1,0,1] + PSbI|k=[1,1,0](t) · Pk=[1,1,0]
(A15)

where use has beenmadeof the fact that PSbI|k=[0,0,0](t) = 0 and
PSbI|k=[1,1,1](t) = 0 (see Table A7).

In addition, the limit of PSbI(t) as the exposure time tends to
infinity, PSbI,lim, can be determined according to (23) as⎧⎪⎪⎨

⎪⎪⎩

PSbI,lim = 1 − (Pk=[0,0,0] + Pk=[1,1,1])

with
Pk=[0,0,0] = (1 − PI,1) · (1 − PI,2) · (1 − PI,3)
Pk=[1,1,1] = PI,1 · PI,2 · PI,3

(A16)

Finally, the marginal expected (mean) number of transmissions
considering an exposure time t, N̄SbI(t), can be determined as
follows (see (26))

N̄SbI(t) =
∑
k

N̄SbI|k(t) · Pk

= N̄SbI|k=[0,0,0](t) · Pk=[0,0,0] + N̄SbI|k=[1,0,0](t) · Pk=[1,0,0]

+ N̄SbI|k=[0,1,0](t) · Pk=[0,1,0] + N̄SbI|k=[0,0,1](t) · Pk=[0,0,1]

+ N̄SbI|k=[0,1,1](t) · Pk=[0,1,1] + N̄SbI|k=[1,0,1](t) · Pk=[1,0,1]

+ N̄SbI|k=[1,1,0](t) · Pk=[1,1,0]

+ N̄SbI|k=[1,1,1](t) · Pk=[1,1,1] =
= N̄SbI|k=[1,0,0](t) · Pk=[1,0,0]

+ N̄SbI|k=[0,1,0](t) · Pk=[0,1,0] + N̄SbI|k=[0,0,1](t) · Pk=[0,0,1]

+ N̄SbI|k=[0,1,1](t) · Pk=[0,1,1] + N̄SbI|k=[1,0,1](t) · Pk=[1,0,1]

+ N̄SbI|k=[1,1,0](t) · Pk=[1,1,0] (A17)

whereusehasbeenmadeof the fact that N̄SbI|k=[0,0,0](t) = 0and
N̄SbI|k=[1,1,1](t) = 0 (see (A8), (A13) and (A14)).

Table A7. Probabilities PSnI|k(t) and PSbI|k(t) for all possible layouts for the 3-occupants
example case.

Layout index k PSnI|k(t) PSbI|k(t)

#1 [0,0,0] 1 0
#2 [1,0,0] (1 − PSbI,2|k(t)) · (1 − PSbI,3|k(t)) 1 − (1 − PSbI,2|k(t)) · (1 − PSbI,3|k(t))
#3 [0,1,0] (1 − PSbI,1|k(t)) · (1 − PSbI,3|k(t)) 1 − (1 − PSbI,1|k(t)) · (1 − PSbI,3|k(t))
#4 [0,0,1] (1 − PSbI,1|k(t)) · (1 − PSbI,2|k(t)) 1 − (1 − PSbI,1|k(t)) · (1 − PSbI,2|k(t))
#5 [0,1,1] 1 − PSbI,1|k(t) PSbI,1|k(t)
#6 [1,0,1] 1 − PSbI,2|k(t) PSbI,2|k(t)
#7 [1,1,0] 1 − PSbI,3|k(t) PSbI,3|k(t)
#8 [1,1,1] 1 0
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