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A B S T R A C T   

Astrocytes are emerging in the neuroscience field as crucial modulators of brain functions, from the molecular 
control of synaptic plasticity to orchestrating brain-wide circuit activity for cognitive processes. The cellular 
pathways through which astrocytes modulate neuronal activity and plasticity are quite diverse. In this review, we 
focus on neurotrophic pathways, mostly those mediated by brain-derived neurotrophic factor (BDNF). Neuro-
trophins are a well-known family of trophic factors with pleiotropic functions in neuronal survival, maturation 
and activity. Within the brain, BDNF is the most abundantly expressed and most studied of all neurotrophins. 
While we have detailed knowledge of the effect of BDNF on neurons, much less is known about its physiology on 
astroglia. However, over the last years new findings emerged demonstrating that astrocytes take an active part 
into BDNF physiology. In this work, we discuss the state-of-the-art knowledge about astrocytes and BDNF. 
Indeed, astrocytes sense extracellular BDNF through its specific TrkB receptors and activate intracellular re-
sponses that greatly vary depending on the brain area, stage of development and receptors expressed. Astrocytes 
also uptake and recycle BDNF / proBDNF at synapses contributing to synaptic plasticity. Finally, experimental 
evidence is now available describing deficits in astrocytic BDNF in several neuropathologies, suggesting that 
astrocytic BDNF may represent a promising target for clinical translation.   

1. Introduction 

1.1. Astrocytes 

Astrocytes are the predominant class of neuroglia in the central 
nervous system (CNS). They represent around 50% of the total cells of 
the brain and play a key role in numerous functions within the CNS (Kim 
et al., 2019). 

Astrocytes owe their name to their very complex, stellate 
morphology. The morphological structure of astrocytes has two func-
tional roles: on one side they make contact with blood vessels, which 
allows for the absorption of energy substrates, on the other side they 
tightly enwrap most synapses, controlling the composition of the peri-
neural interstitial fluid and therefore, indirectly, neuronal activity. They 
also offer trophic support to neurons by storing glucose in the form of 
glycogen granules, which can be metabolized to lactate and transferred 
to neurons. In neurons, lactate is transformed into pyruvate and finally 
used to produce ATP (Pellerin et al., 2007), to maintain their metabolic 
activity (Bonvento, Bolanos, 2021). Astrocytes also act as a primary 

defense against oxidative/nitrosative stress (Skowronska and Albrecht, 
2013) and have a key role in neurogenesis by acting on synapse for-
mation and elimination (Eroglu, Barres, 2010). One of the main func-
tions of astrocytes is controlling the ionic homeostasis (i.e., Ca2+, K+, 
H+), glutamate and water as they express several different channels and 
neurotransmitter receptors (Semyanov and Verkhratsky, 2021; Verkh-
ratsky et al., 2020), including calcium channels. Ca2+ is a universal 
second messenger that regulates essential activities in all eukaryotic 
cells. In the CNS, Ca2+ regulates synaptic transmission (Sudhof, 2021), 
and modulation of intracellular Ca2+ concentration is a central feature 
of astrocyte physiology (Zorec et al., 2012). The processes that induce 
cytosolic Ca2+ transients in astrocytes are still not completely defined, 
but neuronal release of neurotransmitters seems to have an important 
role (Verkhratsky et al., 2020). Finally, astrocytes produce and secrete a 
rich repertoire of molecules, in a continuous dialogue with neurons and 
other CNS cells. Astrocyte-derived molecules include metabolic sub-
strates, neurotransmitters and their precursors, as well as trophic factors 
such as neurotrophins (Pellerin et al., 2007; Bonvento and Bolanos, 
2021). 
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1.2. Neurotrophins 

Neurotrophins are a well-characterized family of neuronal trophic 
factors, which include nerve growth factor (NGF), brain-derived growth 
factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4 or 
NT4/5). All neurotrophins are synthetized as proneurotrophins (pro 
NTs), which are either processed to the mature form within secretory 
vesicles (Seidah et al., 1996) or secreted and processed by proteases in 
the extracellular environment (Lee et al., 2001). Physiologically, neu-
rotrophins exist as non-covalently associated dimers of about 27 kDa 
and serve a wide range of biological functions according to the set of 
receptors present on the target cell. The main classes of receptors are 
tropomyosin-related kinase (Trk) and p75 neurotrophin receptor 
(p75NTR) (Lu et al., 2005). Each neurotrophin displays a binding speci-
ficity for a different class of receptors: TrkA for NGF, TrkB for BDNF and 
NT-4 and TrkC for NT-3 (Wiesmann et al., 1999; Ultsch et al., 1999). 
Upon NT binding, receptors dimerize and the subsequent 
cross-activation of the intracellular tyrosine kinase domains activates 
downstream signaling cascades such as the Ras-Raf-MAPK, PLC-γ-Ca2+

and PI3-kinase-Akt, which mediate neuronal survival, differentiation 
and plasticity depending on the context and cell type (Reichardt, 2006; 
Minichiello, 2009). Once formed, the NT-receptor complexes may be 
degraded, recycled or retrogradely transported along axons in organ-
elles called signaling endosomes (Grimes et al., 1997; Howe et al., 2001; 
Yano et al., 2001). p75NTR modulates NT binding affinity and specificity 
for Trks acting as a coreceptor for multiple ligands (Teng et al., 2010). It 
promotes apoptosis or cell survival depending on the type of ligand (pro 
vs matureNT) and on the co-receptors expressed on cell membranes. 
Indeed, p75NTR can promote cell survival via its interaction with Trk 
receptors, or might induce cell death when associated with Sortilin 
(Nykjaer et al., 2004; Nykjaer et al., 2005; Teng et al., 2005). Within the 
developing and the adult brain, BDNF is the most abundant and most 
studied of all NTs; indeed, BDNF plays crucial roles at all stage of 
neuronal development and maturation, as well as in the establishment 
and maintenance of synaptic plasticity (Kowianski et al., 2018; Lu et al., 
2014). 

Most of our knowledge about neurotrophins’ biology has been ob-
tained through experiments performed on neurons, while limited and 
controversial information are available about the effect of those trophic 
factors in astrocytes. This review aims at summarizing the main studies 
describing the contribution of astroglial cells to neurotrophins’ physi-
ology, with a focus on the BDNF system. 

2. Physiology of astroglial BDNF 

2.1. An historical overview of the early experimental studies on 
neurotrophins and astrocytes 

Among their various functions, astrocytes synthesize, release and re- 
uptake trophic factors, including neurotrophins. Initial studies focused 
mostly on astroglia-derived NGF, and only later the scientific commu-
nity addressed the function of astrocyte-derived BDNF. Indeed, the first 
proof that NGF was released from astrocytes was provided in 1979 
(Lindsay, 1979) and several stimuli that induced astrocytes to produce 
neurotrophins were subsequently identified, including catecholamines 
(adrenaline, noradrenaline) (Furukawa et al., 1989). Since 
NGF-sensitive neurons in the brain are cholinergic, and cholinergic 
neurons are amongst the first to degenerate in Alzheimer’s Diseases, 
astrocyte-derived NGF was proposed to be a possible therapeutic target 
to improve cholinergic neurons survival. This, unfortunately, did not 
translate into clinical applications (Saez et al., 2006). Secretion of NGF 
from astrocytes has been reported to be induced by interleukin-1 
(Lindholm et al., 1987; Carman-Krzan et al., 1991), fibroblast growth 
factor (FGF), tumor necrosis factor-α (TNF-α), transforming growth 
factor-β (TGFβ-1) (see for example Yoshida and Gage, 1992) and 
acetylcholine (Mele and Juric, 2014). Interestingly, NGF expression is 

also induced by glutamate, suggesting its expression/secretion could be, 
under some circumstances, driven by neuronal activity (Pechan et al., 
1993). Activation of PLC seems crucial to the induction of NGF in as-
trocytes (Laviada et al., 1995). Several evidence indicate that astrocytes 
constitutively secrete NGF (Carman-Krzan et al., 1991). NGF secretion is 
prominent in actively dividing astrocytes (Furukawa et al., 1987; Lu 
et al., 1991), suggesting that glia express the NGF gene, and presumably 
synthesize the trophic protein, only in an active growth state, such as 
during development or after injury. Indeed, activated astrocytes were 
identified as the major source of NGF upon neurotoxic injury in rat 
cholinergic basal forebrain neurons (Arendt et al., 1995). Astrocytes are 
also able to internalize NGF through TrkA-mediated internalization, and 
respond to exogenous NGF by acquiring a fibrous morphology (Hutton 
and Perez-Polo, 1995). 

In 1992 Zafra and colleagues provided the first evidence about the 
capability of astrocytes to produce BDNF (Zafra et al., 1992) and two 
years later Schwartz and colleagues demonstrated that BDNF’s release 
from astroglia could be induced by β-adrenergic receptor activation 
(Schwartz and Nishiyama, 1994). Subsequently, a growing body of 
literature supported the notion that astrocytes produce, bind, internalize 
and release BDNF (Alderson et al., 2000; Kinboshi et al., 2017). Some 
studies detected basal levels of BDNF expression in vitro in cultures of 
embryonic astrocytes (Zaheer et al., 1995) where, similarly to what was 
described for NGF, BDNF expression is induced by exposure to neuro-
transmitters, i.e., dopamine, epinephrine and norepinephrine (Inoue 
et al., 1997; Koppel et al., 2018). 

2.2. Expression of TrkB in astrocytes 

BDNF is the neurotrophin with the highest expression in the brain, 
where it plays a critical role in the regulation of synaptic physiology. It 
was first described as a survival factor for target cells; however, it is now 
known that BDNF regulates synaptic plasticity, memory, cognition and 
complex behaviors in the adult brain. Accordingly, BDNF deficits are 
linked to the development of many neurodegenerative and psychiatric 
diseases (see next section) (Krishnan and Nestler, 2008; Psychiatric 
et al., 2009; Gauthier et al., 2004; Ventriglia et al., 2002). TrkB has 
different splicing isoforms: full length (TrkB.FL), which presents a 
tyrosine kinase domain, and different truncated isoforms (TrkB.T) 
lacking this domain, such as TrkB.T1, the most abundant of them and 
consequently the most studied (Klein et al., 1990; Stoilov et al., 2002; 
Luberg et al., 2010). TrkB.T1 has a different expression pattern from the 
full-length receptor within the brain and was first identified as a 
dominant negative receptor for TrkB.FL, impairing its activation by 
sequestering BDNF. This was first demonstrated by Fryer and colleagues, 
who showed that the differentiation of SHSY5Y cells induced by BDNF 
was markedly reduced if cells were grown on a layer of cells expressing 
TrkB-T1, which were actually capable to bind and internalize the neu-
rotrophin (Fryer et al., 1997). 

Astrocytes express mainly TrkB.T1. Importantly, the expression of 
both TrkB.T1 and TrkB.FL is mediated by intracellular cAMP, indicating 
that the same stimuli are able to induce astroglia production, secretion 
of BDNF and TrkB expression (Deogracias et al., 2004). More recently, 
BDNF-TrkB.T1 signaling has been implicated in the morphological 
maturation of astrocytes (Holt et al., 2019). The intracellular pathways 
mediating this effect are still not described, however they may involve 
the activation of specific GTPases and cytoskeleton remodeling, as dis-
cussed later (Ohira et al., 2005). Reactive astrocytes were shown to 
express TrkB.FL in mice subjected to chronic cortical damage (McKeon 
et al., 1997) and viral encephalitis (Soontornniyomkij et al., 1998). 
There are also some reports that demonstrated a weak expression of 
TrkB.FL in cultured astrocytes (Condorelli et al., 1995; Jaudon et al., 
2021). Crucially, the capacity of astrocytes to respond to BDNF stimuli 
seems to vary depending on the different brain areas, as recently 
demonstrated by Saba and colleagues (Saba et al., 2020). 
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2.3. BDNF vs pro-BDNF 

Mature NTs and their precursors are both biologically active and the 
balance between the two is an important determinant of neuronal fate. 
Long-term synaptic modifications are regulated by the activity- 
dependent secretion of BDNF into the extracellular space (Poo, 2001), 
and this effect is dependent on whether the secreted form is proBDNF or 
mBDNF. Indeed, the two forms have a different affinity for the binding 
to p75NTR and TrkB, leading to opposite effects on synaptic strength (Lu 
et al., 2005). Moreover, the extracellular processing of proNTs can per se 
modulate synaptic efficacy (Pang et al., 2004). However, the physio-
logical relevance of proBDNF is still a matter of debate [see, for example 
(Matsumoto et al., 2008)]. Of note, a similar case can be made for NGF. 
Indeed, the ratio between mNGF and proNGF plays an important role in 
neuronal physiology and its alterations affect the progression of neu-
rodegeneration in diseases such as diabetic encephalopathy (Soligo 
et al., 2015) and Alzheimer’s disease (Bruno and Cuello, 2006; Cuello 
et al., 2010; Fahnestock et al., 2001; Capsoni and Cattaneo, 2006; Chao 
et al., 2006; Cuello and Bruno, 2007). 

Astrocytes have an important role in modulating synaptic avail-
ability of proBDNF through p75NTR: proBDNF secreted during neuronal 
transmission is uptaken and subsequently recycled, regulating neuro-
trophin spatial and temporal availability. This process occurs similarly 
to the neurotransmitters removal from the synaptic cleft, suggesting a 
possible role of astrocytes in mediating synaptic plasticity, as discussed 
later (Bergami et al., 2008; Vignoli et al., 2016). Moreover, necroptotic 
astrocytes are able to induce neuronal apoptosis through the release of 
vesicles containing proBDNF (Chen et al., 2021). 

2.4. Astrocytic TrkB signaling 

In 2005, Ohira and colleagues demonstrated that TrkB.T1 is an active 
receptor of BDNF able to regulate astroglial morphology (Ohira et al., 
2005). Drastic changes in astrocytes’ morphology were associated with 
low levels of a negative repressor of Rho GTPases that directly binds 
TrkB.T1 at specific residues (named LFH). When the repressor is 
released from TrkB.T1, it decreases Rho GTPase activity, thus altering 
glial cytoskeleton. It is still unclear, though, which Rho protein is 
involved in the astrocyte morphological changes triggered by BDNF 
(Ohira et al., 2005). 

Astrocytes are able to bind, internalize and release BDNF into the 
culture medium, a process likely involving clathrin-mediated internali-
zation and the formation of multivesicular bodies, which do not seem to 
direct BDNF to lysosomes for degradation (Alderson et al., 2000). 
However, the scientific community does not agree about the astrocyte’s 
ability to induce the activation of the BDNF’s downstream signaling 
pathways through TrkB. Some studies demonstrated that astrocytes 
activate the MAPK pathway and c-fos expression, as well as intracellular 
Ca2+ transients, in response to BDNF similarly to what is observed in 
neurons. Initially the latter ability was attributed to the expression of 
TrkB.FL (Climent et al., 2000; Iulita, Cuello, 2014) but, in 2003, Rose 
and colleagues highlighted the contribution of TrkB.T1 to this pathway 
(Rose et al., 2003). BDNF binding to TrkB.T1 induced G-protein acti-
vation and activation of PLC-γ signaling, thus triggering the release of 
Ca2+ from glial intracellular stores (Rose et al., 2003). In astrocytes, 
Ca2+ release from intracellular stores lowers intra-ER Ca2+ concentra-
tion, which in turn activates the store-operated Ca2+ entry (SOCE) 
mechanism, essential to maintain Ca2+ homeostasis (Verkhratsky and 
Vladimir, 2014). SOCE controls Ca2+ signaling and gliosecretion in 
response to extracellular stimuli (Papanikolaou et al., 2017; Gao et al., 
2016). Its activation is mediated through transient receptor potential 
(TRP) channels, a family of ion channels that permeate Ca2+ and 
monovalent cations (Ben Achour et al., 2010). Recently, Jaudon and 
colleagues reported that astrocytes were able to respond to BDNF 
inducing Ca2+ transient that were mostly mediated by TrkB-T, with only 
a small contribution of TrkB.FL (Jaudon et al., 2021). Moreover, they 

also confirmed PLC-γ involvement, supporting the idea that this protein 
is central to the induction of BDNF-dependent Ca2+ transients (Jaudon 
et al., 2021). 

2.5. Astrocyte-derived BDNF in synaptic plasticity 

The secretion of mature BDNF is induced by neuron depolarization 
and high frequency stimulation (HFS), which induces long-term poten-
tiation (LTP) (Korte et al., 1995; Kang et al., 1997; Minichiello et al., 
1999). It has been demonstrated that astrocytes play a pivotal role in 
synaptic plasticity (Allen, Lyons, 2018; Khakh and Sofroniew, 2015) 
regulating neurotransmitters and neuromodulators released from 
neighboring active synapses and, in response to these signals, modifying 
the extent of synaptic strengthening (Durkee, Araque, 2019). Even if 
they can bind BDNF, astrocyte involvement in the regulation of LTP is 
still debated. In 2016, Vignoli and colleagues demonstrated that cortical 
astrocytes play a role in LTP maintenance and memory consolidation 
through p75NTR that allows proBDNF internalization (Vignoli et al., 
2016). Moreover, the same group further analyzed this process, 
reporting that astrocytic microdomains convert internalized proBDNF 
into mature BDNF for synaptic re-use (Vignoli et al., 2021), indicating 
the presence of local information storage in astrocytes for supporting 
memory circuits. The role of BDNF in synaptic strengthening is still a 
debated issue, partially due to the difficulties in unambiguously iden-
tifying the BDNF receptors through which astrocytes provide specific 
signaling for LTP. Some studies suggest that astrocytes mediate LTP 
sustainment through the internalization of mBDNF via TrkB.FL or TrkB. 
T1 (Han et al., 2021). Recently, the involvement of TrkB.FL in this 
process on peri-synaptic astrocytes has been excluded (Vignoli and 
Canossa, 2022). 

The interplay between neurotransmitter transporters and TrkB also 
gives an important contribution to synaptic plasticity. For example, 
Adenosine A2A receptors (A2AR) modulate the action of BDNF on 
synaptic transmission and plasticity by controlling cholinergic currents 
and gamma-aminobutyric acid (GABA) transporters uptake (Sebastiao 
et al., 2011). A2AR activation transactivates TrkB and induces TrkB 
translocation to lipid rafts in a cAMP-dependent manner (Vaz et al., 
2011). Astrocytes modulate synaptic transmission by controlling extra-
cellular GABA levels through specific membrane GABA transporters 
(GAT1 and GAT3). These transporters are modulated by A2AR that can 
enhance or inhibit GABA uptake contributing to synaptic transmission 
(Cristovao-Ferreira et al., 2013). Astrocytic GATs are differentially 
modulated by BDNF. While GAT-3 is not influenced by BDNF, the 
regulation of GAT-1 expression at the plasma membrane involves 
TrkB-T, non-classic PLC-γ and MAPK pathways, and A2AR activation 
(Vaz et al., 2011). In fact, BDNF treatment stimulates GAT-1 mediated 
GABA internalization in astrocytes, thus controlling the clearance of 
GABA (Vaz et al., 2011). BDNF inhibits the internalization of GAT-1 
through a dynamin-dependent process, boosting GABA uptake and 
accelerating the shutdown of GABAergic response (Vaz et al., 2011). In 
addition, GABA increases intracellular Ca2+ concentration in astrocytes, 
triggering the release of ATP, which might further contribute to the 
modulation of synaptic transmission (Vaz et al., 2011). 

2.6. Astroglia BDNF response changes during cell maturation 

Astrocytes undergo important physiological changes during the first 
2–3 postnatal weeks, and their maturation accompanies and supports 
that of adjacent neurons (Felix et al., 2021). Recently, Jaudon and col-
leagues have reported that astrocytes modify their BDNF signaling 
competence at different developmental stages (Jaudon et al., 2021). 
They tested embryonic (E18.5) and postnatal astrocytes (P0–2) for the 
BDNF receptors and the activation of their downstream pathways, 
highlighting that embryonic glial cells express more TrkB.FL than 
postnatal cells, which on the contrary upregulate TrkB-T (Jaudon et al., 
2021). At both stages of maturation, astrocytes are able to activate BDNF 
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dependent kinase-based signaling (i.e., MAPK, Akt and PLCγ) but the 
resulting magnitude of downstream protein phosphorylation was lower 
in postnatal cultures than in embryonic cells (Jaudon et al., 2021). This 
further supports the notion that astrocytes are competent in activating 
NT signaling during embryonic development while they mainly induce 
NT signaling cascades upon activation, in the presence of CNS injury or 
under pathological conditions, at the postnatal stage (Jaudon et al., 
2021). On the other hand, postnatal astrocytes were more responsive in 
inducing Ca2+ transients upon BDNF stimulation compared to embry-
onic cells, a response that was mainly triggered by TrkB-T (Jaudon et al., 
2021). 

Another important difference between embryonic and postnatal as-
trocytes is the predominant type of metabolism. Indeed, one of the main 
functions of astrocytes is to provide metabolic support to neurons. 
Amongst the numerous astrocyte-derived molecules involved in this 
process, lactate plays a prominent role both as a metabolic and as a 
signaling molecule (Magistretti and Allaman, 2015). Interestingly, the 
production of lactate in wild-type postnatal cells is increased compared 
to that in embryonic cells, suggesting a predominant glycolytic mecha-
nism, and this was observed both in cultured astrocytes (Jaudon et al., 
2021) and in vivo (Zehnder et al., 2021). One protein that is ubiqui-
tously expressed in neural cells and plays an important function sup-
porting BDNF signaling is Kidins220 (Iglesias et al., 2000; Kong et al., 
2001). Kidins220-/- embryonic astrocytes show altered SOCE mecha-
nisms and increased expression of the Ca2+ channel TRPV4 both at 
mRNA and protein levels. TRPV4 is a thermo-, osmo-, and 
mechano-sensitive channel (Guler et al., 2002; Liedtke, Friedman, 2003; 
Mizuno et al., 2003) that mediates Ca2+ influx in primary astrocytes 
(Benfenati et al., 2007) and promotes Ca2+-dependent Ca2+ release 
(Dunn et al., 2013, Benfenati et al., 2010). TRPV4 is expressed in cortical 
astrocytes and in complex with AQP4 regulates volume increase/de-
crease during osmotic shock (Benfenati et al., 2007). Interestingly, 
alteration of AQP4 mRNA levels was also observed upon BDNF chronic 
treatment, and a reduction of AQP4 has been described in a mouse 
model with reduced Kidins220 expression (Del Puerto et al., 2021), 
suggesting a complex interplay between Kidins220 and molecules 
involved in maintaining brain homeostasis at the level of astrocytes. 

Because of its pleiotropic role in neuron and astrocytes physiology, 
alterations in BNDF/TrkB signaling have been observed in many human 
pathologies. In the next part of this review, we will focus on the astroglia 
contribution of BDNF in selected pathologies. 

3. Physiopathology of astroglia BDNF 

The role of astrocytes in the maintenance and functioning of the 
nervous system is emerging to be much larger than previously expected. 
Astrocytic malfunction has been shown to bear severe negative conse-
quences across the CNS, and astrocytic involvement in pathologies has 
been widely documented with new, more detailed evidence emerging. 
Indeed, build-up of harmful factors (e.g., ROS, excessive Ca2+ or gluta-
mate levels) or loss of regulatory function resulting in a cellular imbal-
ance (e.g., loss of cell volume regulation, impaired astrocyte-neuron and 
neuron-neuron communication) has been connected with astrocytes’ 
loss of their homeostatic and protective function (Lee et al., 2022). As-
trocytes can also become reactive under pathological conditions, 
actively propagating the damage to the other cells of the nervous system 
(Jiwaji and Hardingham, 2022; Koizumi et al., 2021). 

In the event of CNS injury, disease, or infection, the brain deploys its 
own protective mechanisms. As one of the first lines of defense, astro-
cytic cells become reactive and undergo morphological, molecular and 
functional remodeling (Sofroniew, 2020; Escartin et al., 2021). Reactive 
astrocytes do not simply restrict neuronal proliferation by forming a 
glial scar, a border formed by the astrocytes in order to seal off the 
healthy tissue from spreading lesions (Escartin et al., 2021), but also 
express an array of factors with heterogenous functions. Astrocytes in-
crease the expression of classically neuroprotective factors such as BDNF 

and its receptor TrkB.FL in response to lesions (Stadelmann et al., 2002). 
Moreover, a recent transcriptomics study showed upregulation of NGF 
and BDNF in reactive astrocytes as well as downregulation of axonal 
inhibitory molecules (Teh et al., 2017). This was shown to vary by brain 
region illustrating a functional heterogeneity in astrocyte responses to 
neurotrophins and injury, further highlighting the complex function of 
reactive astrocytes (Cragnolini et al., 2018). Chun and colleagues even 
proposed two distinct categories of hypertrophic astrocytes depending 
on their proBDNF and GABA expression (Chun et al., 2018). “Active” 
astrocytes – induced by enriched environment – were showed to be 
pro-BDNF-positive/GABA-negative and support neuroplasticity, while 
“reactive” astrocytes – induced by acute brain injury – induced neuronal 
inhibition and were defined as GABA-positive/proBDNF-negative (Chun 
et al., 2018). As of today, the available data hints at the functional 
relevance of the BDNF system in the physiology of astroglial cells. 

Taken together, these studies suggest that neuroprotection, associ-
ated with BDNF / TrkB expression, might be the main astrocytic function 
at early stages of reactive astrogliosis. At this time, the pathology is 
considered as potentially resolvable, with the potential of reaching a 
state of chronic reactivity and leading to dysregulation of the neuro-
protective mechanisms (Sofroniew, 2020). Hence, for the purpose of this 
review we will consider “reactive astrocytes” and their relationship with 
BDNF in the context of dysregulation of their neuroprotective mecha-
nisms resulting in disease phenotypes. 

Aberrant astrocytic BDNF signalling seems to be a key player in many 
astrocyte-related disorders. Several nervous system pathologies point to 
the imbalance in the astrocytic TrkB isoform expression patterns as a 
main culprit in disease development. TrkB.T1 is known to hinder BDNF 
stimulation via TrkB.FL inhibition (Yanpallewar et al., 2012) and 
propagate cell death (Dorsey et al., 2006). Whether direct, or indirect 
connection between astrocytes and BDNF-TrkB signalling in pathology 
has been made, it certainly is a common theme in nervous system dis-
orders emphasising the role of astrocytes in CNS health and homeostasis. 
In the following paragraphs, we highlight the pathologies in which al-
terations of astroglia BDNF-TrkB signalling have been described, which 
are also summarized in Table 1. 

3.1. Metabolic disorders 

BDNF signalling via neuronal TrkB regulates synaptic transmission in 
brain metabolic circuits (Huang and Reichardt, 2003). Neuronal BDNF 
plays a critical role in maintaining energy and glucose balance within 
the CNS, as demonstrated by the fact that mice lacking BDNF are obese 
(Unger et al., 2007; Rios et al., 2001). A recent study investigated the 
role of astrocytic TrkB.T1 signalling in the ventromedial hypothalamus 
(VMH) control of energy homeostasis (Ameroso et al., 2022). VMH is a 

Table 1 
Role of astrocytic BDNF, and proposed mechanism of action, in selected 
pathologies.  

Pathology Astrocytic 
involvement 

BDNF action Reference 

Metabolic 
disorder 

Indirect Homeoostatic via TrkB. 
T1 

Ameroso et al., 
2022 

Amyotrophic 
lateral sclerosis 

Indirect Homeostatic via TrkB. 
FL; Deleterious via 
TrkB.T1 

Yanpallewar 
et al., 2012 

Epilepsy Indirect Inconclusive Vidaurre et al., 
2012 

Brain oedema Direct Inconclusive Lu et al., 2022 
Neuropathic pain Direct Deleterious via TrkB.T1 Matayas et al., 

2017 
Huntington’s 

disease 
Indirect Diminished levels in the 

disease 
Hong et al., 
2016 

Rett syndrome Direct Homeostatic function 
disturbed 

Lioy et al., 2011 

Retinal 
degeneration 

Direct Homeostatic via Trk.FL Bales et al., 
2022  

M. Albini et al.                                                                                                                                                                                                                                  



Neuroscience Research 197 (2023) 42–51

46

central hub for regulating energy balance and the investigators 
demonstrated that BDNF signalling controls VMH neuron plasticity in 
response to changes in metabolic conditions. BDNF / TrkB.T1 signaling 
in hypothalamic astrocytes induced morphological changes in peri-
synaptic astrocytic processes, resulting in increased glutamate uptake 
and altered neuronal excitability (Ameroso et al., 2022). By measuring 
blood glucose and serum insulin levels of TrkB.T1 KD mice, Ameroso 
and colleagues found that intact TrkB.T1 signalling in both VMH as-
trocytes and neurons is required for correct glycaemic control (Ameroso 
et al., 2022). However, BDNF signalling in VMH astrocytes had a pre-
dominant role in the regulation of feeding, energy expenditure and body 
weight (Ameroso et al., 2022). Those results uncover a metabolic role of 
the astrocytes not only at the cellular level but also for the entire body’s 
energy homeostasis (Ameroso et al., 2022). 

3.2. Amyotrophic lateral sclerosis 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative motor 
neuron disease resulting in progressive degeneration of motor neurons. 
A small number of ALS cases is hereditary (10%) but most of them have a 
sporadic aetiology (Nguyen et al., 2018). Despite years of research and 
many proposed mechanisms underlying neuronal death in ALS, the 
cause of this pathology is still not clear. Glutamate excitotoxicity, one of 
the mechanisms proposed, can arise from lack of inhibitory signalling, 
which can be regulated by the BDNF/TrkB pathway (Pradhan et al., 
2019). However, whether BDNF has protective or detrimental effects in 
ALS pathology is still up for debate. While BDNF has been used for 
treatment in ALS models and in therapeutic trials (Gouel et al., 2019; 
Henriques et al., 2010), many failed to achieve satisfactory results. 
Enhancing BDNF transmission via TrkB modulation proved to be neu-
roprotective for neurons in vitro but these therapeutic effects were not 
replicated in vivo, where harmful effects on neuronal survival in 
conjunction with such treatments have been observed (Pradhan et al., 
2019). A possible reason for this discrepancy could be the presence of 
TrkB.T1 receptors in in vivo models, hindering the neuroprotective ac-
tions of TrkB.FL signalling. Interestingly, specific deletion of TrkB.T1 in 
an ALS mouse model showed a delay in the disease onset similar to 
non-neurotrophic TrkB.FL activation (Yanpallewar et al., 2012). TrkB. 
T1 specific deletion in astrocytes showed rescue tendency and preserved 
muscle strength and coordination, contrary to what observed with a 
selective TrkB.T1 deletion in motor neurons, suggesting a non-cell 
autonomous mechanism to TrkB.T1-mediated effects in ALS (Yanpalle-
war et al., 2021). Attempts have been made at transplant of 
stem-cell-derived astrocytes for the treatment of ALS in animal models, 
with encouraging results (Lepore et al., 2008; Nicaise et al., 2015) 
strengthening the notion of astrocytes (Papadeas et al., 2011) and 
astrocytic BDNF as ALS therapeutic target. 

3.3. Epilepsy 

Epilepsy is a progressive CNS disorder characterised by abnormal 
firing patterns in the brain and spontaneous electrical discharges 
(Devinsky et al., 2018). Since astrocytes hold a regulatory function in 
the CNS, controlling not only metabolism but also neuronal activity, 
they have a prominent role in epilepsy pathology (Binder and Stein-
hauser, 2021). Models of temporal lobe epilepsy (TLE) have shown that 
inhibition of TrkB activation prevented seizures, rescued behavioural 
deficits, and prevented neuronal loss in the hippocampus (Liu et al., 
2013). However, the BDNF-TrkB pathway can have multifaceted effects 
on neuronal survival depending on the specific TrkB isoforms or the 
signalling intensity. While a direct involvement of this molecule in the 
pathology of epilepsy is undeniable, a clear consensus on whether BDNF 
inhibits or promotes epileptogenesis has not yet been reached (Wang 
et al., 2021). TrkB.FL/TrkB.T1 imbalance in favour of TrkB.T1 can result 
in excitotoxicity (Vidaurre et al., 2012). Most recent research also shows 
that selective knockdown of TrkB in hippocampal astrocytes exerts 

neuroprotection in TLE models and results in stronger protection of 
cognitive function than TrkB knockdown in hippocampal neurons 
(Fernandez-Garcia et al., 2020). These results strongly suggest that a 
more precise role of astrocytic BDNF signalling in epilepsy should be 
explored further for possible therapeutic solutions. 

3.4. Oedema 

AQP4 and TRPV4 create a main system for water homeostasis in the 
CNS, as previously discussed. Together in volume regulator-osmosensor 
complexes, AQP4 and TRPV4 are chief proteins behind regulation of 
brain volume (Benfenati et al., 2011; Toft-Bertelsen and MacAulay, 
2021). Cellular oedema is a primarily astroglial pathology. Indeed, as-
trocytes are not only responsible for brain volume regulation, but 
excessive astrocytic swelling linked to the TRPV4-AQP4 system can also 
trigger further damaging effects resulting in brain oedema (Jo et al., 
2015). A recent study by Lu and colleagues linked astrocytic, 
AQP4-mediated cellular oedema with TNF-α and the NF-kB pathways 
(Lu et al., 2022). The NF-kB pathway and p65 binding enhance AQP4 
overexpression which in turn negatively impacts astrocytic viability (Lu 
et al., 2022). A direct link has not yet been made, but it is known that 
TNF-α induces BDNF expression via NF-kB in astrocytes (Saha et al., 
2006) and neurons (Balkowiec-Iskra et al., 2011). It is also important to 
note that astrocytic TRPV4 is strongly involved in the process of 
inflammation, inducing the production of TNF-α via activation of the 
NF-kB pathway (Liu et al., 2018). TRPV4+ astrocytes, upon activation, 
can also activate other astrocytes, both TRPV4+ and TRPV4- (Shibasaki 
et al., 2014). Thus, while experimental evidence suggests the role of 
astrocytic BDNF in the onset and development of oedema, further study 
is required to elucidate this connection. 

3.5. Neuropathic pain 

It is well-established that BDNF is an important modulator of pain in 
the CNS. Reactive astrocytes also contribute to inflammation and neu-
ropathies under pathological conditions (Linnerbauer and Rothhammer, 
2020). TrkB.T1 was found to participate in the development and 
maintenance of BDNF-mediated pain (Renn et al., 2009) and deletion of 
TrkB.T1 reduced spinal cord injury (SCI)-related abnormalities, 
including the pain component (Wu et al., 2013). The same study also 
revealed that TrkB.T1 was responsible for upregulating cell cycle path-
ways in SCI. As mentioned earlier, TrkB.T1 is abundantly expressed in 
astrocytes and reactive astrocytes are one of the key components of the 
glial scar and inflammatory reaction (Lee, MacLean, 2015). Indeed, 
TrkB.T1 was found to control astrocytic proliferation, migration and 
inflammation and its deletion reduced astrocytic reactivity after SCI 
(Matyas et al., 2017), in agreement with the heavy reliance of astrocytes 
on the maintenance of balance between astrocytic TrkB isoforms to 
regulate their physiological signalling outpout (Cao et al., 2020). It is 
also worth considering the possible involvement of the vanilloid re-
ceptor family members, such as TRPV1 or TRPV4, in the development 
and maintenance of astrocyte-mediated neuropathic pain. Expression of 
TRPV1 in astrocytes has been shown to mediate astrocytic activation 
(Yang et al., 2019; Wang et al., 2019), whereas TrkB.T1 deletion 
attenuated behavioural reaction to the capsaicin treatment, which is a 
strong TRPV1 agonist (Renn et al., 2009). TRPV4 inhibition also showed 
attenuation of inflammation and glial reactivity (Liu et al., 2018). No 
direct link between those factors has been explored so far but it could be 
worth examining since both TrkB.T1 and TRPV1 represent promising 
therapeutic targets. 

3.6. Huntington’s disease 

Huntington’s disease (HD) is a hereditary neurodegenerative disease 
caused by an autosomal dominant mutation in the Huntingtin (Htt) gene 
resulting in the production of aberrant huntingtin protein (mHtt) 
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(McColgan and Tabrizi, 2018). Expression of the mutant protein affects 
both neuronal and glial cells across the brain (Palpagama et al., 2019) 
and HD astrocytes are characterised by lowered expression of glutamate 
transporters and potassium channels resulting in excitotoxicity (Shin 
et al., 2005; Tong et al., 2014). BDNF levels were also found to be 
affected in HD patients (Zuccato et al., 2001; Zuccato, Cattaneo, 2007) 
and BDNF administration in transgenic HD mice provided some level of 
neuroprotection against the development of the disease (Zuccato et al., 
2005; Simmons et al., 2009). Since neurons are the main source of 
BDNF, most of the studies on BDNF in HD focused on this cell type, 
however astrocytes not only react to BDNF but also release it themselves 
(Zafra et al., 1992; Alderson et al., 2000; Kinboshi et al., 2017). In fact, 
astrocytes overexpressing mHtt show significantly lower BDNF levels 
(Wang et al., 2012). Further, another study demonstrated that mHtt does 
not affect production of BDNF in astrocytes itself but instead binds to 
Rab3a – a secretory vesicle GTPase – and prevents it from executing its 
function, effectively halting BDNF secretion. Overexpression of Rab3a in 
the same astrocytes was enough to rescue BDNF secretion (Hong et al., 
2016) making the astrocytic BDNF release an important component of 
HD pathology. 

3.7. Rett syndrome 

Rett syndrome is an X-linked disorder belonging to the ASD spectrum 
caused by a loss of function (lof) mutation in the MECP2 gene (Collins 
and Neul, 2022). MECP2 is present in most tissues, however since 
neurological disorders are the main lof manifestations, most Rett syn-
drome studies have been performed on neurons and glia. In fact, selec-
tive re-expression of Mecp2 in astrocytes of MeCP2-deficient mice 
rescued their locomotion and alleviated anxiety as well as restored 
correct respiratory control (Lioy et al., 2011). Additionally, restoration 
of MeCP2 in astrocytes also had positive effects on mutant neurons 
showing that glia plays a key role in the Rett syndrome pathology (Lioy 
et al., 2011). In fact, MeCP2-deficient astrocytes not only present 

abnormal BDNF regulation, but they can also spread the MeCP2 defi-
ciency via gap-junctions to other astrocytes (Maezawa et al., 2009). 
Through its signalling, BDNF also acts as a neuronal modulator of res-
piratory drive. Thus, a model of astrocytic-BDNF respiration control was 
proposed (Caravagna et al., 2013), which is relevant as alteration of the 
breathing pattern is one of the main manifestation of Rett pathology. 
The aforementioned studies suggest a strong involvement of 
astrocytic-BDNF in development and propagation of Rett syndrome 
dysfunction. 

3.8. Retinal degeneration 

The cause of progressive neuronal death in retinal degeneration is 
still not precisely described. Photoreceptors exposed to various insults, 
such as phototoxicity, undergo apoptosis (Xu et al., 1997). This can 
happen either under physiological conditions, when excessive light 
levels are sufficient to damage retinal cells, but also in pathologies when 
light can propagate the spreading of the photoreceptor death (Heck-
enlively et al., 1991; Coussa et al., 2019). Retinal ganglion cells (RGCs) 
are supported not only by astrocytes and microglia but also by Muller 
cells, retina-specific radial glial cells thought to protect RGC from 
apoptosis (Telegina et al., 2018). The role of neurotrophins in RGC 
protection has been subjected to intensive study. Indeed, axonal trans-
port of BDNF is disturbed in RGC axons of a glaucoma model (Pease 
et al., 2000) and both absence and blockade of p75NTR was sufficient to 
block light-induced photoreceptor apoptosis in vivo (Harada et al., 
2000). Phototoxicity was shown to upregulate expression of TrkC and 
p75NTR in both Muller glia and photoreceptors (Harada et al., 2000). 
Both knockouts of glial TrkB and neuronal TrkB showed increased 
glutamate-induced retinal degeneration (Harada et al., 2011). This was 
further supported by another study showing that TrkB activation drives 
trophic factor upregulation and inhibits reduction of GDNF in response 
to optic nerve injury, ultimately leading to RGC protection at early 
stages after insult (Harada et al., 2015). This relationship was explored 

Fig. 1. Alteration of astrocytic BDNF/TrkB signalling axis in neuropathology.  
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as a therapeutic target in a recent study that assessed the positive impact 
of treadmill exercise on astrocytes health in a light-induced retinal 
degeneration (LIRD) model. Exercise showed to increase retinal 
BDNF-astrocyte interaction, with a positive impact on astrocytic and 
retinal health. The active animal group also had a higher TrkB.FL/TrkB. 
T1 ratio, whereas inactive animals showed significant increase in 
TrkB-T1 expression (Bales et al., 2022). 

4. Conclusions 

Most of our knowledge about neurotrophin and BDNF function is 
derived from studies performed in neurons. However, we now know that 
astrocytes actively participate to neurotrophin physiology. Indeed, as-
trocytes produce, uptake and recycle BDNF / proBDNF, which plays an 
especially important role in the modulation of synaptic efficacy. More-
over, BDNF binding to astrocytic Trk receptors activates specific intra-
cellular pathways that control astrocytic morphology and affect 
neuronal excitability. A relevant example is provided by a recent work 
showing the impact of altering hypothalamic astrocytes’ morphology on 
the energetic metabolism of the whole body (Ameroso et al., 2022). As 
we have discussed, the molecular and cellular pathways that astrocytes 
activate upon BDNF stimuli are very diverse and depend on the brain 
area, stage of development and on the TrkB isoform mainly expressed. 
Thus, it is not possible yet to extrapolate a general scheme of astrocytic 
BDNF-dependent signalling, to the same extent of what we have for 
neurons (see, for example, Minichiello, 2009), as we still lack a good 
deal of mechanistic information that we will only acquire through 
dedicated lines of research. Nevertheless, an increasing body of evidence 
is highlighting the contribution of astroglial BDNF in several neuropa-
thologies, which we have summarized in Fig. 1. Interestingly, a number 
of studies have started to explore the therapeutic potential of selectively 
targeting the BDNF system in astroglia, to provide long-term support to 
diseased neurons, with some promising results. Future studies should 
aim at dissecting such pathways in greater details, as they might 
represent interesting targets for clinical translation. 
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