
Mediterr. J. Math.           (2024) 21:16 

https://doi.org/10.1007/s00009-023-02553-5
c© The Author(s), under exclusive licence to Springer
Nature Switzerland AG 2023

Jacobian Schemes of Conic-Line
Arrangements and Eigenschemes

Valentina Beorchia and Rosa M. Miró-Roig

Abstract. The Jacobian scheme of a reduced, singular projective plane
curve is the zero-dimensional scheme, whose homogeneous ideal is gen-
erated by the partials of its defining polynomial. The degree of such
a scheme is called the global Tjurina number and, if the curve is not
a set of concurrent lines, some upper and lower bounds depending on
the degree of the curve and the minimal degree of a Jacobian syzygy,
have been given by A.A. du Plessis and C.T.C. Wall. In this paper, we
give a complete geometric characterization of conic-line arrangements,
with global Tjurina number attaining the upper bound. Furthermore,
we characterize conic-line arrangements attaining the lower bound for
the global Tjurina number, among all curves with a linear Jacobian
syzygy. As an application, we characterize conic-line arrangements with
Jacobian scheme equal to an eigenscheme of some ternary tensor, and
we study the geometry of their polar maps.
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1. Introduction

The Jacobian scheme Σf of a reduced, singular projective plane curve C =
V (f) ⊆ P

2 is the zero-dimensional scheme, whose homogeneous ideal is gen-
erated by the partials of f . The degree of such a scheme is called the global
Tjurina number τ(C) and it is equal to (d − 1)2, if C consists of concurrent
lines, while in all other cases, a theorem by A.A. du Plessis and C.T.C. Wall
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in [22] determines the following bounds on τ(C) in terms of the minimal
degree r of a syzygy between the three partials:

(d − 1)(d − r − 1) ≤ τ(C) ≤ (d − 1)(d − r − 1) + r2.

In particular, we have τ(C) ≤ (d − 1)(d − 2) + 1.
The scheme structure of Jacobian schemes is, in general, not completely

understood, even in the case of irreducible curves. For instance, a class of
curves attaining the bound above for any r ≥ 2 is given by some rational
cuspidal curves, as shown in [15, Theorem 1.1]. The set of curves attaining the
maximal bound or one less seems to be very rich, and examples having high
genus and many branches have been given in [3, Theorem 3.9 and Theorem
3.11]. As far as we know, the only characterization result is given in the
case of a linear Jacobian syzygy by A.A. du Plessis and C.T.C. Wall in
[23, Proposition 1.1], which states that r = 1 and only if the curve admits
a 1-dimensional symmetry, i.e. the curve admits a 1-dimensional algebraic
subgroup of PGL2(C) as automorphism group.

In this paper, we focus on the case of conic-line arrangements with
a linear Jacobian syzygy. Some results concerning conic-line arrangements
with only nodes, tacnodes, and ordinary triple points are given in [12], but
in degree d ≥ 5 one has r ≥ 2. The Jacobian syzygies and the global Tjurina
number of conics arrangements of conics belonging to particular pencils can
be found in [24,26] and [9,27].

The assumption r = 1 implies (d−1)(d−2) ≤ τ(C) ≤ (d−1)(d−2)+1,
and any curve attaining the upper bound is reducible by [23, Proposition
1.3]. Concerning the lower bound, there are irreducible curves, with a linear
syzygy, satisfying τ(C) = (d − 1)(d − 2), like for instance some Sebastiani–
Thom rational cuspidal curves (see [14, Proposition 2.11]).

We give a complete geometric characterization of the conic-line arrange-
ments attaining the two bounds for r = 1. Concerning the upper bound,
examples are given by line arrangements consisting of the union of d−1 con-
current lines and one general line, as described in [10, Proposition 4.7(5)].
Our first main result is the following (see Theorem 3.5):

Theorem A. Let C = V (f) be a conic-line arrangement in P
2 of degree d ≥ 5.

Then, τ(C) = (d − 1)(d − 2) + 1 if and only if C is either:

• L: a line arrangement with d − 1 concurrent lines and a general line;
• C1: a union of conics belonging to a hyperosculating pencil, that is with

base locus supported in a point;
• CL1: a union of conics belonging to a hyperosculating pencil and the

tangent line in the hyperosculating point;
• CL2: the union of conics belonging to a bitangent pencil and a tangent

line in one of the bitangency points;
• CL3: the union of conics belonging to a bitangent pencil and the two

tangent lines in the bitangency points;
• CL4: the union of conics belonging to a bitangent pencil, one tangent line

in a tangency point, and the line connecting the two tangency points;
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• CL5: the union of conics belonging to a bitangent pencil, the two tangent
lines in the bitangency points, and the line connecting the two tangency
points.

In the case τ(C) = (d − 1)(d − 2), the characterization of conic-line
arrangements is given by the following result (see Theorem 3.6):

Theorem B. Let C = V (f) be a reduced conic-line arrangement in P
2 of

degree d ≥ 6. Then, τ(C) = d2 − 3d + 2 if and only if C is either:
• C2: a conic arrangement given by the union of conics belonging to a

bitangent pencil;
• CL6: a conic-line arrangement given by the union of conics belonging

to a bitangent pencil and the line passing through the two bitangency
points.

As a consequence of our first result, we can determine the degree of the
polar map of conic-line arrangements with quasihomogenous singularities,
that is with total Milnor number μ(C) (see Definition 2.3) equal to the total
Tjurina number. Indeed, recall that, when C = V (f) is not a set of concurrent
lines, the polar map ∇f associated with f defines a generically finite rational
map ∇f : P2 ��� P

2 of degree (d− 1)2 −μ(C). Therefore, when μ(C) = τ(C)
and τ(C) is maximal, such a degree is minimal and equal to d−2. This occurs
in cases L and CL2.

Another related problem is a Torelli-type question, posed by Dolgachev
and Kapranov (see [16]), which asks whether the rank 2 vector bundle of
logarithmic vector fields T 〈C〉, given as the kernel of the map:

(∂xf, ∂yf, ∂zf) : O⊕3
P2 (1) → Jf (d),

with Jf the sheafyfied Jacobian ideal, determines uniquely the curve, see also
[13] and [8]. In the cases under consideration this result does not hold.

Finally, we observe that in the case of maximal Tjurina number and
linear syzygy given by three linearly independent forms, the Jacobian schemes
Σf turn out to be also eigenschemes (for the definition see 2.6) of suitable
partially symmetric tensors of order d − 1. This happens in the cases L and
CL2, and we can apply the results of [21] and [4]. In particular, such schemes
arise also as zeroes of a section of the twisted tangent bundle TP2(d− 3), and
we have that the blow-up BlΣf

P
2 ⊂ P

2 × P
2 is a complete intersection of

the projective bundle P(TP2) and a divisor of bidegree (1, d − 2), the possible
contracted curves by the polar map are only lines, and as a consequence no
subscheme of degree k(d − 1) is contained in a curve of degree k, for any
2 ≤ k ≤ d − 2. We further specify that in the line arrangement case L, the
contracted lines are precisely the components of V (f), while in the conic-line
arrangement, the only contracted line is the tangent line appearing in the
configuration V (f).

The study of singular curves with a minimal Jacobian syzygy of higher
degree seem to be very involved and wild. We believe that the approach
concerning the study of the fibers of the polar map deserves further investi-
gations.
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The techniques involved in our study rely on a result relating the syzygy
module of a product of polynomials, with no common factor, given in [11,
Theorem 5.1 and Corollary 5.3], and on the characterization of the Hilbert–
Burch matrix in the case of particular linear Jacobian syzygies given in [5,
Theorem 3.5]. The proofs of our main results are based on a careful analysis
of the possible Jacobian syzygies of any subcurve of the considered curves.

The organization of this paper is the following: in the next section we
recall definitions and preliminary results regarding Jacobian ideals, Jacobian
sygyzies and eigenschemes of ternary tensors.

In Sect. 3 we determine the geometric classification of Jacobian schemes
corresponding to Jacobian ideals with a linear syzygy.

Finally, in Sect. 4, we characterize conic-line arrangements with a Jaco-
bian scheme, which is also an eigenscheme of some ternary tensor. For such
curves we describe the degree d−2 generically finite polar map, characterizing
its contracted curves.

2. Preliminaries

This section contains the basic definitions and results on Jacobian ideals
associated to reduced singular plane curves as well as on eigenschemes, and
it lays the groundwork for the results in the later sections.

From now on, we fix the polynomial ring R = C[x, y, z] and we denote
by C = V (f) a reduced curve of degree d in the complex projective plane
P

2 = Proj(R) defined by a homogeneous polynomial f ∈ Rd.

2.1. Jacobian Ideal of a Reduced Curve

The Jacobian ideal Jf of a reduced singular plane curve C = V (f) of degree
d is definied as the homogeneous ideal in R generated by the 3 partial deriva-
tives ∂xf , ∂yf and ∂zf . We denote by Syz(Jf ) the graded R-module of all
Jacobain relations for f , that is

Syz(Jf ) := {(a, b, c) ∈ R3 | a∂xf + b∂yf + c∂zf = 0}.

We will denote by Syz(Jf )t the homogeneous part of degree t of the graded
R-module Syz(Jf ); for any t ≥ 0, we have that Syz(Jf )t is a C-vector space of
finite dimension. The minimal degree of a Jacobian syzygy for f is the integer
mrd(f) defined to be the smallest integer r such that there is a nontrivial
relation a∂xf + b∂yf + c∂zf = 0 among the partial derivatives ∂xf , ∂yf and
∂zf of f with coefficients a, b, c ∈ Rr. More precisely, we have:

mrd(f) = min{n ∈ N | Syz(Jf )n �= 0}.

It is well-known that mrd(f) = 0, i.e., the three partials ∂xf , ∂yf and ∂zf
are linearly dependent, if and only if C is a union of lines passing through one
point p ∈ P

2. Therefore, we will always assume that mrd(f) > 0 and one of
our goals will be to give a geometric classification of conic-line arrangements
C = V (f) of degree d with mrd(f) = 1, see Theorems 3.5 and 3.6.



MJOM Jacobian Schemes of Conic-Line Arrangements and Eigenschemes Page 5 of 23    16 

Definition 2.1. Let C = V (f) be a reduced singular plane curve of degree d.
We say that C is free if the graded R-module Syz(Jf ) of all Jacobian relations
for f is a free R-module, that is

Syz(Jf ) = R(−d1) ⊕ R(−d2) (2.1)

with d1 + d2 = d − 1. In this case (d1, d2) are called the exponents of C.
We say that C is nearly free if the minimal free resolution of Syz(Jf )

looks like:

0 −→ R(−d−d2) −→ R(1−d−d1)⊕R(1−d−d2)2 −→ Syz(Jf ) −→ 0 (2.2)

with d1 ≤ d2 and d1 + d2 = d.

Example 2.2. (1) The rational cuspidal quintic C ⊂ P
2 of equation C =

V (f) = V (y4z + x5 + x2y3) is free. Indeed, Jf = (5x4 + 2xy3, 3x2y2 +
4y3z, y4) ⊂ R and it has a minimal free R-resolution of the following
type:

0 −→ R(−6)2 −→ R(−4)3 −→ Jf −→ 0.

We have mrd(f) = 2, deg(Jf ) = 12 and C is free.
(2) The rational cuspidal quintic C ⊂ P

2 of equation C = V (f) = V (y4z +
x5) is nearly free. Indeed, Jf = (5x4, 4y3z, y4) ⊂ R and it has a minimal
free R-resolution of the following type:

0 −→ R(−9) −→ R(−5) ⊕ R(−8)2 −→ R(−4)3 −→ Jf −→ 0.

We have mrd(f) = 1, deg(Jf ) = 12 and C is not free but it is nearly
free.

(3) The nodal quintic C ⊂ P
2 of equation C = V ((x2 + y2 + z2)(x3 + y3 +

z3)) = 0 is neither free nor nearly free. Indeed Jf = (5x4 + 3x2(y2 +
z2) + 2x(y3 + z3), 2x3y + 3x2y2 + 5y4 + 3y2z2 + 2yz3, 2x3z + 2y3z +
3x2z2 + 3y2z2 + 5z4) ⊂ R and it has a minimal free R-resolution of the
following type:

0 −→ R(−9) ⊕ R(−10) −→ R(−7) ⊕ R(−8)3 −→ R(−4)3 −→ Jf −→ 0 :

We have mrd(f) = 3 and deg(Jf ) = 6.

In general, the condition that a reduced singular curve C = V (f) in
P

2 is free is equivalent to the Jacobian ideal Jf of f being arithmetically
Cohen–Macaulay of codimension two; such ideals are completely described
by the Hilbert–Burch theorem [17]: if I = 〈g1, . . . , gm〉 ⊂ R is a Cohen–
Macaulay ideal of codimension two, then I is defined by the maximal minors
of the (m + 1) × m matrix of the first syzygies of the ideal I. Combining this
with Euler’s formula for a homogeneous polynomial, we get that a free curve
C = V (f) in P

2 has a very constrained structure: f = det(M) for a 3 × 3
matrix M , with one row consisting of the 3 variables, and the remaining 2
rows are the minimal first syzygies of Jf .

Free curves with some conditions are related with the total Tjurina
number. We first recall some notions from singularity theory.

Let C = V (f) ⊂ A
2 be a reduced, not necessarily irreducible, plane

curve and fix a singular point p ∈ C. Let C{x, y} denote the ring of convergent
power series.
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Definition 2.3. The Milnor number of a reduced plane curve C = V (f) at
(0, 0) ∈ C is

μ(0,0)(C) = dimC{x, y}/〈∂xf, ∂yf〉.
The Tjurina number of a reduced plane curve C = V (f) at (0, 0) ∈ C

is

τ(0,0)(C) = dimC{x, y}/〈∂xf, ∂yf, f〉.
To define μp(C) and τp(C) for an arbitrary point p, translate p in the

origin.

We clearly have τ(0,0)(C) ≤ μ(0,0)(C). For a projective plane curve C =
V (f) ⊂ P

2, it holds:

τ(C) := deg Jf =
∑

P∈Sing(C)

τp(C)

where Jf is the Jacobian ideal. We call to τ(C) the total Tjurina number of
C.

A nice result of du Plessis and Wall gives upper and lower bounds for the
total Tjurina number τ(C) of a reduced plane curve C = V (f) ⊂ P

2 in terms
of its degree d and the minimal degree mrd(f) of a syzygy of its Jacobian
ideal Jf , and relates the freeness of a curve with τ(C). More precisely, we
have:

Proposition 2.4. Let C = V (f) be a reduced singular plane curve of degree d
and let r := mrd(f). Then, it holds:
(1) the global Tjurina number satisfies

(d − 1)(d − r − 1) ≤ τ(C) ≤ (d − 1)(d − r − 1) + r2; (2.3)

Moreover, if τ(C) = (d − 1)(d − r − 1) + r2, then the curve C is free,
and such as condition is also sufficient if d > 2r;

(2) If, in addition, we have 2r + 1 > d, then:

τ(C) ≤ (d−1)(d−r−1)+r2−(2r + 1 − d)(2r + 2 − d)/2 =
d(d − 1)

2
−r2+r(d−2).

(2.4)

Proof. See [22, Theorem 3.2] and [7, Corollary 1.2]. �

Next, result will play an important role in next section. It relates the
minimal degree mrd(f) of a syzygy of the Jacobian ideal of a reducible plane
curve C = C1 ∪C2 = V (f1f2) with the minimal degrees mrd(f1) and mrd(f2)
of a Jacobian syzygy of C1 = V (f1) and C2 = V (f2), respectively. Observe
that the syzygy module can be identified with the module of derivations
killing the polynomial g, that is the submodule D0(g) of the free R-module
D(g) = {δ = a∂x + b∂y + c∂z a, b, c ∈ R} of C-derivations of the polynomial
ring R annihilated by g:

D0(g) = {δ ∈ D(g) δg = 0}.

In the case of a smooth curve V (g), the syzygy module is trivial, so we will
indeed consider the module D0(g) instead of Syz(Jg).
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Theorem 2.5. Let Ci = V (fi) for i = 1, 2 be two reduced curves in P
2 without

common irreducible components. Set di = deg fi and ri = mrd(fi) for i =
1, 2. Let C = V (f1f2) be the union of C1 and C2, let d = d1 + d2 = deg f
and r = mrd(f). Then it holds:

(1) If δ1 ∈ D0(f1), then

δ = f2δ1 − 1
d
δ1(f2) E ∈ D0(f),

where E = x∂x + y∂y + z∂z denotes the Euler derivation;
(2) D0(f) ⊂ D0(f1) ∩ D0(f2); more precisely, for δ �= 0, one has δ ∈ D0(f)

if and only if δ can be written in a unique way in the form δ = h E +
δ1 = −h E + δ2, where h is a suitable homogeneous polynomial and
δj ∈ D0(fj) are non-zero for j = 1, 2.

(3) In particular, we have

max(r1, r2) ≤ r ≤ min(r1 + d2, r2 + d1).

and r is the minimal integer t such that either D0(f1)t ∩D0(f2)t �= 0 or
D0(f1)t + D0(f2)t contains a non-zero multiple of the Euler derivation
E.

Proof. See [11, Theorem 5.1] and [11, Corollary 5.3]. �

2.2. Eigenschemes in P
2

Since we shall investigate whether a Jacobian scheme is also an eigenscheme
of some tensor, we conclude the preliminary section with the basic definitions
and results concerning tensor eigenschemes.

There are several notions of eigenvectors and eigenvalues for tensors, as
introduced independently in [20] and [25]. Here we focus our attention on
the algebraic–geometric point of view. We choose a basis for C

3, we identify
a partially symmetric tensor T with a triple of homogeneous polynomials of
degree d−2 and we describe the eigenpoint of a tensor T algebraically by the
vanishing of the minors of a homogeneous matrix. More precisely, we have:

Definition 2.6. Let T = (g1, g2, g3) ∈ (Symd−2
C

3)⊕3 be a partially symmet-
ric tensor. The eigenscheme of T is the closed subscheme E(T ) ⊂ P

2 defined
by the 2 × 2 minors of the homogeneous matrix:

M =
(

x y z
g1 g2 g3

)
. (2.5)

If T is general, then E(T ) is a 0-dimensional scheme (see, for instance,
[1]). Moreover, by the Hochster–Eagon Theorem [19], the coordinate ring
R/I(E(T )) is a Cohen–Macaulay ring, and as a consequence, the homoge-
neous ideal I(E(T )) is saturated. Hence E(T ) is a standard determinantal
scheme. When the tensor T is symmetric, i.e., there is a homogeneous poly-
nomial f and g0 = ∂xf , g1 = ∂yf and g2 = ∂zf , we denote its eigenscheme
by E(f).
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It is worthwhile to point out that in the case of a symmetric tensor
corresponding to some homogeneous polynomial f , the eigenpoints are the
fixed points of the polar map

∇f = (∂xf, ∂yf, ∂zf) : P2 ��� P
2

of f .

Example 2.7. We consider the Fermat cubic V (f) with f = x3 + y3 + z3 ∈
C[x, y, z]. The eigenscheme E(f) is the 0-dimensional subscheme of P

2 of
length 7 defined by the maximal minors of

M =
(

x y z
x2 y2 z2

)
.

Therefore, E(f) = {(1, 0, 0, ), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1),
(0, 1, 1), (1, 1, 1)}.

If we fix an integer d ≥ 2 and T = (g1, g2, g3) ∈ (Symd−2
C

3)⊕3 is a
general partially symmetric tensor, then it holds (see [17, Theorem A2.10]):
(1) E(T ) is a reduced 0-dimensional scheme of length d2 − 3d + 3.
(2) The homogeneous ideal I(E(T )) ⊂ R has a minimal free R-resolution

0 −→ R(−2d + 3) ⊕ R(−d) −→ R(−d + 1)3 −→ I(E(T )) −→ 0.

The two conditions above are not sufficient for a planar 0-dimensional sub-
scheme to be an eigenscheme, and a characterization is given by the following
result (see [2, Proposition 5.2].

Proposition 2.8. Let Z be a 0-dimensional subscheme of P
2 of degree d2 −

3d+3. Then Z is the eigenscheme of a tensor if and only if its Hilbert–Burch
matrix has the form

⎛

⎝
L1 G1

L2 G2

L3 G3

⎞

⎠ ,

where L1, L2, L3 are linearly independent linear forms.

3. Conic-Line Arrangements with a Linear Jacobian Syzygy

We start this section with two series of examples of reduced conic-line ar-
rangements. All these examples will play an important role since, as we will
see, they are the only examples of reduced conic-line arrangements C in P

2,
whose Jacobian ideal has a linear syzygy.

In what follows we shall use the result [5, Theorem 3.5], due to R.
O. Buchweitz and A. Conca, which determines the Hilbert–Burch matrix of
Jacobian schemes admitting a linear syzygy of the type (ax, by, cz) for some
coefficients a, b, c ∈ C. For completeness, we recall its statement:

Theorem 3.1. (Buchweitz–Conca) Let K be a field of characteristic zero and
f ∈ K[x, y, z] a reduced polynomial of degree d in three variables such that
f is contained in the ideal of its partial derivatives. Assume further that



MJOM Jacobian Schemes of Conic-Line Arrangements and Eigenschemes Page 9 of 23    16 

there is a triple (a, b, c) of elements of K that are not all zero, such that
ax ∂xf + by ∂yf + cz ∂zf = 0.

We then have the following possibilities, up to renaming the variables:

(1) If abc �= 0, then f is a free divisor with Hilbert–Burch matrix
⎛

⎜⎝
ax

(
1
c − 1

b

)
(d + 2)−1∂yzf

by
(

1
a − 1

c

)
(d + 2)−1∂xzf

cz
(

1
b − 1

a

)
(d + 2)−1∂xyf

⎞

⎟⎠ , (3.1)

where ∂∗∗f denotes the corresponding second order derivative of f .
(2) If a = 0, but bc �= 0, then f is a free divisor if, and only if, ∂xf ∈ (y, z).

If that condition is verified and ∂xf = yg + zh, then ∂fy

cz = −∂zf
by is an

element of K[x, y, z], and a Hilbert–Burch matrix is given by
⎛

⎝
0 ∂yf/cz
by −h/c
cz g/b

⎞

⎠ . (3.2)

(3) If a = b = 0, then f is independent of z and, so, being the suspension
of a reduced plane curve, is a free divisor.

We focus now on conic-line arrangements. The first series of examples
corresponds to reduced conic-line arrangements C = V (f) of degree d with
mrd(f) = 1 and maximal Tjurina number τ(C) = (d − 1)(d − 2) + 1 =
d2 − 3d + 3.

Example 3.2.

(1) We fix an integer d ≥ 3. Let L be a line arrangement with d − 1 lines
through a point p, and one other line in general position. Without loss
of generality we can assume that p = (0 : 0 : 1) and that the general
line is V (x), so that the equation of the line arrangement L is given by

L : z
d−1∏

i=1

(aix + biy) = 0

with (ai : bi) �= (aj : bj) for i �= j. It is simple to determine a lin-
ear syzygy between the three partials of f , by observing that ∂zf =∏d−1

i=1 (aix + biy). Therefore, we have

f = z ∂zf.

On the other hand, by Euler formula we also have f = 1
d (x ∂xf +y∂yf +

z ∂zf), hence we get the identity

x ∂xf + y ∂yf + (1 − d)z ∂zf = 0.
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Therefore, according to Theorem 3.1, (1), the Hilbert–Burch matrix of
Jf is given by ⎛

⎝
x 1

(1−d) ∂yzf

y 1
(d−1)∂xzf

(1 − d)z 0

⎞

⎠ , (3.3)

a minimal free R-resolution of Jf is given by:

0 −→ R(−d) ⊕ R(−2d + 3) −→ R(−d + 1)3 −→ Jf −→ 0,

and L is free with exponents (1, d − 2) and global Tjurina number d2 −
3d + 3.
It is worthwhile to point out that the 3 entries (x, y, (1−d)z) ∈ Syz(Jf )1
of the linear syzygy are linearly independent.

(2) We fix an even integer d = 2m ≥ 4. Let C1 be a conic arrangement with
m conics C1, . . . , Cm such that there exists a point p ∈ P

2, for all i, j,
1 ≤ i < j ≤ m, satisfying Ci ∩ Cj = {p}, and the intersection point
p is a singularity A7 for Ci ∪ Cj . In other words, the m conics belong
to a hyperosculating pencil; such a curve is called an even P�loski curve
in [6, Definition 1.7]. Without loss of generality, we can assume that
p = (0 : 0 : 1) and the equation of the conic arrangement C1 is given
by

C1 : f =
m∏

i=1

(x2 + ai(xz + y2)) = 0,

with ai �= 0 and ai �= aj for i �= j. The reduced plane curve C1 has degree
d = 2m. A linear Jacobian syzygy can be determined by observing that
(0, x,−2y) is a linear syzygy of the Jacobian ideal of fi := x2 + ai(xz +
y2), for any i = 1, . . . ,m, so we deduce that Syz(Jf )1 is also generated
by (0, x,−2y).
Moreover, we claim that C1 is free with exponents (1, d− 2), so that the
global Tjurina number is d2 − 3d + 3.
To prove the claim, observe that since r = 1, the conic arrangement
C1 is either free or nearly free, and by (2.1) and (2.2), it is free if and
only if Jf admits a sygyzy of degree d − 2, which is not proportional to
(0, x,−2y). Let us prove the latter fact by induction on the number m
of conics.
If m = 2, a degree 2 syzygy, which is not proportional to (0, x,−2y), is
given by

(−(a1 + a2)x2 − 2a1a2(y2 + xz), a1a2yz, 4x2 + 2(a1 + a2)y2

+3(a1 + a2)xz + 2a1a2z
2).

Now assume that m ≥ 3, and that any conic arrangement of m − 1
conics belonging to a hyperosculating pencil admits a syzygy of degree
2m−4, not proportional to (0, x,−2y). Let f =

∏m
i=1(x

2 +ai(xz +y2)),
and set
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f1 =
m−1∏

i=1

(x2 + ai(xz + y2)), f2 = x2 + am(xz + y2).

By induction hypothesis Jf1 admits a syzygy δ1 ∈ Syz(Jf1)2 m−4, with
δ1 �∈ 〈(0, x,−2y)〉, and by Theorem 2.5, (1), we have

δ = f2δ1 − 1
2m

(δ1 · ∇f2) E ∈ Syz(Jf )2m−2,

where we set δ1 · ∇f2 = h1∂xf2 + h2∂yf2 + h3∂zf2, and E = (x, y, z)
is the Euler relation. As observed in the proof of such a Theorem (see
[11, Theorem 5.1]), since δ1 �= 0, it is also δ �= 0. Finally, we claim
that δ �∈ 〈(0, x,−2y)〉. Indeed, if δ1 · ∇f2 = 0, we have δ = f2δ1 and
since δ1 �∈ 〈(0, x,−2y)〉 by induction hypothesis, the claim follows. If
δ1 · ∇f2 �= 0, we see that

δ · ∇f1 = f2δ1 · ∇f1 − 1
2m

(δ1 · ∇f2) E · ∇f1

= −2m − 2
2m

(δ1 · ∇f2)f1 �= 0.

On the other hand, if we had δ = h (0, x,−2y) for some polynomial h,
we would have

δ · ∇f1 = h (0, x,−2y) · ∇f1 = 0,

as (0, x,−2y) ∈ Syz(Jf1).
It is important to point out that in this case the linear syzygy of

Jf has only 2 linearly independent entries, and that such an example is
not of the type considered in Buchweitz–Conca Theorem 3.1.

(3) We fix an odd integer d = 2m + 1 ≥ 5. Let CL1 be a conic-line arrange-
ment with m conics C1, . . . , Cm and a line � such that there exists a
point p ∈ P

2, � is a common tangent line to all Ci’s, Ci ∩ Cj = {p}
and the intersection point p is a singularity A7 for Ci ∪ Cj , for all i, j,
1 ≤ i < j ≤ m. In other words, the conics belong to a hypersculating
pencil; such a curve is called an odd P�loski curve in [6, Definition 1.7].
Without loss of generality we can assume that p = (0 : 0 : 1), the line
� = V (x) and the equation of the conic-line arrangement CL1 is given
by

CL1 : f = x
m∏

i=1

(x2 + ai(xz + y2)) = 0

with ai �= 0 and ai �= aj for i �= j, and ai �= aj if 1 �= j. The reduced
plane curve CL1 has degree d = 2m + 1; by using the same argument
as in the previous example, it is not difficult to see that CL1 is free
with exponents (1, d − 2) and global Tjurina number d2 − 3d + 3. The
linear syzygy of Syz(Jf )1 is generated by (0, x,−2y). Therefore, again
the linear syzygy of the Jacobian ideal of f has only two independent
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entries, and is not of the type considered in Buchweitz–Conca Theorem
3.1.

(4) We fix an odd integer d = 2m + 1 ≥ 5. Let CL2 be a conic-line arrange-
ment with m conics C1, . . . , Cm and a line � such that there exist two
points p, q ∈ P

2 such that Ci ∩ Cj = {p, q} and the two intersection
points p, q are tacnodes for Ci ∪ Cj , for all i, j, 1 ≤ i < j ≤ m, and �
is a common tangent line to all Ci’s at p. Without loss of generality we
can assume that p = (0 : 0 : 1), q = (1 : 0 : 0), � = V (x), so that the
equation of the conic-line arrangement CL2 is given by

CL2 : f = x

m∏

i=1

(xz + aiy
2) = 0

with ai �= 0 for all i, 1 ≤ i ≤ m, and ai �= aj if 1 �= j. The re-
duced singular plane curve CL2 has degree d = 2m + 1. We claim that
Syz(Jf )1 = 〈((d−1)x,−y,−(d+1)z)〉. Indeed, set qi(x, y, z) = xz+aiy

2.
We have

∂xf =
m∏

i=1

qi + xz

⎛

⎝
m∑

j=1

m∏

i=1,i �=j

qi

⎞

⎠ , ∂yf = 2xy

⎛

⎝
m∑

j=1

aj

m∏

i=1,i �=j

qi

⎞

⎠ ,

∂zf = x2

⎛

⎝
m∑

j=1

m∏

i=1,i �=j

qi

⎞

⎠ ,

which, in particular, gives

f = x ∂xf − z ∂zf.

Thus by the Euler identity we get

(d − 1)x ∂xf − y ∂yf − (d + 1)z ∂zf = 0.

Therefore, the linear syzygy of the Jacobian ideal of f has again 3 linear
independent entries.
Therefore, according to Theorem 3.1, (1), the curve CL2 is free with
global Tjurina number d2 − 3d + 3, and the Hilbert–Burch matrix of Jf

is ⎛

⎜⎝
(d − 1)x 1

(d+1) ∂yzf

−y 2
(d2−1)∂xzf

−(d + 1)z − 1
(d−1)∂xyf

⎞

⎟⎠ . (3.4)

(5) The following three examples are of the type given in [5, Example
3.7], and they all correspond to free curves of exponents (1, d − 2) and
Syz(Jf )1 generated by (x, 0,−z).

• Let d = 2m + 2 ≥ 6 and let CL3 be a conic-line arrangement of
degree d with m conics C1, . . . , Cm and two lines �1 and �2 such
that there exist two points p, q ∈ P

2 satisfying Ci ∩Cj = {p, q} and
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the two intersection points p, q are tacnodes for Ci ∪Cj , for all i, j,
1 ≤ i < j ≤ m, �1 is a common tangent line to all Ci’s at p, �2 is
a common tangent line to all Ci’s at q. Without loss of generality
we can assume that p = (0 : 0 : 1), q = (1 : 0 : 0), �1 = V (x),
�2 = V (z), so that the equation of the conic-line arrangement CL3

is given by

CL3 : f = xz

m∏

i=1

(xz + aiy
2)) = 0

with ai �= 0 for all i, 1 ≤ i ≤ m, and ai �= aj if 1 �= j.
• Let d = 2m + 2 ≥ 6 and let CL4 be a conic-line arrangement of

degree d with m conics C1, . . . , Cm and two lines �1 and �2 such
that there exist two points p, q ∈ P

2 satisfying Ci ∩Cj = {p, q} and
the two intersection points p, q are tacnodes for Ci ∪Cj , for all i, j,
1 ≤ i < j ≤ m, �1 is a common tangent line to all Ci’s at p, �2 is
the line joining p and q. Without loss of generality we can assume
that p = (0 : 0 : 1), q = (1 : 0 : 0), �1 = V (x), �2 = V (y), so that
the equation of the conic-line arrangement CL4 is given by

CL4 : f = xy

m∏

i=1

(xz + aiy
2)) = 0

with ai �= 0 for all i, 1 ≤ i ≤ m, and ai �= aj if 1 �= j.
• Let d = 2m + 3 ≥ 6 and let CL5 be a conic-line arrangement of

degree d with m conics C1, . . . , Cm and three lines �1, �2 and �3
such that there exist two points p, q ∈ P

2 satisfying Ci∩Cj = {p, q}
and the two intersection points p, q are tacnodes for Ci ∪ Cj , for
all i, j, 1 ≤ i < j ≤ m, �1 is a common tangent line to all Ci’s
at p, �2 is a common tangent line to all Ci’s at q, ell3 is the line
joining p and q. Without loss of generality we can assume that
p = (0 : 0 : 1), q = (1 : 0 : 0), �1 = V (x), �2 = V (z) and �3 = V (y),
so that the equation of the conic-line arrangement CL5 is given
by

CL5 : f = xyz

m∏

i=1

(xz + aiy
2)) = 0
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with ai �= 0 for all i, 1 ≤ i ≤ m, and ai �= aj if 1 �= j.

Next series of example corresponds to reduced nearly free plane curves
C = V (f) of degree d with mrd(f) = 1 and τ(C) = d2 − 3d + 2.

Example 3.3. By [5, Example 3.7], next examples have the property that
Syz(Jf )1 is generated by (x, 0,−z) and they are not free. Since r = 1, we
have τ(C) = (d − 1)(d − 2) and they are nearly free by Lemma 3.4.
(1) Let C2 be a conic arrangement with m conics C1, . . . , Cm such that

there exist two points p, q ∈ P
2 satisfying Ci ∩ Cj = {p, q} and the two

intersection points p, q are tacnodes for Ci ∪ Cj , for all i, j, 1 ≤ i < j ≤
m.
Without loss of generality we can assume that p = (0 : 0 : 1), q = (1 :
0 : 0), so that the equation of the conic arrangement is

C2 : f =
m∏

i=1

(xz + aiy
2) = 0

with ai �= 0 for all i, 1 ≤ i ≤ m, and ai �= aj if 1 �= j.
(2) Let CL6 be a conic-line arrangement with m conics C1, . . . , Cm and a

line � such that there exist two points p, q ∈ P
2 such that Ci∩Cj = {p, q}

and the two intersection points p, q are tacnodes for Ci ∪ Cj , for all i, j,
1 ≤ i < j ≤ m, and � is the line through p and q. We can assume
that p = (0 : 0 : 1), q = (1 : 0 : 0), � = V (y) and the equation of the
conic-line arrangement is

CL6 : f = y

m∏

i=1

(xz + aiy
2) = 0

with ai �= 0 for all i, 1 ≤ i ≤ m, and ai �= aj if i �= j.

Our next goal is to establish a geometric characterization of all reduced
conic-line arrangements C = V (f) in P

2 of degree d ≥ 3, whose Jacobian
ideal Jf has a linear syzygy, i.e., mrd(f) = 1.

Lemma 3.4. Let C = V (f) be a reduced singular curve in P
2 of degree d ≥ 3

and let Jf = (fx, fy, fz) be its Jacobian ideal. Assume that mrd(f) = 1. Then
d2 − 3d + 2 ≤ τ(C) ≤ d2 − 3d + 3. Moreover, if τ(C) = d2 − 3d + 3 (resp.
τ(C) = d2 − 3d + 2) then C is free (nearly free).

Proof. By Proposition 2.4 we have d2 − 3d + 2 ≤ τ(C) ≤ d2 − 3d + 3. By [7,
Theorem 1.2] (see also [18, Proposition 26]), if τ(C) = d2−3d+3 (respectively
d2 − 3d + 2) then C is free (nearly free). �
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3.1. Free Conic-Line Arrangements with a Linear Jacobian Syzygy

Our first goal is to classify free conic-line arrangements C = V (f) of degree
d in P

2 with r = mrd(f) = 1; such curves have maximum Tjurina number
τ(C) = d2 − 3d + 3. We have

Theorem 3.5. Let C = V (f) be a conic-line arrangement in P
2 of degree

d ≥ 5, which is not a set of concurrent lines. Then, τ(C) = d2 − 3d + 3 if
and only if C is either a line arrangement L as in example 3.2(1), or a conic
arrangement C1 as in example 3.2(2), or a conic-line arrangement CL1, CL2,
CL3, CL4 or CL5 as in examples 3.2(3)–(7).

Proof. All conic-line arrangements C ⊂ P
2 described in examples 3.2(1)–(7)

have total Tjurina number τ(C) = d2 − 3d + 3 and mdr(f) = 1. Let us prove
the converse.

We claim that the hypothesis τ(C) = d2 −3d+3, d ≥ 5 and Proposition
2.4 imply that r = mrd(f) = 1. Indeed, observe that the inequality 2.4 is
never satisfied for d ≥ 5, hence we have

1 ≤ r ≤ d − 1
2

.

Moreover, the inequality d2 − 3d + 3 ≤ (d − 1)(d − r − 1) + r2 of 2.3 holds
if and only if r ≤ 1 or r ≥ d − 2. Since d−1

2 < d − 2 if d ≥ 5, we only have
r ≤ 1, and as C is not a set of concurrent lines, the case r = 0 is excluded.

To perform the further analysis, we distinguish several cases:

Case 1: C is a line arrangement. By [10, Proposition 4.7(5)], C is the union
of d − 1 lines through a point p, and one other line in general position.

Case 2: Let C = ∪m
i=1Ci : f =

∏m
i=1 fi = 0 be a conic arrangement. By

Theorem 2.5, (3), whenever we extract the union C ′ = C1 ∪C2 of two conics,
the relative r′ = mrd(C ′) = 1, so by the classification given in [11, Proposition
5.5], the only possible cases are: either |C1 ∩C2| = 2 and the two intersection
points are two tacnodes for C ′, or |C1 ∩ C2| = 1 and the singular point is
an A7 singularity (the two conics are hyperosculating). Since in the first case
the total Tjurina number is τ = 6, it does not occur. This settles the case
d = 4. Assume now d ≥ 6.

Claim: Whenever we extract the union Ci1 ∪ Ci2 ∪ Ci3 of three conics, they
belong to the same pencil, so they are either bitangent, or they are hyper-
osculating.

Proof of the Claim. Indeed, assume first that Ci1 ∩ Ci2 = {p, q} and p, q are
two tacnodes for Ci1 ∪ Ci2 . Without loss of generality we can assume that

Ci1 = V (fi1) = V (xz + ai1y
2), Ci2 = V (fi2) = V (xz + ai2y

2)

with ai1 , ai2 ∈ C. Therefore, D0(fi1)1 = D0(fi2)1∼=Syz(fi1fi2)1=〈(x, 0,−z)〉.
By hypothesis mrd(fi1fi2fi3) = 1. Therefore, applying Theorem 2.5, we have

D0(fi3)1 ∩ 〈(x, 0,−z)〉 �= 0, or α(x, 0,−z) + β(x, y, z) ∈ D0(fi3)1.

A straightforward computation shows that necessarily Ci3 = V (fi3) = V (λxz
+ μy2).
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Assume now that Ci1 ∩Ci2 = {p} and p is a singularity A7 for Ci1 ∪Ci2 .
Without loss of generality we can assume

Ci1 = V (fi1) = V (x2 + ai1(xz + y2)), Ci2 = V (fi2) = V (x2 + ai2(xz + y2))

with ai1 , ai2 ∈ C. Therefore, D0(fi1)1 = D0(fi2)1 ∼= Syz(fi1fi2)1 = 〈(0, x,−2y)〉.
By hypothesis mrd(fi1fi2fi3) = 1, hence by Theorem 2.5, we have in this case

D0(fi3)1 ∩ 〈(0, x,−2y))〉 �= 0, or α(0, x,−2y) + β(x, y, z) ∈ D0(fi3)1.

A direct computation shows that in this case necessarily Ci3 = V (fi3) =
V (λx2 + μ(xz + y2)).

It follows from the claim that the irreducible components of C = ∪m
i=1Ci

belong either to a bitangent pencil of conics or to a hyperosculating pencil
of conics. In the first case we have τ(C) = (2m)2 − 3(2m) + 2 (see Example
3.3(1)) and in the second case it is τ(C) = (2m)2 − 3(2m) + 3 (see Example
3.2(2)), which proves what we want.

Case 3: Let C = ∪m
i=1Ci

⋃
∪s

j=1Lj : f =
∏m

i=1 fi ·
∏s

j=1 �j = 0 be a conic-
line arrangement. By Theorem 2.5, the conic arrangement ∪m

i=1Ci satisfies
mrd(

∏m
i=1 fi) = 1. By the above discussion, the components of ∪m

i=1Ci belong
either to a hyperosculating pencil or to a bitangent pencil of conics. We
analyze this two cases separately.

Let us first assume that ∪m
i=1Ci = V (

∏m
i=1(x

2 + ai(xz + y2))) belong to
a hyperosculating pencil of conics with hyperosculating point p = (0 : 0 : 1).
Therefore, Syz(

∏m
i=1 fi)1 = 〈(0, x,−2y)〉. We look for a line L = V (�) =

V (ax + by + cz) such that mrd((ax + by + cz)
∏m

i=1(x
2 + ai(xz + y2)) = 1.

By Theorem 2.5, (3), if we set

f1 = ax + by + cz, f2 =
m∏

i=1

(x2 + ai(xz + y2)),

we have that either D0(f1)1∩D0(f2)1 �= 0, or α(x∂x+y∂y +z∂z) ∈ D0(f1)1+
D0(f2)1 for some nonzero constant α. As to the line V (f1), if a �= 0, we have

D0(f1)1 = {L1(−b∂x + a∂y) + L2(−c∂x + a∂z) L1, L2 ∈ R1},

while D0(f2) = 〈x∂y − 2y∂z〉.
The condition D0(f1)1 ∩D0(f2)1 �= 0 is never satisfied, while the condi-

tion α(x∂x + y∂y + z∂z) = L1(−b∂x + a∂y)+L2(−c∂x + a∂z)+βx∂y − 2βy∂z

for α �= 0 has as a unique solution b = c = 0. It follows that

� = x.

The case a = 0 can be treated similarly and it never occurs.
Next it is possible to check in a similar way that h = x(ax + by +

cz)
∏m

i=1(x
2+ai(xz+y2)) has a linear Jacobian syzygy if and only if b = c = 0,

but this would give rise to a non reduced polynomial.
So, C is as in example 3.2.
Let us now assume that ∪m

i=1Ci = V (
∏m

i=1(xz + ai1y
2)) belongs to a

pencil of conics, all of them bitangent at {p = (1 : 0 : 0), q = (0 : 0 : 1)}, so
that we have the linear syzygy (x, 0,−z). Arguing as above we can determine
the lines that we can add to this conic arrangement in such a way that the
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new conic-line arrangement has Jacobian ideal with a linear syzygy. It turns
out that we have only six possibilities:

x
m∏

i=1

(xz + ai1y
2), y

m∏

i=1

(xz + ai1y
2), z

m∏

i=1

(xz + ai1y
2),

xz

m∏

i=1

(xz + ai1y
2), yz

m∏

i=1

(xz + ai1y
2), xyz

m∏

i=1

(xz + ai1y
2).

The case y
∏m

i=1(xz+ai1y
2) = 0 is not free by Theorem 3.1 (2). By observing

that the first and the third case are projectively equivalent, this concludes
the proof. �

3.2. Nearly Free Conic-Line Arrangements with a Linear Jacobian Syzygy

In this subsection, we classify conic-line arrangements C = V (f) of degree d
in P

2 with r = mrd(f) = 1 and minimal Tjurina number τ(C) = d2 − 3d+2.

Theorem 3.6. Let C = V (f) be a conic-line arrangement in P
2 of degree

d ≥ 6. Then, τ(C) = d2−3d+2 if and only if C is either a conic arrangement
C2 as in example 3.3(1), or a conic-line arrangement CL6 as in example
3.3(2).

Proof. All conic-line arrangements C ⊂ P
2 described in examples 3.3(1)–(2)

have total Tjurina number τ(C) = d2 − 3d + 2.
Let us prove the converse. The hypothesis τ(C) = d2 − 3d + 2, d ≥ 6

and Proposition 2.4 imply that r = mrd(f) = 1.
Indeed, the inequality 2.4 is never satisfied if d ≥ 6, hence we have

1 ≤ r ≤ d − 1
2

.

Moreover, the inequality d2 − 3d + 2 ≤ (d − 1)(d − r − 1) + r2 of 2.3 holds if
and only if r ≤ d−1

2 −
√

d2−6∗d+5
2 or r ≥ d−1

2 +
√

d2−6∗d+5
2 . Since d−1

2 < d − 2
if d ≥ 4, and since d−1

2 −
√

d2−6∗d+5
2 < 2 if d ≥ 6, we get r = 1.

By [15, Proposition 4.3], there are no line arrangements with mrd(f) = 1
and τ(C) = d2 − 3d + 2. Therefore, we only have two possibilities: either C
is a conic arrangement, or C is a conic-line arrangement. Arguing as in the
proof of Theorem 3.5 is it possible to conclude. �

4. Applications

As application of the previous results we obtain the main result of this paper,
namely, we determine when the Jacobian ideal of a conic-line arrangement is
the ideal of an eigenscheme. More precisely, we have:

Theorem 4.1. Let C = V (f) be a conic-line arrangement in P
2 of degree

d ≥ 5. The Jacobian ideal Jf of f is the ideal of an eigenscheme E(T ) if and
only if C is either a line arrangement L, or a conic-line arrangement CL2.
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Proof. Let C = V (f) be a line arrangement (resp. conic-line arrangement) as
described in the statement of the theorem. We have seen in example 3.2(1)
(resp. example 3.2(4)) that the Jacobian ideal Jf of C has is defined by the
maximal minors of the matrix⎛

⎝
(d − 1)x g0

−y g1

−(1 + d)z g2

⎞

⎠ , resp.

⎛

⎝
x h0

y h1

(1 − d)z h2

⎞

⎠ .

Equivalently, the Jacobian ideal is generated by the minors of the matrix
⎛

⎝
x 1

d−1g0

y −g1

z − 1
d+1g2

⎞

⎠ , resp.

⎛

⎝
x h0

y h1

z 1
d−1h2

⎞

⎠ .

By definition we have Jf = I(E(T )), where T = ( 1
d−1g0,−g1,− 1

d+1g2) ∈
(Symd−1

C
3)⊕(3), resp. T = (h0, h1,

1
d−1h2) ∈ (Symd−1

C
3)⊕(3) are partially

symmetric tensors.
Let us prove the converse. Assume that there is a partially symmetric

tensor T = (g1, g2, g3) ∈ (Symd−1
C

3)⊕(3) such that I(E(T )) = Jf . This
implies that C is free, τ(C) = d2 − 3d + 3, mrd(f) = 1 and that Syz(Jf )1 is
generated by three linearly independent linear forms. Example 3.2 together
with Theorem 3.5 proves what we want. �

Remark 4.2. There are examples of reduced plane curves C = V (f) ⊂ P
2

whose Jacobian ideal Jf is the ideal of an eigenscheme E(T ) and they are
not conic-line arrangements. For instance, f = y(x3 − y2z).

Remark 4.3. In particular, the geometry of the Jacobian scheme of a line ar-
rangement of type L or a conic-line arrangement CL2 is completely described
by [4, Theorem 5.5 and Remark 5.8]. We observe that the cited result con-
cerns only reduced eigenschemes, but it is not difficult to see, that it can be
extended to all non reduced zero-dimensional eigenschemes.

Specifically, we have that if k ∈ {2, . . . , d − 1} then no subscheme of
degree kd of Σf lies on a curve of degree k. Moreover, the class of S =
BlΣf

P
2 in the Chow ring A(P2 × P

2) can be determined. By choosing L1

and L2 as generators of the Picard groups of the two factors, and by setting
pi : P2 × P

2 → P
2 to be the two projections, we have that the two divisors

h1 = p�
1L1 and h2 = p�

2L2 are generators for A(P2 ×P
2). Then it is simple to

check that the class of S in A(P2 × P
2) is given by

[S] = (d − 1)h2
1 + dh1h2 + h2

2,

and, by taking into account the Hilbert-Burch matrices given in (3.3) and
(3.4), the surface S turns out to be the complete intersection of the two
divisors T ∼ h1 + h1 and D ∼ (d − 2)h1 + h2 given by

T = V (p0x + p1y + (1 − d)p2z), D = V (p0∂yzf + p1∂xzf)

in case L, respectively

T = V ((d − 1)p0x − p1y − (d + 1)p2z),
D = V ((d − 1) p0∂yzf + 2p1∂xzf − (d + 1)p2∂xyf),
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in case CL2, where ((x : y : z), (p0 : p1 : p2)) ∈ P
2 × P

2.
Finally, we observe that by [21] or [1, Lemma 5.6], every planar eigen-

scheme is the zero locus of section s ∈ H0(TP2(d− 2)), where TP2 denotes the
tangent bundle of P2.

Next we shall study the polar map associated with L and CL2 arrange-
ments. Observe that since we are concerned with curves of maximal total
Tjurina number and quasihomogeneous singularities, the degree of the gener-
ically finite polar map is (d − 1)2 − μ(C) = d − 2.

Remark 4.4. We can apply the argument used in the proof of [4, Theorem 5.5]
and we see that the possible contracted curves by the polar map associated
with line arrangements of type L or conic-line arrangements CL2 are only
lines.

Indeed, we observe that for any p = (p0 : p1 : p2) /∈ Σf , the point ∇f(p)
is the intersection point of the two distinct lines:

∇f(p) :
{

p0x + p1y + (1 − d)p2z = 0
∂yzf(p)x + ∂xzf(p)y = 0.

As a consequence, the fiber of ∇f over any point q = (q0 : q1 : q2) ∈ P
2 is

given by the zero locus of
{

q0x + q1y + (1 − d)q2z = 0
q0∂yzf + q1∂xzf = 0.

Since the first equations represents a line for any choice of q ∈ P
2, the claim

follows.

We shall see in the next result that the presence of contracted lines is
indeed always confirmed for L and CL2 arrangements. Recall that the critical
locus of the polar map is given by the hessian curve, and it consists of the
contracted curves and the ramification points for the polar map.

Proposition 4.5. Let C = V (f) be a conic-line arrangement in P
2 of degree

d such that the Jacobian ideal Jf of f is the ideal of an eigenscheme E(T ).
Then, in case L, the critical locus of ∇f is given by an arrangement of

3(d − 2) lines of the same type of L, it contains L and the contracted lines
by ∇f are precisely the lines of L.

In case CL2, the critical locus contains the tangent line �, and it is the
only contracted line.

Proof. It is classically known that all the lines of a line arrangement are
contained in the hessian curve.

Now we verify that the residual curve to L in Hess(f) consists of 3(d −
2)−d = 2d−6 concurrent lines through O = (0 : 0 : 1) and that such residual
lines are not contracted by ∇f .

The first claim follows by writing the hessian matrix explicitly:

Hess(f) =

⎛

⎝
∂xxf ∂xyf ∂xzf
∂xyf ∂yyf ∂yzf
∂xzf ∂yzf 0

⎞

⎠ .
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Since both ∂xzf and ∂yzf are polynomials in x and y only, by developing the
determinant h(f) = det Hess(f) with respect to the last row we see that h(f)

f

is a polynomial in x and y.
Moreover, as the polar map is given by

∇f =

⎛

⎝x2

⎛

⎝
d−1∑

i=1

ai

d−1∏

j �=i,j=1

(ajx + bjy)

⎞

⎠ , z

⎛

⎝
d−1∑

i=1

bi

d−1∏

j �=i,j=1

(ajx + bjy)

⎞

⎠ ,

d−1∏

i=1

(aix + biy)

)
,

we see that the line z = 0 is contracted to the point (0 : 0 : 1) and the lines
aix + biy = 0 to the points (ai : bi : 0).

Finally, to prove that there are no other contracted lines, we recall that
the Hilbert-Burch matrix of Jf is given by (3.1), and that ∇f is given by its
2 × 2 minors. It follows that for any p = (p0 : p1 : p2) /∈ Σf , the point ∇f(p)
is the intersection point of the two distinct lines

∇f(p) :
{

p0x + p1y + (1 − d)p2z = 0
∂yzf(p)x + ∂xzf(p)y = 0.

As a consequence, the fiber of ∇f over a point q = (q0 : q1 : q2) ∈ P
2 is given

by the zero locus of
{

q0x + q1y + (1 − d)q2z = 0
q0∂yzf + q1∂xzf = 0.

In particular, a ramification point appears in a fiber if and only if the set of d−
2 concurrent lines through (0 : 0 : 1) given by the equation q0∂yzf +q1∂xzf =
0 contains a (non reduced) double line, so the question is to determine the non
reduced elements of the pencil q0∂yzf + q1∂xzf . But the latter can be seen as
a pencil of divisors in P

1, and precisely the Jacobian pencil of the polynomial
∂2f . If the factors of f are general, the polynomial ∂2f ∈ C[x, y]d−1 is general
too. Therefore, the ramification points of the polar map ∇∂2f are given by
its hessian.

We finally treat the case of an CL2 arrangement. It is well-known that
any linear component of a plane curve is contained in the Hessian curve.
Moreover, if f = x

∏m
i=1(xz + aiy

2), the polar map is given by

∇f =

⎛

⎝
m∏

i=1

qi + xz

⎛

⎝
m∑

j=1

m∏

i=1,i �=j

qi

⎞

⎠ , 2xy

⎛

⎝
m∑

j=1

aj

m∏

i=1,i �=j

qi

⎞

⎠ ,

x2

⎛

⎝
m∑

j=1

m∏

i=1,i �=j

qi

⎞

⎠

⎞

⎠ ,

where we set qi = xz+aiy
2; we see that the line V (x) is contracted to a point.

To see that there are no other contracted lines, we observe that such a line
should contain a subscheme of degree at least d − 1 in the Jacobian scheme;
the only possible candidates are the tangent line in the second osculating
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point of the conics, that is the line V (z), or the line V (y) connecting the two
singular points; but we can directly check that these cases do not occur. �

We conclude by observing that the geometry of the polar map seems to
encode some information concerning the topological type of the singularities
of a given curve, so we believe that it deserves further investigations.
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curves. J. Éc. polytech. Math. 1, 247–267 (2014)

[14] Dimca, A., Sticlaru, G.: Free and Nearly Free Curves vs. Rational Cuspidal
Plane Curves. Publ. RIMS Kyoto Univ. 54, 163–179 (2018)

[15] Dimca, A., Sticlaru, G.: On the exponents of free and nearly free projective
plane curves. Rev. Mat. Complut. 30, 259–268 (2017)

[16] Dolgachev, I.V., Kapranov, M.: Arrangements of hyperplanes and vector bun-
dles on P

n. Duke Math. J. 71(3), 633–664 (1993)

[17] Eisenbud, D.: Commutative Algebra with a view towards Algebraic Geometry.
Graduate Texts in Mathematics, Springer, Berlin (1995)

[18] Ellia, Ph.: Quasi-complete intersections and global tjurina number of plane
curves,

[19] Hochster, M., Eagon, John A.: Cohen-Macaulay rings, invariant theory, and
the generic perfection of determinantal loci. Amer. J. Math. 93, 1020–1058
(1971)

[20] Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In
1st IEEE International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing, 129 - 132 (2005)

[21] Oeding, L., Ottaviani, G.: Eigenvectors of tensors and algorithms for Waring
decomposition. J. Symb. Comput. 54, 9–33 (2013)

[22] du Plessis, A.A., Wall, C.T.C.: Application of the theory of the discriminant
to highly singular plane curves. Math. Proc. Cambridge Philos. Soc. 126(2),
259–266 (1999)

[23] du Plessis, A.A., Wall, C.T.C.: Curves in P
2(C) with 1-dimensional symmetry.

Rev. Mat. Complut. 12(1), 117–132 (1999)

[24] P�loski, A.: A bound for the Milnor number of plane curve singularities. Cent.
Eur. J. Math. 12(5), 688–693 (2014)

[25] Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symbol. Comput. 40,
1302–1324 (2005)

[26] Shin, J.: A bound for the Milnor sum of projective plane curves in terms of
GIT. J. Korean Math. Soc. 53(2), 461–473 (2016)

[27] Kwing King, W. Ng., Vallès, J.: New examples of free projective curves
Rend. Istit. Mat. Univ. Trieste 54(13), 17 (2022). https://doi.org/10.13137/
2464-8728/34099

https://doi.org/10.13137/2464-8728/34099
https://doi.org/10.13137/2464-8728/34099


MJOM Jacobian Schemes of Conic-Line Arrangements and Eigenschemes Page 23 of 23    16 

Valentina Beorchia
Dipartimento di Matematica e Geoscienze
Università di Trieste
Via Valerio 12/1
34127 Trieste
Italy
e-mail: beorchia@units.it

Rosa M. Miró-Roig
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