
i

Efficient Quasi-Newton Methods in Trust-Region
Frameworks for Training Deep Neural Networks

Mahsa Yousefi

Abstract

Deep Learning (DL), utilizing Deep Neural Networks (DNNs), has gained significant
popularity in Machine Learning (ML) due to its wide range of applications in various
domains. DL applications typically involve large-scale, highly nonlinear, and non-convex
optimization problems. The objective of these optimization problems, often expressed
as a finite-sum function, is to minimize the overall prediction error by optimizing the pa-
rameters of the neural network. In order to solve a DL optimization problem, interpreted
as DNN training, stochastic second-order methods have recently attracted much atten-
tion. These methods leverage curvature information from the objective function and
employ practical subsampling schemes to approximately evaluate the objective function
and its gradient using random subsets of the available (training) data. Within this con-
text, active research is focused on exploring strategies based on Quasi-Newton methods
within both line-search and trust-region optimization frameworks. A trust-region ap-
proach is often preferred over the former one due to its ability to make progress even
when some iterates are rejected, as well as its compatibility with both positive definite
and indefinite Hessian approximations. Considering Quasi-Newton Hessian approxima-
tions, the thesis studies two classes of second-order trust-region methods in stochastic
expansions for training DNNs as follows. In the class of standard trust-region meth-
ods, we consider well-known limited memory Quasi-Newton Hessian matrices, namely
L-BFGS and L-SR1, and apply a half-overlapping subsampling for computations. We
present an extensive experimental study on the resulting methods, discussing the effect
of various factors on the training of different DNNs and filling a gap regarding which
method yields more effective training. Then, we present a modified L-BFGS trust-region
method by introducing a simple modification to the secant condition, which enhances
the curvature information of the objective function, and extend it in a stochastic set-
ting for training tasks. Finally, we devise a novel stochastic method that combines a
trust-region L-SR1 second-order direction with a first-order variance-reduced stochastic
gradient. Our focus in the second class is to develop standard trust-region methods
for both non-monotone and stochastic expansions. Using regular fixed sample size sub-
sampling, we investigate the efficiency of a non-monotone L-SR1 trust-region method
in training through different approaches for computing the curvature information. We
eventually propose a non-monotone trust-region algorithm that involves an additional
sampling strategy in order to control the resulting error in function and gradient ap-
proximations due to subsampling. This novel method enjoys an adaptive sample size
procedure and achieves almost sure convergence under standard assumptions. The effi-
ciency of the algorithms presented in this study, implemented in MATLAB, is assessed by
training different DNNs to solve specific problems such as image recognition and regres-
sion, and comparing their performance to well-known first- and second-order methods,
including Adam and STORM.

ii

Acknowledgments

It is with great appreciation that I acknowledge Prof. Ángeles Martínez Calomardo, my
supervisor, for all her unwavering support and encouragement throughout this journey.
I hold a greater sense of gratitude towards her for all maternal favors which meant to
me a lot.

I’d like to extend my gratitude to Prof. Nataša Krejić and Prof. Nataša Krklec Jerinkić
for their expertise, professionalism, and dedication to the work and our collaboration.
They made my visiting program at the University of Novi Sad an unforgettable success.
Moreover, I wish to appreciate the late Prof. Daniela di Serafino and Dr. Marco Viola
for their valuable contributions.

My sincere appreciation goes out to the director of the DMG, Prof. Daniele del Santo,
and the coordinator of the Ph.D. program, Prof. Stefano Maset. I wish to convey my
genuine heartfelt thanks to Prof. Paolo Novati; I am always more grateful to him than
he will ever know. I am also deeply thankful to Sir. Piero Falconer, the technician of
the DMG, for his kind help and delightful friendship.

It is my immense pleasure to have many lovely cousins and friends. Their presence in
ups and downs, and their understanding mean the world to me. My forever thanks go
out to my two closest friends, Elham and Marzieh.

I am truly blessed to have an open-minded and supportive family that sincerely embraces
my educational pursuits. I am at a loss for words to fully express my utmost gratitude
to my beloved ones for their lasting love and love.

Mahsa Yousefi

Trieste, May 2023

iii

Contents

List of Figures v

List of Tables vii

List of Algorithms viii

Notation x

1 Introduction 1

2 Basic Background on Unconstrained Optimization 7
2.1 Unconstrained Optimization Problem . 7
2.2 Line-Search and Trust-Region Strategies 10

3 An Overview on Optimization in Deep Learning 21
3.1 Deep Neural Networks . 22
3.2 Deep Learning Optimization Problem . 29
3.3 Deep Learning Optimization Strategies . 30
3.4 Experimental Setups . 36

4 Stochastic Trust-Region Methods 40
4.1 Stochastic Quasi-Newton TR Algorithms 40

4.1.1 Stochastic Limited-Memory BFGS TR 42
4.1.2 Stochastic Limited-Memory SR1 TR 44
4.1.3 Numerical Comparison . 48

4.2 A Stochastic Modified L-BFGS Trust-Region Method 67
4.2.1 A modified L-BFGS update . 67
4.2.2 Algorithm Framework . 70
4.2.3 Numerical Evaluation . 71

4.3 A Stochastic Hybrid L-SR1 Trust-Region Method 75
4.3.1 Algorithm Framework . 75
4.3.2 Numerical Evaluation . 79

5 Stochastic Non-Monotone Trust-Region Methods 82
5.1 Introduction . 82
5.2 A Stochastic Algorithm with Fixed-Size Sampling 83

5.2.1 Algorithm Framework . 85
5.2.2 Numerical Evaluation . 89

5.3 A Stochastic Algorithm with Adaptive Sampling 93
5.3.1 Algorithmic framework . 94

iv

5.3.2 Convergence Analysis . 98
5.3.3 Numerical Evaluation . 106

6 Concluding Remarks 114

A Programming Comments 118

B Two Solvers for the TR Subproblem 126

C Additional Algorithms 132

D Overlap Batching and Computations 137

E Additional Experiments 139

v

List of Figures

3.1 An artificial neural network with one hidden layer. 23
3.2 Convolution operation using a kernel of size 2 and stride size 2. 26
3.3 A residual building block. 28

4.1 A schematic of the fixed-size half-overlapping scheme within one epoch. . 48
4.2 The effect of the limited memory parameter on sL-QN-TR with CIFAR10. 54
4.3 The accuracy of sL-QN-TR on MNIST with LeNet-like. 55
4.4 The accuracy of sL-QN-TR on Fashion-MNIST with LeNet-like. 55
4.5 The accuracy of sL-QN-TR on Fashion-MNIST with ResNet-20. 55
4.6 The accuracy of sL-QN-TR on Fashion-MNIST with ResNet-20(no BN). 56
4.7 The accuracy of sL-QN-TR on CIFAR10 with ResNet-20. 56
4.8 The accuracy of sL-QN-TR on CIFAR10 with ResNet-20(no BN). 56
4.9 The accuracy of sL-QN-TR on MNIST with ConvNet3FC2. 57
4.10 The accuracy of sL-QN-TR on MNIST with ConvNet3FC2(no BN). 57
4.11 The accuracy of sL-QN-TR on Fashion-MNIST with ConvNet3FC2. 57
4.12 The accuracy of sL-QN-TR on Fashion-MNIST with ConvNet3FC2(no BN). . . . 58
4.13 The accuracy of sL-QN-TR on CIFAR10 with ConvNet3FC2. 58
4.14 The accuracy of sL-QN-TR on CIFAR10 with ConvNet3FC2(no BN). 58
4.15 The accuracy of sL-QN-TR vs time on MNIST with LeNet-like. 61
4.16 The accuracy of sL-QN-TR vs time on Fashion-MNIST with LeNet-like. 61
4.17 The accuracy of sL-QN-TR vs time on CIFAR10 with ConvNet3FC2. 62
4.18 The accuracy of sL-QN-TR vs time on CIFAR10 with ConvNet3FC2(no BN). . . 62
4.19 Comparisons of sL-QN-TR and STORM (CIFAR10, ConvNet3FC2). 63
4.20 Comparisons of sL-QN-TR and tuned Adam (CIFAR10, ConvNet3FC2). 63
4.21 Comparisons of sL-QN-TR and STORM (Fashion-MNIST, ResNet-20). 64
4.22 Comparisons of sL-QN-TR and tuned Adam (CIFAR10, ConvNet3FC2(no BN)). . 64
4.23 Comparisons of sL-QN-TR and tuned Adam (Fashion-MNIST, ResNet20). . . . 65
4.24 Comparisons of sL-QN-TR and tuned Adam (Fashion-MNIST, ResNet20(no BN)). 65
4.25 Comparisons of sL-QN-TR and tuned Adam (MNIST, LeNet-like). 65
4.26 The comparative behavior of sM-LBFGS-TR (MNIST, LeNet-like). 72
4.27 The comparative behavior of sM-LBFGS-TR (CIFAR10, ConvNet3FC2). 73
4.28 Error bars of sM-LBFGS-TR, sL-BFGS-TR and tuned Adam. 74
4.29 The comparative behavior of sM-LBFGS-TR vs CPU time. 74
4.30 The effect of L2 regularization parameter on the training of Adam 80
4.31 The effect of L2 regularization parameter on the training of sCLSR1-TR 81
4.32 The accuracy vs iteration evolution of sCLSR1-TR and tuned Adam 81
4.33 The accuracy vs time evolution of sCLSR1-TR and tuned Adam 81

5.1 The effect of regularization over testing accuracy of sL-SR1-NTR (bs = 500). . . 89

vi

5.2 The impact of curvature computing approaches of pHv+Fv types. 90
5.3 The impact of different curvature computing approaches. 91
5.4 The comparative accuracy of sL-SR1-NTR using Fv vs GPU Time (3 hours). . 92
5.5 Comparative testing accuracy of sL-SR1-NTR with different curvature approaches. 92
5.6 The comparative accuracy sL-SR1-NTR using Fv vs iteration (3 hours). 93
5.7 The accuracy variations of STORM and ASNTR on MNIST. 108
5.8 The accuracy variations of STORM and ASNTR on Cifar10. 108
5.9 The accuracy variations of STORM and ASNTR on DIGITS. 108
5.10 The loss variation of STORM and ASNTR on MNIST. 109
5.11 The loss variation of STORM and ASNTR on CIFAR10. 109
5.12 The loss variation of STORM and ASNTR on DIGITS. 109
5.13 Tracking subsampling in ASNTR. 111
5.14 Batch size progress with initial rng(42). 113

A.1 Properties in the MATLAB object dlNet. 121

D.1 An example of the overlapping batch formation within 2 epochs. 138

E.1 MNIST, LeNet-like: The accuracy and loss evolution vs epoch. 140
E.2 F-MNIST, LeNet-like: The accuracy and loss evolution vs epoch. 141
E.3 F-MNIST, ResNet-20: The accuracy and loss evolution vs epoch. 142
E.4 CIFAR10, ResNet-20: The accuracy and loss evolution vs epoch. 143
E.5 F-MNIST, ResNet-20(no BN): The accuracy and loss evolution vs epoch. . 144
E.6 CIFAR10, ResNet-20(no BN): The accuracy and loss evolution vs epoch. . 145
E.7 MNIST, ConvNet3FC2: The accuracy and loss evolution vs epoch. 146
E.8 F-MNIST, ConvNet3FC2: The accuracy and loss evolution vs epoch. 147
E.9 CIFAR10, ConvNet3FC2: The accuracy and loss evolution vs epoch. 148
E.10 MNIST, ConvNet3FC2(no BN): The accuracy and loss evolution vs epoch. . 149
E.11 F-MNIST, ConvNet3FC2(no BN): The accuracy and loss evolution vs epoch. 150
E.12 CIFAR10, ConvNet3FC2(no BN): The accuracy and loss evolution vs epoch. 151
E.13 MNIST and F-MNIST: The accuracy evolution vs CPU time. 152
E.14 CIFAR10: The accuracy evolution vs CPU time. 153
E.15 MNIST, LeNet-like: Comparison with tuned Adam. 154
E.16 F-MNIST, ResNet-20: Comparison with tuned Adam. 155
E.17 F-MNIST, ResNet-20(no BN): ResNet-20: Comparison with tuned Adam. . 156
E.18 CIFAR10, ConvNet3FC2: Comparison with tuned Adam. 157
E.19 CIFAR10, ConvNet3FC2(no BN): Comparison with tuned Adam. 158

vii

List of Tables

3.1 The details of the Networks. 39

4.1 The total number of networks’ trainable parameters (n). 51
4.2 Summary of the best sL-QN-TR approaches for classification problems. 53

5.1 Experimental configuration of sL-SR1-NTR. 88
5.2 Hyper-parameters of STORM and ASNTR. 106

E.1 Set of figures for image classification problems. 139

viii

List of Algorithms

1 Backtracking . 16
2 DNNs training . 25
3 sL-BFGS-TR . 49
4 sL-SR1-TR . 50
5 sM-LBFGS-TR . 69
6 sCLSR1-TR . 78
7 sL-SR1-NTR . 84
8 ASNTR . 97
C.1 Trust-Region radius adjustment . 132
C.2 L-BFGS Hessian initialization . 133
C.3 Orthonormal Basis BFGS (OBB) . 133
C.4 L-SR1 Hessian initialization . 134
C.5 Orthonormal Basis SR1 (OBS) . 134
C.6 sL-BFGS-TR (regular) . 135
C.7 sL-SR1-TR (regular) . 136

ix

Notation

Throughout this thesis, vectors are typically represented by lowercase letters, while ma-
trices are represented by uppercase letters unless otherwise specified in the context. To
facilitate the description of certain concepts in this thesis, a summary of the notations
used is provided below.

Symbols Descriptions

=, ̸=, ≈, ≜, ∞ equals, is not equal, is approximately, is defined by, infinity

>, < is greater than, is less than

≥, ≤ is greater than or equal, is less than or equal

ϕ′(σ) and ϕ′′(σ) derivative and second derivative of ϕ with respect to σ

∂f
∂w and ∂2f

∂w2 partial and second partial derivatives of f with respect to w

∇f , ∇2f gradient of f , Hessian of f

→, → a+, lim, lim inf approaches, approaches to a from the right, limit, infimum limit

lim, lim inf limit, infimum limit

⊥, □, ⃗ perpendicular, (box) end of proof, vector sign as in 0⃗

N, R, ∅ set of natural number, set of real number, the empty set

Rn set of real column vector of dimension n

Rn×m set of real matrix with n rows and m columns

A−1, AT , I the inverse of matrix A, the transpose of A, the Identity matrix

diag(d1, . . . , dm) the diagonal matrix with elements d1, . . . , dm

{.}, ∈, /∈ set or sequence, is member of, is not member of

⊂, ⊆, ∪, ∩ is proper subset of, is subset of, union, intersection

(To be continued ...)

x

Symbols Descriptions

ai indicates the ith element of the vector a or the sequence {ak}∞k=1

J:,i the ith column of the matrix J

∥.∥2, ∥.∥F L2 (Euclidean) norm of a vector, Frobenius norm of a matrix

|.| is the cardinality of a set or the absolute value of a number

E(x) mathematical expectation of a random variable x

E(x|F) conditional expectation of the random variable x given a σ-
algebra F

a.s abbreviates the expression "almost surely"

1

1

Introduction

Deep Learning (DL), using Deep Neural Networks (DNNs) [32], is a prominent technique

in Machine Learning (ML). It finds extensive application across various domains, includ-

ing speech recognition, natural language processing, image recognition, image restora-

tion, partial differential equations, advertising, bioinformatics, and drug discovery. In

DL applications (e.g., image recognition, which is the main focus of this thesis), an op-

timization problem is encountered: minw∈Rn f(w), where the objective function f(w)

is typically expressed as a finite sum of N loss functions, i.e., f(w) =
∑N

i=1 fi(w), cor-

responding to N sample pairs with inputs xi (e.g., images) and targets yi (e.g., true

classes). Each loss function, denoted as fi(w), quantifies the prediction error between

the network’s output h(xi;w) and the corresponding target yi, given by the function

L, i.e., fi(w) = L(h(xi;w), yi). Minimizing the total prediction error for the network’s

parameter vector w is necessary to train a DNN and enable accurate predictions. This

process is commonly referred to as the training task. While the architecture of net-

works and computational resources play crucial roles in determining the effectiveness

of DNNs, there is an opportunity to enhance efficiency through improvements in the

methodology employed for their training tasks. This is particularly challenging due to

the inherent characteristics of large-scale DL problems, which exhibit high nonlinearity

and non-convexity, making the application of traditional optimization strategies for the

minimization nontrivial. Computing the true gradient with respect to the entire set of

N samples can be computationally expensive. Hence, many optimization strategies in-

2

troduced for ML and DL problems utilize stochastic extensions. For example, references

such as [13, 20] describe a range of deterministic and stochastic methods employed in

solving these problems. In stochastic extensions, a practical subsampling scheme is uti-

lized to evaluate the objective function and its gradient by considering a random subset

(mini-batch) of training data at each iteration. The prevailing DL optimization strate-

gies primarily rely on first-order methods, such as stochastic gradient descent and its

variants, due to their low per-iteration computational cost and ease of implementation.

Nevertheless, these methods are not without their limitations. For instance, they may

struggle to escape saddle points and often require exhaustive trial and error to fine-tune

hyper-parameters, such as step length. As a result, stochastic second-order methods have

received significant attention recently, aiming to address some of these shortcomings.

Second-order methods utilize the Hessian matrix or its approximations to incorpo-

rate the curvature of the objective function, allowing for potentially faster convergence.

Among these methods, the Newton method is well-known, as it involves the exact calcu-

lation of the Hessian. However, in DL applications with millions of parameters, the com-

putational time and memory storage required for this exact calculation can be extremely

prohibitive. To address these limitations, several appealing alternatives have been devel-

oped to incorporate second-order information. For instance, Hessian-Free methods aim

to estimate the Newton direction by computing Hessian-vector products, bypassing the

direct calculation of the Hessian matrix. Another approach is the use of limited mem-

ory Quasi-Newton methods, which construct approximations of the true Hessian solely

based on gradient information. To apply these methods in large-scale DL applications,

one can either utilize the complete training set, fully leveraging modern computational

architectures or work with a mini-batch of the data to define the objective function and

its gradient. Looking towards (stochastic) Hessian-Free and (stochastic) Quasi-Newton

methods is an active area of research. For this thesis, we have chosen to focus on the

latter ones, while keeping the other methods for future study.

Regardless of whether one is working in a stochastic or deterministic setting, second-

order methods for DL optimization are typically considered within two fundamental

frameworks: line-search and trust-region [62]. Each framework provides a guideline for

3

determining an appropriate search direction to move from the current parameter values

to the next. Most line-search methods require a descent direction and, consequently, a

positive definite curvature matrix per iteration. However, in DL optimization with a non-

convex objective function, the true Hessian may not be positive definite. A second-order

trust-region framework can accommodate the Hessian or its approximations, whether

positive definite or not. Moreover, based on the distinguishing characteristics of trust-

region algorithms, unlike line-search methods, the progress of the learning/training will

not stop or slow down due to the occasional rejection of the undesired search directions.

More precisely, the parameter updating process using line-search methods is stopped if

the necessary conditions are not met, but it continues using trust-region methods once

the trust-region radius has been modified. These reasons have primarily motivated our

choice to utilize trust-region frameworks in this thesis study. Moreover, it is recognized

that non-monotonicity can have potential benefits by relaxing the typical requirement

of monotonic decreasing conditions in the objective function values; see e.g. [2]. This

relaxation allows for local increases in the values without significantly impacting the

convergence properties. In the context of stochastic extensions used in DL approaches,

we believe that it is also not desirable to impose strict decrease conditions on the ap-

proximate (subsampled) function since it serves as an estimation of the true objective

function. Hence, we explore both standard and non-monotone trust-region regimes in

the present study.

In light of the foregoing, this thesis studies stochastic Quasi-Newton trust-region

methods for training DNNs in large-scale DL applications. Specifically, by leveraging

different subsampling strategies and incorporating limited memory Quasi-Newton Hes-

sian approximations, we describe several second-order trust-region algorithms in both

standard and non-monotone regimes for training several DNNs in image classification

and regression problems. The research findings can be also found in [45, 81, 82, 83, 80].

We follow the thesis objectives through the following chapters:

Chapter 2 Since the generic DL optimization problem is an unconstrained minimiza-

tion, we provide an overview of this type of problem in this chapter. We highlight the

general properties of two fundamental optimization strategies: line-search and trust-

4

region methods. Although the line-search method is not the primary framework utilized

in this study, its review provides some ideas for a better understanding.

Chapter 3 We formulate the DL optimization problem as a particular unconstrained

minimization and do a literature review of some existing optimization strategies for

solving that. This in turn requires us to have an overview of DNNs at first because the

main goal of solving a DL minimization problem is finding an optimal parametric model,

i.e. h(.;w), which is defined by the structure of a DNN. We conclude the chapter with

some general experimental configurations required for the next chapters.

Chapter 4 In Section 4.1 of this chapter, we describe two stochastic algorithms based

on two well-known limited memory Quasi-Newton Hessian approximations, i.e. L-BFGS

and L-SR1, applied in a standard trust-region framework with a specific subsampling

strategy. We adopt a fixed-size batching approach, where successive mini-batches over-

lap by half. The performance of these algorithms is compared in training different DNNs,

with the goal of addressing the question of whether more efficient training can be achieved

by employing a positive definite L-BFGS update or an L-SR1 one which allows for an

indefinite Hessian approximation. We present and discuss the results of an extensive

experimental study according to the effect of some factors on training performance. In

Section 4.2, we introduce a variant of the L-BFGS trust-region method by making a

simple modification to the secant condition, which improves the curvature information.

The stochastic expansion of this method is used for the DL problem to assess its train-

ing performance. in training tasks. In Section 4.3, we discuss the benefits of combining

directions for training by a stochastic algorithm that utilizes both a second-order direc-

tion obtained from the L-SR1 trust-region subproblem and a first-order variance-reduced

direction derived from the reduced memory SAGA gradient.

Chapter 5 We focus on the efficiency of non-monotone trust-region methods in this

chapter. In Section 5.2, we describe a non-monotone second-order trust-region frame-

work that employs a regular fixed-size mini-batching approach and incorporates the

L-SR1 Hessian approximation. The curvature information for the approximation is up-

dated through subsampled Hessian-vector product techniques. Then, in Section 5.3, we

5

introduce a new stochastic second-order method that is designed to incorporate adap-

tive mini-batch sizes. Its foundation lies in an additional sampling strategy integrated

into a non-monotone trust-region framework, which aims to control the non-martingale

error resulting from subsampling and thus inexact approximation. Assuming standard

assumptions, we provide an almost sure convergence analysis of the proposed algorithm.

Chapter 6 This chapter presents the concluding remarks, a summary of the main

findings, and potential routes for future work.

Appendix A In this appendix, we provide a tutorial concerning the MATLAB Deep

Learning Toolbox in order to give basic intuition on constructing a DNN and performing

the necessary computations within a single training loop. Using Deep Learning Custom

Training Loops, we apply dlarray and dlnetwork MATLAB objects with automatic dif-

ferentiation for designing (initialized) DNNs as well as implementing prescribed training

algorithms which are not available as built-in functions in MATLAB, e.g. the second-

order optimization algorithms considered in this work.

Appendix B Second-order trust-region methods generate a sequence of iterates in a

trustful region by minimizing a quadratic model of the generic objective function for

finding a search direction along which the function is reduced. Solving this minimization

is the heart of any method of this type. In this appendix, we provide a comprehensive

description of the two solvers which are employed in this thesis to solve the trust-region

subproblem using Quasi-Newton Hessian approximations, i.e. L-BFGS and L-SR1.

Appendix C This appendix presents several specific algorithms that are referred to

in the context of the thesis.

Appendix D We use a special subsampling strategy for implementation in Chapter 3,

in which mini-batches are half-overlapped. In this appendix, however, we explain a more

general overlap subsampling and the associated computations, which may be of interest

to readers.

Appendix E This appendix consists of additional numerical results of Chapter 3.

6

In this thesis, we investigate the efficiency of the algorithms proposed for training

various types of DNNs to tackle specific problems, such as image recognition and re-

gression. We compare the performance of these algorithms against well-known first-

and second-order methods, including Adam [42] and STORM [9, 17]. Adaptive moment

estimation (Adam) is a popular efficient first-order optimizer used in ML and DL ap-

plications. Due to the high sensitivity of Adam to the values of its hyper-parameters,

such as the learning rate, it is commonly used after determining near-optimal values

through time-consuming grid search strategies. This algorithm utilizes a fixed-size sam-

pling strategy during the training phase. On the other hand, according to the statements

made in [9, 17], the number of true successful iterations in a trust-region approach will

be increased if the stochastic functions are sufficiently accurate. Considering this, the

authors of [17] introduced a second-order trust-region method called STORM that in-

corporates a progressive sampling strategy in which the sample size is determined by

min(N,max(b0(k + 1) + b1, ⌈ 1
δk

2 ⌉)). Here, with some positive constants b0 and b1, δk

represents the trust-region radius at iteration k, and N denotes the number of samples.

The performance of the algorithms presented in the thesis is assessed by tracking the

evolution of accuracy and loss on both training and test datasets during the training

phase. Due to the use of subsampling and forming mini-batches of training data, it is

important to note that the training accuracy is determined by the percentage of accurate

predictions made within the current mini-batch, and the training loss is obtained by

calculating the average of all single-loss functions corresponding to the samples of that

mini-batch. Likewise, throughout this thesis, the measurement of testing accuracy and

testing loss is defined using the entire set of test samples. These evaluation measures

are employed under different experimental conditions, such as fixed budgets of epochs,

time, gradient evaluations, and iterations, depending on the specific study.

We remark that the experiments of Section 4.1 and Section 4.2 were performed on

an Ubuntu Linux server virtual machine with 32 CPUs and 128GB RAM, and all exper-

iments of Section 4.3 and Chapter 5 were conducted on an Ubuntu 20.04.4 LTS (64-bit)

Linux server VMware with 20GB memory using a VGPU NVIDIA A100D-20C.

2

Basic Background on Unconstrained

Optimization

In the following two chapters, we concentrate on the essential concepts needed in our

study, i.e., numerical algorithms in DL. Since a DL problem is often an unconstrained

optimization problem, we generally explain in this chapter the basic analytic features of

an unconstrained optimization problem according to the excellent materials provided in

[62] and [8].

2.1 Unconstrained Optimization Problem

For making decisions in science and in the analysis of physical systems, optimization is a

very important tool. To use this tool, we must first identify some objective as a quanti-

tative measure of the performance of the system under study, which depends on certain

characteristics of the system, i.e., variables or parameters. Our goal is to find values

of the variables that optimize the objective. In optimization, an important distinction

is between problems that have constraints on the variables (constrained problems) and

those that do not (unconstrained problems).

Remark 2.1. An optimization problem arising in DL applications is mainly categorized

in the second class and nonlinear programming where the objective is a nonlinear func-

tion.

8 2.1. Unconstrained Optimization Problem

In unconstrained optimization as follow

min
w∈Rn

f(w), (2.1)

an objective smooth function f : Rn → R depending on real variables w ∈ Rn with no

restrictions on its n ≤ 1 values is minimized. The global minimizer of f is w∗ ∈ Rn such

that f(w∗) ≤ f(w) for all w ∈ Rn; i.e., a point where the function attains its least value.

The global minimizer can be difficult to find because our knowledge of f is usually only

local, and we do not have a good picture of the overall shape of f . On the other hand,

most of the time, a local minimizer can be found such that f(w∗) ≤ f(w) for all w in

a neighborhood if w∗, i.e., {w : ∥w − w∗∥ < R} for a given R > 0.1 However, there

are more efficient and practical ways to identify local optimality through necessary and

sufficient conditions as follows. Let ∇f : Rn → R and ∇2f : Rn → Rn×n be respectively

gradient and Hessian of the defined f .

Definition 2.1 (Stationary Point). If ∇f(w∗) = 0, then w∗ is called a stationary point.

This point can be a maximizer, a minimizer, or an inflection.

Theorem 2.1 (First-Order Necessary Conditions). Let f be continuously differentiable

in an open neighborhood of w∗. If w∗ is a local minimize, then ∇f(w∗) = 0; i.e., any

local minimizer must be a stationary point.

Definition 2.2 (Positive Definiteness). A matrix B is positive definite if pTBp > 0 for

all p ̸= 0, and positive semidefinite if pTBp ≥ 0 for all p.

Theorem 2.2 (Second-Order Necessary Conditions). Let ∇2f exist and be continuous

in an open neighborhood of w∗. If w∗ is a local minimizer of f , then ∇f(w∗) = 0 and

∇2f(w∗) is positive semidefinite.

Theorem 2.3 (Second-Order Sufficient Conditions). Suppose that ∇2f is continuous

in an open neighborhood of w∗, and that ∇f(w∗) = 0 and ∇2f(w∗) is positive definite.

Then w∗ is a strict local minimizer of f .

1The terminology strict minimizer is used when ≤ is substituted with <.

2. Basic Background on Unconstrained Optimization 9

Definition 2.3 (Convex and Non-convex Functions). Let C be a convex subset of Rn,

i.e., αx + (1 − α)y ∈ C holds for all x, y ∈ C and α ∈ [0, 1]. A function f : C → R is

called convex if f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y); otherwise, it is non-convex.

Theorem 2.4. When f is convex, any local minimizer w∗ is a global of f . In addition,

If f is differentiable, then any stationary point w∗ is a global minimizer of f .

Convergence Issues

As it is clear convexity plays a very important role in nonlinear programming. Moreover,

the first- and second-order necessary conditions can fail to guarantee local optimality of

w∗ if f is not convex; see Chapter 1 in [8]. There are a collection of algorithms for solving

(2.1), which are iterative. Beginning at w0, optimization algorithms generate a sequence

of iterates {wk} that terminates when either no more progress can be made or when it

seems that a solution point has been approximated with sufficient accuracy. All good

algorithms should possess some properties such as robustness, efficiency, and accuracy.

Some algorithms accumulate information gathered at w0, w1, . . . , wk−1, while others use

only local information obtained at the current point wk. They use this information to

find a new iterate wk+1 with a lower function value than wk, i.e., f(wk) < f(wk−1);

in this sense, they rely on an important idea, called iterative descent. We note that

non-monotone algorithms do not insist on a decrease in f at every step, but even these

algorithms require f to be decreased after some prescribed number of iterations (m),

i.e., f(wk) < f(wk−m). In deciding how to move from one iterate wk to the next, the

algorithms are distinguished. They can be categorized into two fundamental optimization

strategies, i.e., line-search and trust-region. We will address these strategies in the

following subsection.

Given an algorithm for solving (2.1), we ideally would like the generated sequence

{wk} to converge to a global minimum. Unfortunately, however, this is too much to

expect at least when f is not convex. The most we can expect from an optimization

algorithm is that it converges to a stationary point. Generally, depending on the nature

of the objective function f , the generated sequence {wk} need not have a limit point;

in fact, the sequence is typically unbounded if f has no local minima. However, this

10 2.2. Line-Search and Trust-Region Strategies

sequence has at least one limit point if we know the level set {w : f(w) ≤ f(w0)} is

bounded, and f is enforced to be descent at each iteration, then {wk} must be bounded

since it belongs to this level set. Although convergence to a single limit point may

not be easy to guarantee, the stationarity of limit points was proven [8] for a majority

of optimization algorithms to solve (2.1). From a general point of view, optimization

algorithms are usually guaranteed to converge to a stationary point [62].

Definition 2.4. The term "globally convergent" is used to refer to algorithms for which

the following property is satisfied

lim
k→∞

∥∇f(wk)∥ = 0. (2.2)

This limit is the strongest global convergence result that can be obtained; i.e., we cannot

guarantee that the optimization algorithm converges to a minimizer, but only that it is

attracted by stationary points. Only by making additional requirements can we strengthen

this result to include convergence to a local minimum.

2.2 Line-Search and Trust-Region Strategies

Most of the computational algorithms for solving (2.1) follow the line-search approach

that starts by fixing a direction pk and then identifying an appropriate distance, namely

the step length αk, or the trust-region approach that chooses a region whose maximum

distance from the current point is δk and then seeks a direction by minimizing a given

model mk whose behavior is similar to the function in that region. In this subsection,

we first describe some general properties of these strategies. Then, we outline their

convergence results.

Without explaining the development of each computational algorithm in detail, we

aim to only describe the proposed search direction which immediately specified that

algorithm which can be classified into first-order optimization methods if the gradient

is applied whether into second-order optimization methods if the Hessian matrix or an

approximation of that is exploited.

2. Basic Background on Unconstrained Optimization 11

General Properties of Line-Search Methods

In the line-search strategy, a search from the current iterate wk along a chosen direction

pk is done for a new iterate with a lower function value. At each iteration, a limited

number of trial step lengths is generated until one is found that loosely approximates

the minimum of

min
α>0

f(wk + αpk). (2.3)

This process including selecting a direction and seeking a step length is repeated for

each new iterate. Now, we concentrate on the selective search direction pk.

Definition 2.5 (Descent Direction). The search direction pk that makes an angle of

strictly greater than 90 degrees with ∇f(wk) is descent. When pk is a descent direction,

that is

pTk∇f(wk) = ∥pk∥∥∇f(wk)∥ cos(θk) < 0.

In general, any descent direction is guaranteed to produce a decrease in f , provided that

the step length (the distance of the current point) is sufficiently small. It follows that

f(wk + ϵpk) < f(wk) for all positive but sufficiently small values of ϵ.

Let Dk ∈ Rn×n be a symmetric and non-singular matrix. The search direction often

has the general form as pk = −Dk∇f(wk). Note that there are some other directions such

as Conjugate Gradient (CG) that are not typically expressed as pk = −Dk∇f(wk).

The following most important directions are used directly in line-search frameworks.2

Steepest Descent Direction. The simplest choice along which f decreases most

rapidly is pk = −∇f . Hence, the unit direction pk of the most rapid decrease is

pk =
−∇f(wk)
∥∇f(wk)∥2

.

This direction does not require the calculation of the second derivative and thus is low

per cost; however, it can provide a slow rate of convergence on different problems.

2These directions also have an analog in trust-region frameworks that we will see later.

12 2.2. Line-Search and Trust-Region Strategies

Newton Direction. Perhaps the most important search direction is the Newton direc-

tion pk. This direction by the following formula is reliable when the difference between

the true function f(wk + p) and its quadratic model mk(p) is not too large

pk = −∇2f(wk)
−1∇f(wk).

This direction provides a fast rate of local convergence. Nevertheless, its main drawback

is the need for the Hessian ∇2f(wk) which is often costly in its explicit computation or

is not available.

Quasi-Newton Direction. An attractive alternative to the Newton direction is ob-

tained by

pk = −Bk−1∇f(wk),

where Bk is an approximation of the true Hessian ∇2f(wk). The new matrix Bk+1

is chosen so that it mimics the property of ∇2f(wk), i.e., ∇2f(wk)(wk+1 − wk) ≈

∇f(wk+1)−∇f(wk) by holding the secant condition Bk+1sk = yk where sk = wk+1−wk

and yk = ∇f(wk+1) − ∇f(wk). Given an initial B0, additional requirements on Bk+1

such as symmetry and a restriction that the difference Bk+1−Bk be low rank are typically

imposed.

Gauss-Newton Direction. F = [F1, F2, . . . , FN] ∈ RN . For specially minimizing the

finite sum of N real-valued functions as f(w) = 1
2

∑N
i=1(Fi(w))

2, the direction Gauss-

Newton using the Gauss-Newton Hessian matrix HG = ∇F (wk)∇F (wk)T is obtained

as

pp = −HG
−1∇F (wk)F (wk),

The directions mentioned above are respectively special forms of a general descent di-

rection pk = −Dk∇f(wk) with Dk = I, Dk = ∇2f(wk)
−1, Dk = Bk

−1, and Dk = HG
−1.

However, most line-search algorithms require pk to be descent; when Dk is a symmetric

positive definite (SPD) matrix, pk is a descent direction in order to guarantee that f can

be reduced along this direction. In the case where Dk is not SPD, some modification

is necessary; two strategies for ensuring that the step is always of good quality were

2. Basic Background on Unconstrained Optimization 13

described in [62]. An approach consists in modifying ∇2f(wk) before or during solving

the linear system ∇2f(wk)pk = ∇f(wk) in order to have an SPD coefficient by adding

either a positive diagonal matrix or a full matrix to the true Hessian ∇2f(wk). There

are some heuristic examples of an SPD matrix Dk; for example, Diagonally Scaled

Steepest Descent known as a diagonal approximation to the Newton direction is a

descent direction in which Dk is a diagonal matrix whose elements are approximations

to the inverted second partial derivative of f . However, solving the linear system based

on factorization of the coefficient matrix can be expensive in large-scale problems. It is

therefore appealing to apply an iterative method from a family of methods by the gen-

eral name inexact Newton methods and terminate the iterations at some approximate

(inexact) solution of this system. In addition, as noted below, one can implement these

methods in a Hessian-free manner, so that the true Hessian need not be calculated

or stored explicitly at all. An inexact method can be used in both line-search or trust-

region frameworks; Newton-CG is one of the well-known examples of this type. This

method does not require explicit knowledge of the true Hessian; rather, it requires us to

supply matrix-vector products of the form ∇2f(wk)d for any given vector d. Automatic

differentiation (AD) and finite differences (FD) (see Chapter 8 in [62]) can be used to

calculate these Hessian–vector products when the Hessian is not available in analytic

form, and thus the user cannot supply code to calculate the second derivatives, or where

the Hessian requires too much storage. To briefly illustrate the AD and FD techniques

given ∇f(w) at w = wk, we respectively use the chain rule and the approximation as

follows

∂∇f(w)Td
∂w

=
∂∇f(w)T

∂w
d+∇f(w)T ∂d

∂w
=
∂∇f(w)T

∂w
d = ∇2f(w)d, (2.4)

and
∇f(wk + hd)−∇f(wk)

h
≈ ∇2f(w)d, (2.5)

for some small differencing interval h. Note that the price for bypassing the computation

of the Hessian in both techniques is one new gradient evaluation per iteration.

14 2.2. Line-Search and Trust-Region Strategies

General Properties of Trust-Region Methods

In the trust-region (TR) strategy, the information gathered about f is used to construct

a model function mk whose behavior near the current point wk is similar to that of f .

We restrict the search for a minimizer of mk to some trustable regions around wk with

maximum distance δk to ensure mk is a good approximation of f . At each iteration, TR

finds the candidate step p by approximately solving the subproblem

min
p

mk(wk + p), (2.6)

where wk + p lies inside a region. If the candidate solution wk + p does not produce

a sufficient decrease in f , we conclude that the TR is too large. Thus, δk is shrunk

and then the minimization is resolved. Throughout the thesis, the region is a ball as

∥pk∥2 ≤ δk, where the δk > 0 is called the TR radius at iteration k. In the following, we

describe two well-known models in TR. The problem (2.6) with respect to each of these

models is called the TR subproblem.

Second-Order TR Model. The model mk in (2.6) is often defined to be a quadratic

function of the form

mk(wk + p) = f(wk) + pT∇f(wk) +
1

2
pTBkp, (2.7)

with the function values f(wk) and gradient values ∇f(wk) at the point wk. The matrix

Bk is either the exact Hessian ∇2f(wk) (TR Newton method) or some approximation to

it such as a Quasi-Newton approximation (TR Quasi-Newton method). If Bk is positive

definite, solving the quadratic minimization produces Newton direction or Quasi-Newton

direction described in line-search, i.e., pk = −∇2f(wk)
−1∇f(wk) or pk = −B−1

k ∇f(wk),

respectively. However, unlike line-search, there is no restriction on Bk to be positive

definite. This is the main justification behind our decision to use TR frameworks for this

thesis study.

2. Basic Background on Unconstrained Optimization 15

First-Order TR Model. If Bk = 0 in (2.7), then

mk(wk + p) = f(wk) + pT∇f(wk). (2.8)

Using (2.8), the solution of (2.6) can be written in closed form as pk = − δk∇f(wk)
∥∇f(wk)∥2 .

This solution can be simply seen as one step of the Steepest Descent line-search where

the step length αk is determined by the TR radius δk; in fact, the TR and line-search

approaches are essentially the same in this case.

Convergence Results in Line-Search Methods

One iteration of a line-search method is given by wk+1 = wk + αkpk where αk is called

the step length by which the method decides how far to move along the given descent

direction at each iteration. The ideal choice of αk would be the global minimizer of (2.3)

that identifying this value is too expensive. More practical strategies perform an inexact

line-search to identify a step length that achieves adequate reductions in f at minimal

cost under a certain condition. A simple reduction condition is f(wk + αkpk) < f(wk)

which should be modified in order to provide sufficient reduction in f .

The popular condition for providing a sufficient reduction in f is measured by

f(wk + αpk) ≤ f(wk) + c1α∇f(wk)T pk, (2.9)

for some c1 ∈ (0, 1), say c1 = 10−4. In other words, the reduction in f should be

proportional to both the step length αk and the directional derivative ∇f(wk)T pk. The

sufficient decrease condition (2.9) called the Armijo condition is not enough by itself

to ensure that the algorithm using line-search makes reasonable progress because it is

satisfied for all sufficiently small values of α. To rule out unacceptably short steps, a

second criterion requires αk to satisfy

f(wk + αpk)
T pk ≥ c2∇f(wk)T pk, (2.10)

for some c2 ∈ (c1, 1), say c2 = 0.9 when pk is chosen as a Newton or Quasi-Newton

direction. The inequality (2.10) is called the Curvature condition. Armijo and Curvature

16 2.2. Line-Search and Trust-Region Strategies

Algorithm 1 Backtracking
1: Inputs: ᾱ > 0, τ ∈ (0, 1), α = ᾱ
2: while f(wk + αpk) > f(wk) + c1α∇f(wk)T pk do
3: α = τα
4: end while
5: αk = α

conditions with 0 < c1 < c2 < 1 are known collectively as Wolfe conditions.

Now, let define ϕ(α) = f(wk + αpk). Then (2.10) restates that ϕ′(αk) ≥ c2ϕ
′(0).

If the slope ϕ′(α) is strongly negative, we have an indication that the function f can

be significantly reduced by moving further along the chosen direction pk. However, if

the slope is slightly negative or even positive, it is a sign that we can not expect much

more reduction in f along pk; therefore, it makes sense to terminate the line-search.

Thus, a step length may satisfy the Wolfe condition without being particularly close to

a minimizer of ϕ. In order to force αk to lie in at least a broad neighborhood of a local

minimizer or stationary point of ϕ, the curvature condition is modified and requires αk

to satisfy the following Strong Wolfe conditions

f(wk + αpk) ≤ f(wk) + c1α∇f(wk)T pk,

|f(wk + αpk)
T pk| ≤ c2|∇f(wk)T pk|.

Remark 2.2. When a line-search algorithm chooses its candidate step lengths appropri-

ately, one can dispense with the extra curvature condition and use just (2.9) to terminate

the line-search procedure. A proper approach is so-called backtracking outlined in Al-

gorithm 1.

Remark 2.3. All line-search procedures generate a sequence {αi} given α0, that either

terminates with a step length satisfying the conditions specified by the user (e.g. Wolfe)

or determines that such a step length does not exist. Typical procedures consist of two

phases: a bracketing phase which finds an interval containing desirable candidates and a

selection phase which zooms into the interval to locate the final step length. The selection

phase usually reduces the bracketing interval during its search and interpolates some of

the function and derivative information gathered on earlier steps to guess the location of

the minimize; see [62] for the details.

2. Basic Background on Unconstrained Optimization 17

The following Theorem 2.5 shows that the steepest descent method is globally con-

vergent. It also describes how far pk in other methods can deviate from the steepest

descent direction and still produce a globally convergent iteration. Various line-search

termination conditions can be used in place of the Wolfe conditions to establish the

result.

Theorem 2.5. Consider any iteration of the form wk+1 = wk + αkpk, where pk is a

descent direction and αk satisfies the Wolfe conditions. Suppose that f is bounded below

in Rn and that f is continuously differentiable in an open set S containing the level set

L ≜ {w : f(w) ≤ f(w0)}, where w0 is the starting point of the iteration. Assume also

that the gradient ∇f is Lipschitz continuous on S, that is, there exists a constant L > 0

such that ∥∇f(w) − ∇f(w̃)∥ ≤ L∥w − w̃∥ for all w and w̃ ∈ S. Then Zoutendijk

condition holds, i.e.,
∑

k≥0 cos
2(θk)∥∇f(wk)∥2 <∞.

Remark 2.4. The result of Theorem 2.5 implies that cos2(θk)∥∇f(wk)∥2 → 0. If chosen

search direction pk in wk+1 = wk + αkpk ensures that the angle θk is bounded and

away from 90 degrees, i.e., there is a positive constant δ for all k such that cos(θk) =

−pTk ∇f(wk)

∥pk∥∥∇f(wk)∥ ≥ δ > 0, then cos2(θk)∥∇f(wk)∥2 → 0 immediately ends up with (2.2).

In other words, the global convergence results for line-search approaches can be driven

provided that the search directions are never too close to orthogonality with the gradient.

Convergence Results in Trust-Region (TR) Methods

One step of a TR approach is given by wt = wk+ pk as the trial point. The effectiveness

of this step critically depends on the size of the region; in fact, if the region of radius δk is

too small, the algorithm misses an opportunity to take a substantial step that will move

it much closer to the minimizer of the objective function. The new radius choice is based

on the agreement between the model function mk and the objective function f , which is

measured as ρk = f(wt)−f(wk)
mk(pk)−mk(0)

. If ρk is close to zero or negative, that means that the

region is too large, and the minimizer of the model may be far from the minimizer of the

objective function in the region, so we may have to reduce the size of the region and try

again. On the other hand, if ρk is close to 1, it is safe to expand the region for the next

iteration; otherwise, we do not alter the size of the region. In a TR approach, the step

18 2.2. Line-Search and Trust-Region Strategies

is accepted, i.e., wk+1 = wt only if

ρk > η, (2.11)

where η is zero or some small positive value, which means the new objective value

f(wk + pk) is less than the current value f(wk); otherwise, the step must be rejected,

i.e., wk+1 = wk.

We need now to focus on seeking an optimal pk through the TR subproblem. From

now on, let us consider the minimization (2.6) with respect to the second-order TR model

(2.7) and the region which is a ball of radius δk, i.e., ∥pk∥2 ≤ δk. By these assumptions,

the exact solutions of the TR subproblem are primarily characterized by the following

theorem.

Theorem 2.6 (Gay [28], Moré and Sorensen [58]). Let δk be a given positive constant. A

vector p∗k is a global solution of the second-order TR subproblem at iteration k if and only

if ∥p∗k∥2 ≤ δk and there exists a unique σ∗k ≥ 0 such that Bk+σ∗kI is positive semi-definite

with

(Bk + σ∗kI)p
∗
k = −∇f(wk), σ∗k(δk − ∥p∗k∥2) = 0. (2.12)

Moreover, if Bk + σ∗kI is positive definite, then the global minimizer is unique.

As we saw, line-search methods can be globally convergent even when the optimal

step length is not used at each iteration, i.e., the step length αk need only satisfy fairly

loose criteria. In a TR approach, in a similar fashion, it is enough for purposes of global

convergence to find an approximate solution pk that lies within the region and gives a

sufficient reduction in the model. The sufficient reduction can be quantified in terms of

the Cauchy point.

Definition 2.6 (Cauchy Point.). A closed-form definition of the Cauchy point can be

written as pCk = τkp
s
k where psk is the closed-form solution of the first-order TR subproblem

and

τk =

1 if ∇f(wk)TBk∇f(wk) ≤ 0,

min(1,
∥∇f(wk)∥3

δk∇f(wk)TBk∇f(wk)
) otherwise;

2. Basic Background on Unconstrained Optimization 19

thus,

pCk = −τk
δk∇f(wk)
∥∇f(wk)∥

.

The point pCk is inexpensive to calculate and crucially important in deciding if an

approximate solution to the TR subproblem is acceptable. The following Lemma 2.1

shows an estimate of the decrease in mk achieved by the Cauchy point.

Lemma 2.1. Let an approximate solution pk of the TR subproblem produce an estimate

of the decrease in mk as follows

mk(0)−mk(pk) ≥ c1∥∇f(wk)∥min

(
δk,
∥∇f(wk)∥
∥Bk∥

)
, (2.13)

where c1 ∈ (0, 1]. The Cauchy point pk ≜ pCk satisfies (2.13) with c1 = 1
2 .

However, by always taking the Cauchy point as our step, we are simply implementing

the steepest descent method with a particular choice of step length, which performs

poorly even if an optimal step length is used at each iteration, see Chapter 3 in [62] for this

observation. Moreover, the Cauchy point does not depend very strongly on the matrix

Bk while rapid convergence can be expected when Bk plays a role in determining the

direction, and if Bk contains valid curvature information about the function. Therefore,

TR algorithms compute the Cauchy point and then try to improve on it. Specifically, a

TR method will be globally convergent if its computed direction pk achieves a reduction

in the model mk at least as much as the reduction achieved by the Cauchy point.

Theorem 2.7. Let mk(0)−mk(pk) ≥ c2
(
mk(0)−mk(p

C
k)

)
for any search direction pk

such that ∥pk∥ ≤ δk. Then, pk satisfies (2.13) with c1 =
c2
2

.

Global convergence results to stationary points for TR methods come in two varieties,

depending on the value of the parameter η in (2.11). If η = 0, one can show that the

sequence of gradients ∇f(wk) has a limit point at zero while the stronger result that

∇f(wk)→ 0 is obtained if η > 0.

Theorem 2.8. Let η = 0 in (2.11). Suppose that ∥Bk∥ ≤ β for some constant β,

that f is bounded below on the level set {w| f(w) ≤ f(w0)} and Lipschitz continuously

differentiable in an open neighborhood, and that all approximate solutions pk of the TR

20 2.2. Line-Search and Trust-Region Strategies

subproblem satisfy (2.13). Let ∥pk∥ ≤ γδk for some constant γ ≥ 1 in order to allow the

results to be applied more generally provided that pk stays still within some fixed multiple

of the bound. Then

lim infk→∞ ∥∇f(wk)∥ = 0.

Theorem 2.9. Let the statement of Theorem 2.8 hold but η ∈ (0, 14). Then

limk→∞∇f(wk) = 0.

There are two well-known approaches namely Dogleg if Bk is positive definite, and the

2D subspace minimization method if Bk is indefinite in order to solve the TR subproblem

for pk, whose convergence results can be obtained by Theorem 2.8 or Theorem 2.9. The

third method is CG-Steihaug (CG-Newton in TR framework) and is most appropriate

when Bk is the exact Hessian or any Quasi-Newton Hessian approximation which can be

large and sparse. All these three strategies produce improvements on the Cauchy point;

see [62] for details. There is also a strategy due to Theorem 5.1 that finds nearly exact

solutions (p∗k, σ
∗
k) at the cost of eigendecomposition of the matrix Bk together with an

ingenious application of a 1D Newton method in order to identify the value of σ∗k through

∥p∗(σ)∥ = δk such that Bk+σI is positive definite and p(σ) = −(Bk+σI)−1∇f(wk). In

[58], a safeguarded version of the root-finding Newton method is described such that its

termination criteria ensure that the approximate solution pk satisfied mk(0)−mk(pk) ≥

c1 (mk(0)−mk(p
∗
k)) and ∥p∗k∥ ≤ γδk with c1 ∈ (0, 1] and γ > 0. These ensure that the

approximate solution achieves a significant fraction of the maximum decrease possible in

the modelmk; see [62, 58] for more details. We consider a variation of this latter approach

for solving TR Quasi-Newton methods in the next chapters of this thesis. In this variant

[15], the optimal Lagrange multiplier σ∗k is computed by the Newton method with a

judicious initial guess that does not require safeguarding. This initial guess guarantees

the method to converge monotonically to σ∗k. With σ∗k in hand, p∗k is computed directly

by a formula; the detail is provided in Appendix B.

3

An Overview on Optimization in

Deep Learning

Our focus is specifically on optimization strategies tailored for training DNNs. Thus, in

Section 3.1, we have an overview of DNNs; detailed materials about DNNs can be found,

for example, in [32, 70]. Then, in Section 3.2 and Section 3.3, we respectively describe

the DL minimization problem and conduct a literature review of existing optimization

strategies for solving it. In Section 3.4, we provide experimental configurations that are

utilized throughout the thesis. Let us begin this chapter by introducing two concepts

that are commonly encountered in DL and ML literature. The main utility of all ML

models, such as those used for image recognition, lies in their capability to generalize

knowledge learned from observed training data to unseen instances. Consequently, these

models are associated with two primary phases, as follows:

Training. During the training phase, a neural network gradually learns by adjusting

its parameters, facilitating progress in performing the specific task using extracted fea-

tures from a given training dataset. The training process of neural networks is closely

intertwined with optimizing an objective function defined in the underlying problem.

Upon completion of the training phase, an optimized model with adapted parameters is

ready for the inference phase. The selection of an optimization method is an important

step in designing a learning approach, which forms the focus of this thesis.

22 3.1. Deep Neural Networks

Inference. During the inference phase, the trained neural network is deployed on a

validation or testing dataset to compute an output. This output serves as an evaluation

of the training phase and indicates the extent to which the trained DNN can generalize

to similar problems.

3.1 Deep Neural Networks

An (artificial) neural network (ANN) is a popular machine learning technique that comes

from the inspiration from a biological neural network of our brain. It is often visualized

as a set of interconnected artificial neurons, also called units or nodes. As a computing

system, it consists of a composition of many functions together, takes some input, and

returns an output. Theoretically, an ANN is capable of learning any mathematical

function with sufficient training data. A Feedforward network as the simplest ANN

is often arranged in (fully connected) layers each of which by a width referring to the

number of neurons in that layer. The model is associated with a directed acyclic graph

describing how the functions are composed together. As Figure 3.1 illustrates, given

the input x ∈ R2, there are three functions a[1], a[2], and a[3] associated with the first

layer (input layer), the second layer (hidden layer), and the third layer (output layer),

respectively, to form the output ŷ. Let W [1] ∈ R4×2 and W [2] ∈ R4×1 be weights

parameters which are columns unrolled as w[1] ∈ R8 and w[2] ∈ R4, respectively. Thus,

the output can be defined as

ŷ ≜ h(x;w) = a[3](a[2](a[1](x;w[1], b[1]);w[2], b[2]))

where

a[1](x;w[1], b[1]) ≜ a[1](W [1]x+ b[1]), a[2](x;w[2], b[2]) ≜ a[2](a[1](x;w[1], b[1]) + b[2]).

The single column vector of parameters w includes w[1], b[1], w[2] and b[2], respectively.

The chain structure of the output is the most commonly used structure in ANNs, whose

overall length gives the depth of the model. The names Deep Learning and Deep Neural

Networks (DNNs) are arisen from this terminology.

3. An Overview on Optimization in Deep Learning 23

Figure 3.1 An artificial neural network with one hidden layer.

In the chain structure described above, the weighted sum z of each layer is the

input to a nonlinear activation function, e.g. a[1], a[2], or a[3], which produces the

value a for the next layer; i.e., a = σ(z). Activation functions work as gates that

decide how the information should be passed on in a DNN. Two of the most common

activation functions are the rectified linear unit (ReLU) function σ(z) = max(0, z), which

often is the default one in modern neural networks, and the hyperbolic tangent function

σ(z) = tanh(z), which is widely used as an alternative to the logistic sigmoid function

σ(z) = (1 + e−z)−1 whose value lies in (0, 1) but is not zero-centered. It is possible to

have different activation functions in a network. For instance, corresponding a[3], the

softmax function σ(z) = ezi/
∑C

j=1 e
zi for i = 1, 2, . . . , C can be used in the output layer

in a classification problem with C possible classes; the vector σ(z) sum to 1, so the

output can be interpreted as probabilities whose the highest value corresponds to what

the network predicts.

Forward and Backward Propagation. Let us explore the process of training an

ANN by considering the XOR ("exclusive or") function as an example. This will involve

the concepts of forward and backward propagation. The XOR function is an operation

on two binary values x1 and x2 as given input data. The XOR function returns 1 when

exactly one of these binary values is equal to 1; otherwise, it returns 0. Let the XOR

function provide the target function y = f∗(x) that must be learned by an ANN. Given

the input data, the (chain) model mentioned above provides the function ŷ = h(x;w). To

make the function h as similar as possible to f∗, the model must adapt the parameters w;

in fact, the training of an ANN is based on adapting the parameters vector w. The loss

function L(ŷ, y) ∈ R can be seen as a distance metric that quantifies how far away the

24 3.1. Deep Neural Networks

network’s prediction ŷ is from y. In the forward pass, the execution starts by feeding the

inputs through the first layer and then creating outputs for the subsequent layers. In fact,

upon the computation of ŷ and consequently L with respect to the current parameters w,

one forward pass is executed. During the process of backward pass, the model calculates

the gradient of the loss function with respect to the current parameters. Subsequently,

the parameters are updated in a direction that minimizes the loss. We notice that the

derivative of the loss function, i.e. the gradient, is computed using the chain rule of

calculus from the last layer to the input layer. Once the gradient is computed, it is used

to perform a gradient-based optimizer for updating parameters. Note that each layer

and also an optimizer may contain a set of hyper-parameters that cannot be trained and

therefore have to be chosen (carefully) before the training process. The essential steps of

the training process for a neural network are highlighted in Algorithm 2; the forward,

backward, and optimizer are shorthands for calling the respective functions. The focus

of this thesis is on optimization techniques for DNN training.

Remark 3.1. The theory of backpropagation procedure for a feedforward network can

be found in different textbooks, e.g. [32, 70]. This procedure can be generalized for

other specialized kinds of neural networks by applying automatic differentiation [3, 62]

which is a set of techniques to evaluate the partial derivative of a function specified by a

computer program.

Remark 3.2. In Algorithm 2, the variable epoch counts the number of one pass through

whole N data examples. Moreover, a full gradient is computed with respect to all N

examples and then applied to a (deterministic) optimizer in line 15. However, one can

apply a stochastic optimizer as optimizer(w, g) in the inner loop, using a single gradient

evaluated with respect to a randomly selected single example, e.g. (x, y).

Convolutional Neural Networks (CNNs)

CNNs are a specialized kind of neural network for processing data that has a known

grid-like topology, e.g. images. A convolutional layer is a fundamental component of

a CNN that utilizes a specialized mathematical operation known as convolution. The

parameters of a CNN’s layer are comprised of a collection of trainable filters or kernels.

3. An Overview on Optimization in Deep Learning 25

Algorithm 2 DNNs training
1: Inputs: Training dataset with N samples {(xi, yi)}Ni=1, initial parameters w, hyper-

parameters
2: while Progress is made in terms of some measure of accuracy, do
3: epoch = 0
4: for i = 1, 2, . . . , N do
5: Loss = 0
6: Gradient = 0⃗
7: (x, y) = (xi, yi)
8: ŷ ← forward(x,w)
9: l← loss(ŷ, y)

10: g ← backward(l, w)
11: Loss = Loss+ l
12: Gradient = Gradient+ g
13: end for
14: Loss = Loss/N
15: Gradient = Gradient/N
16: w ← optimizer(w,Gradient)
17: epoch = epoch+ 1
18: end while
19: Result: The trained model is available for the inference phase.

The size of a filter refers to its spatial dimensions, specifically the width, and height.

Typically, these filters are square-shaped, meaning they have equal width and height

dimensions. In a given convolutional layer, all filters share the same filter size, and the

number of filters determines the depth of the output volume, also known as feature maps.

For example, if 10 different filters of size 2 are used for the convolution in Figure 3.2,

the number of feature maps (the depth of output) is also 10. A convolution operation in

a 2D grid is performed by letting a kernel slide over the input of each layer. Then, the

obtained weighted sum is fed into a nonlinear function in order to produce an activation

value for the next layer. Figure 3.2 illustrates the process of performing a convolution

operation. The stride refers to the step size used to traverse the input vertically and

horizontally. In the depicted scenario, the filter slides with a stride size of 2 over the

image, resulting in a smaller feature map compared to the original image. To control

the spatial size of feature maps, one can employ a padding process. Padding involves

adding zeros to the outer edges of the layer’s input. This approach prevents the (rapid)

reduction of feature map dimensions that occurs during convolution without padding. In

certain cases, it is desirable to precisely preserve the spatial size of a layer’s input volume.

For instance, in the context of Figure 3.2, the feature map’s spatial size can match that

of the original image by adding ⌈ input size
stride size⌉ = ⌈

4
2⌉ layers of zeros to the outer edges of

26 3.1. Deep Neural Networks

Figure 3.2 Convolution operation using a kernel of size 2 and stride size 2.

the image. This padded image can then be subjected to a 2× 2 filter. Pooling layers are

additional important layers utilized for downsampling in neural networks. In a pooling

layer, each channel of an input volume is divided into non-overlapping rectangles, and

specific values are outputted. The two widely used pooling functions are max-pooling

and average-pooling. Max-pooling selects the maximum value within each subregion,

while average-pooling computes the average value. Another commonly employed pooling

operation is 2-D global average-pooling, which calculates the mean across the height and

width dimensions of each channel in an input volume.

Remark 3.3 (Overfitting vs. Underfitting.). Overfitting is a behavior of a learning

approach, that occurs when the model is so closely fitted to the training data in the

training phase but is unable to respond to new data in the inference phase. It can happen

because (1) the model of a DNN is too complex, and (2) the training data size is too small

for the model and/or contains large amounts of irrelevant information. Underfitting is

the opposite concept of overfitting. In the early stages of training, it is common to

observe underfitting behavior as the trained model is still far from the desired function.

As training progresses over a longer duration, the network begins to grasp the underlying

representation of the data. However, there is a risk of the network memorizing intricate

patterns within the training data that may not generalize well during the inference phase.

Regularization is a very important technique to prevent overfitting. When formulating the

DL optimization problem in the next section, a common regularization technique relying

on modifying the objective function is defined. We describe below the dropout layer that

relies on modifying the network itself in order to reduce its complexity.

3. An Overview on Optimization in Deep Learning 27

Dropout and Batch Normalization. The dropout layer [71] and batch normaliza-

tion layer [38] are additional layers that can be incorporated into the network architec-

ture. Dropout is a regularization technique that modifies the architecture during training

to prevent overfitting. The core concept is to randomly deactivate units in the neural

network, where individual nodes are either dropped out of the network with a probability

of 1 − p or retained with a probability of p. This strategy helps improve generalization

by reducing the network’s reliance on specific nodes or features. During the inference

phase, all units in this layer are considered, and the dropout operation is not applied.

To accelerate the training process and mitigate sensitivity to network initialization,

a widely adopted technique is to incorporate a batch normalization layer between a

convolutional layer and an activation layer. This layer performs both standardization

and normalization on the output of the preceding layer during training. By standardizing

the outputs and normalizing them to have zero mean and unit variance, this layer helps

stabilize the learning process and allows for more efficient training. Let z[l]i be the ith

sample of a batch of training data, e.g. J , in a batch normalization layer indicated as

layer l. The values of this sample vector are standardized as ẑi[l] =
z
[l]
i −µ√
σ2+ϵ

, where the

scalar ϵ improves numerical stability, and µ and σ2 are respectively the mean and the

variance of the batch J of size bs = |J |

µ =
1

bs

bs∑
i=1

z
[l]
i , σ2 =

1

bs

bs∑
i=1

(z
[l]
i − µ)

2. (3.1)

Then, ẑ[l]i is normalized by offset β and scale γ as z̃[l]i = γẑ
[l]
i +β. When network training

finishes, the batch normalization layer requires a fixed mean and variance to normalize

the new data for the inference phase. These quantities (µ̄ and σ̄2) can be tracked during

the training phase. Let X{1} be the first batch of data used in one step of this phase,

and let µ = [µ{1}[1], µ{1}[2]] where µ{1}[1] and µ{1}[2] denote the mean of X{1} in first and

second batch normalization layers, respectively. Then, set the mean running average as

µ̄ = µ. Using X{2}, in a similar fashion, we have µ = [µ{2}[1], µ{2}[2]]. Therefore, µ̄ is

updated as follows

µ̄ = ϕµ+ (1− ϕ)µ̄, σ̄2 = ϕσ2 + (1− ϕ)σ̄2, (3.2)

28 3.1. Deep Neural Networks

Figure 3.3 A residual building block.

where ϕ denotes the statistic decay value, say 0.1. This process must be continued to

the end of the training phase. In a similar manner, the variance running average can be

computed as σ̄2 in (3.2).

Residual Neural Networks (ResNets)

The intuition behind adding more layers is that these layers progressively learn more

complex features extracted from low level to high level. But it has been found that there

is a maximum threshold for depth with the traditional CNN model. In [36], a typical

example shows that the percentage of the error for a 56-layer network is more than a

20-layer one in both the training and testing phases. The degradation of accuracy could

be more related to the vanishing gradient problem, which has been diminished with the

introduction of Residual Blocks for very DNNs which lead to ResNets [36]; see Figure 3.3.

Each residual block has a skip connection or shortcut, which is a direct connection that

bypasses certain layers in between (stacked layers). Without such a shortcut, the input x

undergoes a weighted sum and then passes through the activation function F , resulting

in the output F(x). Using an identity shortcut, the residual block produces the output

H(x) = F(x) + x. This shortcut adds neither extra parameters nor computational

complexity. A different shortcut can be also applied when the dimensions of F(x) differ

from those of x. This shortcut can involve zero-padding, or it can be implemented by

adding a 1 × 1 convolutional layer to match the dimensions. By enabling the gradient

to flow through these skip connections, the issue of vanishing gradient is mitigated.

Additionally, by enabling the model to learn identity functions, deeper networks exhibit

performance comparable to, if not better than, shallower networks.

3. An Overview on Optimization in Deep Learning 29

3.2 Deep Learning Optimization Problem

Deep Learning (DL) is defined as training DNNs to learn from given data in order to

do a certain task. Let N = {1, 2, . . . , N} denote the index set of the training dataset

{(xi, yi)}Ni=1 where N represents the total number of sample pairs. Each pair consists of

an input xi ∈ Rd and a corresponding target yi ∈ RC . Mathematically, a DL problem is

often formulated as the unconstrained minimization of a finite sum function, expressed

as

min
w∈Rn

f(w) ≜
1

N

N∑
i=1

fi(w), (3.3)

where w ∈ Rn is the vector of trainable parameters and fi(w) ≜ L(yi, ĥ(xi;w)) with a

relevant loss function L(·) measuring the prediction error between the target yi and the

network’s output h(xi;w). In fact, a parametric function h(xi; ·) : Rd −→ R is found

such that the overall prediction error is minimized. In deep learning applications, this

function is then utilized to predict outputs for unseen data.

Regularized DL Optimization Problem. The objective function in (3.3) can be

expressed with a regularization term. As we discussed earlier, overfitting occurs when

a trained network performs accurately on the given data, but cannot generalize well to

new data. Regularization is a broad term that describes attempts to avoid overfitting.

Since large weights may lead to neurons that are sensitive to their inputs and hence less

reliable when new data is presented, one can modify the objective function in order to

encourage small weights by using L2 regularization as follow

min
w∈Rn

f(w) ≜
1

N
(
∑
i∈N

fi(w) +
λ

2
∥w∥22), (3.4)

where λ > 0 is the regularization factor. The backpropagation algorithm undergoes a

negligible and affordable adjustment due to the use of this well-known regularization

technique. Another technique for modifying the objective function in (3.3) is known

as Jacobian regularization [37]. The primary goal of that is to penalize significant

changes in the prediction h(xi;w) ∈ RC in response to small variations in the ith input

xi ∈ Rd. Doing so makes the network more robust to input data polluted by noise. The

30 3.3. Deep Learning Optimization Strategies

regularized DL problem using Jacobian regularization is achieved by

min
w∈Rn

f(w) ≜
1

N
(
∑
i∈N

fi(w) +
λ

2
∥Jxi∥2F), (3.5)

where ∥Jxi∥F is the Frobenius norm of the input-output Jacobian matrix J ≜ Jxi ∈ RC×n

associated with the ith input xi. Given v1, v2, . . . , vmp as mp random vectors in RC , and

the network’s output ŷ = h(xi;w) ∈ RC , we have

∥Jxi∥2F ≈
1

mp

mp∑
j=1

∂(vTj ŷ)

∂x
. (3.6)

Given a random vector v ∈ RC drawn from a standard normal distribution, the approxi-

mate value ∥Jxi∥2F is obtained by the Hutchinson’s trick, i.e., Ev[vTJJT v] = trace(JJT).

According to (3.6), computing ∥Jxi∥2F is equivalent at the cost ofmp gradient evaluations.

In practice, mp = 1 in order to minimize the computational burden.

Remark 3.4. Note that the biases in the parameter vector w are not regularized.

3.3 Deep Learning Optimization Strategies

To solve the large-scale, highly nonlinear, and often non-convex optimization problem

defined in (3.3), traditional optimization algorithms are often ineffective. Consequently,

significant efforts have been dedicated to the development of DL algorithms. This section

aims to address some of these advancements.

Deterministic vs Stochastic Approaches

In many applications in statistics, machine learning, economics, and transportation (see

[74] and references therein), the following stochastic optimization problem as expected

risk arises

min
w∈Rn

f(w) ≜ E(F (w, ξ)), (3.7)

where F : Rn × Rd is continuously differentiable and possibly non-convex, E(.) is the

mathematical expectation taken with respect to the random variable ξ, and the param-

eter vector w is ideally chosen to minimize the expected loss. In some cases, e.g., when

3. An Overview on Optimization in Deep Learning 31

the function F (., ξ) is not given explicitly and/or the distribution function is unknown,

the minimization of the expected risk is untenable. Thus, in practice, the objective

is to find a solution to a problem that involves estimating the expected risk. There

are two competing approaches, see e.g. [26], to solve (3.7): Stochastic Approximation

(SA) and Sample Average Approximation (SAA). A classical SA method traced back

to [65], as the prototypical stochastic optimization method is the stochastic gradient

descent (SGD). This method mimics the steepest gradient descent method as follows

wk+1 = wk − αk∇fik(wk) where αk is the step length and ik refers to the ikth realiza-

tion ξik which is chosen randomly for all k ∈ {0, 1, . . .}, see e.g. [12]. Each iteration

of this method is very cheap, involving only the computation of the stochastic gradi-

ent ∇fik(wk). The SAA approach, as a special case of (3.7), involves the minimization

of the empirical risk given a set of realizations {ξik}Ni=1 of ξ. This can be formulated

as minw∈Rn f(w) ≜ 1
N

∑N
i=1 fi(w), where fi(w) ≜ f(w, ξik) and N is assumed to be

extremely large. Notice that the DL problem (3.3) is exactly the empirical risk mini-

mization described above, where {(xi, yi)}Ni=1 corresponds to {ξik}Ni=1. For solving this

optimization problem, one can employ deterministic optimization methods in which the

full gradient ∇f(w) is obtained as follows:

∇f(w) = 1

N

∑
i∈N
∇fi(w).

In DL applications with a very large number of training samples (large N), however,

computing functions and gradients are expensive. Alternatively, optimization methods

using subsampling can be applied. At each iteration of these types of methods, an

approximation of the objective function is evaluated with respect to a random subset

(mini-batch) of training data whose index set is Nk ⊆ N with the sample size Nk = |Nk|.

Usually, Nk is much smaller than N for k = 0, 1, . . . so that algorithms operate in

the stochastic approximation regime. In this regime, the subsampled function and its

subsampled gradient are respectively defined as follows

fNk
(w) =

1

Nk

∑
i∈Nk

fi(w), (3.8)

32 3.3. Deep Learning Optimization Strategies

and

∇fNk
(w) =

1

Nk

∑
i∈Nk

∇fi(w). (3.9)

Agreement 3.1. In this study, any methods that employ a subsampling strategy, whether

using a fixed sample size or an adaptive one, are classified in the stochastic class of DL

methods.

Remark 3.5. Similar to algorithms in the deterministic regime, stochastic algorithms

can also be classified in the first- or second-order class of methods. First-order methods,

also known as gradient-based methods, utilize the gradient information of the objective

function to guide the optimization process. They typically update the parameters based

on the first derivative (gradient) of the objective function with respect to the parameters.

Second-order methods, on the other hand, utilize additional information in the form

of the second derivative (Hessian) of the objective function. These methods can provide

more precise information about the curvature of the objective function and can potentially

converge faster than first-order methods.

We now turn our attention to the main focus of the thesis, specifically numerical

methods for solving DL optimization, and begin with a literature review of several ex-

isting methods.

Existing Methods

In DL applications, stochastic first-order methods have been widely used due to their

low per-iteration cost, optimal complexity, easy implementation, and proven efficiency

in practice. The preferred method is the SGD method [65, 14], and its variance-reduced

variants, e.g. SVRG [41], SAG [66], SAGA [21], SARAH [60] as well as adaptive variants,

e.g. AdaGrad [25] and Adam [42]. However, due to the use of only first-order information,

they come with several issues such as relatively slow convergence, high sensitivity to the

choice of hyper-parameters, stagnation at high training loss [13], difficulty in escaping

saddle points [84], limited benefits of parallelism due to usual implementation with small

mini-batches and suffering from ill-conditioning [47]. The advantage of using second

derivatives is that the loss function is expected to converge faster to a minimum due to

3. An Overview on Optimization in Deep Learning 33

using curvature information. To address some of these issues, second-order approaches

are available. The main second-order method incorporating the Hessian matrix is the

Newton method [62], but it presents serious computational and memory usage challenges

involved in the computation of the Hessian, in particular for large-scale DL problems

with many parameters (large n); see [13] for details. Alternatively, Hessian-Free (HF)

[53] and Quasi-Newton (QN) [62] methods are two techniques aimed at incorporating

second-order information without computing and storing the true Hessian matrix.

An HF optimization method, also known as truncated Newton or inexact Newton

method (see Section 2.2) attempts to efficiently estimate Hessian-vector products by

a technique known as the Pearlmutter trick. This method computes an approximate

Newton direction using e.g. the conjugate gradient method which can calculate the

Hessian-vector product without explicitly calculating the Hessian matrix [51, 10, 78];

see (2.4) and (2.5) for the ways of producing the product. However, HF methods have

shortcomings when applied to large-scale DNNs. This major challenge is addressed

in [53] where an efficient HF method using only a small sample set (a mini-batch) to

calculate the Hessian-vector product could reduce the cost. According to the comparison

of complexity can be found in the table provided in [78], the number of iterations required

for the (modified) CG method, whether utilizing the true or subsampled Hessian matrix-

vector products, is higher compared to that of a limited memory QN method. Note

that HF methods are not limited to inexact Newton methods; many algorithms employ

approximations of the Hessian that maintain positive definiteness, such as those proposed

in [67] and [79], where the Gauss-Newton Hessian matrix HG and diagonal Hessian

approximation (see Section 2.2) are used, respectively. It is recognized that the curvature

matrix (Hessian) related to objective functions in neural networks is predominantly non-

diagonal. Therefore, there is a need for an efficient and direct approach to compute the

inverse of a non-diagonal approximation to the curvature matrix (without depending

on methods such as CG). This could potentially lead to an optimization method whose

updates are as potent as HF methods while being (almost) computationally inexpensive.

Kronecker-factored Approximate Curvature (K-FAC) [54] is such a method that can be

much faster in practice than even highly tuned implementations of SGD with momentum

34 3.3. Deep Learning Optimization Strategies

on certain standard DL optimization benchmarks. It is obtained by approximating

several large blocks of the Fisher information matrix as the Kronecker product of two

significantly smaller matrices. Precisely, this matrix is approximated by a block diagonal

matrix, where the blocks are approximated with information from each layer in the

network. Note that the Fisher information matrix is the expected value of HG.

QN methods aim to merge the efficiency of the Newton method with the scalability

of first-order methods. They build approximations of the Hessian matrix solely based on

gradient information and demonstrate superlinear convergence. The primary focus lies

on two widely recognized QN methods: Broyden-Fletcher-Goldfarb-Shanno (BFGS) and

Symmetric Rank One (SR1), along with their limited memory variants, abbreviated as L-

BFGS and L-SR1, respectively. These methods can leverage parallelization and exploit

the finite-sum structure of the objective function in large-scale DL problems; see e.g.

[13, 40, 5]. In stochastic settings, these methods, utilizing a subsampled gradient and/or

subsampled Hessian approximation, have been investigated in the context of convex and

non-convex optimization in ML and DL.

There are some algorithms for online convex optimization and for strongly convex

problems, see e.g. [16, 68]. For strongly convex problems, a method was proved in [59]

to be linearly convergent by incorporating a variance reduction technique to soothe the

effect of noisy gradients; see also [33]. There is also a regularized method in [56] as well

as an online method for strongly convex problems in [57] extended in [50] to incorporate

a variance reduction technique. For non-convex optimization in DL, one can refer to

e.g. [74] in which a damped method incorporating the SVRG approach was developed,

[7] in which an algorithm using overlap batching scheme was proposed for stability and

reducing the computational cost, or [11] where a progressive batching algorithm including

the overlapping scheme was suggested. A K-FAC block diagonal QN method was also

proposed, which takes advantage of network structures for required computations, see e.g

[30]. Almost all previously cited articles are considered with whether a BFGS or L-BFGS

update which is a symmetric positive definite Hessian approximation. A disadvantage of

using a BFGS update with such a property may occur when it tries to approximate an

indefinite (true Hessian) matrix in a non-convex setting while SR1 or L-SR1 updates can

3. An Overview on Optimization in Deep Learning 35

allow for indefinite Hessian approximations. Moreover, almost all articles using BFGS are

considered in line-search frameworks except e.g. [63] which adopts a trust-region (TR)

approach. Obviously, TR approaches [18] present an opportunity to incorporate both

L-BFGS and L-SR1 QN updates. As an early example, [27] can be referenced, where

L-SR1 updates are utilized within a TR framework. To the best of our knowledge, no

comparative study has yet explored the utilization of Quasi-Newton TR methods with

L-SR1 and L-BFGS.

The potential benefits of non-monotonicity can be traced back to [35], where a non-

monotone line-search technique was proposed for the Newton method. This technique

aimed to relax certain standard line-search conditions in order to avoid slow convergence.

Consequently, the resulting method allows for an increase in function values without af-

fecting convergence properties. The application of non-monotonicity in TR methods can

be found in [22], and later in various studies such as [2, 19]. Recently, while this thesis

was being written, a noise-tolerant TR algorithm was introduced in [72]. This algorithm

also incorporates relaxation for both the numerator and the denominator of the TR

reduction ratio. Non-monotonicity was also utilized in stochastic regimes. To address

problems with a finite-sum objective function, such as (3.3), a class of algorithms was

introduced in [43]; these algorithms employ non-monotone line-search rules that adap-

tively adjust the sampling scheme at each iteration. None of the previously mentioned

non-monotone methods have been specifically developed for training DNNs.

TR methods, whether employed in a standard or non-monotone regime, can take ad-

vantage of adaptive subsampling techniques. Various literature discusses adaptive sample

size strategies. One particular type was implemented for a second-order method within

a standard TR framework, known as the STORM algorithm [9, 17]. In the approach

used in [27], a periodical progressive subsampling strategy is employed. Another form

of adaptive subsampling, which utilizes inexact restoration, was proposed in [4] for a

first-order standard TR approach. Variable size subsampling is not limited to TR frame-

works; for example, in [11], a progressive subsampling technique was explored within a

line-search method.

36 3.4. Experimental Setups

There are a few studies that utilize additional sampling to manage the non-martingale

error associated with function and gradient approximations. References such as [39, 44,

23] provide further insights into these approaches. The final aim of this thesis study is to

employ an adaptive subsampling procedure with additional sampling within a 2nd-order

non-monotone TR framework.

3.4 Experimental Setups

In this subsection, we lay the groundwork for experimental purposes that will be utilized

throughout the thesis.

Classification and Regression. We regard image classification and regression prob-

lems as specific DL applications in the thesis. In order to solve an image classification

problem for images with unknown classes/labels, we need to seek an optimal classifica-

tion model by using a C-class training dataset {(xi, yi)}Ni=1 with an image xi ∈ Rd and

its one-hot encoded label yi ∈ RC . To this end, the generic problem (3.3) is minimized,

where its single loss function is softmax cross-entropy as follows

fi(w) ≜ L(yi, h(xi;w)) = −
C∑
k=1

(yi)k log(h(xi;w))k, i = 1, . . . , N. (3.10)

In (3.10), the output h(xi;w) is a prediction provided by a DNN whose last layer includes

the softmax function. On the other hand, the example of regression considered in this

study shows how to fit a regression model using a neural network to be able to predict the

angles of rotation of handwritten digits in images. The single loss in regression problem

is half-mean-squared error as follows

fi(w) ≜ L(yi, h(xi;w)) = −
1

2
(yi − h(xi;w))2, i = 1, . . . , N. (3.11)

Networks. A large variety of CNNs architectures with different numbers of fully con-

nected (FC) layers at the end of their structure have been proposed and tested for image

classification tasks. In this study, inspired by LeNet-5 mainly used for character recog-

nition tasks [49], we use the LeNet-like network with a structure described in Table 3.1.

3. An Overview on Optimization in Deep Learning 37

We also employ a modern residual network ResNet-20 [36] exploiting special skip con-

nections (shortcuts) to avoid possible gradient vanishing that might happen due to the

deep architecture. Finally, we consider ConvNet3FC2 with larger numbers of parameters

than the two previous networks for image classification and CNN-Rn for image regression

with structures as indicated in Table 3.1.

Datasets. As already mentioned, the learning approach consists of two main phases:

training and inference. During the training phase, the model is fitted using the training

dataset with the objective of achieving good performance on unseen data. The unseen

data is created by setting aside a portion of the entire dataset, known as the test set,

for evaluation purposes. For experiments, we consider several image datasets which are

split into training and test sets including N and N̂ samples, respectively. We use three

popular benchmarks, all in C = 10 categories, for image classification tasks as follows:

the MNIST [48] and Fashion-MNIST [77] datasets with 70 × 103 samples of handwritten

gray-scale digit images of 28×28 pixels, and the CIFAR10 dataset [46] with 60×103 RGB

images of 32×32 pixels. Every single image of datasets is defined as a 3-D numeric array

xi ∈ Rd where d = 28× 28× 1 for MNIST and Fashion-MNIST, and d = 32× 32× 3 for

CIFAR10. Every single label of these images, in order to be applicable in (3.10), must be

converted into a one-hot encoded label as yi ∈ RC . N̂ = 10× 103 images of each dataset

are set aside as test images, and the remaining N images are set as training images.

For the image regression task, we use the DIGITS dataset1 containing 10× 103 synthetic

images with 28 × 28 pixels as well as their angles (in degrees) by which each image

is rotated. The response yi (the rotation angle in degrees) is approximately uniformly

distributed between -45 and 45. Every single image is also defined as a 3-D numeric

array xi ∈ Rd where d = 28× 28× 1. In the image regression problem, each training

and testing dataset has the same number of images (N = N̂ = 5× 103).

Input Normalization. All image datasets whose pixels are in the range [0, 255] are

divided by 255 so that the pixel intensity range is bounded in [0, 1] (zero-one rescaling).

Besides this, we may apply z-score normalization, i.e., data standardization to have a

1https://www.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html

https://www.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html

38 3.4. Experimental Setups

mean of 0 and a standard deviation of 1. If so, we explicitly state it in the text. Input

normalization must be indicated through the input layer when defining the architectures

of networks; see Appendix A.

Initialization. The parameter w ∈ Rn of a DNN includes weights and biases of con-

volutional layers as well as scale and offset values of batch normalization layers. The

parameters in w ∈ Rn are initialized by the Glorot (Xavier) initializer [29] and zeros for

respectively weights and biases of convolutional layers as well as ones and zeros respec-

tively for scale and offset variables of batch normalization layers.

3. An Overview on Optimization in Deep Learning 39

Table 3.1: The details of the Networks.

Regression
(Conv(3× 3@8, 1, same)/BN/ReLu/AvgPool(2× 2, 2, 0))
(Conv(3× 3@16, 1, same)/BN/ReLu/AvgPool(2× 2, 2, 0))

CNN-Rn (Conv(3× 3@32, 1, same)/BN/ReLu
(Conv(3× 3@32, 1, same)/BN/ReLu/DropOut(0.2)
FC(1)

Classification
(Conv(3× 3@16, 1, 1)/BN/ReLu)

B1

{
(Conv(3× 3@16, 1, 1)/BN/ReLu)

(Conv(3× 3@16, 1, 1)/BN) + addition(1)/Relu

B2

{
(Conv(3× 3@16, 1, 1)/BN/ReLu)

(Conv(3× 3@16, 1, 1)/BN) + addition(1)/Relu

B3

{
(Conv(3× 3@16, 1, 1)/BN/ReLu)

(Conv(3× 3@16, 1, 1)/BN) + addition(1)/Relu

B1

(Conv(3× 3@32, 2, 1)/BN/ReLu)

(Conv(3× 3@32, 1, 1)/BN)

(Conv(1× 1@32, 2, 0)/BN) + addition(2)/Relu

ResNet-20 B2

{
(Conv(3× 3@32, 1, 1)/BN/ReLu)

(Conv(3× 3@32, 1, 1)/BN) + addition(1)/Relu

B3

{
(Conv(3× 3@32, 1, 1)/BN/ReLu)

(Conv(3× 3@32, 1, 1)/BN) + addition(1)/Relu

B1

(Conv(3× 3@64, 2, 1)/BN/ReLu)

(Conv(3× 3@64, 1, 1)/BN)

(Conv(1× 1@64, 2, 0)/BN) + addition(2)/Relu

B2

{
(Conv(3× 3@64, 1, 1)/BN/ReLu)

(Conv(3× 3@64, 1, 1)/BN) + addition(1)/Relu

B3

{
(Conv(3× 3@64, 1, 1)/BN/ReLu)

(Conv(3× 3@64, 1, 1)/BN) + addition(1)/g.AvgPool/ReLu)

FC(C/Softmax)

Classification
(Conv(5× 5@20, 1, 0)/ReLu/MaxPool(2× 2, 2, 0))

LeNet-like (Conv(5× 5@50, 1, 0)/ReLu/MaxPool(2× 2, 2, 0))
FC(500/ReLu)
FC(C/Softmax)

Classification
(Conv(5× 5@32, 1, 2)/BN/ReLu/MaxPool(2× 2, 1, 0))
(Conv(5× 5@32, 1, 2)/BN/ReLu/MaxPool(2× 2, 1, 0))

ConvNet3FC2 (Conv(5× 5@64, 1, 2)/BN/ReLu/MaxPool(2× 2, 1, 0))
FC(64, /BN/ReLu)
FC(C/Softmax)

Table’s note: The compound (Conv(5 × 5@32, 1, 2)/BN/ReLu/MaxPool(2 ×
2, 1, 0))) indicates a simple convolutional network (convnet) including a convolu-
tional layer (Conv) using 32 filters of size 5× 5, stride 1, padding 2, followed by
a batch normalization layer (BN), a nonlinear activation function (ReLu) and,
finally, a 2-D max-pooling layer with a channel of size 2× 2, stride 1 and padding
0. The syntax FC(C/Softmax) indicates a layer of C fully connected neurons fol-
lowed by the softmax layer. Moreover, (AvgPool), (g.Avg.Pool), and (DropOut)
show the 2D average-pooling, global average-pooling, and drop-out layers, respec-
tively. The syntax addition(1)/Relu indicates the existence of an identity shortcut
with functionality such that the output of a given block, say B1 (or B2 or B3),
is directly fed to the addition layer and then to the ReLu layer. Furthermore,
addition(2)/Relu in a block shows the existence of a projection shortcut with
functionality such that the output from the two first convnets is added to the
output of the third convnet, then the output is passed through the ReLu layer.

4

Stochastic Trust-Region Methods

In this chapter, our main focus is on stochastic Quasi-Newton (QN) trust-region (TR)

approaches for training deep neural networks (DNNs) in image classification tasks. In

Section 4.1, we consider limited-memory variants of two well-known QN updates, namely

L-BFGS and L-SR1, for approximating the Hessian matrix in the quadratic model of

the TR approach. Through an extensive experimental study, our goal is to investigate

whether more efficient training can be achieved by using a positive definite L-BFGS

update or an L-SR1 one which allows for an indefinite approximation and thus could

be beneficial for non-convex DL problems. In other words, the aim is to assess whether

indefinite Hessian approximations can be useful for non-convex DL problems. More-

over, we present in Section 4.2 a method using an L-BFGS variant obtained by a simple

modification of the secant condition that provides better curvature information. Finally,

in Section 4.3, we describe a stochastic hybrid method that combines an L-SR1 direc-

tion obtained by the stochastic trust-region subproblem and a direction derived by the

reduced memory SAGA gradient.

4.1 Stochastic Quasi-Newton TR Algorithms

Let Jk be a random mini-batch of a dataset whose index set is Nk ⊆ N of the size

Nk = |Nk|, by which subsampled function and corresponding gradient can be defined as

(3.8) and (3.9), respectively. In the framework of TR, the original DL problem (3.3) is

4. Stochastic Trust-Region Methods 41

reduced into a quadratic optimization for computing a search direction pk as follows

pk = arg min
p∈Rn

Qk(p) ≜
1

2
pTBkp+ gTk p s.t. ∥p∥2 ≤ δk, k = 0, 1, . . . , (4.1)

for some δk > 0, where Bk is an approximation of the Hessian and gk is the subsampled

gradient (3.9) which is evaluated at wk, i.e.,

gk = ∇fNk
(wk).

In this fashion, a sequence {wk} is produced whether the trail point wt = wk + pk

with computed pk is accepted or rejected. Moreover, the positive constant δk in (4.1)

is a radius of the region in which the similarity between the model and (subsampled)

function are compared. Adjusting δk as well as deciding to accept wt are subject to the

value of the reduction ratio as follows

ρk =
fNk

(wt)− fNk
(wk)

Qk(pk)−Qk(0)
. (4.2)

Precisely, it is safe to expand δk ∈ (δ0, δmax) with δ0, δmax > 0 when there is a very good

agreement between the model and (subsampled) function. However, the current δk is

not altered if there is a good agreement, or it is shrunk when there is weak agreement.

Mathematically, this adjustment is done by measuring the value of ρk in a given interval,

e.g., [τ2, τ3] ⊂ (0, 1); see Algorithm C.1. Moreover, since the denominator in (4.2) is

nonpositive, we have wk+1 ≜ wt if ρk is positive (ρk > η); otherwise, wk+1 ≜ wk. The

symmetric QN matrix Bk from Broyden class [62] can iteratively be constructed as a

Hessian approximation such that the following secant equation

Bk+1sk = yk (4.3)

holds with carvature pair (sk, yk) where

sk = pk, yk = gt − gk, (4.4)

42 4.1. Stochastic Quasi-Newton TR Algorithms

and

gt = ∇fNk
(wt).

The computational bottleneck of most TR methods is solving (4.1) for a search

direction pk. In [41], an efficient algorithm named OBS was proposed for solving (4.1)

where the Hessian approximation Bk is a Quasi-Newton update and is not necessarily

positive definite. This algorithm can be considered a generalized variant of the algorithm

solving (4.1) with positive definite Bk; see [1, 15, 63]. In this study, we term the latter

algorithm as OBB. In order to clarify the mechanism of these solvers for solving (4.1),

the details of their theory and algorithms (OBS, OBB) are provided in Appendix B and

Appendix C, respectively. For finding an optimal pair (σ∗k, p
∗
k), each solver solves the

stochastic variant of the optimality conditions in Theorem 5.1, i.e.,

(Bk + σ∗kI)p
∗
k = −gk, σ∗k(δk − ∥p∗k∥2) = 0. (4.5)

What follows introduces two stochastic training algorithms in a TR framework described

above, where Bk is limited-memory variants of two well-known QN Hessian approxima-

tions from Broyden class.

4.1.1 Stochastic Limited-Memory BFGS TR

BFGS is the most popular QN update which provides a Hessian approximation for which

(4.3) holds. It has the following general updating form

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
, k = 0, 1, (4.6)

The difference between the symmetric approximations Bk and Bk+1 is a rank-two matrix.

Moreover, the constructed QN update is a positive definite matrix, i.e., Bk+1 ≻ 0 since

B0 ≻ 0 and the curvature condition holds, i.e., sTk yk > 0. When this condition is not

satisfied, updating Bk is skipped. In this study, Bk is not updated if the following rule

given τ = 10−2 does not hold

sTk yk > τ∥sk∥2, τ ∈ (0, 1). (4.7)

4. Stochastic Trust-Region Methods 43

For large-scale DL optimization problems, the limited-memory BFGS update (L-BFGS)

is more efficient. In practice, only l≪ n (usually l < 100) recent pairs {sj , yj} are stored

in the following storage matrices

Sk ≜

[
sk−l sk−(l−1) . . . sk−1

]
, Yk ≜

[
yk−l yk−(l−1) . . . yk−1

]
, (4.8)

for k ≥ l. Using (4.8), the L-BFGS matrix Bk can be represented in the following

compact form

Bk = B0 +ΨkMkΨ
T
k , k = 1, 2, . . . , (4.9)

where

Ψk =

[
B0Sk Yk

]
, Mk =

−STk B0Sk −Lk

−LTk Dk

−1

. (4.10)

In (4.10), Ψk and Mk have at most 2l columns. Moreover, Lk is the strictly lower part,

Uk is the strictly upper part and Dk is the diagonal part of the following matrix splitting

STk Yk = Lk +Dk + Uk. (4.11)

As already mentioned, the initial Hessian approximation B0 must be positive definite.

It is often set to some multiple of the identity matrix as B0 = γkI. Thus, the selection

of γk is important in generating L-BFGS Hessian approximations Bk. A heuristic and

conventional method to determine the value of the multiple is

γk =
yTk−1yk−1

yTk−1sk−1
≜ γhk . (4.12)

The quotient of (4.12) is an approximation to an eigenvalue of ∇2F (wk) and appears to

be the most successful choice in practice [62]. Moreover, in DL optimization (3.3) where

the true Hessian might be indefinite, the positive definite L-BFGS Bk has a difficult task

to approximate it; therefore, the choice of γk would also be crucial for this second reason.

Let H ∈ Rn×n and g ∈ Rn are constant, and, for simplicity, the objective function of

(3.3) be as follows

f(w) =
1

2
wTHw + gTw. (4.13)

44 4.1. Stochastic Quasi-Newton TR Algorithms

Since∇f(wk+1)−∇f(wk) = H(wk+1−wk), we have yk = Hsk, and thus STk Yk = STk HSk

for all k. Moreover, using (4.9) for the quadratic function (4.13) with H = ∇2f(w), we

obtain

STk HSk − γkSTk Sk = STk ΨkMkΨ
T
k Sk. (4.14)

According to (4.14), if H is not positive definite, then its negative curvature information

can be captured by STk ΨkMkΨ
T
k Sk as γk > 0. However, choosing γk too big may cause

false curvature information while H is positive definite. To avoid this, see [27] for details

and [63], γk can be selected in (0, λ̂) where λ̂ is the smallest eigenvalue of the generalized

eigenvalue problem (GEP) STk HSku = λSTk Sku. Precisely, using (4.11), the following

GEP is solved

(Lk +Dk + LTk)u = λSTk Sku. (4.15)

If λ̂ ≤ 0, then γk = max{1, γhk}; see Algorithm C.2 for computing γk in L-BFGS update.

Given γk, the compact form (4.9) is applied in (4.5) where both optimality conditions

together are solved for pk ≜ p∗k through the OBB algorithm (Algorithm C.3). This

solver uses the spectral decomposition of Bk as well as the Sherman-Morison-Woodbury

formula for the inversion. By solving the TR subproblem for pk at each iteration, we

generate a sequence {wk} for the DL problem (3.3). This introduces a stochastic limited-

memory BFGS in a TR framework which is abbreviated as sL-BFGS-TR (regular);

see Algorithm C.6.

4.1.2 Stochastic Limited-Memory SR1 TR

Another popular QN update is the SR1 formula which generates good approximations to

the true Hessian matrix, often better than the BFGS approximations [62]. The general

SR1 updating formula verifying the secant condition (4.3) is given by

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk
, k = 0, 1, . . . , (4.16)

where the difference between the symmetric approximations Bk and Bk+1 is a rank-one

matrix. To prevent the denominator in (4.16) from vanishing, a simple safeguard that

works well in practice is simply skipping the update if the denominator is small [62]; i.e.,

4. Stochastic Trust-Region Methods 45

Bk+1 = Bk. In this study, Bk is updated only if the following rule given τ = 10−8 holds

|sT (yk −Bksk)| ≥ τ∥sk∥∥yk −Bksk∥, τ ∈ (0, 1). (4.17)

Unlike (4.6), if Bk in (4.16) is positive definite, Bk+1 may have not the same property. In

fact, the SR1 update generates a sequence of matrices that may be indefinite regardless

of the sign of yTk sk for each k. We note that the value of the quadratic model in (4.1)

evaluated at the descent direction pk is always smaller if this direction is also a direction

of negative curvature. Therefore, the ability to generate indefinite approximations can

actually be regarded as one of the chief advantages of SR1 updates in non-convex settings

like DL applications. Using Sk and Yk defined in (4.8), the limited-memory SR1 update

(L-SR1) matrix Bk can similarly be represented in a compact form as

Bk = B0 +ΨkMkΨ
T
k , k = 1, 2, , . . . , (4.18)

where

Ψk = Yk −B0Sk, Mk = (Dk + Lk + LTk − STk B0Sk)
−1. (4.19)

In (4.19), Ψk and Mk have at most l columns, and Lk and Dk are those defined in (4.11).

In [27], it was proven that the solution of the TR subproblem, i.e. pk, becomes closely

parallel to the eigenvector corresponding to the most negative eigenvalue of the L-SR1

approximation Bk. This shows the importance of Bk to be able to capture curvature

information correctly. In [27], a comprehensive discussion was provided showing how to

avoid false curvature information of Bk through computing B0. In fact, it was highlighted

how the choice of B0 = γkI for some γk ̸= 0 affects Bk, and not judiciously choosing γk in

relation to λ̂ as the smallest eigenvalue of (4.15) can have adverse effects. In particular, if

γk is too close to λ̂ from below, then Bk becomes ill-conditioned; on the other hand, if γk

is too close to λ̂ from above, then the smallest eigenvalue of Bk becomes negatively large

arbitrarily. As already seen in L-BFGS, selecting 0 < γk < λ̂ results in Bk ≻ 0 while

γk > λ̂ can result in false curvature information. According to [27], Lemma 4.1 suggests

selecting γk near but strictly less than λ̂ to avoid asymptotically poor conditioning while

improving the negative curvature properties of Bk.

46 4.1. Stochastic Quasi-Newton TR Algorithms

Lemma 4.1. Let the objective function of (3.3) be a quadratic function as (4.13), and

λ̂ denote the smallest eigenvalue of (4.15). Then, for all γk < λ̂, the smallest eigenvalue

of Bk denoted by λmin(Bk) is bounded above by the smallest eigenvalue of H = ∇2f(w)

in the span of Sk, i.e.

λmin(Bk) ≤ min
Skv ̸=0

vTSTk HSkv

vTSTk Skv
.

In this work, we set γk = max{10−6, 0.5λ̂} in the case where λ̂ > 0; otherwise the

γk is set to γk = min{−10−6, 1.5λ̂}; see Algorithm C.4 for computing γk. Given γk,

the compact form (4.18) is applied in (4.5) where the optimality conditions together are

solved for pk through the OBS solver [15] using the spectral decomposition of Bk as

well as the Sherman-Morison-Woodbury formula for the inversion; see Algorithm C.5.

Thus, the sequence {wk} is generated for the DL problem (3.3) after solving the TR

subproblem for pk at each iteration. The resulting stochastic limited-memory SR1 TR

algorithm is abbreviated as sL-SR1-TR (regular); see Algorithm C.6.

Batch Formation and Computations

Remark 4.1. The term regular refers to the regular sampling strategy applied in both

algorithms, where the mini-batch Jk with index set Nk of size Nk is exploited through

the iteration k. This was initially proposed in [68] as an alternative to the strategy in

which batches changed from one iteration to the next using a BFGS-based algorithm.

Thus yk is more stably computed as yk = gJkk+1 − g
Jk
k rather than yk = g

Jk+1

k+1 − g
Jk
k where

gJkk ≜ ∇fNk
(wk). Therefore, the regular sampling could avoid poor curvature estimates

due to stochastic gradient differences in yk and thus uninformative Hessian approximation

Bk+1. However, the regular sampling requires gk = ∇fNk
to be computed twice at wk

and wk+1. Alternatively, a cheaper overlap sampling strategy was proposed in [6]

in which only a common part between every two consecutive mini-batches Jk and Jk+1

whose index sets are respectively Nk+1 and Nk is employed for computing yk. Defining

Ok = Jk ∩ Jk+1 ̸= ∅ whose index set is Ok of size |Ok|, we obtain yk = gOk
k+1− g

Ok
k where

gOk
k+1 ≜ ∇fOk

(wk+1). Since Ok, and thus Jk, should be sizeable, the overlap sampling

strategy is generally called multibatch sampling.

4. Stochastic Trust-Region Methods 47

Remark 4.2. The reader may question whether it is valuable to employ the overlapping

strategy in stochastic gradient differences required in the previously described algorithms,

i.e.,

sk = pk, yk = gOk
t − g

Ok
k , (4.20)

where

gOk
k ≜ ∇fOk

(wk), gOk
t ≜ ∇fOk

(wt). (4.21)

To address this question, we have performed experiments in [83] where an L-BFGS-

based algorithm in a TR framework was proposed. We should note that if yk and ρk

are computed with respect to index overlapping set Ok and index set Nk, see respectively

(4.20) and (4.2), we can save altogether exactly 2|Ok| single gradients at wk and wt per

iteration. However, if one uses (4.4) rather than (4.20), only |Ok| single gradients at wk

can be saved per iteration; but instead, yk can be computed with low-variance gradients

because of using index set Nk instead of Ok.

Remark 4.3. Another natural question is whether it is meaningful to employ the overlap-

ping scheme in stochastic function differences and alternatively describe (4.2) as follows

ρk =
fOk

(wt)− fOk
(wk)

Qk(pk)
. (4.22)

In [83], we also addressed the second question in comparison using both measures (4.2)

and (4.22). Theoretically, it was also suggested in [17] that one could compute ρk as

in (4.22). However, a stochastic algorithm in a TR framework may have a challenging

task to hold a very good agreement between the quadratic model Qk(pk) and function

respectively computed with respect to Jk and Ok = Jk ∩Jk+1. In some instances based on

SR1 updates, we have found that (4.22) can lead to failure to converge; this observation

has been also commented in [75].

Considering Remarks 4.1–4.3, we aim to describe a specific variants of sL-BFGS-TR

(regular) and sL-SR1-TR (regular). To this goal, we form mini-batches Jk = Ok−1 ∪Ok,

for k = 0, 1, 2, . . . with two subsets Ok−1 and Ok such that |Ok| = |Ok−1| = os, and apply

half-overlap batching strategy as a specific variant of the overlap sampling. Let Nk,

Ok and Ok−1 be respectively index sets of Jk, Ok and Ok−1 such that Nk = Ok−1 ∪ Ok

48 4.1. Stochastic Quasi-Newton TR Algorithms

Figure 4.1 A schematic of the fixed-size half-overlapping scheme within one epoch.

with |Nk| = bs. Utilizing the notation defined in (4.21), then, subsampled function and

its gradient (see (3.8) and (3.9)) are computed as follows

fNk
(wk) ≜ fJkk =

1

2
(fOk−1

(wk) + fOk
(wk)), gk ≜ gJkk =

1

2
(g
Ok−1

k + gOk
k). (4.23)

We note that at each iteration, the quantities fOk−1
(wk) and gOk−1

k in (4.23) are obtained

from previous iteration. Figure 4.1 schematically shows batches Jk and Jk+1 overlapped

in half at iterations k and k + 1, respectively. Now, we consider both sL-BFGS-TR

(regular) and sL-SR1-TR (regular) with half-overlap batching, where the main quanti-

ties are obtained by (4.23), and the values of yk and ρk are computed using (4.4) and

(4.2), respectively. We outline these variants in Algorithm 3 and Algorithm 4 and name

them sL-BFGS-TR and sL-SR1-TR in the respective order. We would like to determine

whether more efficient training is obtained when using sL-BFGS-TR or sL-SR1-TR. This

curiosity is experimentally addressed in the next section.

4.1.3 Numerical Comparison

In this section, we present the results of extensive experimentation of both Algorithm 3

and Algorithm 4, which are simply indicated as sL-QN-TR, for training DNNs in several

image classification problems. Implementation details and programming codes of the

current section are provided on the following page, see also Appendix A:

https://github.com/MATHinDL/sL_QN_TR/

https://github.com/MATHinDL/sL_QN_TR/

4. Stochastic Trust-Region Methods 49

Algorithm 3 sL-BFGS-TR
1: Inputs: w0 ∈ Rn, epochmax, l, γ0 > 0, S0 = Y0 = [], δ0 > 0, 0 < τ1, τ < 1, bs

2: while epoch < epochmax or training accuracy < 100% do

3: if k = 0 then

4: Take O−1 and O0 such that |O−1| = |O0| and N0 = O−1 ∪ O0 of size N0 = bs

5: Evaluate fN0
(w0) ≜ fJ00 and g0 ≜ gJ00 by (4.23)

6: else

7: Take Ok such that |Ok−1| = |Ok| and Nk = Ok−1 ∪ Ok of size Nk = bs

8: Evaluate fNk
(wk) ≜ fJkk and gk ≜ gJkk by (4.23)

9: if mod(k + 1, N̄) = 0 then

10: Shuffle the data and epoch = epoch + 1

11: end if

12: end if

13: {Compute search direction}

14: if k = 0 then

15: Obtain pk = −δk
gk
∥gk∥

16: else

17: Obtain pk using Algorithm C.3

18: end if

19: {Computation at wt}

20: Evaluate fNk
(wt) ≜ fJkt and gt ≜ gJkt by (4.23) at the trial wt = wk + pk

21: {Compute curvature pair and ρk}

22: Compute (sk, yk) and ρk by (4.4) and (4.2)

23: if ρk ≥ τ1 then

24: wk+1 = wt {Update wk}

25: else

26: wk+1 = wk

27: end if

28: Update δk by Algorithm C.1 {Update δk}

29: if sTk yk > τ∥sk∥2 then

30: if k < l then

31: Store sk and yk as new columns in Sk+1 and Yk+1 {Update Bk}

32: else

33: Keep only l recent {sj , yj}kj=k−l+1 in Sk+1 and Yk+1

34: end if

35: Compute γk+1 for B0 by Algorithm C.2 and Bk+1 by (4.9)

36: else

37: Set Bk+1 = Bk

38: end if

39: k = k + 1

40: end while

Algorithm’s note: δ0 = 1, γ0 = 1, τ1 = 10−4, τ = 10−2, epochmax = 10.
Jk represents the mini-batch of data associated with the index set Nk.

50 4.1. Stochastic Quasi-Newton TR Algorithms

Algorithm 4 sL-SR1-TR
1: Inputs: w0 ∈ Rn, epochmax, l, γ0 > 0, S0 = Y0 = [], δ0 > 0, 0 < τ1, τ < 1, bs

2: while epoch < epochmax or training accuracy < 100% do

3: if k = 0 then

4: Take O−1 and O0 such that |O−1| = |O0| and N0 = O−1 ∪ O0 of size N0 = bs

5: Evaluate fN0
(w0) ≜ fJ00 and g0 ≜ gJ00 by (4.23)

6: else

7: Take Ok such that |Ok−1| = |Ok| and Nk = Ok−1 ∪ Ok of size Nk = bs

8: Evaluate fNk
(wk) ≜ fJkk and gk ≜ gJkk by (4.23)

9: if mod(k + 1, N̄) = 0 then

10: Shuffle the data and epoch = epoch + 1

11: end if

12: end if

13: {Compute search direction}

14: if k = 0 then

15: Obtain pk = −δk
gk
∥gk∥

16: else

17: Obtain pk using Algorithm C.5

18: end if

19: {Computation at wt}

20: Evaluate fNk
(wt) ≜ fJkt and gt ≜ gJkt by (4.23) at the trial wt = wk + pk

21: {Compute curvature pair and ρk}

22: Compute (sk, yk) and ρk by (4.4) and (4.2)

23: if ρk ≥ τ1 then

24: wk+1 = wt {Update wk}

25: else

26: wk+1 = wk

27: end if

28: Update δk by Algorithm C.1 {Update δk}

29: if |sT (yk −Bksk)| ≥ τ∥sk∥∥yk −Bksk∥ then

30: if k < l then

31: Store sk and yk as new columns in Sk+1 and Yk+1 {Update Bk}

32: else

33: Keep only l recent {sj , yj}kj=k−l+1 in Sk+1 and Yk+1

34: end if

35: Compute γk+1 for B0 by Algorithm C.4 and Bk+1 by (4.18)

36: else

37: Set Bk+1 = Bk

38: end if

39: k = k + 1

40: end while

Algorithm’s note: δ0 = 1, γ0 = 1, τ1 = 10−4, τ = 10−8, epochmax = 10.
Jk represents the mini-batch of data associated with the index set Nk.

4. Stochastic Trust-Region Methods 51

LeN
et-

lik
e

Res
Net

-20

Res
Net

-20
(no

BN)

Con
vNe

t3F
C2

Con
vNe

t3F
C2(

no
BN)

MNIST 431,030 272,970 271,402 2,638,826 2,638,442
Fashion-MNIST 431,030 272,970 271,402 2,638,826 2,638,442
CIFAR10 657,080 273,258 271,690 3,524,778 3,525,162

Table 4.1: The total number of networks’ trainable parameters (n).

Configurations

We have applied three types of networks LeNet-like, ConvNet3FC2, ResNet-20 (see

Table 3.1 for their architectures) as well as three benchmarks MNIST, Fashion-MNIST,

and CIFAR10 for image classification problems. Table 4.1 shows the total number of

trainable parameters, n, for each problem. To analyze the effect of batch normalization

[38] on the performance of the algorithms, we have also considered variants of ResNet-20

and ConvNet3FC2 networks, named ResNet-20(no BN) and ConvNet3FC2(no BN), in

which the batch normalization (BN) layers have been removed. We have also applied

z-score normalization through the input layer of ConvNet3FC2 and ResNet-20 whether

using batch normalization layers or not. We have used the same initial seed with the

MATLAB random number generator in implementations.

Experiments

We have compared sL-BFGS-TR and sL-SR1-TR to train the DNNs within at most

10 epochs, which was set as one of the stopping criteria. Besides, the training process

was concluded upon achieving a training accuracy of 100%. Using training and testing

datasets, we present the evolution of both accuracy (in percentage) and (total) loss values.

During the training phase, training loss and training accuracy are obtained with respect

to mini-batches while testing loss and testing accuracy are reported with respect to the

testing data set; see Chapter 1 for the definition of these evaluation measurements. In

this section, we report the numerical results based on training and testing accuracy and

leave those based on overall loss values in Appendix E. To allow for better visualization,

we have shown these measurements versus epochs using a determined frequency of display

whose value is reported at the top of the figures.

52 4.1. Stochastic Quasi-Newton TR Algorithms

What comes next is an analysis of how various elements including batch sizes, the

limited memory parameter, and CPU training/running time affect the performance of the

sL-QN-TR algorithms for training DNNs under the effect of batch normalization (BN)

layers. We have also provided comparisons between sL-QN-TR algorithms involving

particular fixed-size overlapping subsampling with a well-established second-order trust-

region method involving adaptive size subsampling, i.e. STORM, and a widely used

first-order algorithm involving regular fixed-size subsampling, i.e. Adam.

Remark 4.4. Take into consideration that certain algorithms achieved their endpoints

earlier than others in particular illustrations of the following experiments due to the

influence of the considered stopping conditions.

Influence of the limited memory parameter. The results reported in Figure 4.2

illustrate the effect of the limited memory parameter values l = 5, 10 and 20 on the

accuracy achieved by the algorithms with batch sizes bs = 500 and 5000 within a fixed

number of epochs on CIFAR10. As it is clearly shown in this figure, in particular for

ConvNet3FC2(no BN), the effect of the limited memory parameter is more pronounced

when large batches are used (bs = 5000). For large batch sizes the larger the value of l

the higher the accuracy. No remarkable differences in the behavior of both algorithms

with small batch size (bs = 500) are observed. It seems that incorporating more re-

cently computed curvature vectors (i.e. larger l) does not increase the efficiency of the

algorithms to train ConvNet3FC2 while it does when BN layers are removed. Finally, we

remark that we found that using larger values of l (i.e. l ≥ 30) was not helpful since it

led to higher overfitting in some of our experiments.

Influence of the batch size. We have considered different values of the mini-batch

size bs ∈ {100, 500, 1000, 5000}, or equivalently different values of the overlapping size

os ∈ {50, 250, 500, 2500}, for all considered problems and DNNs. The results of these

experiments for bs = 100, 1000, and l = 20 have been reported in Figures 4.3–4.14, see

Appendix E for more numerical results. The general conclusion is that when training

the networks for a fixed number of epochs, the achieved accuracy decreases when the

batch size increases. This is due to the reduction in the number of parameter updates.

4. Stochastic Trust-Region Methods 53

LeN
et-

lik
e

Res
Net

-20

Res
Net

-20
(no

BN)

Con
vNe

t3F
C2

Con
vNe

t3F
C2(

no
BN)

MNIST sL-SR1-TR both sL-SR1-TR both both
F-MNIST sL-SR1-TR both sL-SR1-TR both sL-SR1-TR
CIFAR10 sL-SR1-TR sL-BFGS-TR sL-SR1-TR sL-BFGS-TR sL-SR1-TR

Table 4.2: Summary of the best sL-QN-TR approaches for classification problems.

In fact, with a fixed number of epochs, the number of allowed iterations corresponding to

large batch sizes is not enough to reach good accuracy. Table 4.2 summarises the relative

superiority of one of the two stochastic QN algorithms over the other for all problems.

sL-SR1-TR performs better than sL-BFGS-TR for training networks without BN layers

while both QN updates exhibit comparable performances when used for training networks

with BN layers. "Both" refers to similar behavior. More comments are given below.

LeNet-like. Figures 4.3 and 4.4 show that both algorithms perform well in training

LeNet-like within 10 epochs to classify MNIST and Fashion-MNIST datasets, respec-

tively. Specifically, sL-SR1-TR provides better accuracy than sL-BFGS-TR.

ResNet-20. Figure 4.5 shows that the classification accuracy on Fashion-MNIST in-

creases when using ResNet-20 instead of LeNet-like, as expected. Both algorithms

of interest exhibit comparable performances when BN layers are used; nevertheless, we

point out the fact that sL-BFGS-TR using bs = 100 achieves higher accuracy than sL-

SR1-TR in less time. According to Figures 4.5–4.8, the numerical results on ResNet-20

with and without BN layers confirm that sL-SR1-TR performs better than sL-BFGS-TR

when these layers are not used, but as it can be clearly seen, the elimination of BN layers

causes a detriment of all methods performances.

ConvNet3FC2. Figures 4.9–4.14 show that sL-BFGS-TR still produces better test-

ing/training accuracy than sL-SR1-TR on CIFAR10 while both algorithms behave simi-

larly on MNIST and Fashion-MNIST datasets. Besides, Figure 4.13 shows sL-BFGS-TR

with bs = 100 within 10 epochs achieves the highest accuracy faster than sL-SR1-TR.

This observation confirms once more that this method is more reliable for networks that

are trained with smaller batch sizes in the presence of BN layers.

54 4.1. Stochastic Quasi-Newton TR Algorithms

Figure 4.2 The effect of the limited memory parameter on sL-QN-TR with CIFAR10.

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 500, Display frequency: 30

l=5, train

l=5, test

l=10, train

l=10, test

l=20, train

l=20, test

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 5000, Display frequency: 10

l=5, train

l=5, test

l=10, train

l=10, test

l=20, train

l=20, test

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 500, Display frequency: 30

l=5, train

l=5, test

l=10, train

l=10, test

l=20, train

l=20, test

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 5000, Display frequency: 10

l=5, train

l=5, test

l=10, train

l=10, test

l=20, train

l=20, test

(a) sL-BFGS-TR (up) and sL-SR1-TR (down) with ConvNet3FC2

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 500, Display frequency: 30

l=5, train

l=5, test

l=10, train

l=10, test

l=20, train

l=20, test

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 5000, Display frequency: 10

l=5, train

l=5, test

l=10, train

l=10, test

l=20, train

l=20, test

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 500, Display frequency: 30

l=5, train

l=5, test

l=10, train

l=10, test

l=20, train

l=20, test

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 5000, Display frequency: 10

l=5, train

l=5, test

l=10, train

l=10, test

l=20, train

l=20, test

(b) sL-BFGS-TR (up) and sL-SR1-TR (down) with ConvNet3FC2(no BN)

4. Stochastic Trust-Region Methods 55

Figure 4.3 The accuracy of sL-QN-TR on MNIST with LeNet-like.

0 0.05 0.1 0.15

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 100, Display frequency: 1

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

0 0.5 1 1.5 2

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 1000, Display frequency: 1

sL-SR1-TR(train)

sL-SR1-TR(test)

sL-BFGS-TR(train)

sL-BFGS-TR(test)

Figure 4.4 The accuracy of sL-QN-TR on Fashion-MNIST with LeNet-like.

0 1 2 3 4 5 6 7

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 100, Display frequency: 30

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 1000, Display frequency: 10

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

Figure 4.5 The accuracy of sL-QN-TR on Fashion-MNIST with ResNet-20.

0 0.5 1 1.5

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 100, Display frequency: 30

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 1000, Display frequency: 10

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

56 4.1. Stochastic Quasi-Newton TR Algorithms

Figure 4.6 The accuracy of sL-QN-TR on Fashion-MNIST with ResNet-20(no BN).

0 2 4 6 8 10

Epoch

0

20

40

60

80

100
A

c
c

u
r
a

c
y

Batch size: 100, Display frequency: 30

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 1000, Display frequency: 10

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

Figure 4.7 The accuracy of sL-QN-TR on CIFAR10 with ResNet-20.

0 2 4 6 8

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 100, Display frequency: 50

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 1000, Display frequency: 10

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

Figure 4.8 The accuracy of sL-QN-TR on CIFAR10 with ResNet-20(no BN).

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 100, Display frequency: 50

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 1000, Display frequency: 10

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

4. Stochastic Trust-Region Methods 57

Figure 4.9 The accuracy of sL-QN-TR on MNIST with ConvNet3FC2.

0 0.01 0.02 0.03 0.04 0.05

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 100, Display frequency: 1

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

0 0.5 1 1.5 2

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 1000, Display frequency: 1

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

Figure 4.10 The accuracy of sL-QN-TR on MNIST with ConvNet3FC2(no BN).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 100, Display frequency: 1

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

0 1 2 3 4

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 1000, Display frequency: 1

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

Figure 4.11 The accuracy of sL-QN-TR on Fashion-MNIST with ConvNet3FC2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 100, Display frequency: 20

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 1000, Display frequency: 10

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

58 4.1. Stochastic Quasi-Newton TR Algorithms

Figure 4.12 The accuracy of sL-QN-TR on Fashion-MNIST with ConvNet3FC2(no BN).

0 0.5 1 1.5 2

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 100, Display frequency: 20

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 1000, Display frequency: 10

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

Figure 4.13 The accuracy of sL-QN-TR on CIFAR10 with ConvNet3FC2.

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 100, Display frequency: 50

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 1000, Display frequency: 10

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

Figure 4.14 The accuracy of sL-QN-TR on CIFAR10 with ConvNet3FC2(no BN).

0 1 2 3 4 5 6

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 100, Display frequency: 50

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Batch size: 1000, Display frequency: 10

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

4. Stochastic Trust-Region Methods 59

CPU training time. We have run the sL-QN-TR algorithms (l = 20) for a maximum

budget of CPU time indicated on the x-axes of Figures 4.15–4.18 in order to see which

algorithm achieves the highest training accuracy faster. Figures show that sL-SR1-

TR trains faster with better accuracy than sL-BFGS-TR for training LeNet-like. For

training ConvNet3FC2 with and without BN layers, both algorithms behave comparably

within the selected interval of time when BN layers are used. Nevertheless, sL-SR1-

TR is faster to pass 10 epochs even if it does not achieve higher training accuracy.

This experiment illustrates that both algorithms can yield very similar training accuracy

regardless of the batch size. Despite the small influence of the batch size on the final

reached accuracy, it can be observed a slight increase in the accuracy when larger batch

sizes are used.

Comparison with STORM. As mentioned in Chapter 1, STORM involves an adap-

tive sample size rule as bk = min(N,max(b0(k+1)+ b1, ⌈ 1
δk

2 ⌉)). We have set, as in [17],

b0 = 100, and b1 is 32 × 32 × 3 for CIFAR10 and 28 × 28 × 1 for Fashion-MNIST. We

have implemented STORM as Algorithm 5 in [17] with L-SR1 and L-BFGS updates,

and thus OBS and OBB solvers for solving its TR subproblem, respectively. We have

considered half-overlapped batches of fixed-size bs ∈ {100, 500, 1000, 5000}, or equiva-

lently os ∈ {50, 250, 500, 2500}, for the sL-QN-TR algorithms (l = 20) within at most 10

epochs. We have observed that STORM passed 10 epochs rapidly due to its progressive

sampling behavior. Thus, we have allowed it to execute for more epochs, i.e., 50 epochs,

as shown in Figures 4.19 and 4.21.

In both Fashion-MNIST and CIFAR10 problems, the algorithms with bs = 500 and 1000

produce comparable or higher accuracy than STORM at the end of their own training

phase. Even if we set a fixed budget of time corresponding to one needed for passing 50

epochs by STORM, sL-QN-TR algorithms with bs = 500 and 1000 provide comparable

or higher accuracy. We need more consideration on the smallest and largest batch sizes.

When bs = 100, the algorithms can not be better than STORM with any fixed budgets

of time; however, they provide higher training accuracy and testing accuracy, except

for Fashion-MNIST problem on ResNet-20 trained by sL-BFGS-TR, at the end of their

training phase. This makes sense due to training with batches of small size. In contrast,

60 4.1. Stochastic Quasi-Newton TR Algorithms

when bs = 5000, sL-BFGS-TR algorithms only can produce higher or comparable train-

ing accuracy without any comparable testing accuracy. This is normal behavior as they

could update only a few parameters within 10 epochs when bs = 5000; allowing longer

training time or more epochs can compensate for this lower accuracy. This experiment

also shows another finding that sL-BFGS-TR algorithms with bs = 5000 can be preferred

to bs = 100 because they could yield higher accuracy within less time.

Comparison with Adam. In order to determine the optimal value of hyper-parameters

allowing Adam1 to achieve the highest testing accuracy, we have performed a grid search

of learning rates lr ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1} and different values of batch sizes

bs ∈ {100, 500, 1000, 5000}. The gradient and squared gradient decay factors are set as

β1 = 0.9 and β2 = 0.999, respectively, and the small constant to prevent divide-by-zero

errors is set to 10−8 in Adam. It is worth noting that sL-QN-TR approaches do not

require step-length tuning, and this particular experiment offers a comparison with the

optimized Adam optimizer. In Figures 4.20 and 4.22–4.25 where l = 20, we have ana-

lyzed which algorithm achieves the highest training accuracy within at most 10 epochs

for different batch sizes. In networks using BN layers, all methods achieve comparable

training and testing accuracy within 10 epochs with bs = 1000. However, this cannot

be generally observed when bs = 100; see Figure 4.22. The figure shows tunned Adam

has higher testing accuracy than sL-SR1-TR. Nevertheless, sL-BFGS-TR is still faster

to achieve the highest training accuracy, as we also previously observed, with compara-

ble testing accuracy with tunned Adam. On the other hand, for networks without BN

layers, sL-SR1-TR is the clear winner against both other algorithms. Another important

observation is that Adam is more affected by batch sizes than the sL-QN-TR algorithms,

thus the advantage of them over Adam can increase to enhance the parallel efficiency

when using large batch sizes.

Extended numerical results. More numerical results are provided in Appendix E.

1Throughout the thesis, the Adam algorithm has been implemented using the MATLAB built-in
function adamupdate.

4. Stochastic Trust-Region Methods 61

Figure 4.15 The accuracy of sL-QN-TR vs time on MNIST with LeNet-like.

0 100 200 300 400

CPU Time (s)

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 100, Display frequency: 1

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

0 100 200 300 400

CPU Time (s)

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 500, Display frequency: 1

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

0 100 200 300 400

CPU Time (s)

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 1000, Display frequency: 1

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

0 100 200 300 400

CPU Time (s)

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 5000, Display frequency: 1

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

Figure 4.16 The accuracy of sL-QN-TR vs time on Fashion-MNIST with LeNet-like.

0 1000 2000 3000 4000 5000

CPU Time (s)

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 100, Display frequency: 10

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

0 1000 2000 3000 4000 5000

CPU Time (s)

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 500, Display frequency: 10

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

0 1000 2000 3000 4000 5000

CPU Time (s)

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 1000, Display frequency: 5

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

0 1000 2000 3000 4000 5000

CPU Time (s)

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 5000, Display frequency: 10

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

62 4.1. Stochastic Quasi-Newton TR Algorithms

Figure 4.17 The accuracy of sL-QN-TR vs time on CIFAR10 with ConvNet3FC2.

0 0.5 1 1.5 2 2.5 3

CPU Time (s) 104

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 100, Display frequency: 10

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

0 0.5 1 1.5 2 2.5 3

CPU Time (s) 104

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 500, Display frequency: 10

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

0 0.5 1 1.5 2 2.5 3

CPU Time (s) 104

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 1000, Display frequency: 10

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

0 0.5 1 1.5 2 2.5 3

CPU Time (s) 104

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 5000, Display frequency: 10

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

Figure 4.18 The accuracy of sL-QN-TR vs time on CIFAR10 with ConvNet3FC2(no BN).

0 0.5 1 1.5 2

CPU Time (s) 104

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 100, Display frequency: 10

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

0 0.5 1 1.5 2

CPU Time (s) 104

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 500, Display frequency: 10

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

0 0.5 1 1.5 2

CPU Time (s) 104

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 1000, Display frequency: 10

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

0 0.5 1 1.5 2

CPU Time (s) 104

0

20

40

60

80

100

A
c
c
u

ra
c
y

Batch size: 5000, Display frequency: 10

sL-BFGS-TR (Train)

sL-BFGS-TR (Test)

sL-SR1-TR (Train)

sL-SR1-TR (Test)

4. Stochastic Trust-Region Methods 63

Figure 4.19 Comparisons of sL-QN-TR and STORM (CIFAR10, ConvNet3FC2).

0 2 4 6 8

CPU training time 104

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Training, Cifar10, ConvNet3FC2

sL-BFGS-TR, bs=100

sL-BFGS-TR, bs=500

sL-BFGS-TR, bs=1000

sL-BFGS-TR, bs=5000

STORM-BFGS-TR

0 2 4 6 8

CPU training time 104

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Testing, Cifar10, ConvNet3FC2

sL-BFGS-TR, bs=100

sL-BFGS-TR, bs=500

sL-BFGS-TR, bs=1000

sL-BFGS-TR, bs=5000

STORM-BFGS-TR

0 5 10 15

CPU training time 104

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Training, Cifar10, ConvNet3FC2

sL-SR1-TR, bs=100

sL-SR1-TR, bs=500

sL-SR1-TR, bs=1000

sL-SR1-TR, bs=5000

STORM-SR1-TR

0 5 10 15

CPU training time 104

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Testing, Cifar10, ConvNet3FC2

sL-SR1-TR, bs=100

sL-SR1-TR, bs=500

sL-SR1-TR, bs=1000

sL-SR1-TR, bs=5000

STORM-SR1-TR

Figure 4.20 Comparisons of sL-QN-TR and tuned Adam (CIFAR10, ConvNet3FC2).

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

bs: 100, lr: 1e-3, Display frequency: 50

sL-SR1-TR(train)

sL-SR1-TR(test)

sL-BFGS-TR(train)

sL-BFGS-TR(test)

Adam(train)

Adam(test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

bs: 1000, lr: 1e-3, Display frequency: 10

sL-SR1-TR(train)

sL-SR1-TR(test)

sL-BFGS-TR(train)

sL-BFGS-TR(test)

Adam(train)

Adam(test)

64 4.1. Stochastic Quasi-Newton TR Algorithms

Figure 4.21 Comparisons of sL-QN-TR and STORM (Fashion-MNIST, ResNet-20).

0 0.5 1 1.5 2 2.5 3

CPU training time 104

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Training, Fashion-MNIST, ResNet-20

sL-BFGS-TR, bs=100

sL-BFGS-TR, bs=500

sL-BFGS-TR, bs=1000

sL-BFGS-TR, bs=5000

STORM-BFGS-TR

0 0.5 1 1.5 2 2.5 3

CPU training time 104

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Testing, Fashion-MNIST, ResNet-20

sL-BFGS-TR, bs=100

sL-BFGS-TR, bs=500

sL-BFGS-TR, bs=1000

sL-BFGS-TR, bs=5000

STORM-BFGS-TR

0 1 2 3 4 5

CPU training time 104

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Training, Fashion-MNIST, ResNet20

sL-SR1-TR, bs=100

sL-SR1-TR, bs=500

sL-SR1-TR, bs=1000

sL-SR1-TR, bs=5000

STORM-SR1-TR

0 1 2 3 4 5

CPU training time 104

0

20

40

60

80

100

A
c

c
u

r
a

c
y

Testing, Fashion-MNIST, ResNet20

sL-SR1-TR, bs=100

sL-SR1-TR, bs=500

sL-SR1-TR, bs=1000

sL-SR1-TR, bs=5000

STORM-SR1-TR

Figure 4.22 Comparisons of sL-QN-TR and tuned Adam (CIFAR10, ConvNet3FC2(no BN)).

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

bs: 100, lr: 1e-4, Display frequency: 50

sL-SR1-TR(train)

sL-SR1-TR(test)

sL-BFGS-TR(train)

sL-BFGS-TR(test)

Adam(train)

Adam(test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

bs: 1000, lr: 1e-3, Display frequency: 10

sL-SR1-TR(train)

sL-SR1-TR(test)

sL-BFGS-TR(train)

sL-BFGS-TR(test)

Adam(train)

Adam(test)

4. Stochastic Trust-Region Methods 65

Figure 4.23 Comparisons of sL-QN-TR and tuned Adam (Fashion-MNIST, ResNet20).

0 1 2 3 4 5 6 7

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

bs: 100, lr: 1e-3, Display frequency: 50

sL-SR1-TR(train)

sL-SR1-TR(test)

sL-BFGS-TR(train)

sL-BFGS-TR(test)

Adam(train)

Adam(test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

bs: 1000, lr: 1e-3, Display frequency: 10

sL-SR1-TR(train)

sL-SR1-TR(test)

sL-BFGS-TR(train)

sL-BFGS-TR(test)

Adam(train)

Adam(test)

Figure 4.24 Comparisons of sL-QN-TR and tuned Adam (Fashion-MNIST, ResNet20(no
BN)).

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

bs: 100, lr: 1e-3, Display frequency: 50

sL-SR1-TR(train)

sL-SR1-TR(test)

sL-BFGS-TR(train)

sL-BFGS-TR(test)

Adam(train)

Adam(test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

bs: 1000, lr: 1e-3, Display frequency: 10

sL-SR1-TR(train)

sL-SR1-TR(test)

sL-BFGS-TR(train)

sL-BFGS-TR(test)

Adam(train)

Adam(test)

Figure 4.25 Comparisons of sL-QN-TR and tuned Adam (MNIST, LeNet-like).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

bs: 100, lr: 1e-3, Display frequency: 5

sL-SR1-TR(train)

sL-SR1-TR(test)

sL-BFGS-TR(train)

sL-BFGS-TR(test)

Adam(train)

Adam(test)

0 0.5 1 1.5 2

Epoch

0

20

40

60

80

100

A
c

c
u

r
a

c
y

bs: 1000, lr: 1e-3, Display frequency: 1

sL-SR1-TR(train)

sL-SR1-TR(test)

sL-BFGS-TR(train)

sL-BFGS-TR(test)

Adam(train)

Adam(test)

66 4.1. Stochastic Quasi-Newton TR Algorithms

Now, we sum up the extensive experimental study to assess the performance of

sL-BFGS-TR and sL-SR1-TR algorithms, limited memory Quasi-Newton trust-region

methods using a specific fixed-size overlapping sampling.

1. Batch normalization (BN) layers: as the main findings, we have observed that BN

is a key component for the performance of the algorithms with different sample

sizes. sL-SR1-TR performs better than sL-BFGS-TR in the networks without BN

layers. This behavior is in accordance with the property of L-SR1 updates allowing

for indefinite Hessian approximations in non-convex optimization. However, sL-

BFGS-TR behaves comparably or slightly better than sL-SR1-TR with BN layers.

2. Limited memory parameter l: the experiments, networks without BN layers, in

particular, illustrated that larger values of l produce higher accuracy. However, in

order to reduce the computational cost, these values are not considered too big.

3. Batch size: larger batch sizes within a fixed number of epochs lead to lower training

accuracy compared to using smaller batch sizes. However, longer training with

larger batch sizes can help recover the lost accuracy.

4. Timing: the experiments on training time have shown a slight superiority in the

accuracy reached by both algorithms when larger batch sizes are used within a

fixed budget of time.

5. Comparison with STORM: within the fixed budget of time, except for the smallest

batch size, both algorithms reveal more efficiency than the second-order STORM

algorithm customized by L-BFGS and L-SR1 updates.

6. Comparison with Adam: the results show that sL-BFGS-TR and tuned Adam

can not be better than sL-SR1-TR for the networks without BN layers. For the

networks with BN layers, the sL-QN-TR algorithms, in particular sL-BFGS-TR,

exhibited comparable accuracy with tunned Adam.

4. Stochastic Trust-Region Methods 67

4.2 A Stochastic Modified L-BFGS Trust-Region Method

In this section, we define a modified L-BFGS update obtained through a modified secant

condition which is theoretically shown to provide an increased order of accuracy in the

Hessian approximation. We aim at extending this idea to a stochastic setting and devise

a modified L-BFGS TR method for supervised learning applications.

4.2.1 A modified L-BFGS update

Let, for moments, f(w) and ∇f(w) be any general deterministic objective function and

its true gradient, respectively. A modified BFGS update Bk+1 as an approximation of

the Hessian can be constructed by a modified secant condition as follows

Bk+1sk = y∗k, (4.24)

where (sk, y
∗
k) gives better curvature information than (sk, yk) in the standard secant

condition Bk+1sk = yk with sk = wk+1 −wk and yk = ∇f(wk+1)−∇f(wk). In [76], the

vector y∗k was computed as

y∗k = yk +
ψk
∥sk∥2

sk, (4.25)

where ψk = (f(wk) − f(wk+1)) + (∇f(wk) +∇f(wk+1))
T sk. Definition (4.25) together

with (4.24) provides more accurate curvature information. In fact, it can be proved that

sTk (∇2f(wk+1)sk − y∗k) =
1

3
sTk (Tk+1sk)sk +O(∥sk∥4),

sTk (∇2f(wk+1)sk − yk) =
1

2
sTk (Tk+1sk)sk +O(∥sk∥4),

(4.26)

where Tk+1 is the tensor of the true function f(w) at wk+1 in the Taylor series as

f(wk) = f(wk+1)−∇f(wk+1)
T sk +

1

2
sTk∇2f(wk+1)sk −

1

6
sTk (Tk+1sk) sk +O(∥sk∥4).

(4.27)

In [55], a simple modification of (4.25) was proposed as y∗k = yk + sign(ψk) ψk

∥sk∥2
sk to

handle the case ψk < 0. However, we show below that this modification does not provide

any improvement.

68 4.2. A Stochastic Modified L-BFGS Trust-Region Method

Sign correction

Considering the equations in (4.26) together yields

ψk =
1

6
sTk (Tk+1sk)sk +O(∥sk∥4). (4.28)

Let ψk < 0. Therefore, we have sTk y
∗
k = sTk yk − ψk which leads to derive

sTk∇2f(wk+1)sk − sTk y∗k = sTk∇2f(wk+1)sk −
(
sTk yk + ψk

)
+ 2ψk

=
2

3
sTk (Tk+1sk) sk +O(∥sk∥4).

(4.29)

Equation (4.29) shows that the dominant error is even worse than the one in (4.26).

Therefore, we suggest to use yk whenever ψk < 0; otherwise we can use y∗k.

A new modified secant condition

Taking the derivative of both sides of (4.27) with respect to sk and premultiplying it by

sTk , we have

sTk∇f(wk) = sTk∇f(wk+1)− sTk∇2f(wk+1)sk +
1

2
sTk (Tk+1sk) sk +O(∥sk∥4)

= 3ψk + sTk yk +O(∥sk∥4).
(4.30)

To derive the second equality in (4.30), see the second equation in (4.26). Considering

equations (4.27) and (4.30) together yields that the third order term disappears and

sTk∇2f(wk+1)sk = 6(f(wk)− f(wk+1)) + 3sTk (∇f(wk+1) +∇f(wk)) + sTk yk +O(∥sk∥4)

= 3ψk + sTk yk +O(∥sk∥4).

(4.31)

Comparing (4.31) and the first equation in (4.26) suggests the choice of

y∗k =
3ψk
∥sk∥2

sk + yk. (4.32)

Obviously, the new vector y∗k provides a better curvature approximation, i.e., its error is

of order O(∥sk∥4), than the one of order O(∥sk∥3) in equation (4.25).

4. Stochastic Trust-Region Methods 69

Algorithm 5 sM-LBFGS-TR
1: Inputs: w0 ∈ Rn, epochmax, l, γ0 > 0, S0 = Y0 = [], δ0 > 0, 0 < τ1, τ < 1, bs
2: while epoch < epochmax or training accuracy < 100% do
3: if k = 0 then
4: Take index sets O−1 and O0 such that |O−1| = |O0| and Nk = Ok−1 ∪ Ok of size

Nk = bs

5: Compute fO−1
(w0), fO0

(w0) and gO−1

0 ≜ ∇fO−1
(w0), gO0

0 ≜ ∇fO0
(w0)

6: Evaluate fNk
(w0) and g0 by (4.23)

7: else
8: Take Ok such that |Ok−1| = |Ok| and Nk = Ok−1 ∪ Ok of size Nk = bs

9: Compute fOk
(wk), gOk

k ≜ ∇fOk
(wk)

10: Evaluate fNk
(wk) gk by (4.23)

11: if mod(k + 1, N̄) = 0 then
12: Shuffle the data and epoch = epoch + 1

13: end if
14: end if
15: {Compute search direction}
16: if k = 0 then
17: Obtain pk = −δk

gk
∥gk∥

18: else
19: Obtain pk using Algorithm C.3
20: end if
21: {Computation at wt}
22: Evaluate fOk

(wt) and gOk
t ≜ ∇fOk

(wt) at the trial wt = wk + pk
23: {Compute curvature pair and ρk}
24: Compute (sk, yk) and ρk by (4.20) and (4.22)
25: Compute ψk = (fOk

(wk)− fOk
(wt)) + sTk (g

Ok

k + gOk
t)

26: if sign(ψk) > 0 then
27: y∗k = yk +

3ψk

∥sk∥2 sk
28: end if
29: if ρk ≥ τ1 then
30: wk+1 = wt {Update wk}
31: else
32: wk+1 = wk
33: end if
34: Update δk by Algorithm C.1 {Update δk}
35: if sTk yk > τ∥sk∥2 then
36: if k < l then
37: Store sk and y∗k as new columns in Sk+1 and Yk+1 {Update Bk}
38: else
39: Keep only l recent {sj , y∗j }kj=k−l+1 in Sk+1 and Yk+1

40: end if
41: Compute γk+1 for B0 by Algorithm C.2 and Bk+1 by (4.9)
42: else
43: Set Bk+1 = Bk
44: end if
45: k = k + 1

46: end while

Algorithm’s note: δ0 = 1, γ0 = 1, τ1 = 10−6, τ = 10−2, l = 20, epochmax = 10.

70 4.2. A Stochastic Modified L-BFGS Trust-Region Method

The modified L-BFGS Hessian approximation of the true objective function f(w)

can also be taken into account in a stochastic extension and integrated within a TR

framework in a similar fashion described in Section 4.1. In the following subsection, we

introduce the stochastic modified L-BFGS TR method (sM-LBFGS-TR).

4.2.2 Algorithm Framework

The sM-LBFGS-TR algorithm which is outlined in Algorithm 5 allows the random index

set Nk of fixed-size to be chosen with half-overlapping such that Nk = Ok−1 ∪Ok given

the overlapped index set Ok. The subsampled functions and subsampled gradients of

the method are evaluated by (4.23) with respect to Nk. By these stochastic quantities,

we define a TR approach as follows:

• the L-BFGS Hessian approximations Bk in the TR quadratic model satisfy the

modified secant condition (4.24). Analogous to what was described in Section 4.1.1,

the compact form of the modified L-BFGS matrix is constructed by only l ≪ n

recent pairs {sj , y∗j } rather than {sj , yj} through storage matrices Sk and Yk. We

note that computing ψk for y∗ does not impose any additional cost. The resulting

compact form of the modified L-BFGS matrix still benefits from the OBB solver

to solve the corresponding TR subproblem for the search direction pk.

• the standard vector yk in y∗k = yk +
3ψk

∥sk∥2
sk is obtained with respect to an overlap

index set Ok as (4.20) in Remark 4.2.

• the value of reduction TR ratio ρk is also evaluated with respect to Ok as (4.22) in

Remark 4.3. Then, the value is applied for adjusting the radius of the region (δk)

and accepting the trial point (wt = wk + pk).

Taking into account the aforementioned points, the framework of the sM-LBFGS-TR

algorithm is similar to the sL-BFGS-TR (Algorithm 3). In the following subsection, we

evaluate the performance of the proposed method for training DNNs.

4. Stochastic Trust-Region Methods 71

4.2.3 Numerical Evaluation

Let us consider sM-LBFGS-TR and its naive variant named s-LBFGS-TR where the

Hessian approximations Bk satisfy the standard secant condition (4.3); in fact, we have

implemented s-LBFGS-TR as sM-LBFGS-TR where y∗k = yk, and thus lines 25-28 are

ignored. We study in this subsection the behavior of these algorithms on the training of

LeNet-like and ConvNet3FC2 for image classification of the benchmark datasets MNIST

and CIFAR10. The training images of CIFAR10 have been normalized by the z-score

approach. We also provide a comparison with the most popular first-order method Adam

by a grid search tuning effort on learning rate and batch sizes. The best learning rate for

all batch sizes is 10−3. The algorithms have been implemented with the same random

seed generator. The limited memory parameter for both QN TR methods was set to

l = 20. The networks were trained for at most 10 epochs, and training was terminated

if 100% accuracy has been reached. Figures 4.26 and 4.27 show the evolution of loss

and accuracy for different batch sizes |Nk| ∈ {100, 500, 2000, 5000} in the classification

of MNIST and CIFAR10, respectively. The results corresponding to the smallest batch size

for the MNIST dataset are reported within the first epoch only to facilitate the comparison.

The evolution curves for the CIFAR10 have been filtered by a fixed display frequency for

better visualization.

We observe from Figures 4.26 and 4.27 that both sL-BFGS-TR and sM-LBFGS-TR

perform better than tuned Adam independently of the batch size. In all the experiments,

sM-LBFGS-TR exhibits a comparable performance with respect to sL-BFGS-TR. The

stochasticity could be the main reason why the responsiveness of modification in sM-

LBFGS-TR is not seen in training tasks when compared to sL-BFGS-TR. However, due

to the slightly higher accuracy of sM-LBFGS-TR compared to sL-BFGS-TR with the

largest batch size, see Figure 4.26, using sM-LBFGS-TR can be recommended. Neither

sL-BFGS-TR nor sM-LBFGS-TR is strongly influenced by batch sizes. Large batch sizes

can be employed without a considerable loss of accuracy even though the performance

of both methods decreases when larger batch sizes are used, due to the fewer number of

iterations per epoch. The tuned Adam provides comparable accuracy to the second-order

methods, but it is less accurate when large batch sizes are used.

72 4.2. A Stochastic Modified L-BFGS Trust-Region Method

Figure 4.26 The comparative behavior of sM-LBFGS-TR (MNIST, LeNet-like).

0 0.05 0.1 0.15 0.2 0.25

Epoch

0

0.5

1

1.5

2

2.5

L
o

s
s

Batch size: 100

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

0 0.05 0.1 0.15 0.2 0.25

Epoch

0

20

40

60

80

100

A
c

c
u

ra
c

y

Batch size: 100

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

0 0.5 1 1.5 2

Epoch

0

0.5

1

1.5

2

2.5

L
o

s
s

Batch size: 500

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

0 0.5 1 1.5 2

Epoch

0

20

40

60

80

100

A
c

c
u

ra
c

y

Batch size: 500

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

0 0.5 1 1.5 2

Epoch

0

0.5

1

1.5

2

2.5

L
o

s
s

Batch size: 2000

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

0 0.5 1 1.5 2

Epoch

0

20

40

60

80

100

A
c

c
u

ra
c

y

Batch size: 2000

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

0 0.5 1 1.5 2

Epoch

0

0.5

1

1.5

2

2.5

L
o

s
s

Batch size: 5000

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

0 0.5 1 1.5 2

Epoch

0

20

40

60

80

100

A
c

c
u

ra
c

y

Batch size: 5000

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

4. Stochastic Trust-Region Methods 73

Figure 4.27 The comparative behavior of sM-LBFGS-TR (CIFAR10, ConvNet3FC2).

0 2 4 6 8

Epoch

0

2

4

6

8

L
o

s
s

Batch size: 100, Display frequency: 10

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

0 2 4 6 8

Epoch

0

20

40

60

80

100

A
c

c
u

ra
c

y

Batch size: 100, Display frequency: 10

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

0 2 4 6 8 10

Epoch

0

1

2

3

4

5

6

7

L
o

s
s

Batch size: 500, Display frequency: 10

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

ra
c

y

Batch size: 500, Display frequency: 10

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

0 2 4 6 8 10

Epoch

0

1

2

3

4

5

6

L
o

s
s

Batch size: 2000, Display frequency: 10

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

ra
c

y

Batch size: 2000, Display frequency: 10

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

0 2 4 6 8 10

Epoch

0

1

2

3

4

5

6

L
o

s
s

Batch size: 5000, Display frequency: 10

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

ra
c

y

Batch size: 5000, Display frequency: 10

sL-BFGS-TR(train)

sL-BFGS-TR(test)

sM-LBFGS-TR(train)

sM-LBFGS-TR(test)

Adam(train)

Adam(test)

74 4.2. A Stochastic Modified L-BFGS Trust-Region Method

Figure 4.28 Error bars of sM-LBFGS-TR, sL-BFGS-TR and tuned Adam.

0 1 2 3 4 5

Epoch

0

20

40

60

80

100

A
c
c
u

ra
c
y

MNIST, Batch size: 5000

ADAM

sL-BFGS-TR

sM-LBFGS-TR

0 2 4 6 8 10

Epoch

10

20

30

40

50

60

70

80

A
c
c
u

ra
c
y

CIFAR, batch size: 5000

ADAM
LBFGS-TR
M-LBFGS-TR

Figure 4.29 The comparative behavior of sM-LBFGS-TR vs CPU time.

0 100 200 300 400 500

Time(s)

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

MNIST, batch size: 5000

ADAM

sL-BFGS-TR

sM-LBFGS-TR

0 1000 2000 3000 4000 5000 6000 7000

Time(s)

10

20

30

40

50

60

70

80

A
c
c
u

ra
c
y

CIFAR, batch size: 5000

ADAM

sL-BFGS-TR

sM-LBFGS-TR

Figure 4.28 displays the variability of the obtained test accuracy computed over five

runs corresponding to five different random seeds. It can be seen that the results are

reliable and that tuned Adam exhibits larger variability than sL-BFGS-TR and sM-

LBFGS-TR with the largest batch size.

It is not surprising that the measured CPU training time of sM-LBFGS-TR is compa-

rable to that of M-LBFGS-TR due to their similar complexity, and that the training time

of both algorithms is larger than that of Adam. Nevertheless, as Figure 4.29 illustrates,

we underline the fact that with a fixed computational time budget both second-order

methods provide comparable or better testing accuracy than tuned Adam.

In summary, although the modified secant condition provides theoretically an in-

creased order of accuracy in the Hessian approximation, this modification in conjunction

with the subsampled trust-region method could only produce a comparable or slightly

better accuracy than its naive variant in which the standard L-BFGS is used instead of

the modified L-BFGS, in particular when the largest batch size is used.

4. Stochastic Trust-Region Methods 75

4.3 A Stochastic Hybrid L-SR1 Trust-Region Method

In Section 2.2, we mentioned that a line-search method for solving the unconstrained

optimization problem (2.1) requires the search direction to be a descent direction, see

Definition 2.5. However, this condition alone does not ensure convergence, and the search

direction must satisfy the angle criterion (see e.g. [69])

cos (−∇f(wk), pk) =
−∇f(wk)T pk
∥∇f(wk)∥∥pk∥

≥ ϵk, ϵk > 0, (4.33)

where ∇f(wk) is the gradient of the true objective function f(w) at wk, and the sequence

{ϵk} is bounded away from 0, which means that the angle between the search direction

(pk) and the steepest descent direction (−∇f(wk)) must be bounded away from the

right angle. In order to address the case in which (4.34) does not hold, a globalization

approach applicable to any Newton-type method was proposed in, e.g., [24]. The basic

idea consists of linearly combining the Newton-type (e.g., Newton or Quasi-Newton) and

Steepest Descent (SD) directions. The goal is to bring the iterates sufficiently close to

a solution through the globally convergent Steepest Descent method so that once the

iterates are in the basin of attraction of the Newton-type method, it can lead to faster

convergence. We aim at extending the mentioned idea in a stochastic regime to devise

an algorithm for DNNs training.

4.3.1 Algorithm Framework

We present a stochastic combined LSR1 TR method (sCLSR1-TR) and clearly described

it in Algorithm 6. This method allows a random index set Nk of fixed-size to be chosen

regularly, i.e., a random mini-batch of samples without overlapping. The subsampled

functions and subsampled gradients of the method are evaluated by (4.23) with respect to

Nk. By these stochastic quantities, we define a stochastic TR approach. This approach

involves L-SR1 Hessian approximation and produces corresponding second-order LSR1

direction pk. The algorithm applies this direction as long as

cos (−vk, pk) =
−vTk pk
∥gk∥∥pk∥

≥ ϵk, ϵk > 0, (4.34)

76 4.3. A Stochastic Hybrid L-SR1 Trust-Region Method

where vk simulates the behavior of the SD direction in the stochastic expansion. In

fact, vk is an approximation of the SD direction. At every iteration where the condition

(4.34) is not satisfied, the algorithm computes a new direction by a combination of the

first- and second-order directions. We propose a combination strategy by which a hybrid

direction is defined as follows

phk = βkpk − (1− βk)ξkvk, (4.35)

where 0 ≤ βk ≤ 1 and ξk > 0. In (4.35), ξk scales the first-order direction vk and βk

guarantees that the combined direction phk in (4.35) satisfies (4.34), i.e., cos (−vk, phk) ≥

ϵk. Our method computes the parameter βk as it is obtained according to Theorem

1 in [24] where βk is a lower bound of the smallest root in (0, 1) of the second-order

polynomial; i.e.,

βk =
rk

rk + πk
, (4.36)

where

rk = ξk(1− ϵk), πk =
vTk pk
∥vk∥2

+ ϵk
∥pk∥
∥vk∥

.

Given the search direction at iteration k, the proposed algorithm finds a suitable step

length through a line-search step and then updates wk. The line-search step in line 22 of

sCLSR1-TR avoids resolving the TR subproblem due to occasional rejections of iterates.

We also relax the progress of ρk a stochastic term by averaging past ratios; in fact, we

soften its effect. This averaging value, i.e., ρ̂k in line 27 of sCLSR1-TR, is utilized to

adjust the radius of the TR (δk).

Selecting the scaling parameter ξk and the first-order direction vk

A suitable scaling of vk is a key issue in making the proposed approach effective. In

deterministic cases, there are different strategies to choose this parameter, see [24] and

references therein. In our algorithm, we adaptively set this parameter as follows

ξk =
δk
∥vk∥

, (4.37)

4. Stochastic Trust-Region Methods 77

to ensure that the combined direction phk is pushed to be still inside the trust-region. As

already mentioned, the first-order direction vk in (4.35) plays the role of the SD direction

even if it is only a noisy approximation of the true SD direction due to the error coming

from the use of subsampling. There is a variance reduction family of algorithms that

exploit the full gradient information strategically in an attempt to reduce or eliminate

the noise present in gradient approximations; they save the information of a full gradient

which is evaluated at a reference point, known as snapshot gradient, and modify it

using stochastic gradient estimates to form the variance-reduced gradient in subsequent

iterations. Therefore, a natural choice of vk can be a first-order variance reduced (VR)

direction. Three representative VR directions obtained using mini-batch versions of

SAGA, SVRG, and SARAH algorithms at iteration k are listed below:

1. SAGA:

vk = ∇fNk
(wk)−

1

|Nk|
∑
i∈Nk

Jk:,i +
1

|N |
∑
i∈N

Jk:,i, (4.38)

where

Jk+1
:,i =

Jk:,i, if i /∈ Nk,

1
|Nk|

∑
i∈Nk

∇fi(wk), if i ∈ Nk,

and J0
:,i = ∇fi(w0).

2. SVRG:

vk = ∇fNk
(wk)−∇fNk

(ws) +∇f(ws), (4.39)

where s is a previous iteration (s < k).

3. SARAH:

vk = ∇fNk
(wk)−∇fNk

(wk−1) + vk−1, vs = ∇f(ws). (4.40)

78 4.3. A Stochastic Hybrid L-SR1 Trust-Region Method

Algorithm 6 sCLSR1-TR
1: Inputs: k = 0, w0, S0 = Y0 = [], γ0, δ0 > 0, T = 0, ϵ, ν ∈ (0, 1), bs, eps: machine epsilon

2: for epoch = 1, 2, . . . , do

3: Shuffle N samples for randomly creating Nb mini-batches

4: for iter = 1, 2, · · · , Nb do

5: Compute fNk
(wk) and gk ≜ ∇fNk

(wk) with respect to given Nk of size Nk = bs

6: if Some stopping conditions hold then

7: Stop training

8: end if

9: if k = 0 or Sk = [] then

10: Set Bk = γ0I, and compute pk = −δkgk
∥gk∥

11: else

12: Compute Bk = γkI +ΨkM
−1
k ΨTk , and find pk by OBS solver Algorithm C.5

13: end if

14: Find vk as a first-order direction

15: if cos (−vk, pk) ≥ ϵk then

16: phk = pk

17: ϵk+1 = ϵk

18: else

19: Compute phk = βkpk − (1− βk)ξkvk such that cos (−vk, phk) ≥ ϵk
20: ϵk+1 = max{10 eps, νϵk}
21: end if

22: Find a step-length αk by backtracking and Armijo rule; i.e.

fNk
(wk + αkp

h
k) ≤ fNk

(wk) + c1αkv
T
k p

h
k

23: Set wk+1 = wk + αkp
h
k

24: Evaluate fNk
(wk+1) and gk+1 ≜ ∇fNk

(wk+1)

25: Compute sk = αkp
h
k , and yk = gk+1 − gk

26: Find γk+1 via Algorithm C.4, and construct a new well-defined Bk+1 as (4.18)

27: ρ̂k = T ρ̂k + ρk

28: T = T + 1

29: ρ̂k = ρ̂k
T

30: Update δk by Algorithm C.1 with ρ̂k and phk
31: end for

32: k = k + 1

33: end for

Algorithm’s note: δ0 = 1, γ0 = 1, ϵ0 = 0.5, ν = 0.95, c1 = 10−4.

4. Stochastic Trust-Region Methods 79

The reduced memory mini-batch SAGA described above requires computing the full

gradient at the beginning of the algorithm and needs the reduced memory storage matrix

of Nb columns corresponding to the only Nb previously computed stochastic gradients.

In fact, since the same information is used for all the columns of Jk+1 that belong to

Nk, there is no need to store all identical information. Let’s assume the index set N

is partitioned into a fixed-number Nb of random mini-batches of the same size. We

initialize J0 so that all the columns belonging to the same partition are the same, then

they will be the same within each partition for all k. In such a case, we do not need to

maintain all the identical copies; instead, we can update individually the columns of a

compressed version of the Jacobian, with one column per partition set only, to reduce

the total memory usage [34]. In contrast, the mini-batch SVRG does not require extra

storage but it does require computing the full gradient periodically; see e.g. [64]. In

fact, at each outer iteration, SVRG computes one full gradient ∇f(ws), where s < k

is a previous iteration, then takes t steps along random directions which are stochastic

corrections of this full gradient. SARAH combines some ideas from SVRG and SAGA

and differs from SVRG in terms of the inner loop step. The SARAH VR direction (4.40)

involves a gradient snapshot which is also updated at each inner iteration and thus

attains improved convergence properties relative to SVRG. See respectively e.g. [34],

[64], and [61] for details on the VR directions listed above.

We select a reduced memory SAGA gradient as the first-order search direction vk.

With this approach, the hybrid algorithm needs one full gradient and a storage matrix

with Nb columns of length n. Moreover, we can get rid of finding the optimum value of

t as well as computing a full gradient periodically every t iterations. We should notice

that, in practice, SVRG can be quite sensitive to the choice of t; see [20, 41].

4.3.2 Numerical Evaluation

We applied Algorithm 6 (sCLSR1-TR) to the solution of the L2 regularized DL optimiza-

tion problem (3.4) for the training of ResNet20 to classify the CIFAR10 dataset which

is normalized by z-score approach. We conducted a performance comparison between

sCLSR1-TR and tuned Adam. Both algorithms were implemented using the same seed

80 4.3. A Stochastic Hybrid L-SR1 Trust-Region Method

for the MATLAB random number generator. We considered two values of batch sizes as

Nk = bs with bs = 500 and bs = 1000. Different values of the L2 regularization param-

eter for sCLSR1-TR were tested, namely λ ∈ {10−2, 10−3, 10−4, 0}. For grid-searching

Adam, we tested regularization parameter λ ∈ {10−1, 10−2, 10−3, 10−4} and learning rate

α ∈ {10−1, 10−2, 10−3}. The limited memory parameter for LSR1 Hessian approxima-

tion was set to l = 30. The evolution of the accuracy in Figures 4.30–4.33 is reported by

c-point mean values of the obtained accuracy at each iteration, where each mean value is

computed over a sliding window of length c across neighboring elements. We set c = 20.

Unlike Adam, which is sensitive to the values of its hyperparameters (including the L2

regularization parameter λ and the learning rate α), we can observe from Figure 4.30 and

Figure 4.31 that sCLSR1-TR provides similar accuracy for all tested values of λ, except

for the largest one, i.e., λ = 10−2. This indicates that sCLSR1-TR can be employed

for training purposes without the need to apply L2 regularization. Alternatively, if

regularization is desired, it is recommended to use small values of the parameter λ. As

displayed in Figure 4.32, the proposed algorithm, without regularization and within a

fixed number of epochs, achieves similar or superior performance compared to tuned

Adam. Regarding the training time, each iteration of the proposed hybrid algorithm

requires more time on a GPU compared to tuned Adam, due to its higher iteration

complexity. Nevertheless, given a fixed budget of time (90 minutes) in our experiments,

the results in Figure 4.33 show that sCLSR1-TR ultimately achieves a higher level of

testing accuracy (bs = 500) or the same level of it (bs = 1000) as tuned Adam.

Figure 4.30 The effect of L2 regularization parameter on the training of Adam

0 500 1000

Iteration

0

20

40

60

80

100

A
c
c
u

r
a
c
y

bs=500

Train (=10
-1

)

Test (=10
-1

)

Train (=10
-2

)

Test (=10
-2

)

Train (=10
-3

)

Test (=10
-3

)

Train (=10
-4

)

Test (=10
-4

)

0 500 1000

Iteration

0

20

40

60

80

100

A
c
c
u

r
a
c
y

bs=1000

Train (=10
-1

)

Test (=10
-1

)

Train (=10
-2

)

Test (=10
-2

)

Train (=10
-3

)

Test (=10
-3

)

Train (=10
-4

)

Test (=10
-4

)

4. Stochastic Trust-Region Methods 81

Figure 4.31 The effect of L2 regularization parameter on the training of sCLSR1-TR

0 200 400 600 800 1000

Iteration

0

20

40

60

80

100

A
c
c
u

r
a
c
y

bs=500

Train (=0) Test (=0)

Train (=10
-2

) Test (=10
-2

)

Train (=10
-3

) Test (=10
-3

)

Train (=10
-4

) Test (=10
-4

)

0 200 400 600 800 1000

Iteration

0

20

40

60

80

100

A
c
c
u

r
a
c
y

bs=1000

Train (=0) Test (=0)

Train (=10
-2

) Test (=10
-2

)

Train (=10
-3

) Test (=10
-3

)

Train (=10
-4

) Test (=10
-4

)

Figure 4.32 The accuracy vs iteration evolution of sCLSR1-TR and tuned Adam

0 1 2 3 4 5 6 7 8 9 10

Epoch

0

20

40

60

80

100

A
c
c
u

ra
c
y

bs=500

Train, sCLSR1-TR (=0)
Test, sCLSR1-TR (=0)

Train, Adam (=10
-2

, =10
-3

)

Test, Adam (=10
-2

, =10
-3

)

0 2 4 6 8 10 12 14 16 18

Epoch

0

20

40

60

80

100

A
c
c
u

ra
c
y

bs=1000

Train, sCLSR1-TR (=0)
Test, sCLSR1-TR (=0)

Train, Adam (=10
-4

, =10
-2

)

Test, Adam (=10
-4

, =10
-2

)

Figure 4.33 The accuracy vs time evolution of sCLSR1-TR and tuned Adam

0 1000 2000 3000 4000 5000 6000

Time (s)

0

20

40

60

80

100

A
c
c
u

r
a
c
y

bs=500

Train, sCLSR1-TR (=0)
Test, sCLSR1-TR (=0)

Train, Adam (=10
-2

, =10
-3

)

Test, Adam (=10
-2

, =10
-3

)

0 1000 2000 3000 4000 5000 6000

Time (s)

0

20

40

60

80

100

A
c
c
u

r
a
c
y

bs=1000

Train, sCLSR1-TR (=0)
Test, sCLSR1-TR (=0)

Train, Adam (=10
-4

, =10
-2

)

Test, Adam (=10
-4

, =10
-2

)

In summary, the proposed algorithm exhibits comparable or superior performance to

the Adam while requiring significantly less tuning effort for the regularization parameter.

5

Stochastic Non-Monotone

Trust-Region Methods

5.1 Introduction

Throughout Chapter 4, our primary emphasis has been on stochastic trust-region (TR)

methods, with a significant reliance on Quasi-Newton (QN) Hessian approximations.

In the subsequent sections of this chapter, our objective shifts towards solving the DL

optimization problem (3.3) within a non-monotone trust-region (NTR) framework in

stochastic regimes, while considering inexact function and gradient approximations.

The potential usefulness of non-monotonicity can be traced back to [35], where a non-

monotone line-search Newton method was proposed for solving general unconstrained

minimization problems with any twice continuously differentiable function denoted as

F (.). Modifications of the Newton method for global convergence towards local min-

ima require a line-search technique ensuring a monotonic decrease, which can sometimes

slow down convergence. In contrast, non-monotone line-search relaxes some of the stan-

dard line-search conditions, allowing for an increase in function values without affecting

convergence properties. In [35], the proposed non-monotone line-search requires the

step-length αk to satisfy the following condition

F (wk + αkpk) ≤ Fm(k) + c1αk∇F (wk)T pk, (5.1)

5. Stochastic Non-Monotone Trust-Region Methods 83

where c1 ∈ (0, 0.5) and Fm(k) is the maximum function value of a prefixed number (Ln)

of previous iterates, i.e., Fm(k) = max0≤j≤m(k){F (wk−j)} for k = 0, 1, . . ., in which

m(0) = 0, 0 ≤ m(k) ≤ min{m(k − 1) + 1, Ln} for all k ≥ 1, and Ln ≥ 0. The idea

of incorporating non-monotonicity into a TR strategy, which is a generalization of the

Armijo line-search approach [73], has been explored in previous works such as [22, 2, 19].

The most common TR reduction ratio in a non-monotone regime is defined as

ρNTRk =
F (wk + pk)− Fm(k)

mk(pk)
, (5.2)

where the denominator mk(·) is a quadratic model associated with F (.). There are also

some modifications for (5.2) where the non-monotone term Fm(k) is replaced with ck

(see e.g. [19]) or rk (see e.g. [2]), where ck is defined as a weighted moving average

of objective function values and rk which is a convex combination of Fm(k) and latest

objective function value.

To solve specific unconstrained optimization problems such as the DL minimiza-

tion problem (3.3), one can also consider applying the aforementioned non-monotone

techniques in both line-search and TR frameworks. However, the application of these

techniques becomes computationally expensive when dealing with large sample sizes (N).

Therefore, our objective is to extend these approaches to the stochastic regime to devise

algorithms for the training of DNNs. In Section 5.2, we introduce a stochastic algorithm

within a non-monotone TR framework, utilizing a regular fixed-size mini-batching ap-

proach. We further extend this study in Section 5.3 by presenting a novel stochastic

non-monotone algorithm that incorporates adaptive subsampling.

5.2 A Stochastic Algorithm with Fixed-Size Sampling

In this section, we build upon the concept of non-monotonicity introduced in the TR

framework proposed by [2] and extend it to the stochastic setting. Using inexact func-

tion and gradient approximations, we describe below a novel training algorithm with a

stochastic non-monotone trust-region (NTR).

84 5.2. A Stochastic Algorithm with Fixed-Size Sampling

Algorithm 7 sL-SR1-NTR
1: Inputs: k = 0, w0, S = Y = [], γ0, δ0 > 0

2: for epoch = 1, 2, . . . , do

3: Create randomly Nb mini-batches of same carnality (sampling without replacement)

4: for iter = 1, 2, · · · , Nb do

5: Compute fNk
(wk) and gk ≜ ∇fNk

(wk) with respect to given Nk of fixed-size Nk
6: if Some stopping conditions hold then

7: Stop training

8: end if

9: if k = 0 or S = [] then

10: Set Bk = γ0I, and compute pk = −δkgk
∥gk∥

11: else

12: Compute Bk = γkI +ΨkM
−1
k ΨTk , and find pk by OBS solver Algorithm C.5

13: end if

14: Set wt = wk + pk and compute fNk
(wt)

15: Compute ρNTRk (5.3) using rk with τk defined in (5.5)

16: if ρk > η1 then

17: Compute sk = pk, and yk as indicated in Table 5.1

18: Find γk+1 via Algorithm C.4, and construct a new well-defined Bk+1 as (4.18)

19: Set wk+1 = wt

20: else

21: Find αk by a stochastic non-monotone line-search (NLS); i.e.,

fNk
(wk + αkpk) ≤ rk + c1αkg

T
k pk

22: if NLS succeeds then

23: Set wt = wk + αkpk and wk+1 = wt

24: Compute sk = αkpk, and yk as indicated in Table 5.1

25: Find γk+1 via Algorithm C.4, and construct a new well-defined Bk+1 as (4.18)

26: else

27: Skip updating Bk and wk
28: end if

29: end if

30: Update δk by Algorithm C.1 with ρk and sk
31: k = k + 1

32: end for

33: end for

Algorithm’s note: δ0 = 1, γ0 = 1, c1 = 10−4. See also Table 5.1.

5. Stochastic Non-Monotone Trust-Region Methods 85

5.2.1 Algorithm Framework

We present a stochastic L-SR1 non-monotone TR method (sL-SR1-NTR) and provide

a clear description of it in Algorithm 7. Let’s consider, for moments, the stochastic TR

framework described in Section 4.1. In this framework, we have the evaluated quantities

fNk
(wk) and gk, representing the objective function and its gradient with respect to the

index sample set Nk of size Nk = |Nk| = bs. Additionally, we have an L-SR1 Hessian

approximation Bk for the TR quadratic model. Using these, we calculate a second-order

search direction pk to find the trial point wt = wk + pk. To adjust the TR radius (δk)

and determine whether to accept the trial point, the new method utilizes a stochastic

NTR reduction ratio as follows

ρNTRk =
fNk

(wt)− rk
Qk(pk)

, (5.3)

where

rk = τkfmk
+ (1− τk)fNk

(wk), (5.4)

in which τk ∈ [τmin, τmax] with τmin ∈ [0, 1), τmax ∈ [τmin, 1], and fmk
is the non-

monotone term. Considering function approximations in stochastic settings, the new

ratio allows for a more relaxed agreement between the model and the approximated

function. When the ratio ρk indicates a good agreement between the model and the

relaxed approximate function, the trial point is accepted, and the L-SR1 matrix, which is

responsible for generating a reliable quadratic model, is updated. On the other hand, our

algorithm incorporates a non-monotone line search step to handle situations where the

ratios are small or negative due to an inaccurate model. Through this step, the algorithm

first determines a suitable step length and then updates both the L-SR1 matrix and the

parameter wk. If the line search step fails to find a satisfactory solution, the algorithm

proceeds to resolve the TR subproblem with the current parameter and L-SR1 matrix

in the next iteration. See lines 16-29 of the sL-SR1-NTR algorithm.

What follows are some ways of selecting the non-monotonicity rate τk and the non-

monotone term fmk
in the NTR reduction ratio (5.3). Additionally, we review some

strategies for computing the curvature vector yk in order to update the LSR1 matrix.

86 5.2. A Stochastic Algorithm with Fixed-Size Sampling

Selecting τk and fmk

As considered in [2], the parameter τk determining the level of monotonicity can be

updated as

τk =

τ0
2 , if k = 1,

τk−1+τk−2

2 , if k ≥ 2.

(5.5)

Considering the stochastic regime, however, the difference between our proposed NTR

ratio and that proposed in [2] is the definition of fmk
. Here, we list three possibilities in

(5.4):

1. The trivial choice is the maximum recent (at most) Ln subsampled functions’

values, i.e.,

fmk
= max{fNj (wj) | k − Ln + 1 ≤ j ≤ k}, k = 0, 1, (5.6)

2. It may be possible to reduce the stochasticity of the first choice by taking fmk
as

a reference point which is updated at specific iterations. Our second choice of fmk

is the maximum value of the recent Ln which is computed every Ln iterations, i.e.,

fmk
=

max{fNj (wj) | k − Ln + 1 ≤ j ≤ k}, if k = 0 or mod(k, Ln) = 0,

fmk−1
, elsewhere.

(5.7)

3. Since fNk
(wt) is evaluated with respect to Nk, and fmk

might be obtained with

respect to an index set different from Nk, the numerator in (5.3) may suffer from

the noise resulting from different mini-batches. Thus, our third (costly) choice of

fmk
is the maximum value of the recent Ln subsampled functions with respect to

current index set Nk, i.e.,

fmk
= max{fNk

(wj) | k − Ln + 1 ≤ j ≤ k}, k = 0, 1, (5.8)

5. Stochastic Non-Monotone Trust-Region Methods 87

Curvature Computing Strategies in Bk

Now, let us describe different strategies for computing the curvature vector yk and how

it is used to update Bk. It is known that a QN Hessian approximation such as an L-

SR1 update is originally obtained by defining the iterate and gradient displacements as

follows

sk = pk, yk = gt − gk, (5.9)

where gt ≜ ∇fNk
(wt). The inherently overwriting process of updating the QN Hessian

approximation can result in a single poor update that can have long-lasting effects on sev-

eral subsequent iterations. This is because the curvature estimates yk need to accurately

capture the behavior of the entire objective function’s Hessian in the DL optimization

problem (3.3), which is not achieved by using subsampled gradient differences based on

small samples. To address this issue and achieve a more stable Hessian approximation,

an effective approach is to separate the calculations of stochastic gradients used for pa-

rameter updates from the computations of yk [13, 16]. In this decoupling approach, if

necessary, one can use a different and larger random mini-batch for computing both gradi-

ents involved in yk (5.9). By considering the first-order Taylor expansion to approximate

the gradient difference, an alternative strategy is to use a subsampled Hessian-vector

product, which can provide a better representation of the true Hessian’s action [13]. To

do so, a different and large enough random index set NB
k of size NB

k = |NB
k | is considered

for computing yk such that

sk = pk, yk = B̄ksk, (5.10)

where

B̄k ≜ ∇2fNB
k

=
1

NB
k

∑
i∈NB

k

∇2fi(wk).

Regardless of the definition of yk whether in (5.9) or (5.10), the cost of computing yk

with respect to a larger set of samples is expensive. To address this issue, one approach is

to compute the curvature estimate yk periodically, where the L-SR1 update is performed

after a certain number of iterations (say, every L iterations), and remains unchanged

within these iterations. Note that the subsampled Hessian-vector product B̄ksk in (5.10)

88 5.2. A Stochastic Algorithm with Fixed-Size Sampling

can be coded directly in practice, without explicitly constructing B̄k; see the Hessian-Free

technique described in (2.4). In fact, since

∂∇fNB
k
(w)T

∂w
sk =

∂(∇fNB
k
(w)T sk)

∂w
, (5.11)

we have B̄ksk =
∂(∇fNB

k
(w)T sk)

∂w |w=wk
. Given ḡk ≜ ∇fNB

k
(wk), this equation shows how

B̄ksk can be computed with the cost of only one additional gradient evaluation; in other

words, we need (at most) two gradient evaluations with respect to NB
k for computing

B̄ksk. We consider a third strategy for computing yk using a variant of empirical Fisher

Information Matrix (eFIM), see e.g. [52], called accumulated eFIM. Given a memory

budget of Lf , let gj be defined as ∇fNj (wj) ∈ Rn with j ∈ {k− µ, k− µ+1, . . . , k} and

µ = min{Lf , k}. Then, the accumulated eFIM-vector product for curvature computation

is computed as follows

sk = pk, yk =
1

µ

k∑
j=k−µ

gjg
T
j sk. (5.12)

Obviously, to implement this approach, it is necessary to allocate storage for a matrix

with Lf columns, each of length n, in order to store the computed stochastic gradients.

In the following subsection, we assess the performance of the new method in a su-

pervised learning problem.

Gd: Nk = bs

Fv: Nk = bs

Hv-T0: Nk = NB
k and Nk = bs, NB

k = Nk

pHv-T0: Nk = NB
k and Nk = bs, NB

k = Nk

Hv-T1: Nk ̸= NB
k and Nk = bs, NB

k = Nk

pHv-T1: Nk ̸= NB
k and Nk = bs, NB

k = Nk

pHv-T2: Nk ̸= NB
k and Nk = bs, NB

k = 3Nk

pHv-T0 + Fv: Nk = NB
k and Nk = bs, NB

k = Nk

pHv-T1 + Fv: Nk ̸= NB
k and Nk = bs, NB

k = Nk

pHv-T2 + Fv: Nk ̸= NB
k and Nk = bs, NB

k = 3Nk

hyper-parameters
bs = 1000, L = 5, Lf = 100, M = 10, τ0 = 0.25, τ1 = τ0

2

Table 5.1: Experimental configuration of sL-SR1-NTR.

5. Stochastic Non-Monotone Trust-Region Methods 89

5.2.2 Numerical Evaluation

Experimentally, we have found that sL-SR1-NTR when using the choice fmk
defined as

(5.7) yields slightly better performance in terms of the final testing accuracy. Conse-

quently, we present the numerical results of Algorithm 7 incorporating this particular

choice of fmk
to illustrate its performance compared to its naive variant (sL-SR1-NTR)

and the well-known Adam optimizer for training ResNet-20 on CIFAR10 images. The

naive sL-SR1-TR variant is described as Algorithm 7 where the non-monotone reduction

ratio is replaced with the standard one defined in (4.2) and the step length αk is also ob-

tained by the standard stochastic line-search, i.e., fNk
(wk+αkpk) ≤ fNk

(wk)+c1αkg
T
k pk.

he limited memory parameter for LSR1 Hessian approximation was set to l = 30. The

CIFAR10 dataset is normalized by zero-one rescaling and z-score normalization tech-

niques. We set the seed of the MATLAB random number generator to a fixed value,

ensuring that the initial parameter remained the same across all experiments. By using

figures, we show the performance of the algorithms in terms of the testing accuracy of

the classification model versus training time or iteration during the training phase.

We have solved the regularized DL optimization problem (3.5) by Jacobian regu-

larization technique, with λ = 1, whose benefit can be observed in Figure 5.1. It is

important to note that our algorithm uses subsampled loss, including the regularization

term, for the required computations during the training phase. However, the quantity

displayed as Loss in Figure Figure 5.1 does not include the regularization term

Figure 5.1 The effect of regularization over testing accuracy of sL-SR1-NTR (bs = 500).

0 500 1000 1500 2000 2500 3000

Iteration

0

0.5

1

1.5

2

2.5

3

L
o

s
s

without Jacobian Regularization

Training

Testing

0 500 1000 1500 2000 2500 3000

Iteration

0

0.5

1

1.5

2

2.5

3

L
o

s
s

with Jacobian Regularization

Training

Testing

90 5.2. A Stochastic Algorithm with Fixed-Size Sampling

Figure 5.2 The impact of curvature computing approaches of pHv+Fv types.

0 1000 2000 3000 4000 5000 6000

GPU Time (s)

0

10

20

30

40

50

60

70

80
A

c
c

u
ra

c
y

sL-SR1-TR

pHv-T0 + Fv
pHv-T1 + Fv
pHv-T2 + Fv

0 1000 2000 3000 4000 5000 6000

GPU Time (s)

0

10

20

30

40

50

60

70

80

A
c

c
u

ra
c

y

sL-SR1-NTR

pHv-T0 + Fv
pHv-T1 + Fv
pHv-T2 + Fv

Table 5.1 specifies different approaches utilized for computing curvatures in our ex-

periments conducted with the sLSR1-NTR algorithm. For computing vector yk in both

sL-SR1-TR and sL-SR1-NTR algorithms, we have considered three different strategies,

including the gradient difference (5.9), the accumulated eFIM-vector product (5.12), and

the subsampled Hessian-vector product (5.10), respectively, denoted as Gd, Fv, and Hv

in Table 5.1. In order to see the importance of sampling in the decoupling idea for

computing yk, in practice, we have examined the latter approach in different sampling

settings to compute the subsampled gradient and subsampled Hessian approximations:

same mini-batches (i.e.,Nk = NB
k), same batch sizes but different samples (i.e. Nk ̸= NB

k

and |Nk| = |NB
k |), or different mini-batches and sizes (i.e. Nk ̸= NB

k and |Nk| ≠ |NB
k |).

These cases are respectively denoted as T0, T1 and T2 in Table 5.1. We have also

conducted experiments in the periodic setting to investigate the potential benefits of

keeping yk unchanged between periods (e.g., pHv-T2) versus computing yk using the

accumulated eFIM in the intermediate iterations between periods (e.g., pHv-T2+Fv);

the prefix letter p stands for periodical computing yk.

In Figure 5.2 and Figure 5.3, we report comparatively the testing accuracy reached

with the different curvature computing strategies when using sL-SR1-TR or sL-SR1-

NTR. Figure 5.3 shows that computing yk using Hv of type T0 leads to more oscillation

in testing curve than type T1 for both algorithms sL-SR1-TR and sL-SR1-NTR. On

the other hand, periodically computing yk produces smoother testing curves, in general.

Nevertheless, there are some strong instabilities in the testing accuracy of sL-SR1-NTR

5. Stochastic Non-Monotone Trust-Region Methods 91

when using pHv-T0 while they are damped by pHv-T1. This result shows that using

different samples for computing yk with respect to the ones used for computing the

subsampled gradient is more important in sL-SR1-NTR than in sL-SR1-TR. Moreover,

Figure 5.3 shows that using a hybrid approach for computing yk leads to more stable

testing accuracy for both sL-SR1-TR and sL-SR1- NTR even though it produces lower

testing accuracy for sL-SR1-NTR.

Figure 5.2 illustrates that the periodical approaches behave similarly. Therefore,

pHv-T1 + Fv from Figure 5.2 is selected as the better strategy for sL-SR1-NTR. Since

pHv-T1 + Fv produces more stable testing accuracy than pHv-T1, we have considered

this approach as the best Hv type strategy for computing yk, and compared it with other

approaches in Figure 5.5.

Finally, the most important conclusion that can be extracted from Figure 5.3 is that

computing the curvature at each iteration by accumulated eFIM-vector product allows

for faster training and higher final testing accuracy in all cases, but the improvement is

greater when using sL-SR1-NTR.

Figure 5.3 The impact of different curvature computing approaches.

0 1000 2000 3000 4000 5000 6000

GPU Time (s)

0

10

20

30

40

50

60

70

80

A
c
c
u

ra
c
y

sL-SR1-TR

Hv-T0
pHv-T0
pHv-T0 + Fv
Fv

0 1000 2000 3000 4000 5000 6000

GPU Time (s)

0

10

20

30

40

50

60

70

80

A
c
c
u

ra
c
y

sL-SR1-TR

Hv-T1
pHv-T1
pHv-T1 + Fv
Fv

0 1000 2000 3000 4000 5000 6000

GPU Time (s)

0

10

20

30

40

50

60

70

80
sL-SR1-TR

pHv-T2
pHv-T2 + Fv
Fv

0 1000 2000 3000 4000 5000 6000

GPU Time (s)

0

10

20

30

40

50

60

70

80

A
c
c
u

ra
c
y

sL-SR1-NTR

Hv-T0
pHv-T0
pHv-T0 + Fv
Fv

0 1000 2000 3000 4000 5000 6000

GPU Time (s)

0

10

20

30

40

50

60

70

80

A
c
c
u

ra
c
y

sL-SR1-NTR

Hv-T1
pHv-T1
pHv-T1 + Fv
Fv

0 1000 2000 3000 4000 5000 6000

GPU Time (s)

0

10

20

30

40

50

60

70

80

A
c
c
u

ra
c
y

sL-SR1-NTR

pHv-T2
pHv-T2 + Fv
Fv

92 5.2. A Stochastic Algorithm with Fixed-Size Sampling

Figure 5.4 The comparative accuracy of sL-SR1-NTR using Fv vs GPU Time (3 hours).

0 2000 4000 6000 8000 10000 12000

GPU Time(s)

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

bs=500

sL-SR1-TR(Train)
sL-SR1-TR(Test)
sL-SR1-NTR(Train)
sL-SR1-NTR(Test)

0 2000 4000 6000 8000 10000 12000

GPU Time(s)

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

bs=1000

sL-SR1-TR(Train)
sL-SR1-TR(Test)
sL-SR1-NTR(Train)
sL-SR1-NTR(Test)

0 2000 4000 6000 8000 10000 12000

GPU Time(s)

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

bs=2500

sL-SR1-TR(Train)
sL-SR1-TR(Test)
sL-SR1-NTR(Train)
sL-SR1-NTR(Test)

Figure 5.5 Comparative testing accuracy of sL-SR1-NTR with different curvature approaches.

0 100 200 300 400 500 600 700

Iteration

10

20

30

40

50

60

70

80

A
c
c
u

ra
c
y

Fv

Fv (sL-SR1-TR)
Fv (sL-SR1-NTR)
Adam

0 100 200 300 400 500 600 700

Iteration

0

10

20

30

40

50

60

70

80

A
c
c
u

ra
c
y

Gd

Gd (sL-SR1-TR)
Gd (sL-SR1-NTR)
Adam

0 100 200 300 400 500 600 700

Iteration

0

10

20

30

40

50

60

70

80

A
c
c
u

ra
c
y

pHv-T1 + Fv

pHv-T1 + Fv (sL-SR1-TR)
pHv-T1 + Fv (sL-SR1-NTR)
Adam

Figure 5.4 shows the results obtained by both algorithms using the curvature comput-

ing approach Fv and different batch sizes (bs). This time, we allowed the longer run for

three hours; the reported results include both training and testing accuracy versus time

and show that the best approach reveals always sL-SR1-NTR. Moreover, as expected, the

experiments with respect to the smallest batch size (bs = 500) produce higher accuracy

within the fixed running time. Figure 5.5 shows the testing accuracy versus iterations

of sL-SR1-TR and sL-SR1-NTR (bs = 1000) using three different curvature strategies,

i.e., from left to right Fv, Gd and pHv-T1 + Fv. The results reported in this figure

show that the best and worst performances of our proposed algorithm are obtained with

Fv- and Gd-based curvature computing strategies, respectively. We include also the

state-of-the-art Adam optimizer [42] for comparison, with learning rate αk = 10−3 ex-

perimentally found to be the optimal one. It can be observed that sL-SR1-NTR provides

a comparable or better testing accuracy than Adam in the same 90 minutes of running

time. In Figure 5.6, we complete the study performed in Figure 5.5.

5. Stochastic Non-Monotone Trust-Region Methods 93

Figure 5.6 The comparative accuracy sL-SR1-NTR using Fv vs iteration (3 hours).

0 500 1000 1500 2000 2500

Iteration

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

bs=500

Adam(Train)
Adam(Test)
sL-SR1-TR(Train)
sL-SR1-TR(Test)
sL-SR1-NTR(Train)
sL-SR1-NTR(Test)

0 500 1000 1500 2000 2500

Iteration

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

bs=1000

Adam(Train)
Adam(Test)
sL-SR1-TR(Train)
sL-SR1-TR(Test)
sL-SR1-NTR(Train)
sL-SR1-NTR(Test)

1000 2000 3000 4000 5000

Iteration

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

bs=2500

Adam(Train)
Adam(Test)
sL-SR1-TR(Train)
sL-SR1-TR(Test)
sL-SR1-NTR(Train)
sL-SR1-NTR(Test)

To summarize, it is not recommended to compute curvature using the Hessian-vector

product (Hv-types). We infer that the lower accuracy obtained with this approach

stems from computing the Hessian-vector products using two inexact (noisy) gradient

evaluations, which can amplify the noise. One reason for this conclusion is the use of

periodic Hessian-vector products, which could reduce both the computational cost and

the impact of the double noisy gradient evaluation. Additionally, the periodic curvature

computing strategy works better with the decoupling idea, particularly with type T1

(pHv-T1) rather than T2. Furthermore, for intermediate iterations of the algorithms,

it is beneficial to employ the Fv-based curvature computing strategy in combination

with pHv-T1 (pHv-T1 + Fv), as it leads to smoother accuracies. This approach is

recommended for both algorithms, especially for sL-SR1-NTR, as it outperforms sL-SR1-

TR. However, among Fv, pHv-T1 + Fv, and Gd, the best choice for computing yk

is Fv. By using this approach, sL-SR1-NTR can be applied instead of other considered

methods within a fixed budget of time and a fixed budget of iterations (or epochs,

assuming a fixed batch size for all algorithms), particularly when a large batch size is

preferred.

5.3 A Stochastic Algorithm with Adaptive Sampling

Looking broadly at the idea of non-monotonicity within the stochastic TR framework

described in the previous section, our objective is to develop an efficient algorithm with

practical features for training DNNs. We propose a second-order non-monotone TR

algorithm where the step and the candidate points for the next iteration are based on

94 5.3. A Stochastic Algorithm with Adaptive Sampling

the subsampled function and its gradient with respect to adaptive size mini-batches. The

involving quadratic TR models are constructed by using Hessian approximations, without

imposing a positive definiteness assumption, as the true Hessian in DL problems may not

be positive definite due to their non-convex nature. Unlike the classical TR, our decision

on acceptance of the trial point is not based only on the decreasing agreement between

the model and the approximate objective function, but on an independent subsampled

function. This "control" function which is formed through additional sampling, similar

to one proposed in [23] for the line search framework, also has a role in controlling the

sample average approximation error by adaptively choosing the sample size. Depending

on the estimated progress of our algorithm, this can yield sample size scenarios ranging

from mini-batch to full sample functions. We provide convergence analysis for all possible

scenarios and show that the proposed method achieves almost sure convergence under

standard assumptions for the TR framework such as Lipschitz-continuous gradients and

bounded Hessian approximations.

In the following, we first outline the algorithm with a clear description of its steps,

and then give some preliminary working hypotheses to provide its convergence results.

5.3.1 Algorithmic framework

Within this subsection, we describe the proposed method called ASNTR (Adaptive Sub-

sample Non-monotone Trust-Region).

At iteration k, we construct a quadratic model, as explained in Section 4.1, using the

subsampled gradient gk ≜ ∇fNk
(wk) and an arbitrary Hessian approximation Bk that

satisfies the following condition:

∥Bk∥ ≤ L, (5.13)

for some L > 0. The common TR subproblem (4.1) is then solved to obtain the relevant

direction pk. We assume that at least some fraction of the Cauchy decrease is obtained,

i.e., the direction satisfies

Qk(pk) ≤ −
c

2
∥gk∥min{δk,

∥gk∥
∥Bk∥

}, (5.14)

5. Stochastic Non-Monotone Trust-Region Methods 95

for some c ∈ (0, 1). This is a standard assumption in TR, see Lemma 2.1, and it is not

restrictive even in the stochastic framework. Given the search direction pk, we calculate

a trial point and then evaluate whether it should be accepted for the next iteration.

Our new algorithm uses a modified acceptance strategy as follows. Motivated by the

numerical study in Section 5.3, we use a non-monotone TR (NTR) framework instead

of the standard TR one. This is because we are dealing with noisy approximations in

a stochastic expansion and do not want to impose a strict decrease in the approximate

function. To this end, we define the relevant ratio as follows

ρNk
≜
fNk

(wt)− rNk

Qk(pk)
, (5.15)

where

rNk
≜ fNk

(wk) + tkδk, tk > 0, (5.16)

and
∞∑
k=0

tk ≤ t <∞. (5.17)

We allow Nk to be chosen in an arbitrary manner in ASNTR. However, even if we

impose uniform sampling that yields an unbiased estimator of the objective function at

wk, the dependence between Nk and wt yields a biased estimator of f(wt). In order to

overcome this difficulty that deteriorates straightforward convergence analysis, we apply

an additional sampling strategy [23]. To this end, at every iteration at which Nk < N ,

we choose another independent subsample represented by the index set Dk ⊂ N of size

Dk = |Dk| < N and calculate fDk
(wk), fDk

(wt) and ḡk ≜ ∇fDk
(wk) (see lines 5-6 of

the ASNTR algorithm). Since this yields an additional cost per iteration, we suggest a

modest value for Dk. In fact, in our experiments, we set Dk = 1 for all k. Furthermore,

in the spirit of the TR framework, we also define a linear model as Lk(v) ≜ vT ḡk, and

consider another agreement as follows

ρDk
≜
fDk

(wt)− rDk

Lk(−ḡk)
, (5.18)

96 5.3. A Stochastic Algorithm with Adaptive Sampling

where

rDk
≜ fDk

(wk) + δk t̃k, t̃k > 0, (5.19)

and
∞∑
k=0

t̃k ≤ t̃ <∞. (5.20)

Therefore, when Nk < N , the trial point is accepted only if both ρNk
and ρDk

are

bounded away from zero; otherwise, if the full sample is used, the decision is made by

ρNk
solely as in deterministic NTR (see lines 23-35 of the ASNTR algorithm). The

reasoning behind this is as follows: If the point obtained by observing fNk
is acceptable

also to some independent approximation function fDk
, then we proceed with this point

since it is probably acceptable for the original objective function as well because fDk
(wt)

is an unbiased estimator of f(wt).

Another role of ρDk
is to control the sample size. If the obtained trial point wt yields

an uncontrolled increase in fDk
as specified in line 10 of ASNTR, we conclude that we

need a better approximation of the objective function and we increase the sample size

by choosing a new sample for the next iteration. The sample can also be increased if we

are too close to a stationary point of the approximate function fNk
. This is stated in

line 7 of ASNTR, where h represents an approximation error estimate given by

h(Nk) ≜
N −Nk

N
.

This gives us more chances for an increase if we have a small sample size. However, the

experiments reveal that this is not activated that often and it can be considered as a

theoretical safeguard. The algorithm can also keep the same sample size (see lines 14

and 16 of the ASNTR algorithm). Keeping the same sample Nk in line 14 corresponds to

the case where the trial point is acceptable with respect to fDk
, while we do not have the

decrease in fNk
. Otherwise, we allow the algorithm in line 16 to choose a new sample of

the current size and exploit some new data points in general. The strategy for updating

the sample size is described in lines 7-19 of the ASNTR algorithm.

5. Stochastic Non-Monotone Trust-Region Methods 97

Algorithm 8 ASNTR
1: Initialization: Set k = 0. Choose N0,⊆ N . {tk} satisfying (5.17), {t̃k} satisfying (5.20),
δ0, δmax ∈ (0,∞), ϵ ∈ [0, 12), η, ν ∈ [0, 1/4), 0 < τ1 ≤ 0.5 < τ2 < 1 < τ3, η < η2 ≤ 3/4,
η1 ∈ (η, η2) .

2: Given fNk
(wk), gk and Bk, solve (4.1) for pk such that (5.14) holds, and then obtain the

trial iterate wt = wk + pk.
3: Given fNk

(wt), compute ρNk
using (5.15).

4: if Nk < N then
5: Choose Dk ⊂ N randomly and uniformly.
6: Given fDk

(wk), ∇fDk
(wk), and fDk

(wt), compute ρDk
using (5.18).

7: if ∥gk∥ < ϵh(Nk) then
8: Increase Nk to Nk+1 and choose Nk+1.
9: else

10: if ρDk
< ν then

11: Increase Nk to Nk+1 and choose Nk+1.
12: else
13: if ρNk

< η then
14: Set Nk+1 = Nk and Nk+1 = Nk.
15: else
16: Set Nk+1 = Nk and choose Nk+1.
17: end if
18: end if
19: end if
20: else
21: Nk+1 = N

22: end if
23: if Nk < N then
24: if ρNk

≥ η and ρDk
≥ ν then

25: wk+1 = wt.
26: else
27: wk+1 = wk.
28: end if
29: else
30: if ρNk

≥ η then
31: wk+1 = wt.
32: else
33: wk+1 = wk.
34: end if
35: end if
36: if ρNk

< η1, then
37: δk+1 = τ1δk
38: else if ρNk

> η2 and ∥pk∥ ≥ τ2δk, then
39: δk+1 = min{τ3δk, δmax},
40: else
41: δk+1 = δk.
42: end if
43: if Some stopping conditions hold then
44: Stop training
45: else
46: Set k = k + 1 and go to step 2.
47: end if

98 5.3. A Stochastic Algorithm with Adaptive Sampling

Notice that the sample size can not be decreased, and once all samples are included,

it remains unchanged until the end of the process. Moreover, it should be noted that

ASNTR provides complete freedom in terms of the increment in the sample size as well

as the choice of a sample Nk. This leaves enough space for different sampling strategies

within the Algorithm. Mostly depending on the problem, ASNTR can result in a mini-

batch strategy, but it can also yield an increasing sample size procedure.

The radius δk is updated within lines 36-42 of ASNTR. It is a common update

strategy for TR approaches, and also in our algorithm. It is completely based on fNk

since it is related to the error of the quadratic model, and not to the approximation

error which we control by additional sampling. We also require some predetermined

fixed hyper-parameters for ASNTR, see Table 5.2. We set them based on the criteria set

forth in e.g., [62, 27, 81], and as a result of the necessity of our convergence findings.

5.3.2 Convergence Analysis

We make the following standard assumption for the TR framework needed to prove the

a.s. convergence result of ASNTR.

Assumption 5.1. The functions fi, i = 1, ..., N are bounded from below and twice

continuously-differentiable with L-Lipschitz-continuous gradients.

First, we prove that the sequence of function values generated by ASNTR is uniformly

bounded.

Lemma 5.1. Suppose that Assumption 5.1 holds. Then the sequence {wk} generated by

ASNTR algorithm satisfies

f(wk) ≤ f(w0) + δ(t+ t̃), k = 0, 1, . . .

where t and t̃ correspond to those in (5.17) and (5.20), respectively, and δ ≜ δmax.

Proof. First scenario, when Nk < N for each k. In this scenario, we should notice that

ρDk
is calculated at every iteration and influences the decision to accept or reject the

trial point wt. Let us consider an arbitrary iteration k of the proposed algorithm under

5. Stochastic Non-Monotone Trust-Region Methods 99

this scenario. Notice that ρDk
≥ ν is equivalent to

fDk
(wk+1) ≤ fDk

(wk)− ν∥ḡk∥2 + δk t̃k.

Let us denote by D+
k the subset of all possible outcomes of Dk at iteration k that satisfy

ρDk
≥ ν, i.e.,

D+
k = {Dk ⊂ N | fDk

(wt) ≤ fDk
(wk)− ν∥∇fDk

(wk)∥2 + δk t̃k}. (5.21)

Notice that if Dk ∈ D+
k and ρNk

≥ η then wk+1 = wt and there holds

fDk
(wk+1) ≤ fDk

(wk) + δt̃k.

On the other hand, if Dk ∈ D+
k and ρNk

< η or if Dk ∈ D−
k , where

D−
k = {Dk ⊂ N | fDk

(wt) > fDk
(wk)− ν∥∇fDk

(wk)∥2 + δk t̃k}, (5.22)

then wk+1 = wk and there holds

fDk
(wk+1) = fDk

(wk) ≤ fDk
(wk) + δt̃k.

Thus, we conclude that for all possible outcomes of Dk, there holds

fDk
(wk+1) = fDk

(wk) ≤ fDk
(wk) + δt̃k. (5.23)

Now, let us denote by Fk+1/2 the σ-algebra generated by N0, D0, ..., Nk−1, Dk−1, Nk.

Since Dk is chosen randomly and uniformly, we have

E(fDk
(wk+1)|Fk+1/2) = f(wk+1).

By this fact, applying conditional expectation with respect to Fk+1/2 on (5.23) leads to

f(wk+1) ≤ f(wk) + δt̃k (5.24)

100 5.3. A Stochastic Algorithm with Adaptive Sampling

and we obtain that for all k there holds

f(wk) ≤ f(w0) + δ

k−1∑
j=0

t̃k ≤ f(w0) + δt̃. (5.25)

Second scenario, when N is achieved at some finite iteration. In this case, there exists a

finite iteration k̃ such that Nk = N for all k > k̃. Thus, the trial point for all k > k̃ is

accepted if and only if ρNk
≥ η. This implies that we either have

f(wk+1) = f(wk),

or

f(wk+1) ≤ f(wk) + δktk −
c

2
∥gk∥min{δk,

∥gk∥
∥Bk∥

} ≤ f(wk) + δtk, (5.26)

where ∥gk∥ = ∥∇f(wk)∥ in this scenario. In any of the two cases, for all s ∈ N, we can

write

f(wk̃+s) ≤ f(wk̃) + δ
s−1∑
j=0

tk̃+j ≤ f(wk̃) + δt. (5.27)

Since we have already proved that the upper bound (5.25) holds for all k when Nk < N ,

we can conclude that f(wk̃) ≤ f(w0) + δt̃. Therefore

f(wk̃+s) ≤ f(w0) + δ(t̃+ t).

Combining all together, we come to the conclusion that the objective function is uni-

formly upper-bounded in each scenario, which completes the proof.

Next, we prove an important lemma that will help us prove the main convergence

result. We prove a.s. convergence of ASNTR by analyzing both of the two possible

scenarios with respect to the sample size sequence: 1) "mini-batch scenario" - where the

subsampling is employed in each iteration; 2) "deterministic scenario" - where the full

sample is reached eventually. In Lemma 5.2, we show that in the first scenario ρDk
≥ ν

holds for all possible realizations of Dk and all k sufficiently large - otherwise we reach

the full sample and fall into the "deterministic scenario".

5. Stochastic Non-Monotone Trust-Region Methods 101

Lemma 5.2. Suppose that Assumption 5.1 holds. If Nk < N for all k ∈ N, then there

must exist k1 ∈ N such that ρDk
≥ ν for all k ≥ k1 and for all possible realizations Dk.

Proof. Assume that there is no k1 ∈ N such that ρDk
≥ ν for all k ≥ k1. We will show

that in that case the full sample is reached eventually. Assume the contrary, i.e., assume

that there exists some N̄ < N and k2 ∈ N such that Nk = N̄ for all k ≥ k2. Under

the current assumptions, we know that there exists an infinite subsequence of iterations

K ⊆ N such that ρDk
≥ ν is not satisfied for all possible outcomes of Dk. To be more

precise, let us use the same notation as in the previous lemma regarding D+
k and D−

k

where |Dk| = 1 for simplicity. Then, we have that D−
k ̸= ∅ for all k ∈ K. Since Dk

is chosen randomly and uniformly, we have that P (Dk = i) = 1/N, i = 1, ..., N in any

iteration k. Therefore, P (Dk ∈ D−
k) ≥ 1/N , i.e., P (Dk ∈ D+

k) ≤ 1− 1/N for all k ∈ K.

So,

P (Dk ∈ D+
k , k ∈ K) =

∏
k∈K

N − 1

N
= 0,

which means that we will almost surely encounter an iteration at which the sample size

will be increased due to ρDk
, which is in contradiction with Nk = N̄ for all k large

enough. This completes the proof.

Theorem 5.1. Suppose that Assumption 5.1 holds. Then the sequence {wk} generated

by ASNTR algorithm satisfies

lim inf
k→∞

∥∇f(wk)∥ = 0 a.s.

Proof. Assume two different scenarios with Nk = N for all k large enough, and Nk < N

for all k. Let us start with the first one in which Nk = N for all k ≥ k̃, where k̃ is random

but finite. In this case, ASNTR reduces to the non-monotone deterministic trust-region

algorithm applied on f . By L-Lipschitz continuity of ∇f , we obtain

|f(wk + pk)− f(wk)−∇T f(wk)pk| ≤
L

2
∥pk∥2. (5.28)

Now, let us denote ρk ≜ ρNk
and assume that ∥∇f(wk)∥ ≥ ε > 0 for all k ≥ k̃. Then,

102 5.3. A Stochastic Algorithm with Adaptive Sampling

we obtain

|ρk − 1| =
|f(wk + pk)− f(wk)− δktk −∇T f(wk)pk − 0.5pTkBkpk|

|Qk(pk)|
(5.29)

≤ 0.5L∥pk∥2 + δktk + 0.5L∥pk∥2

0.5c∥gk∥min{δk, ∥gk∥
∥Bk∥}

≤ L∥pk∥2 + δktk
0.5cεmin{δk, εL}

,

where ∥gk∥ = ∥∇f(wk)∥ in this scenario. Let define δ̃ = εc
20L . Without loss of generality,

we can assume that tk ≤ Lδ̃ for all k ≥ k̃. Let us now observe iterations after k̃. If

δk ≤ δ̃, then δk+1 ≥ δk. This comes from the following fact due to δ̃ ≤ ε
L ,

|ρk − 1| ≤
Lδ2k + δktk
0.5cεδk

≤ 2Lδ̃

0.5cε
<

1

4
, (5.30)

i.e., ρk > 3
4 which implies that the NTR radius is not decreased; see lines 36-42 in

ASNTR. Further, there exists δ̂ > 0 such that δk ≥ δ̂ for all k ≥ k̃. Moreover, for

all k ≥ k̃, the assumption ρk < η would yield a contradiction since it would imply

limk→∞ δk = 0. Therefore, there must exist an infinite set K ⊆ N as K = {k ≥ k̃ | ρk ≥

η}. For all k ∈ K, we have

f(wk+1) ≤ f(wk) + δktk −
c

8
∥gk∥min{δk,

∥gk∥
∥Bk∥

} ≤ f(wk) + δtk −
c

8
εmin{δ̂, ε

L
},

where δ ≜ δmax in ASNTR. Now, let c̄ ≜ c
8εmin{δ̂, εL}. Since tk tends to zero, we have

δtk ≤ c̄
2 for all k large enough. Without loss of generality, we can say that this holds for

all k ∈ K; Denoting K = {kj}j∈N, we have

f(wkj+1) ≤ f(wkj)−
c̄

2
.

Since wk+1 = wk for all k ≥ k̃ and k /∈ K, i.e. when ρk < η, we obtain

f(wkj+1
) ≤ f(wkj)−

c̄

2
.

5. Stochastic Non-Monotone Trust-Region Methods 103

Thus, due to Lemma 5.1, we obtain for all j ∈ N

f(wkj) ≤ f(wk0)− j
c̄

2
≤ f(w0) + δ(t+ t̃)− j c̄

2
. (5.31)

Letting j tend to infinity in (5.31), we obtain limj→∞ f(wkj) = −∞, which is in contra-

diction with the assumption of f being bounded from below. Therefore, ∥∇f(wk)∥ ≥

ε > 0 for all k ≥ k̃ can not be true, so we conclude that

lim inf
k→∞

∥∇f(wk)∥ = 0.

Now let us assume the second scenario, i.e., Nk < N for all k, i.e., the sample size is

increased only finitely many times. According to Lemma 5.2 and the lines 7-8 of the

algorithm, the currently considered scenario implies the existence of a finite k̃1 such that

Nk = Ñ , ∥gk∥ ≥ ϵh(Nk) ≜ ϵÑ > 0 and ρDk
≥ ν, (5.32)

for all k ≥ k̃1 and some Ñ < N. Now, let us prove that there exists an infinite subset

of iterations K̃ ⊆ N such that ρk ≥ η for all k ∈ K, i.e., the trial point wt is accepted

infinitely many times. Assume a contrary, i.e., there exists some finite k̃2 such that

ρk < η for all k ≥ k̃2. Since η < η1, this further implies that limk→∞ δk = 0; see

lines 36 and 37 in Algorithm 8. Moreover, line 13 of Algorithm 8 implies that the

sample does not change, meaning that there exists Ñ ⊂ N such that Nk = Ñ for all

k ≥ k̃3 ≜ max{k̃1, k̃2}. By L-Lipschitz continuity of ∇fÑ , we obtain

|fÑ (wk + pk)− fÑ (wk)−∇T fÑ (wk)pk| ≤
L

2
∥pk∥2. (5.33)

For every k ≥ k̃3, then we have

|ρk − 1| =
|fÑ (wk + pk)− fÑ (wk)− δktk −∇T fÑ (wk)pk − 0.5pTkBkpk|

|Qk(pk)|
(5.34)

≤ 0.5L∥pk∥2 + δktk + 0.5L∥pk∥2

0.5c∥gk∥min{δk, ∥gk∥
∥Bk∥}

≤
Lδ2k + δktk

0.5cϵÑ min{δk, εL}
.

104 5.3. A Stochastic Algorithm with Adaptive Sampling

Since limk→∞ δk = 0, there exists k̃4 such that for all k ≥ k̃4 we obtain

|ρk − 1| ≤
Lδ2k + δktk
0.5cϵÑδk

=
Lδk + tk
0.5cϵÑ

.

Due to the fact that tk tends to zero, we obtain that limk→∞ ρk = 1 which is in contra-

diction with ρk < η < 1/4. Thus, we conclude that there must exist K̃ ⊆ N such that

ρk ≥ η for all k ∈ K̃. Let us define K1 ≜ K̃ ∩ {k̃1, k̃1 + 1, . . .}. Notice that we have

ρDk
≥ ν and ρk ≥ η for all k ∈ K1. Thus, the following holds for all k ∈ K1

fDk
(wk + pk)− rDk

Lk(−ḡk)
≥ ν,

where ḡk = ∇fDk
(wk). This further implies

fDk
(wk + pk)− rDk

≤ −ν∥ḡk∥2.

Moreover, the following holds for all k ∈ K1

fDk
(wk+1) = fDk

(wk + pk) ≤ fDk
(wk)− ν∥ḡk∥2 + δt̃k. (5.35)

As in Lemma 5.1, let us define by Fk+1/2 the σ-algebra generated by N0, D0, ... ,

Nk−1, Dk−1, Nk. Using the fact that Dk is chosen randomly and uniformly, applying the

conditional expectation with respect to Fk+1/2 on (5.35) we obtain for all k ∈ K1

f(wk+1) ≤ f(wk)− νE(∥ḡk∥2|Fk+1/2) + δt̃k. (5.36)

Moreover, we also have

E(∇fDk
(wk)|Fk+1/2) = ∇f(wk),

and

∥∇f(wk)∥2 = ∥E(∇fDk
(wk)|Fk+1/2)∥2 ≤ E2(∥∇fDk

(wk)∥|Fk+1/2)

≤ E(∥∇fDk
(wk)∥2|Fk+1/2).

5. Stochastic Non-Monotone Trust-Region Methods 105

For all k ∈ K1 in (5.36), we have

f(wk+1) ≤ f(wk)− ν∥∇f(wk)∥2 + δt̃k. (5.37)

Notice that wk+1 = wk in all other iterations k ≥ k̃1 and k /∈ K1. Denoting T = {kj}j∈N,

for all j ∈ N, we obtain

f(wkj+1
) = f(wkj+1) ≤ f(wkj)− ν∥∇f(wkj)∥

2 + δt̃kj .

Then, due to the summability condition of t̃k and Lemma 5.1, the following holds for

any s ∈ N

f(wks+1) ≤ f(wk0)− ν
s∑
j=0

∥∇f(wkj)∥
2 + δt̃ ≤ f(w0)+ δ(2t+ t̃)− ν

s∑
j=0

∥∇f(wkj)∥
2 + δt̃.

Now, applying the expectation, using the boundedness of f from below, and letting s

tend to infinity in the above inequality, we end up with

∞∑
j=0

E(∥∇f(wkj)∥
2) <∞.

Moreover, the following holds by Markov’s inequality for any ϵ > 0

P (∥∇f(wkj)∥ ≥ ϵ) ≤
E(∥∇f(wkj)∥2)

ϵ2
.

Therefore, we have
∞∑
j=0

P (∥∇f(wkj)∥ ≥ ϵ) <∞.

Finally, Borel-Cantelli Lemma implies that almost surely limj→∞ ∥∇f(wkj)∥ = 0. Com-

bining all together, the result follows as in both scenarios we have at least

lim inf
k→∞

∥∇f(wkj)∥ = 0 a.s.

106 5.3. A Stochastic Algorithm with Adaptive Sampling

STORM
δ0 = 1, δmax = 10, l = 30, η1 = 10−4, η2 = 10−3, γ = 2

ASNTR
δ0 = 1, δmax = 10, l = 30, η = ν = 10−4, η1 = 0.1, η2 = 0.75, τ1 = 0.5, τ2 = 0.8, τ3 = 2

Table 5.2: Hyper-parameters of STORM and ASNTR.

5.3.3 Numerical Evaluation

We present some experimental results to make a comparison between ASNTR and

STORM as Algorithm 5 in [17] for training DNNs in two problem types: regression

and classification. Both datasets are normalized by zero-one rescaling and z-score nor-

malization techniques. Although the TR quadratic models of ASNTR and STORM

allow any Hessian approximations, we have customized both algorithms with an L-SR1

update and solved their associated TR subproblem by OBS solver, see Algorithm C.5.

The hyper-parameters applied in both algorithms are described in Table 5.2. We have

randomly (without replacement) chosen the index subset Nk ⊆ {1, 2, . . . , N} to generate

a mini-batch of size Nk for computing required quantities, i.e., subsampled functions and

gradients. Note that in STORM, function estimates of the numerator of the TR ratio

may not necessarily be obtained using this mini-batch. However, based on findings in

[75], it is recommended to use the same mini-batch for acquiring all function estimations.

Given N0 = d + 1 where d is the dimension of a single input sample xi ∈ Rd, we have

adopted the linearly increased sampling rule that Nk = min(N,max(100k + N0, ⌈ 1
δk

2 ⌉)

for STORM as in [17] while we have exploited the simple following sampling rule

Nk+1 = ⌈1.01Nk⌉, (5.38)

for ASNTR only when it needed, otherwise Nk+1 = Nk. Using the non-monotone TR

framework in our algorithm, we set tk = C1
(k+1)1.1

and t̃k = C2
(k+1)1.1

for some C1, C2 > 0

in (5.16) and (5.19), respectively. We have selected Dk with cardinality 1, i.e., |Dk| = 1

In our implementations, each algorithm was run with 5 different initial random seeds.

The criteria of both algorithms’ performance (loss and accuracy) are compared against

the number of gradient calls (Ng) during the training phase. Both algorithms were

terminated when Ng reached the determined budget of the gradient evaluations (Nmax
g).

5. Stochastic Non-Monotone Trust-Region Methods 107

Due to the use of subsampling and forming mini-batches of training data, the training

accuracy is measured as the percentage of correct predictions within each mini-batch,

and the training loss is computed by evaluating the loss functions on the mini-batches.

Training and testing accuracy are correspondingly reported; the accuracy of image clas-

sification is the number of correct predictions in percentage while the accuracy of image

regression is the number of predictions in percentage within an acceptable error margin

(threshold) that we have set the threshold to be 10 degrees. What follows is the evolution

of the accuracy produced by the algorithms for training in considered problems.

Classification

Figures 5.7, 5.8, 5.10 and 5.11 shoe the accuracy and loss variations (mean and standard

error) of the ASNTR algorithm in comparison with STORM. The experiments were

conducted with different values of C2 (C2 = 1, 102, 108) in ρDk
and C1 = 1 in ρNk

, under

fixed budgets of gradient evaluations (Nmax
g = 6× 105 for MNIST and Nmax

g = 9× 106

for CIFAR10).

The results demonstrate that ASNTR achieves higher training and testing accuracy

compared to STORM, except in Figure 5.8 where ASNTR and STORM show comparable

performance for C2 = 1. Additionally, ASNTR achieves higher accuracy (lower loss)

with fewer gradient evaluations (Ng) compared to STORM. The figures also indicate the

robustness of ASNTR for larger values of C2, indicating its ability with higher rates of

non-monotonicity.

Regression

Figures 5.9 and 5.12 show also the accuracy and loss variations on both training and test

DIGITS dataset within a fixed budget of gradient evaluations Nmax
g = 2 × 106. These

figures demonstrate the resilience of ASNTR, particularly for the highest value of C2.

Despite facing challenges in the early stages of the training phase with C2 = 1 and

C2 = 102, ASNTR is able to overcome them and achieve accuracy levels comparable

to those of the STORM algorithm. This indicates the robustness and effectiveness of

ASNTR in handling different levels of non-monotonicity.

108 5.3. A Stochastic Algorithm with Adaptive Sampling

Figure 5.7 The accuracy variations of STORM and ASNTR on MNIST.

0 0.2 0.4 0.6

N
g 106

0

50

100
T

ra
in

in
g

 A
c
c
u

ra
c
y

C
2
 = 1

STORM

ASNTR

0 0.2 0.4 0.6

N
g 106

0

50

100

T
e
s
ti

n
g

 A
c
c

u
ra

c
y

C
2
 = 1

STORM

ASNTR

0 0.2 0.4 0.6

N
g 106

0

50

100

T
ra

in
in

g
 A

c
c

u
ra

c
y

C
2
 = 10

2

STORM

ASNTR

0 0.2 0.4 0.6

N
g 106

0

50

100

T
e
s
ti

n
g

 A
c
c
u

ra
c
y

C
2
 = 10

2

STORM

ASNTR

0 0.2 0.4 0.6

N
g 106

0

50

100

T
ra

in
in

g
 A

c
c

u
ra

c
y

C
2
 = 10

8

STORM

ASNTR

0 0.2 0.4 0.6

N
g 106

0

50

100

T
e
s
ti

n
g

 A
c
c
u

ra
c
y

C
2
 = 10

8

STORM

ASNTR

Figure 5.8 The accuracy variations of STORM and ASNTR on Cifar10.

0 2 4 6 8

N
g 106

0

50

100

T
ra

in
in

g
 A

c
c
u

ra
c
y

C
2
 = 1

STORM

ASNTR

0 2 4 6 8

N
g 106

0

50

100

T
e
s
ti

n
g

 A
c
c
u

ra
c
y

C
2
 = 1

STORM

ASNTR

0 2 4 6 8

N
g 106

0

50

100

T
ra

in
in

g
 A

c
c
u

ra
c
y

C
2
 = 10

2

STORM
ASNTR

2 4 6 8

N
g 106

20

40

60

80

T
e
s
ti

n
g

 A
c
c
u

ra
c
y

C
2
 = 10

2

STORM

ASNTR

0 2 4 6 8

N
g 106

0

50

100
T

ra
in

in
g

 A
c
c
u

ra
c
y

C
2
 = 10

8

STORM
ASNTR

0 2 4 6 8

N
g 106

0

50

100

T
e
s
ti

n
g

 A
c
c
u

ra
c
y

C
2
 = 10

8

STORM

ASNTR

Figure 5.9 The accuracy variations of STORM and ASNTR on DIGITS.

0 1 2

N
g 106

0

50

100

T
ra

in
in

g
 A

c
c
u

ra
c
y

C
2
 = 1

STORM

ASNTR

0 1 2

N
g 106

0

50

100

T
e
s
ti

n
g

 A
c
c
u

ra
c
y

C
2
 = 1

STORM

ASNTR

0 1 2

N
g 106

0

50

100

T
ra

in
in

g
 A

c
c
u

ra
c
y

C
2
 = 10

2

STORM

ASNTR

0 1 2

N
g 106

0

50

100

T
e
s
ti

n
g

 A
c
c
u

ra
c
y

C
2
 = 10

2

STORM
ASNTR

0 1 2

N
g 106

0

50

100

T
ra

in
in

g
 A

c
c
u

ra
c
y

C
2
 = 10

8

STORM

ASNTR

0 1 2

N
g 106

0

50

100

T
e
s
ti

n
g

 A
c
c
u

ra
c
y

C
2
 = 10

8

STORM

ASNTR

5. Stochastic Non-Monotone Trust-Region Methods 109

Figure 5.10 The loss variation of STORM and ASNTR on MNIST.

0 0.2 0.4 0.6

N
g 106

0

1

2

3

T
ra

in
in

g
 L

o
s
s

C
2
 = 1

STORM

ASNTR

0 0.2 0.4 0.6

N
g 106

0

1

2

3

T
e
s
ti

n
g

 L
o

s
s

C
2
 = 1

STORM
ASNTR

0 0.2 0.4 0.6

N
g 106

0

1

2

3

T
ra

in
in

g
 L

o
s
s

C
2
 = 10

2

STORM
ASNTR

0 0.2 0.4 0.6

N
g 106

0

1

2

3

T
e
s
ti

n
g

 L
o

s
s

C
2
 = 10

2

STORM

ASNTR

0 0.2 0.4 0.6

N
g 106

0

1

2

3

T
ra

in
in

g
 L

o
s
s

C
2
 = 10

8

STORM
ASNTR

0 0.2 0.4 0.6

N
g 106

0

1

2

3

T
e
s
ti

n
g

 L
o

s
s

C
2
 = 10

8

STORM

ASNTR

Figure 5.11 The loss variation of STORM and ASNTR on CIFAR10.

0 2 4 6 8

N
g 106

0

1

2

3

4

T
ra

in
in

g
 L

o
s
s

C
2
 = 1

STORM

ASNTR

0 2 4 6 8

N
g 106

0

1

2

3

4

T
e
s
ti

n
g

 L
o

s
s

C
2
 = 1

STORM
ASNTR

0 2 4 6 8

N
g 106

0

1

2

3

4

T
ra

in
in

g
 L

o
s
s

C
2
 = 10

2

STORM
ASNTR

0 2 4 6 8

N
g 106

0

1

2

3

4

T
e
s
ti

n
g

 L
o

s
s

C
2
 = 10

2

STORM

ASNTR

0 2 4 6 8

N
g 106

0

1

2

3

4

T
ra

in
in

g
 L

o
s
s

C
2
 = 10

8

STORM
ASNTR

0 2 4 6 8

N
g 106

0

1

2

3

4

T
e
s
ti

n
g

 L
o

s
s

C
2
 = 10

8

STORM

ASNTR

Figure 5.12 The loss variation of STORM and ASNTR on DIGITS.

0 1 2

N
g 106

0

100

200

300

400

T
ra

in
in

g
 L

o
s
s

C
2
 = 1

STORM

ASNTR

0 1 2

N
g 106

0

100

200

300

400

T
e
s
ti

n
g

 L
o

s
s

C
2
 = 1

STORM
ASNTR

0 1 2

N
g 106

0

100

200

300

400

T
ra

in
in

g
 L

o
s
s

C
2
 = 10

2

STORM
ASNTR

0 1 2

N
g 106

0

100

200

300

400

T
e
s
ti

n
g

 L
o

s
s

C
2
 = 10

2

STORM

ASNTR

0 1 2

N
g 106

0

100

200

300

400

T
ra

in
in

g
 L

o
s
s

C
2
 = 10

8

STORM
ASNTR

0 1 2

N
g 106

0

100

200

300

400

T
e
s
ti

n
g

 L
o

s
s

C
2
 = 10

8

STORM

ASNTR

110 5.3. A Stochastic Algorithm with Adaptive Sampling

In summary, the experiments show the effectiveness of ASNTR in handling different

levels of non-monotonicity, in particular when C2 is large; in these cases, the testing

accuracy of ASNTR is higher than that of STORM while requiring fewer numbers of

gradient evaluations.

Additional results

In Figure 5.13 and Figure 5.14, we present further details regarding our proposed algo-

rithm, ASNTR, where C2 = 1, 102, 108 in ρDk
and C1 = 1 in ρNk

. These results aim to

give more insights with respect to the sampling behavior of ASNTR as follows.

Let S1 and S2 indicate the iterations of ASNTR at which steps 7 and 10, respectively,

using the increasing sampling rule (5.38) are executed. For the remaining option, i.e.,

Nk+1 = Nk, let S3 and S0 show the iterations at which new samples through step 15 and

current samples through step 13 are performed. We also define variable S4 representing

the iteration of ASNTR at which whole samples (Nk = N) are needed.

Figure 5.13a shows the (average) contributions of the aforementioned sampling types

in ASNTR running by five different initial random generators for MNIST, CIFAR10, and

DIGITS with respectively predetermined Nmax
g = 0.6×106, 9×106 and 2×106; however,

considering only a specific initial seed, Figure 5.13b, Figure 5.13c and Figure 5.13d

indicate when/where each of these sampling types is utilized in ASNTR.

Obviously, the contribution rate of S3 is influenced by S2 where ASNTR has to

increase the batch size if ρDk
< ν. The value of C2 in ρDk

plays a significant role

in determining the portion of S3 and S2. In fact, the larger C2 results in the higher

portion of S3 and the lower portion of S2. When C2 is large, there is less need to

increase the batch size unless the current iterate approaches a stationary point of the

current approximate function, which leads to increasing the portion of S1. The increase

portion of S1 usually happens at the end of the training stage.

Furthermore, we have observed that the choice of C2 in t̃k significantly impacts

the robustness of our proposed algorithm, as evident from the results presented in Fig-

ures 5.7–5.12; in other words, the higher the C2, the more robust ASNTR is. This

observation holds true for each individual dataset, as detailed below:

5. Stochastic Non-Monotone Trust-Region Methods 111

Figure 5.13 Tracking subsampling in ASNTR.

(a) Contribution of iterations on MNIST (left), CIFAR10 (middle), DIGITS (right)

0 0.2 0.4 0.6

N
g 10

6

S0

S1

S2

S3

S4

C
2
 = 1

0 0.2 0.4 0.6

N
g 10

6

S0

S1

S2

S3

S4

C
2
 = 102

0 0.2 0.4 0.6

N
g 10

6

S0

S1

S2

S3

S4

C
2
 = 108

(b) Scatter of iterations with initial rng(42) on MNIST

0 2 4 6 8

N
g 10

6

S0

S1

S2

S3

S4

C
2
 = 1

0 2 4 6 8

N
g 10

6

S0

S1

S2

S3

S4

C
2
 = 102

0 2 4 6 8

N
g 10

6

S0

S1

S2

S3

S4

C
2
 = 108

(c) Scatter of iterations with initial rng(42) on CIFAR10

0 0.5 1 1.5 2

N
g 10

6

S0

S1

S2

S3

S4

C
2
 = 1

0 0.5 1 1.5 2

N
g 10

6

S0

S1

S2

S3

S4

C
2
 = 102

0 0.5 1 1.5 2

N
g 10

6

S0

S1

S2

S3

S4

C
2
 = 108

(d) Scatter of iterations with initial rng(42) on DIGITS

112 5.3. A Stochastic Algorithm with Adaptive Sampling

• MNIST: according to Figure 5.13a, the portion of the sampling type S3 is higher than

others meaning. This means many new batches without needing to be increased

are applied in ASNTR during training; i.e., the proposed algorithm with fewer

samples, and thus fewer gradient evaluations, can train a network. Nevertheless,

ASNTR with different values of C2 in ρDk
increases the size of the mini-batches in

some of its iterations; see the portions of S1 and S2 in Figure 5.13a or their scatters

in Figure 5.13b. We should note that the sampling type S1 occurs almost at the

end of the training phase where the algorithm tends to be close to a stationary

point of the current approximate function; Figure 5.13b shows this fact.

• CIFAR10: according to Figure 5.13a, the portion of the sampling type S3 is still

high. Unlike MNIST, the sampling type S1 almost never occurs during the training

phase. On the other hand, the increase of the sample size through S2 with a high

portion may compensate for the lack of sufficiently accurate functions and gradients

required in ASNTR. These points are also illustrated in Figure 5.13c, which shows

how ASNTR successfully trained the ResNet-20 model without the requirement

of frequently enlarging the sample sizes throughout various iterations. For both

the MNIST and CIFAR10 problems, S3 as the predominant type corresponds to

C2 = 108.

• DIGITS: according to Figure 5.13a, we observe that the main sampling types are S2

and S4. As the portion of S2 increases, the portion of S3 decreases and the highest

portion of S3 corresponds to the largest value of C2. This pattern is similar to

what is seen in the MNIST and CIFAR10 datasets. However, in the case of DIGITS,

the portion of S4 is higher. This higher portion of S4 in DIGITS may be attributed

to the smaller number of samples in this dataset (N = 5000), which causes ASNTR

to quickly encompass all the samples after a few iterations. Notably, the sampling

type S4 occurs towards the end of the training phase, as shown in Figure 5.13d.

Figure 5.14 compares the progression of batch size growth in both ASNTR and

STORM. In contrast to the STORM algorithm, ASNTR increases the batch size only

when necessary, which can reduce the computational costs of gradient evaluations. This

is considered a significant advantage of ASNTR over STORM. However, according to

5. Stochastic Non-Monotone Trust-Region Methods 113

this figure, the proposed algorithm needs fewer samples than STORM during the initial

phase of the training task, but it requires more samples towards the later part of this

phase. Nevertheless, we should notice that the increase in batch size that happened

at the end of the training phase is determined by whether S1 or S4 (see Figure 5.13b-

Figure 5.13d). In our experiments, we have observed that ASNTR does not need to be

continued with very large Nmax
g , as it typically achieves the required training accuracy.

Figure 5.14 Batch size progress with initial rng(42).

0 0.2 0.4 0.6

N
g 10

6

0

2

4

6

8

N
k

10
3 C

2
 = 1

ASNTR

STORM

0 0.2 0.4 0.6

N
g 10

6

0

2

4

6

8

N
k

10
3 C

2
 = 102

ASNTR

STORM

0 0.2 0.4 0.6

N
g 10

6

0

2

4

6

8

N
k

10
3 C

2
 = 108

ASNTR

STORM

(a) MNIST (N = 6× 104)

0 2 4 6 8

N
g 10

6

0

1

2

3

N
k

10
4 C

2
 = 1

ASNTR

STORM

0 2 4 6 8

N
g 10

6

0

1

2

3

N
k

10
4 C

2
 = 102

ASNTR

STORM

0 2 4 6 8

N
g 10

6

0

1

2

3

N
k

10
4 C

2
 = 108

ASNTR

STORM

(b) CIFAR10 (N = 5× 104)

0 0.5 1 1.5 2

N
g 10

6

0

1

2

3

4

5

N
k

10
3 C

2
 = 1

ASNTR

STORM

0 0.5 1 1.5 2

N
g 10

6

0

1

2

3

4

5

N
k

10
3 C

2
 = 102

ASNTR

STORM

0 0.5 1 1.5 2

N
g 10

6

0

1

2

3

4

5

N
k

10
3 C

2
 = 108

ASNTR

STORM

(c) DIGITS (N = 5× 103)

6

Concluding Remarks

Because of the breakthrough applications of Deep Learning (DL) in various fields, in

this thesis, we have considered the target of solving the nonlinear and non-convex op-

timization problems that arise in the training of Deep Neural Networks (DNNs) for

image classification and regression. While first-order methods are commonly used due

to their ease of implementation, there has been growing interest in utilizing second-order

methods, specifically Hessian-Free or Quasi-Newton approaches. These methods aim to

capture curvature information of the objective function and overcome certain limitations

of first-order methods. Motivated by this interest, our research has specifically concen-

trated on Quasi-Newton trust-region methods in stochastic regimes, where subsampling

strategies are used to make these methods more practical for training DNNs in real-world

scenarios.

Summary of Contributions

1. We have considered two well-known limited memory Quasi-Newton Hessian ap-

proximations, i.e. L-SR1 and L-BFGS updates, in a trust-region framework in-

volving a particular fixed-size overlapping sampling. An extensive experimental

study has been done to see the impact of different factors on the behavior of the

algorithms (sL-BFGS-TR and sL-SR1-TR) for training DNNs under the effect of

batch normalization (BN) layers. The main findings from our experiments can be

summarized as follows. In image classification problems, we have observed that

6. Concluding Remarks 115

BN is a key component for the performance of the algorithms with different sam-

ple sizes. sL-SR1-TR performs better than sL-BFGS-TR in networks without BN

layers. This behavior is in accordance with the property of L-SR1 updates allow-

ing for indefinite Hessian approximations in non-convex optimization. However,

sL-BFGS-TR behaves comparably or slightly better than sL-SR1-TR when BN

layers are used. Furthermore, the results have shown that using larger batch sizes

within a fixed number of epochs leads to lower training accuracy compared to us-

ing smaller batch sizes. However, this decrease in accuracy can be mitigated by

extending the training duration; in other words, longer training with larger batch

sizes can help recover the lost accuracy. Our experiments on training time have

shown a slight superiority in the accuracy reached by both algorithms when larger

batch sizes are used within a fixed budget of time. This suggests the use of large

batch sizes also in view of the parallelization of the algorithms, which is no longer a

concern due to advancements in computational resources. Within the fixed budget

of time, except for the smallest batch size, both algorithms reveal more efficiency

than the second-order STORM algorithm customized by L-BFGS and L-SR1 up-

dates. Finally, our results show that the algorithms in some instances outperform

the well-known first-order tuned Adam optimizer.

2. We have presented a modified L-BFGS trust-region method, which improves upon

the standard secant condition and has been theoretically shown to provide an

increased order of accuracy in Hessian approximation. The stochastic variant,

utilizing a particular overlapping subsampling scheme, was compared to its naive

variant, where the Hessian approximation is obtained using the standard secant

condition. In our experiments on image classification problems, both algorithms

with different batch sizes exhibit comparable training performance. Restricted to

the experiments with the largest considered batch size, the results show that with

a fixed computational time budget both algorithms provide comparable or better

testing accuracy than the first-order Adam optimizer. Despite the advantage of not

requiring the time-consuming tuning effort needed for Adam, it should be noted

that Quasi-Newton trust-region methods have a higher iteration complexity.

116

3. We have developed a novel second-order stochastic optimization algorithm based

on the combination of first- and second-order information. The algorithm combines

a trust-region limited memory SR1 second-order direction with a variance-reduced

stochastic gradient. We have reported computational experiments showing that

the proposed algorithm exhibits comparable or superior performance to the Adam

optimizer while requiring significantly less tuning effort.

4. We have investigated an L-SR1 trust-region method incorporating non-monotonicity

and a regular fixed-size subsampling. To our knowledge, this was the first attempt

to analyze a non-monotone trust-region method in a stochastic setting and for

training purposes. Additionally, three distinct approaches for computing the cur-

vature vector required for the L-SR1 update have been examined. We have found

that using accumulated empirical Fisher matrix-vector products (Fv) produces bet-

ter training than when curvature is obtained by subsampled gradient differences or

subsampled Hessian matrix-vector products. The results show that the proposed

algorithm provides comparable or better testing accuracy than standard stochastic

trust-region, with adopted curvature computing strategy, i.e. Fv, and outperforms

the well-known Adam optimizer.

5. We have presented, a second-order non-monotone trust-region method that em-

ploys an adaptive subsampling strategy. We have incorporated additional sampling

into the TR framework in order to control the noise and overcome issues in the

convergence analysis coming from biased estimators. Depending on the estimated

progress of the algorithm, this can yield different scenarios ranging from mini-batch

to full sample functions. We provide convergence analysis for all possible scenar-

ios and show that the proposed method achieves almost sure convergence under

standard assumptions for the TR framework. The experiments show the efficiency

of the proposed method in training tasks. In comparison to the state-of-the-art

counterpart (STORM), our method achieves higher testing accuracy with a fixed

budget of gradient evaluations.

6. Concluding Remarks 117

Future Works

• In our experimental study, we observed that the inclusion or exclusion of batch

normalization layers had a direct impact on the performance of the Quasi-Newton

trust-region algorithms in training tasks. This intriguing behavior of the algorithms

when dealing with networks that incorporate batch normalization layers calls for

further investigation.

• Further efforts in the development of adaptive subsampled non-monotone trust-

region algorithms could involve exploring more specific approaches for sample size

updates and also refining the strategies for Hessian approximation.

• Another interesting future line of research will be devoted to (stochastic) Hessian-

Free algorithms.

• Future work will also consist in studying other fields of DL applications that are

common with the applications of inverse problems.

Appendix A

Programming Comments

In Chapter 2, we have comparatively analyzed the behavior of sL-BFGS-TR and sL-

SR1-TR as two stochastic algorithms using QN Hessian approximations in a TR frame-

work for training DNNs in image classification. Since the algorithms are not defined

as MATLAB built-in functions, we have exploited the Deep Learning Custom Training

Loops to customize their iterations. Implementation details are available at: https:

//github.com/MATHinDL/sL_QN_TR/. In this chapter, however, we provide basic intu-

ition on designing and implementing a DNN.

While there are many Python-based codes provided by authors in DL literature and

related repositories, there are limited resources for MATLAB users to customize their

own optimizer for training a DNN. We have contributed to filling in this gap by presenting

a tutorial based on the MATLAB Deep Learning toolbox on how to implement custom

loops for training [82]. We provide general implementation comments by which one

can learn how to define an initialized convolutional neural network (CNN) and how to

compute functions, gradients, and other quantities required per single iteration of any

gradient-based optimization algorithms.

Introduction

Let us consider a supervised deep learning problem such as (3.3), where w ∈ Rn is the

vector of trainable parameters and (xi, yi) denotes the ith sample pair in a given C-

class training dataset {(xi, yi)}Ni=1 with input xi and target yi. Moreover, Li(w) is a

https://github.com/MATHinDL/sL_QN_TR/
https://github.com/MATHinDL/sL_QN_TR/

Appendix A. Programming Comments 119

single loss function defining the prediction error between the network’s output h(xi;w)

and yi which is converted into a one-hot target vector. In order to find an optimal

classification model, the generic problem (3.3) is solved by employing the softmax cross-

entropy function Li(w) = −
∑C

i=1(yi)k log(h(xi;w))k for i = 1, . . . , N .

Network Construction

We would like to construct a neural network corresponding to h(.;w) and train it using

random data {(xi, yi)}Nk
i=1 ⊆ {(xi, yi)}Ni=1 per iteration k of an optimizer, where Nk ≤ N .

The definition of a neural network is done by specifying an array of layers that creates

the specified architecture of a network. This architecture is then established using the

MATLAB function layerGraph that takes layers as an input parameter. Moreover,

we would like to make use of training algorithms (optimizers) which are not built-in

functions. In this case, we can use a model function dlnetwork to define architecture

as well as customize training loops corresponding user’s prescribed algorithm. The 1×1

object dlnetwork is a pack of properties including Layers, Connections, Learnables,

State, InputNames and OutputNames. We illustrate with an example how to define a

dlnetwork and show its main properties, i.e., Layers and Learnables.

>> layers = [

>> imageInputLayer(inputSize,’Normalization’,’none’,’Name’,’input’)

>> convolution2dLayer(5,20, ’Padding’, ’same’, ’Name’, ’conv1’)

>> batchNormalizationLayer(’Name’, ’bn1’)

>> reluLayer(’Name’,’relu1’)

>> convolution2dLayer(5, 50, ’Padding’, 1,’Name’, ’conv2’)

>> batchNormalizationLayer(’Name’, ’bn2’)

>> reluLayer(’Name’,’relu2’)

>> maxPooling2dLayer(2, ’Stride’, 2, ’Name’, ’maxpool1’)

>> fullyConnectedLayer(numClasses, ’Name’, ’fc1’)

>> softmaxLayer(’Name’, ’softmax’)];

>> lgraph = layerGraph(layers);

>> dlNet = dlnetwork(lgraph);

120

The instruction above defines different layers as well as softmaxLayer which is impor-

tant to be defined for custom training loops in a classification task. Let us consider

images with a determined size inputSize belonging to a number of classes numClasses.

Through imageInputLayer, one can define different input normalization strategies such

as ’zerocenter’ or ’zscore’ in place of ’none’; the syntax above states that data

input without normalization. The function layerGraph specifies the sequential ordered

layers as the architecture of the network with a more complex graph structure. The

object layerGraph must be converted into an initialized network, i.e., dlnetwork for the

training task.

Figure A.1 shows how to see different properties of the dlNet object. For instance,

dlNet.Layers contains the network’s architecture while dlNet.Learnables contains all

learnable parameters, i.e., parameter vector w ∈ Rn in (3.3). We note that Weights

and Bias of the convolutional layers, and all Offset and Scale of the batch nor-

malization layers [38] are included in dlNet.Learnables. The object dlNet repre-

sents an initialized DNN; in fact, initial values are given to dlNet.Learnables through

convolution2dLayer and batchNormalizationLayer.

The DL toolbox provides some default initializers for dlNet.Learnables. For in-

stance, weights and biases are respectively initialized by the Glorot (Xavier) initializer

[29] and zeros through convolution2dLayer.

In order to implement the defined network, we should notice some points. Fig-

ure A.1 shows that dlNet.Learnables are layered and stored in a table format. For

making calculations easier in the training loops of an optimizer, we unroll the values of

dlNet.Learnables into a large parameter vector w representing w ∈ Rn in (3.3).

Figure A.1 also shows that variables are stored in dlArray object. In fact, storing

variables and data in dlArray for custom training loops enables functions to compute and

use derivatives through automatic differentiation. Therefore, we should use extractdata

for extracting numeric values. If a GPU is available, we also use gather to collect the

results of a GPU operation.

Appendix A. Programming Comments 121

Figure A.1 Properties in the MATLAB object dlNet.

>> w = [];

>> layeredParam = dlNet.Learnables.Value;

>> for layer = 1: size(layeredParam,1)

>> val = double(gather(extractdata(layeredParam{layer,1})));

>> w = [w; val(:)];

>> end

Network Updating

The initial parameter vector w0 is gradually updated through the sequence {wk} accord-

ing to an updating rule defined by an optimizer. Such an updating rule, for example, in

algorithms based on QN methods is defined by wk+1 = wk + pk where wk is the current

parameter vector and pk is a search direction obtained by solving Bkpk = −gk with Hes-

sian approximation Bk ∈ Rn×n and gradient gk ∈ Rn. Correspondingly, the initialized

122

dlNet must be gradually updated to produce a trained dlNet at the end of the train-

ing process. Therefore, we use MATLAB for- or while-training loops for updating the

values of dlNet.Learnables. At each iteration of a training loop (algorithm), the loss

function and its gradient are evaluated. What follows contains the core of implemen-

tation for computing these quantities by forward and backward propagation algorithms

using automatic differentiation.

Given a batch of training data and their true labels respectively denoted by X and

Y, the initialized network is iteratively trained by it a forward propagation pass to com-

pute the overall loss (loss) and a backward propagation pass to compute the gradient

(gradient). For computing loss and gradient, we primarily use a function handle

such as, here, @modelgradient in order to define functions forward, crossentropy and

dlgradient. Then, the values of predicted labels, loss, and gradient models are deter-

mined by the function dlfeval. In the DL toolbox, training batch X must be converted

in the dlarray format denoted by dlX where also labeled as SSCB standing for Spatial,

Spatial, Channel and Batch observations. As mentioned, dlarray format enables func-

tions of the DL toolbox to compute derivatives by automatic differentiation. We should

notice dlfeval works with dlX and dlNet including layered parameters stored in dlArray

format. As a result, dlgradient and loss give respectively layered gradient variables

and a loss variable in dlArray formats. Usually, we should convert the layered variables

of dlgradient into a vector g and obtain its numeric values for computations needed in

a training loop. The following instructions illustrate these comments.

>> dlX = dlarray(single(X),’SSCB’);

>> [gradient, loss, state] = dlfeval(@modelgradient, dlNet, dlX, Y);

>>

>> function [gradient, loss, state] = modelgradient(dlNet, dlX, Y)

>> [dlYp, state] = forward(dlNet, dlX);

>> loss = crossentropy(dlYp, Y);

>> gradient = dlgradient(loss, dlNet.Learnables);

>> end

>> F = double(gather(extractdata(loss)));

Appendix A. Programming Comments 123

>> g = [];

>> layeredGrad = gradient.Value;

>> for layer = 1: size(layeredGrad,1)

>> val = double(gather(extractdata(layeredGrad{layer,1})));

>> g = [g; val(:)];

>> end

Besides function and gradient evaluations, an optimizer may have other required

computations. For instance, as mentioned above, given vector gk and a QN Hessian

approximation Bk, a search direction pk for updating wk as wk + pk requires us to

compute Bkpk = −gk using any proper solver. This solver may use the computed

gradient as the vector g and then provides p as a vector as well. Therefore, we should

convert the numeric vector p into a layered variable in order to be able to update layered

parameters dlNet.Learnables for the next iteration. The following syntax shows these

commands.

>> Direction = dlNet.Learnables;

>> end_array = 0;

>> for layer = 1: size(Direction, 1)

>> layer_size = size(Direction.Value{layer,1});

>> start_array = end_array + 1;

>> end_array = end_array + prod(layer_size);

>> p_segment = p(start_array : end_array);

>> tensor = dlarray(single(reshape(p_segment, layer_size)));

>> Direction.Value{layer, 1} = tensor;

>> end

>> dlNet.Learnables = dlupdate(@(w,p) w + p, dlNet.Learnables, Direction);

Network Evaluation

We can evaluate the performance of the defined network in the training phase. In order

to monitor the training accuracy (the accuracy of the network using a training dataset),

we can use the following statements where we should note that each column of the Y

124

denotes a one-hot vector of a true label while every column of the dlYp is a probability

coming from the softmax layer. Nevertheless, since the function max finds the maximum

value and its corresponding location, transforming probabilities into one-hot vectors is

not needed.

>> Yp = extractdata(dlYp)

>> [~,ind_Yp] = max(Yp, [], 1);

>> [~,ind_Y] = max(Y, [], 1);

>> accuracy = mean(ind_Y == ind_Yp);

The training accuracy can be compared with the accuracy of the network using a valida-

tion dataset, which is denoted by acc. This comparison can help us to analyze the real

performance of the network. Given dlX_v and Y_v respectively as validation examples in

dlArray format and their one-hot targets, the evaluation of the network’s performance

on a validation dataset can be also monitored during the training process as follows

>> dlYp = predict(dlNet, dlX_v);

>> loss = crossentropy(dlYp, Y_v);

>> Yp = extractdata(dlYp)

>> [~,ind_Yp] = max(Yp, [], 1);

>> [~,ind_Y] = max(Yv, [], 1);

>> acc = mean(ind_Y == ind_Yp);

There is another important point for consideration in the implementation. There are

some layers that behave differently during the training and inference phases. For exam-

ple, a dropout layer randomly sets input elements to zero during training while it does

not change the input during inference. To set the network to the desired functionality,

the functions forward and predict are respectively used to compute the outputs of the

training and inference phases in proper ways. Another layer with different behavior in

the training and inference phases is the batch normalization layer. However, applying

predict cannot lonely help the network using this type of layer to perform well in the in-

ference phase. To make predictions with the network after training, batch normalization

requires a fixed mean and variance to normalize the data; this fixed mean and variance

Appendix A. Programming Comments 125

can be approximated during training using running statistic computations. Specifying

state as the second output of the function forward during training requires the func-

tion forward to compute the mean running average µ̄ and the variance running average

σ̄2 during the training phase; see (3.2). Therefore, these statistics as TrainedMean and

TrainedVariance parameters can be updated at the end of every single training iteration

by the following syntax

>> dlNet.State = state;

When the function predict employs dlNet to make predictions, batch normalization

layers in dlNet object use TrainedMean and TrainedVariance stored in dlNet.State;

see Figure A.1. Failing to update state during the training phase causes batch normal-

ization layers to use the initial mean and variance which results in a poor prediction in

the inference phase.

Appendix B

Two Solvers for the TR Subproblem

Computing TR subproblem with an L-BFGS matrix

This section describes how to solve the TR subproblem (4.1) using L-BFGS; see [1, 15, 63]

for more details and Algorithm C.3 in Appendix C, where the following procedure is

outlined.

Let Bk be an L-BFGS compact matrix (4.9). Using Theorem 5.1, the global solution

of the TR subproblem (4.1) can be obtained by exploiting the following two strategies:

Spectral decomposition of Bk By the thin QR factorization of the matrix Ψk, Ψk =

QkRk, or the Cholesky factorization of the matrix ΨT
kΨk, ΨT

kΨk = RTR, and then

spectral decomposition of the small matrix RkMkR
T
k as RkMkR

T
k = UkΛ̂U

T
k , we have

Bk = B0 +QkRkMkR
T
kQ

T
k = γkI +QkUkΛ̂U

T
k Q

T
k ,

where Uk and Λ̂ respectively are orthogonal and diagonal matrices. Now, let P∥ ≜ QkUk

(or let P∥ ≜ (ΨkR
−1
k Uk)

T) and P⊥ ≜ (QkUk)
⊥ where ⊥ is orthogonal complement

(perpendicular). By Theorem 2.1.1 in [31], we have P TP = PP T = I where

P ≜

[
P∥ P⊥

]
∈ Rn×n. (B.1)

Appendix B. Two Solvers for the TR Subproblem 127

Therefore, the spectral decomposition of Bk is obtained as

Bk = PΛP T , Λ ≜

Λ1 0

0 Λ2

 =

Λ̂ + γkI 0

0 γkI

 , (B.2)

where Λ = diag(λ̂1, . . . , λ̂n) = diag(λ̂1 + γk, . . . , λ̂k + γk, γk, . . . , γk) ∈ Rn×n with Λ1 ∈

R2l×2l and Λ2 ∈ R(n−2l)×(n−2l) when k > 2l. We note that Λ1 ∈ Rk×k and Λ2 ∈

R(n−k)×(n−k) when k ≤ 2l. We also assume the eigenvalues in Λ1 are ordered in increasing

values. Notice that Λ1 includes at most 2l elements with limited memory parameter l.

Inversion by Sherman-Morrison-Woodbury formula By dropping subscript k in

(4.9) and using the Sherman-Morrison-Woodbury formula to compute the inverse of the

coefficient matrix in (2.12), we have

p(σ) = −(B + σI)−1g = −1

τ

(
I −Ψ

(
τM−1 +ΨTΨ

)−1
ΨT

)
g, (B.3)

where τ = γ + σ. By using (B.2), the first optimality condition in (2.12) can be written

as

(Λ + σI)v = −P T g, (B.4)

where

v = P T p, P T g ≜

g∥
g⊥

 =

P T∥ g
P T⊥g

 , (B.5)

and therefore

∥p(σ)∥ = ∥v(σ)∥ =

√√√√{
k∑
i=1

(g∥)
2
i

(λi + σ)2

}
+
∥g⊥∥2

(γ + σ)2
, (B.6)

where ∥g⊥∥2 = ∥g∥2 − ∥g∥∥2. This makes the computation of ∥p∥ feasible without

computing p explicitly. Let pu ≜ p(0) as an unconstrained minimizer for (4.1) be the

solution of the first optimality condition in (2.12), for which σ = 0 makes the second

optimality condition hold. Now, we consider the following cases:

• If ∥pu∥ ≤ δ, the optimal solution of (4.1) using (B.3) is computed as

(σ∗, p∗) = (0, pu) = (0, p(0)). (B.7)

128

• If ∥pu∥ > δ, then p∗ must lie on the boundary of the TR to hold the second

optimality condition. To impose this, σ∗ must be the root of the following equation

which is determined by the Newton method proposed in [15]:

ϕ(σ) ≜
1

∥p(σ)∥
− 1

δ
= 0. (B.8)

Therefore, using (B.3), the global solution is computed as

(σ∗, p∗) = (σ∗, p(σ∗)). (B.9)

Computing TR subproblem with an L-SR1 matrix

For solving (4.1) where Bk is a compact L-SR1 matrix (4.18), an efficient algorithm called

the Orthonormal Basis L-SR1 (OBS) was proposed in [15]. We summarize this approach

here; see Algorithm C.5 in Appendix C, where it describes the following procedure.

Let (B.2) be the eigenvalue decomposition of (4.18), where Λ = diag(λ̂1, . . . , λ̂n) =

diag(λ̂1+γk, . . . , λ̂k+γk, γk, . . . , γk) ∈ Rn×n with Λ1 ∈ Rl×l and Λ2 ∈ R(n−l)×(n−l) when

k > l. We note that Λ1 ∈ Rk×k and Λ2 ∈ R(n−k)×(n−k) when k ≤ l. We also assume

the eigenvalues in Λ1 are ordered in increasing values. Notice that Λ1 includes at most

l elements with limited memory parameter l. The OBS method exploits the Sherman-

Morrison-Woodbury formula in different cases for L-SR1 Bk; by dropping subscript k in

(4.18), these cases are:

B is positive definite In this case, the global solution of (4.1) is (B.7) or (B.9).

B is positive semi-definite (singular) Since γ ̸= 0 and B is positive semi-definite

with all nonnegative eigenvalues, then λmin = min{λ1, γ} = λ1 = 0. Let r be the

multiplicity of the λmin; therefore,

0 = λ1 = λ2 = · · · = λr < λr+1 ≤ λr+2 ≤ · · · ≤ λk.

Appendix B. Two Solvers for the TR Subproblem 129

For σ > −λmin = 0, the matrix (Λ+σI) in (B.4) is invertible, and thus, ∥p(σ)∥ in (B.6)

is well-defined. For σ = −λmin = 0, we consider the two following sub-cases1:

1. If limσ→0+ ϕ(σ) < 0, then limσ→0+ ∥p(σ)∥ > δ. Here, the OBS algorithm uses

Newton’s method to find σ∗ ∈ (0,∞) so that the global solution p∗ lies on the

boundary of trust-region, i.e., ϕ(σ∗) = 0. This solution p∗ = p(σ∗) is computed

using (B.3); by that, the global pair solution (σ∗, p∗) satisfies the first and second

optimal conditions in (2.12).

2. If limσ→0+ ϕ(σ) ≥ 0, then limσ→0+ ∥p(σ)∥ ≤ δ. It can be proved that ϕ(σ) is

strictly increasing for σ > 0 (see Lemma 7.3.1 in [18]). This makes ϕ(σ) ≥ 0 for

σ > 0 as it is non-negative at 0+, and thus, ϕ(σ) can only have a root σ∗ = 0 in

σ ≥ 0. Here, we should notice that even if ϕ(σ) > 0, the solution σ∗ = 0 makes

the second optimality condition in (2.12) hold. Since matrix B + σI at σ∗ = 0 is

not invertible, the global solution p∗ for the first optimality condition in (2.12) is

computed by

p∗ = p(σ∗) = −(B + σ∗I)†g = −P (Λ + σ∗I)†P T g

= −P∥(Λ1 + σ∗I)†P T∥ g −
1

γ + σ∗
P⊥P

T
⊥g

= −ΨR−1U(Λ1 + σ∗I)†g∥ −
1

γ + σ∗
P⊥P

T
⊥g,

(B.10)

where (g∥)i = (P T∥ g)i = 0 for i = 1, . . . , r if σ∗ = −λmin = −λ1 = 0, and

P⊥P
T
⊥g = (I − P∥P

T
∥)g = (I −ΨR−1R−TΨT)g.

Therefore, both optimality conditions in (2.12) hold for the pair solution (σ∗, p∗).

B is indefinite Let r be the algebraic multiplicity of the leftmost eigenvalue λmin.

Since B is indefinite and γ ̸= 0, we have λmin = min{λ1, γ} < 0.

Obviously, for σ > −λmin, the matrix (Λ + σI) in (B.4) is invertible, and thus, ∥p(σ)∥

in (B.6) is well-defined. For σ = −λmin, we discuss the two following cases:

1. If limσ→−λ+min
ϕ(σ) < 0, then limσ→−λ+min

∥p(σ)∥ > δ. The OBS algorithm uses

1To have a well-defined expression in (B.6), we will discuss in limit setting (at −λ+
min).

130

Newton’s method to find σ∗ ∈ (−λmin,∞) as the root of ϕ(σ) = 0 so that the

global solution p∗ lies on the boundary of trust-region. By using (B.3) to compute

p∗ = p(σ∗), the pair (σ∗, p∗) satisfies the both conditions in (2.12).

2. If limσ→−λ+min
ϕ(σ) ≥ 0, then limσ→−λ+min

∥p(σ)∥ ≥ δ. For σ > −λmin, we have

ϕ(σ) ≥ 0 but the solution σ∗ = −λmin as the only root of ϕ(σ) = 0 is a positive

number, which cannot satisfy the second optimal condition when ϕ(σ) is strictly

positive. Hence, we should consider the cases of equality and inequality separately:

Equality. Let limσ→−λ+min
ϕ(σ) = 0. Since matrix B + σI at σ∗ = −λmin is

not invertible, the global solution p∗ for the first optimality condition in (2.12) is

computed using (B.10) by

p∗ =

−ΨR−1U(Λ1 + σ∗I)†g∥ −

1

γ + σ∗
P⊥P

T
⊥g, σ∗ ̸= −γ,

−ΨR−1U(Λ1 + σ∗I)†g∥, σ∗ = −γ,
(B.11)

where g⊥ = P T⊥g = 0, and thus ∥g⊥∥ = 0 if σ∗ = −λmin = −γ. For i = 1, . . . , r,

we have (g∥)i = (P T∥ g)i = 0 if σ∗ = −λmin = −λ1.

We note that both optimality conditions in (2.12) hold for the computed (σ∗, p∗).

Inequality. Let limσ→−λ+min
ϕ(σ) > 0, then limσ→−λ+min

∥p(σ)∥ < δ. As mentioned

before, σ = −λmin > 0 cannot satisfy the second optimality condition. In this case,

so-called hard case, we attempt to find a solution which lies on the boundary. For

σ∗ = −λmin, this optimal solution is given by

p∗ = p̂∗ + z∗, (B.12)

where p̂∗ = −(B + σ∗I)†g is computed by (B.11) and z∗ = αumin. Vector umin is

a unit eigenvector in the subspace associated with λmin and α is obtained so that

∥p∗∥ = δ; i.e.,

α =
√
δ2 − ∥p̂∗∥2. (B.13)

The computation of umin depends on λmin = min{λ1, γ}. If λmin = λ1 then the

Appendix B. Two Solvers for the TR Subproblem 131

first column of P is a leftmost eigenvector of B, and thus, umin is set to the first

column of P∥. On other hand, if λmin = γ, then any vector in the column space of

P⊥ will be an eigenvector of B corresponding to λmin. However, we avoid forming

matrix P⊥ to compute P⊥P
T
⊥g in (B.11) if λmin = λ1. By the definition (B.1), we

have

Range(P⊥) = Range(P∥)
⊥, Range(P∥) = Ker(I − P∥P

T
∥).

To find a vector in the column space of P⊥, we use I −P∥P
T
∥ as projection matrix

mapping onto the column space of P⊥. For simplicity, we can map one canonical

basis vector at a time onto the column space of P⊥ until a nonzero vector is

obtained. This practical process, repeated at most k + 1 times, will result in a

vector that lies in Range(P⊥); i.e.,

umin ≜ (I − P∥P
T
∥)ej , (B.14)

for j = 1, 2, . . . k + 1 with ∥umin∥ ≠ 0; because ej ∈ Range(P∥) and

rank(P∥) = dim Range(P∥) = dim Kerl(I − P∥P
T
∥) = k.

Appendix C

Additional Algorithms

This appendix contains a collection of specific algorithms that are referenced in the the-

sis. The algorithm notes at the bottom of some algorithms specify the hyper-parameters

associated with them.

Algorithm C.1 Trust-Region radius adjustment
1: Inputs:

Current iteration k, pk, δk, ρk, 0 < τ2 < 0.5 < τ3 < 1, 0 < η2 ≤ 0.5, 0.5 < η3 < 1 < η4

2: if ρk > τ3 then

3: if ∥pk∥ ≤ η3δk then

4: δk+1 = δk

5: else

6: δk+1 = min(η4δk, δmax)

7: end if

8: else if τ2 ≤ ρk ≤ τ3 then

9: δk+1 = δk

10: else

11: δk+1 = η2δk

12: end if

Algorithm’s note: δmax = 10, η2 = 0.5, η3 = 0.8, η4 = 2, τ2 = 0.1, τ3 = 0.75.

Appendix C. Additional Algorithms 133

Algorithm C.2 L-BFGS Hessian initialization
1: Inputs: Current iteration k and storage matrices Sk+1, Yk+1.

2: Compute the smallest eigenvalue λ̂ of (4.15)

3: if λ̂ > 0 then

4: γk+1 = max{1, cλ̂} ∈ (0, λ̂)

5: else

6: Compute γhk by (4.12) and set γk+1 = max{1, γhk}

7: end if

Algorithm’s note: c = 0.9.

Algorithm C.3 Orthonormal Basis BFGS (OBB)
1: Inputs:

Current iteration k, δ ≜ δk, g ≜ gk and B ≜ Bk : Ψ ≜ Ψk, M
−1 ≜M−1

k , γ ≜ γk

2: Compute the thin QR factors Q and R of Ψ or the Cholesky factor R of ΨTΨ

3: Compute the spectral decomposition of matrix RMRT , i.e., RMRT = U Λ̂UT

4: Set Λ̂ = diag(λ̂1, . . . , λ̂k) such that λ̂1 ≤ . . . ≤ λ̂k and λmin = min{λ1, γ}

5: Compute the spectral of Bk as Λ1 = Λ̂ + γI

6: Compute P∥ = QU or P∥ = (ΨR−1U)T and g∥ = PT∥ g

7: if ϕ(0) ≥ 0 then

8: Set: σ∗ = 0

9: Compute p∗ with (B.3) as solution of (Bk + σ∗I)p = −g

10: else

11: Compute a root σ∗ ∈ (0,∞) of (B.8) by Newton method [15]

12: Compute p∗ with (B.3) as solution of (Bk + σ∗I)p = −g

13: end if

134

Algorithm C.4 L-SR1 Hessian initialization
1: Inputs: Current iteration k and storage matrices Sk+1, Yk+1

2: Compute the smallest eigenvalue λ̂ of (4.15)

3: if λ̂ > 0 then

4: γk+1 = max{c, c1λ̂}
5: else

6: γk+1 = min{−c, c2λ̂}
7: end if

Algorithm’s note: c1 = 0.5, c2 = 1.5, c = 10−6.

Algorithm C.5 Orthonormal Basis SR1 (OBS)
1: Inputs:

Current iteration k, δ ≜ δk, g ≜ gk and B ≜ Bk : Ψ ≜ Ψk, M
−1 ≜M−1

k , γ ≜ γk

2: Compute the thin QR factors Q and R of Ψ or the Cholesky factor R of ΨTΨ

3: Compute the spectral decomposition of matrix RMRT , i.e., RMRT = U Λ̂UT

4: Set Λ̂ = diag(λ̂1, . . . , λ̂k) such that λ̂1 ≤ . . . ≤ λ̂k and λmin = min{λ1, γ}

5: Compute the spectral of Bk as Λ1 = Λ̂ + γI

6: Compute P∥ = QU or P∥ = (ΨR−1U)T and g∥ = PT∥ g

7: if Case I: λmin > 0 and ϕ(0) ≥ 0 then

8: Set: σ∗ = 0

9: Compute p∗ with (B.3) as solution of (Bk + σ∗I)p = −g

10: else if Case II: λmin ≤ 0 and ϕ(−λmin) ≥ 0 then

11: Set: σ∗ = −λmin

12: Compute p∗ with (B.10) as solution of (Bk + σ∗I)p = −g

13: if Case III: λmin < 0 then

14: Compute α and umin with (B.12) for z∗ = αumin

15: Update: p∗ = p∗ + z∗

16: end if

17: else

18: Compute a root σ∗ ∈ (max{−λmin, 0},∞) of (B.8) by Newton method [15]

19: Compute p∗ with (B.3) as solution of (Bk + σ∗I)p = −g

20: end if

Appendix C. Additional Algorithms 135

Algorithm C.6 sL-BFGS-TR (regular)
1: Inputs: w0 ∈ Rn, ϵ > 0, epochmax, l, γ0 > 0, S0 = Y0 = [.], 0 < τ, τ1 < 1

2: for k = 0, 1, . . . do

3: Take a random and uniform minibatch (without replacement) Jk of fixed-size Nk

4: Evaluate subsampled function fNk
(wk) and its gradients gk

5: if epoch ≥ epochmax or training accuracy ≥ 100% then

6: Stop training

7: end if

8: Compute pk using Algorithm C.3

9: Evaluate fNk
(wt) and gt at the trial point wt = wk + pk

10: Obtain (sk, yk) = (wt − wk, gt − gk) and ρk =
fNk

(wt)− fNk
(wk)

Q(pk)

11: if ρk ≥ τ1 then

12: wk+1 = wt

13: else

14: wk+1 = wk

15: end if

16: Update δk by Algorithm C.1

17: if sTk yk > τ∥sk∥2 then

18: Update storage matrices Sk+1 and Yk+1 by l recent {sj , yj}kj=k−l+1

19: Compute γk+1 for B0 by Algorithm C.2 and Bk+1 by (4.9)

20: else

21: Set Bk+1 = Bk

22: end if

23: end for

136

Algorithm C.7 sL-SR1-TR (regular)
1: Inputs: w0 ∈ Rn, ϵ > 0, epochmax, l, γ0 > 0, S0 = Y0 = [.], 0 < τ, τ1 < 1

2: for k = 0, 1, . . . do

3: Take a random and uniform minibatch (without replacement) Jk of fixed-size Nk

4: Evaluate subsampled function fNk
(wk) and its gradients gk

5: if epoch ≥ epochmax or training accuracy ≥ 100% then

6: Stop training

7: end if

8: Compute pk using Algorithm C.5

9: Evaluate fNk
(wt) and gt at the trial point wt = wk + pk

10: Obtain (sk, yk) = (wt − wk, gt − gk) and ρk =
fNk

(wt)− fNk
(wk)

Q(pk)

11: if ρk ≥ τ1 then

12: wk+1 = wt

13: else

14: wk+1 = wk

15: end if

16: Update δk by Algorithm C.1

17: if |sT (yk −Bksk)| ≥ τ∥sk∥∥yk −Bksk∥ then

18: Update storage matrices Sk+1 and Yk+1 by l recent {sj , yj}kj=k−l+1

19: Compute γk+1 for B0 by Algorithm C.4 and Bk+1 by (4.18)

20: else

21: Set Bk+1 = Bk

22: end if

23: end for

Appendix D

Overlap Batching and

Computations

In this chapter, we briefly describe the overlap sampling strategy for forming batches

of fixed size. By this strategy, the stochastic function and gradient are required to be

evaluated with respect to the overlap set of the form batch at each iteration.

Batch Formation with Overlap Sampling

Let batches Jk for k = 0, 1, 2, . . . of the fixed size Nk = bs be drawn without replacement

in order to be sure about one actual pass through whole N samples of a dataset within

one epoch. Let Jk = Ok−1 ∪ Ok where Ok−1 and Ok are the overlapping samples of Jk

with batches Jk−1 and Jk+1, respectively. We assume that |Ok−1| = |Ok| = os and thus

overlap ratio or ≜ os
bs = 1

2 (half overlapping). Let N̄ =

⌊
N

os

⌋
− 1 indicates the number

of batches in one epoch, where ⌊a⌋ rounds a to the nearest integer less than or equal

to a. In order to create N̄ mini-batches in one epoch, we have to notice two cases as

rs ≜ mod(N, os) = 0, and rs ≜ mod(N, os) ̸= 0 where the mod (modulo operation)

of N and os returns the remainder after division of N and os. In the first case, all N̄

batches are duplex created by two subsets Ok−1 and Ok as Jk = Ok−1 ∪ Ok. This also

holds for the first N̄ − 1 mini-batches in the second case, but the N̄th mini-batch is a

triple one as Jk = Ok−1 ∪Rk ∪Ok where Rk is a subset of size rs ̸= 0. Considering the

aforementioned cases, we assure that a DNN is trained by all samples per epoch.

138

Function and Gradient Evaluations

Let Nk indicate the sample index of Jk. Then, the main quantities required in a QN-

based algorithm, i.e., fNk
(wk) ≜ fJkk and gk ≜ gJkk (see (3.8) and (3.9)) are determined

by

fJkk = or(f
Ok−1

k + fOk
k), gJkk = or(g

Ok−1

k + gOk
k),

where or = 1
2 . Notice that these quantities with respect to the triple mini-batch in Case

2 are computed as follows

fJkk = or(f
Ok−1

k + fOk
k) + (1− 2or)fRk

k , gJkk = or(g
Ok−1

k + gOk
k) + (1− 2or)gRk

k .

This figure illustrates an example of Case 2, where N = {1, 2, . . . , 13}, bs = 4, and

os = 2. For this example obviously, we can have 5 mini-batches per epoch. The last

mini-batch of each epoch allocates one subset to the remaining set Rk of size rs, which in

this example rs = 1. In overlapping batch formation, we notice the mini-batches when

the epoch changes; where the subset of the last mini-batch in the current epoch includes

the same samples as the first mini-batch in the new epoch; notice samples a10 and a13.

On https://github.com/MATHinDL/sL_QN_TR/, we offer readers MATLAB codes for

implementing the overlapping strategy described in this section.

Figure D.1 An example of the overlapping batch formation within 2 epochs.

https://github.com/MATHinDL/sL_QN_TR/

Appendix E

Additional Experiments

More numerical results than those in Chapter 3 are provided below. Table E.1 gives

straight addresses to the figures reporting training and testing accuracy as well as training

and testing overall loss with more batch sizes. Moreover, additional observations on CPU

training time, and comparisons between tuned Adam and the sL-QN-TR all with hyper-

parameters used in Chapter 3 are presented.

Comparison of the sL-LBFGS-TR and sL-SR1-TR algorithms vs epoch, (l = 20)

LeNet-like ResNet-20 ResNet-20(no BN) ConvNet3FC2 ConvNet3FC2(no BN)

MNIST Figure E.1 — — — —
Fashion-MNIST Figure E.2 Figure E.3 Figure E.5 Figure E.11 Figure E.8
CIFAR10 — Figure E.4 Figure E.6 Figure E.9 Figure E.12

Comparison of the sL-LBFGS-TR and sL-SR1-TR algorithms vs CPU training time, (l = 20)

MNIST Figure E.13 — — — —
Fashion-MNIST Figure E.13 — — — —
CIFAR10 — — — Figure E.14 Figure E.14

Comparison of the sL-LBFGS-TR and sL-SR1-TR algorithms with tuned Adam, (l = 20)

MNIST Figure E.15 — — — —
Fashion-MNIST — Figure E.16 Figure E.17 — —
CIFAR10 — — — Figure E.18 Figure E.19

Table E.1: Set of figures for image classification problems.

140

Figure E.1 MNIST, LeNet-like: The accuracy and loss evolution vs epoch.

Appendix E. Additional Experiments 141

Figure E.2 F-MNIST, LeNet-like: The accuracy and loss evolution vs epoch.

142

Figure E.3 F-MNIST, ResNet-20: The accuracy and loss evolution vs epoch.

Appendix E. Additional Experiments 143

Figure E.4 CIFAR10, ResNet-20: The accuracy and loss evolution vs epoch.

144

Figure E.5 F-MNIST, ResNet-20(no BN): The accuracy and loss evolution vs epoch.

Appendix E. Additional Experiments 145

Figure E.6 CIFAR10, ResNet-20(no BN): The accuracy and loss evolution vs epoch.

146

Figure E.7 MNIST, ConvNet3FC2: The accuracy and loss evolution vs epoch.

Appendix E. Additional Experiments 147

Figure E.8 F-MNIST, ConvNet3FC2: The accuracy and loss evolution vs epoch.

148

Figure E.9 CIFAR10, ConvNet3FC2: The accuracy and loss evolution vs epoch.

Appendix E. Additional Experiments 149

Figure E.10 MNIST, ConvNet3FC2(no BN): The accuracy and loss evolution vs epoch.

150

Figure E.11 F-MNIST, ConvNet3FC2(no BN): The accuracy and loss evolution vs epoch.

Appendix E. Additional Experiments 151

Figure E.12 CIFAR10, ConvNet3FC2(no BN): The accuracy and loss evolution vs epoch.

152

Figure E.13 MNIST and F-MNIST: The accuracy evolution vs CPU time.

Appendix E. Additional Experiments 153

Figure E.14 CIFAR10: The accuracy evolution vs CPU time.

154

Figure E.15 MNIST, LeNet-like: Comparison with tuned Adam.

Appendix E. Additional Experiments 155

Figure E.16 F-MNIST, ResNet-20: Comparison with tuned Adam.

156

Figure E.17 F-MNIST, ResNet-20(no BN): ResNet-20: Comparison with tuned Adam.

Appendix E. Additional Experiments 157

Figure E.18 CIFAR10, ConvNet3FC2: Comparison with tuned Adam.

158

Figure E.19 CIFAR10, ConvNet3FC2(no BN): Comparison with tuned Adam.

Bibliography

[1] Lasith Adhikari, Omar DeGuchy, Jennifer B Erway, Shelby Lockhart, and Roummel F
Marcia. Limited-memory trust-region methods for sparse relaxation. In Wavelets and
Sparsity XVII, volume 10394. International Society for Optical Engineering, 2017.

[2] Masoud Ahookhosh, Keyvan Amini, and Mohammad Reza Peyghami. A non-monotone
trust-region line search method for large-scale unconstrained optimization. Applied Mathe-
matical Modelling, 36(1):478–487, 2012.

[3] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of Marchine
Learning Research, 18:1–43, 2018.

[4] Stefania Bellavia, Nataša Krejić, Benedetta Morini, and Simone Rebegoldi. A stochastic
first-order trust-region method with inexact restoration for finite-sum minimization. Com-
putational Optimization and Applications, 84(1):53–84, 2023.

[5] Albert S Berahas, Majid Jahani, Peter Richtárik, and Martin Takáč. Quasi-Newton methods
for machine learning: forget the past, just sample. Optimization Methods and Software,
37(5):1668–1704, 2022.

[6] Albert S Berahas, Jorge Nocedal, and Martin Takáč. A multi-batch L-BFGS method for
machine learning. In Advances in Neural Information Processing Systems, pages 1055–1063,
2016.

[7] Albert S Berahas and Martin Takáč. A robust multi-batch L-BFGS method for machine
learning. Optimization Methods and Software, 35(1):191–219, 2020.

[8] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society,
48(3):334–334, 1997.

[9] Jose Blanchet, Coralia Cartis, Matt Menickelly, and Katya Scheinberg. Convergence rate
analysis of a stochastic trust-region method via supermartingales. INFORMS journal on
optimization, 1(2):92–119, 2019.

[10] Raghu Bollapragada, Richard H Byrd, and Jorge Nocedal. Exact and inexact subsampled
newton methods for optimization. IMA Journal of Numerical Analysis, 39(2):545–578, 2019.

[11] Raghu Bollapragada, Jorge Nocedal, Dheevatsa Mudigere, Hao-Jun Shi, and Ping Tak Peter
Tang. A progressive batching L-BFGS method for machine learning. In International
Conference on Machine Learning, pages 620–629. PMLR, 2018.

[12] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings
of COMPSTAT’2010, pages 177–186. Springer, 2010.

[13] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. Siam Review, 60(2):223–311, 2018.

[14] Léon Bottou and Yann LeCun. Large-scale online learning. Advances in neural information
processing systems, 16:217–224, 2004.

[15] Johannes Brust, Jennifer B Erway, and Roummel F Marcia. On solving L-SR1 trust-region
subproblems. Computational Optimization and Applications, 66(2):245–266, 2017.

160 Bibliography

[16] Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochas-
tic Quasi-Newton method for large-scale optimization. SIAM Journal on Optimization,
26(2):1008–1031, 2016.

[17] Ruobing Chen, Matt Menickelly, and Katya Scheinberg. Stochastic optimization using
a trust-region method and random models. Mathematical Programming, 169(2):447–487,
2018.

[18] Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. trust-region methods. SIAM,
2000.

[19] Zhaocheng Cui, Boying Wu, and Shaojian Qu. Combining non-monotone conic trust-region
and line search techniques for unconstrained optimization. Journal of computational and
applied mathematics, 235(8):2432–2441, 2011.

[20] Frank E Curtis and Katya Scheinberg. Optimization methods for supervised machine learn-
ing: From linear models to deep learning. In Leading Developments from INFORMS Com-
munities, pages 89–114. INFORMS, 2017.

[21] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in neural
information processing systems, pages 1646–1654, 2014.

[22] NY Deng, Yi Xiao, and FJ Zhou. Nonmonotonic trust-region algorithm. Journal of opti-
mization theory and applications, 76(2):259–285, 1993.

[23] Daniela Di Serafino, Nataša Krejić, Nataša Krklec Jerinkić, and Marco Viola. Lsos: Line-
search second-order stochastic optimization methods for nonconvex finite sums. Mathemat-
ics of Computation, 92(341):1273–1299, 2023.

[24] Daniela di Serafino, Gerardo Toraldo, and Marco Viola. Using gradient directions to
get global convergence of newton-type methods. Applied Mathematics and Computation,
409:125612, 2021.

[25] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[26] Darina Dvinskikh. Stochastic approximation versus sample average approximation for
wasserstein barycenters. Optimization Methods and Software, 37(5):1603–1635, 2022.

[27] Jennifer B Erway, Joshua Griffin, Roummel F Marcia, and Riadh Omheni. Trust-region
algorithms for training responses: machine learning methods using indefinite Hessian ap-
proximations. Optimization Methods and Software, 35(3):460–487, 2020.

[28] David M Gay. Computing optimal locally constrained steps. SIAM Journal on Scientific
and Statistical Computing, 2(2):186–197, 1981.

[29] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings,
2010.

[30] Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical Quasi-Newton methods for train-
ing deep neural networks. Advances in Neural Information Processing Systems, 33:2386–
2396, 2020.

[31] Gene H Golub and Charles F Van Loan. Matrix computations, 4th Edition. Johns Hopkins
University press, 2013.

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[33] Robert Gower, Donald Goldfarb, and Peter Richtárik. Stochastic block BFGS: Squeezing
more curvature out of data. In International Conference on Machine Learning, pages 1869–
1878. PMLR, 2016.

Bibliography 161

[34] Robert M Gower, Peter Richtárik, and Francis Bach. Stochastic quasi-gradient methods:
Variance reduction via jacobian sketching. Mathematical Programming, 188:135–192, 2021.

[35] Luigi Grippo, Francesco Lampariello, and Stephano Lucidi. A non-monotone line search
technique for newton’s method. SIAM Journal on Numerical Analysis, 23(4):707–716, 1986.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[37] Judy Hoffman, Daniel A Roberts, and Sho Yaida. Robust learning with jacobian regular-
ization. arXiv preprint arXiv:1908.02729, 2019.

[38] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In International conference on machine learning,
pages 448–456. PMLR, 2015.

[39] Alfredo N Iusem, Alejandro Jofré, Roberto I Oliveira, and Philip Thompson. Variance-
based extragradient methods with line search for stochastic variational inequalities. SIAM
Journal on Optimization, 29(1):175–206, 2019.

[40] Majid Jahani, Mohammadreza Nazari, Sergey Rusakov, Albert S Berahas, and Martin
Takáč. Scaling up Quasi-Newton algorithms: Communication efficient distributed SR1. In
Machine Learning, Optimization, and Data Science: 6th International Conference, LOD
2020, Siena, Italy, July 19–23, 2020, Revised Selected Papers, Part I 6, pages 41–54.
Springer, 2020.

[41] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. Advances in neural information processing systems, 26:315–323, 2013.

[42] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
3rd International Conference on Learning Representations, ICLR 2015 - Conference Track
Proceedings, 2015.

[43] Nataša Krejić and Nataša Krklec Jerinkić. Non-monotone line search methods with variable
sample size. Numerical Algorithms, 68(4):711–739, 2015.

[44] Nataša Krejić, Zorana Lužanin, Zoran Ovcin, and Irena Stojkovska. Descent direction
method with line search for unconstrained optimization in noisy environment. Optimization
Methods and Software, 30(6):1164–1184, 2015.

[45] Nataša Krejić, Nataša Krklec Jerinkić, Ángeles Martínez, and Mahsa Yousefi. A non-
monotone extra-gradient trust-region method with noisy oracles. arXiv preprint arXiv:,
2023.

[46] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. Available at: https: // www. cs. toronto. edu/ ~kriz/ cifar. html , 2009.

[47] Sudhir Kylasa, Fred Roosta, Michael W Mahoney, and Ananth Grama. GPU accelerated
sub-sampled newton’s method for convex classification problems. In Proceedings of the 2019
SIAM International Conference on Data Mining, pages 702–710. SIAM, 2019.

[48] Yann LeCun. The MNIST database of handwritten digits. Available at: http: // yann.
lecun. com/ exdb/ mnist/ , 1998.

[49] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[50] Aurelien Lucchi, Brian McWilliams, and Thomas Hofmann. A variance reduced stochastic
newton method. arXiv preprint arXiv:1503.08316, 2015.

[51] J. Martens and I. Sutskever. Training deep and recurrent networks with Hessian-Free
optimization. In Neural Networks: Tricks of the Trade, pages 479–535. Springer, 2012.

https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

162 Bibliography

[52] James Martens. New insights and perspectives on the natural gradient method. The Journal
of Machine Learning Research, 21(1):5776–5851, 2020.

[53] James Martens et al. Deep learning via Hessian-Free optimization. In ICML, volume 27,
pages 735–742, 2010.

[54] James Martens and Roger Grosse. Optimizing neural networks with Kronecker-Factored
approximate curvature. In International conference on machine learning, pages 2408–2417.
PMLR, 2015.

[55] Farzin Modarres, Abu Hassan Malik, and Wah June Leong. Improved Hessian approxima-
tion with modified secant equations for symmetric rank-one method. Journal of computa-
tional and applied mathematics, 235(8):2423–2431, 2011.

[56] Aryan Mokhtari and Alejandro Ribeiro. Res: Regularized stochastic BFGS algorithm. IEEE
Transactions on Signal Processing, 62(23):6089–6104, 2014.

[57] Aryan Mokhtari and Alejandro Ribeiro. Global convergence of online limited memory
BFGS. The Journal of Machine Learning Research, 16(1):3151–3181, 2015.

[58] Jorge J Moré and Danny C Sorensen. Computing a trust-region step. SIAM Journal on
Scientific and Statistical Computing, 4(3):553–572, 1983.

[59] Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent stochastic
L-BFGS algorithm. In Artificial Intelligence and Statistics, pages 249–258. PMLR, 2016.

[60] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A novel method for
machine learning problems using stochastic recursive gradient. In International Conference
on Machine Learning, pages 2613–2621. PMLR, 2017.

[61] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Stochastic recursive gradient
algorithm for nonconvex optimization. arXiv preprint arXiv:1705.07261, 2017.

[62] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Series in Operations
Research and Financial Engineering. Springer Science & Business Media, 2006.

[63] Jacob Rafati and Roummel F Marcia. Improving L-BFGS initialization for trust-region
methods in deep learning. In 2018 17th IEEE International Conference on Machine Learn-
ing and Applications (ICMLA), pages 501–508. IEEE, 2018.

[64] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. In International conference on machine
learning, pages 314–323. PMLR, 2016.

[65] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

[66] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochas-
tic average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[67] Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient
descent. Neural computation, 14(7):1723–1738, 2002.

[68] Nicol N Schraudolph, Jin Yu, and Simon Günter. A stochastic Quasi-Newton method for
online convex optimization. In Artificial intelligence and statistics, pages 436–443. PMLR,
2007.

[69] Yixun Shi. Globally convergent algorithms for unconstrained optimization. Computational
Optimization and Applications, 16:295–308, 2000.

[70] Sandro Skansi. Introduction to Deep Learning: from logical calculus to artificial intelligence.
Springer, 2018.

[71] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014.

Bibliography 163

[72] Shigeng Sun and Jorge Nocedal. A trust region method for noisy unconstrained optimiza-
tion. Mathematical Programming, pages 1–28, 2023.

[73] Wenyu Sun. Non-monotone trust-region method for solving optimization problems. Applied
Mathematics and Computation, 156(1):159–174, 2004.

[74] Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic Quasi-Newton methods
for nonconvex stochastic optimization. SIAM Journal on Optimization, 27(2):927–956, 2017.

[75] Xiaoyu Wang and Ya-xiang Yuan. Stochastic trust-region methods with trust-region radius
depending on probabilistic models. arXiv preprint arXiv:1904.03342, 2019.

[76] Zengxin Wei, Guoyin Li, and Liqun Qi. New Quasi-Newton methods for unconstrained
optimization problems. Applied Mathematics and Computation, 175(2):1156–1188, 2006.

[77] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[78] Peng Xu, Fred Roosta, and Michael W Mahoney. Second-order optimization for non-convex
machine learning: An empirical study. In Proceedings of the 2020 SIAM International
Conference on Data Mining, pages 199–207. SIAM, 2020.

[79] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael
Mahoney. Adahessian: An adaptive second-order optimizer for machine learning. In pro-
ceedings of the AAAI conference on artificial intelligence, volume 35, pages 10665–10673,
2021.

[80] Mahsa Yousefi and Ángeles Martínez Calomardo. A stochastic non-monotone trust-region
training algorithm for image classification. In 2022 16th International Conference on Signal-
Image Technology & Internet-Based Systems (SITIS), pages 522–529, Los Alamitos, CA,
USA, Oct 2022. IEEE Computer Society. https://doi.ieeecomputersociety.org/10.
1109/SITIS57111.2022.00084.

[81] Mahsa Yousefi and Ángeles Martínez. On the efficiency of stochastic Quasi-Newton methods
for deep learning. arXiv preprint arXiv:2205.09121, 2022.

[82] Mahsa Yousefi and Ángeles Martínez Calomardo. A matlab-based tutorial on implementing
custom loops for training a deep neural network. 2022. http://doi.org/10.13140/RG.2.
2.33008.94720.

[83] Mahsa Yousefi and Ángeles Martínez Calomardo. A stochastic modified limited memory
BFGS for training deep neural networks. In Intelligent Computing: Proceedings of the 2022
Computing Conference, Volume 2, pages 9–28. Springer, 2022. https://doi.org/10.1007/
978-3-031-10464-0_2.

[84] Liu Ziyin, Botao Li, and Masahito Ueda. SGD may never escape saddle points. arXiv
preprint arXiv:2107.11774, 2021.

https://doi.ieeecomputersociety.org/10.1109/SITIS57111.2022.00084
https://doi.ieeecomputersociety.org/10.1109/SITIS57111.2022.00084
http://doi.org/10.13140/RG.2.2.33008.94720
http://doi.org/10.13140/RG.2.2.33008.94720
https://doi.org/10.1007/978-3-031-10464-0_2
https://doi.org/10.1007/978-3-031-10464-0_2

	List of Figures
	List of Tables
	List of Algorithms
	Notation
	Introduction
	Basic Background on Unconstrained Optimization
	Unconstrained Optimization Problem
	Line-Search and Trust-Region Strategies

	An Overview on Optimization in Deep Learning
	Deep Neural Networks
	Deep Learning Optimization Problem
	Deep Learning Optimization Strategies
	Experimental Setups

	Stochastic Trust-Region Methods
	Stochastic Quasi-Newton TR Algorithms
	Stochastic Limited-Memory BFGS TR
	Stochastic Limited-Memory SR1 TR
	Numerical Comparison

	A Stochastic Modified L-BFGS Trust-Region Method
	A modified L-BFGS update
	Algorithm Framework
	Numerical Evaluation

	A Stochastic Hybrid L-SR1 Trust-Region Method
	Algorithm Framework
	Numerical Evaluation

	Stochastic Non-Monotone Trust-Region Methods
	Introduction
	A Stochastic Algorithm with Fixed-Size Sampling
	Algorithm Framework
	Numerical Evaluation

	A Stochastic Algorithm with Adaptive Sampling
	Algorithmic framework
	Convergence Analysis
	Numerical Evaluation

	Concluding Remarks
	Programming Comments
	Two Solvers for the TR Subproblem
	Additional Algorithms
	Overlap Batching and Computations
	Additional Experiments

