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1 Introduction

Axion-like particles (ALPs) are a common feature of beyond the Standard Model (BSM)
physics, arising as pseudo Nambu-Goldstone bosons of spontaneously broken global sym-
metries. While the most renowned application is the axion solution to the strong CP
problem [1–4], ALPs routinely find their place in BSM physics as, e.g., natural dark mat-
ter (DM) [5–8] and inflaton candidates [9–13], or as generic particles in the low-energy
spectrum of string theories with a wide range of possible masses [14–17]. Relatively typical
string constructions can also result in an explicit breaking of the discrete shift symmetry of
ALP, leading to an axion monodromy [18–23]. In the presence of a monodromy, the ALP
field space is no longer compact and the ALP can probe multiple non-degenerate minima
of the potential. This effect was exploited in the context of inflation to allow for potentials
which slowly varied over a super-Planckian field range [18–20].
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It was realized such a potential can also provide a novel dynamical solution to the elec-
troweak (EW) hierarchy problem [24]. The mechanism relies on the cosmological evolution
of an axion-like field φ, called the relaxion, with a softly-broken discrete shift symmetry al-
lowing a monodromy-like term in the potential as well as a linear coupling to the SM Higgs
field. As the relaxion rolls down its potential, the Higgs mass decreases from a natural
value of order of the cutoff scale of the theory until it becomes close to zero and a stopping
mechanism of one type or another is triggered. The original model occurs during inflation
and identifies the relaxion with the QCD axion, where non-perturbative QCD instanton
effects generate a periodic potential for φ in the presence of non-vanishing quark masses.
The appearance of the barriers as the Higgs mass scans through the origin and triggers a
non-zero EW vacuum expectation value (VEV) acts as the trigger that stops the relaxion
field, with Hubble friction and a small, technically natural slope ensuring the correct EW
VEV is not overshot. Issues with the original model were addressed in [25] and alterna-
tive stopping mechanisms using, e.g., friction from the tachyonic production of EW gauge
bosons [26–29],1 friction from parametric resonance due to the Higgs zero mode [31], po-
tential instabilities [32], fermion production [33], and dark photon production [34, 35] have
also been considered. The general idea of solving the hierarchy problem by means of the
cosmological evolution has been the subject of a number of recent studies, see e.g. [36–41].

Not much attention has been focused on the role of ALP quantum fluctuations, which
can be excited by the cosmological evolution of the homogeneous zero mode. In typical
situations where the ALP oscillates about a single minimum, fluctuation growth is sup-
pressed unless the amplitude is large enough for anharmonic corrections to the potential
to be important [42, 43]. However, even harmonically oscillating ALPs can nonetheless
excite other coupled degrees of freedom, such as other scalar fields [44–48] or gauge field
quanta through a Chern-Simons type coupling [10, 12, 49–54], possibly also resulting in
the production of gravitational waves (GWs) [55].

The situation for an ALP with a non-compact potential and sufficient velocity to
overcome many barriers is different. As the relaxion or ALP rolls down its potential, it
has a highly oscillatory mass term as it traverses a large number of fundamental periods.
This generically results in a parametric resonance effect that leads to exponential growth
of fluctuations in the ALP field for a particular range of momenta [56]. This so-called
fragmentation of the ALP field results in friction that can stop the field as kinetic energy
is transferred from the homogeneous zero mode into ALP quanta. This effect leads to a
natural and novel stopping mechanism for the relaxion, the so-called self-stopping relaxion,
as first pointed out in [56, 57]. Similar self-resonance effects have been considered in the
context of axion monodromy inflation [58] and axion monodromy dark matter [59, 60] and
can also result in GW production [61].

The necessary ingredients for successful relaxation of the EW scale in the context of
the self-stopping relaxion were studied in [57], while ref. [56] examined the conditions un-
der which ALP fragmentation can efficiently stop the field evolution for generic ALPs. In

1In this case, a population of relaxion particles is produced after reheating via scattering, with an
abundance that matches the observed DM one for a relaxion mass in the keV range [28, 29]. Such a
scenario is anyway strongly constrained by structure formation probes [30].
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particular, the time required to stop the field as well as the corresponding field displace-
ment were computed in a linearized analysis, where the equation of motion for the ALP
fluctuations can be Fourier transformed into momentum space, with each mode evolving
independently. It was shown in [56] that the linear approximation holds for most of the
fragmentation process, thus the linearized results for e.g., the stopping time were expected
to hold up to O(1) corrections from non-linearities.

A fully satisfactory description of the system in the non-linear regime requires a de-
tailed lattice study, which we perform in this work. While our motivation is rooted in
the relaxion mechanism, our lattice study here is broadly applicable to general ALPs
with/without a monodromy-like potential. In particular, another interesting example for
the application of the axion fragmentation would be the kinetic misalignment scenario [62–
64], which is a novel ALP dark matter production mechanism. In this scenario, ALP zero
mode has initial velocity which is large enough to overcome the potential barrier, and this
initial velocity determines the amount of the relic abundance today. Physical consequences
of the axion fragmentation in the ALP dark matter scenario will be discussed elsewhere [65].
We solve the ALP equations of motion in position space on a discretized spacetime lattice
using a staggered grid algorithm [66, 67], which reproduces the continuum version of the
equations up to an error that is quadratic in the lattice spacing. We generically find that
ALP fragmentation is more efficient in the presence of non-linearities, mainly due to the
importance of 2→ 1 processes that allow for the growth of modes outside the parametric
resonance band. The more efficient fragmentation typically leads to an order of magnitude
reduction in the stopping time and field displacement as compared to the results from
the linear analysis. As expected, the final ALP spectrum is broadened compared to the
linearized analysis, and the final field configuration is highly inhomogeneous as most of the
energy in the system is contained in fluctuations corresponding to axion particles. The rest
of the features of the linear analysis are qualitatively confirmed, and we comment briefly on
the possible formation of domain walls due to the ALP field stopping in different minima
on scales separated by more than the inverse stopping time.

2 Summary of the linear analysis

In this section we briefly recall the results of ref. [56]. We consider a potential of the form

V (φ) = −µ3φ+ Λ4
b cos φ

f
, (2.1)

where we assume Λ4
b/f � µ3 and we define the axion mass m2 = Λ4

b/f
2. Notice that, for

Λ4
b/f ∼ µ3, the physical value of the axion mass is smaller than this value. This does not

affect our discussion. In the rest of the paper we will use m or Λb interchangeably. We
assume that the axion has an initial kinetic energy large enough to overcome the barriers
of the potential, φ̇2/2� Λ4

b .
We decompose the axion field into a homogeneous mode plus small fluctuations:

φ(x, t) = φ(t) + δφ(x, t) = φ(t) +
(∫

d3k

(2π)3akuk(t)e
ikx + h.c.

)
(2.2)
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where ak are the usual annihilation operators with [ak, a†k′ ] = (2π)3δ3(k − k′). As initial
condition, we assume the modes are initially in the Bunch-Davies vacuum, where uk(t) ≈
e−ikτ/(a

√
2k) with τ being the conformal time.2 The equations of motion for the zero

mode φ(t) and for the mode functions uk are given by

φ̈+ 3Hφ̇+ V ′(φ) + 1
2V
′′′(φ)

∫
d3k

(2π)3 |uk|
2 = 0, (2.3)

ük + 3Hu̇k +
[
k2

a2 + V ′′(φ)
]
uk = 0. (2.4)

Equation (2.3) is such that a growth of the mode functions uk slows down the evolution
of the zero mode φ. Neglecting cosmic expansion, and in the limit of constant velocity,
eq. (2.4) can be read as a Mathieu equation, which features exponentially growing solutions
depending on its parameters, namely when k falls in specific bands around nφ̇/(2f), for
integer n ≥ 1. Modes falling in the n = 1 modes grow faster, and the width of the band is
larger than for n ≥ 2, thus we expect these modes to be the principal source of friction to
the axion.

For φ̇2/2� Λ4
b , the n = 1 instability band can be written as |k − kcr| < δkcr, with

kcr = φ̇

2f , δkcr = Λ4
b

2fφ̇
. (2.5)

The asymptotic behaviour of uk at large t is

uk ∼ (2kcr)−1/2 exp
(√

(δkcr)2 − (k − kcr)2t

)
sin
(
kcrt+ π

4

)
. (2.6)

Due to this exponential growth, the energy density of the fluctuations within the instability
band increases. Energy conservation implies that the kinetic energy of the zero mode
decreases by the same amount, thus reducing φ̇ and correspondingly shifting the instability
band towards smaller k’s. At the linear level, the growth of the modes around kcr stops
when they exit the instability band, i.e., when the critical mode has decreased by an
amount δkcr. As we will discuss in the following in section 4, at next to leading order
the scattering of two modes of the instability band can enhance modes which are still
outside the latter. As a result, these modes enter into the instability band with a larger
initial amplitude. Hence, the time needed for their enhancement to level which induces a
significant backreaction is shortened, increasing the overall efficiency of the process.

The equation of motion of the fluctuations eq. (2.4) can be solved, assuming φ̈ does not
vary during the amplification time of a single mode, by means of a WKB approximation in
three separate time intervals: first, before the mode kcr enters the instability band; second,
when the mode is deep inside the instability band; third, after it has left it. In the two
transition regions, when the mode enters and exits the instability band, the solution can
be expressed in terms of Airy functions. Continuity of the solution is then used to match

2Note that eq. (2.6) in ref. [56] contains an error in the phase of the Bunch-Davies mode functions, which
does not affect the derivation of the subsequent results. In addition, the effects of cosmic expansion are not
important since fragmentation is much faster than one Hubble time.
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the five intervals. The asymptotic solution for uk, after it has left the instability band, is
found to be

ukcr(t) '
1
a

√
2
kcr

exp
(

πΛ8
b

4fφ̇2 |φ̈+Hφ̇|

)
sin
(1
a
kcrt+ δ

)
, (2.7)

and the time needed for this amplification is

δtamp ≈
1

2δkcr
log φ̇

2

k4
cr

= fφ̇

Λ4
b

log 16f4

φ̇2 . (2.8)

By using energy conservation and eq. (2.7), the equation of motion for the zero mode can
be derived:

φ̇φ̈ = −3Hφ̇2 + µ3φ̇− 1
32π2f4 φ̇

3|φ̈+Hφ̇| exp
(

πΛ8
b

2fφ̇2|φ̈+Hφ̇|

)
. (2.9)

Equation (2.9) can be integrated exactly for H = 0, µ = 0. In particular, one finds that
the evolution of the zero mode is stopped by the backreaction after a time

∆tfrag '
2fφ̇3

0
3πΛ8

b

log 32π2f4

φ̇2
0

, (2.10)

and the corresponding field excursion is

∆φfrag '
fφ̇4

0
2πΛ8

b

log 32π2f4

φ̇2
0

. (2.11)

The effect of Hubble friction and of the slope µ is negligible as long as the following equation
is satisfied:

µ3 < 2Hφ̇0 + πΛ8
b

2fφ̇2
0

(
W0

(
32π2f4

eφ̇2
0

))−1

. (2.12)

Here W0(z) is the 0-th branch of the product logarithm function. If the slope µ is too
large, the field is accelerated and the fragmentation is not efficient enough to stop it, unless
Hubble friction balances it. In section 3 we will check the validity of eqs. (2.10)–(2.12) with
a lattice analysis. Due to the increased efficiency at next-to-leading order (NLO), the time
scale and the field excursion of eqs. (2.10), (2.11) are reduced typically by a factor of a few.
Instead, eq. (2.12) is satisfied with order percent accuracy.

3 Lattice analysis

The linear analysis presented above is very useful as it provides simple analytic expressions
for the quantities related to the axion evolution. One may wonder, though, whether these
results are robust once non-linear effects are taken into account. Even though a strong
backreaction is intrinsically related to a breakdown of perturbativity, it is expected that,
at NLO, the efficiency of fragmentation is not suppressed in a potential as in eq. (2.1) [56].
In this section, we discuss the validity of this statement by means of a lattice simulation.
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The simulation is carried out using a staggered grid quantization of space and time,
guaranteeing second order accuracy in the lattice spacing O(dx2

µ). The time integration of
the resulting field equations is carried out using a leapfrog algorithm (see [68] for a recent
review of lattice techniques). We vary the side length of the simulated box L as well as
the number of lattice sites N to ensure that our results are independent of them, which is
the case as long as the critical modes from the start of the simulation when 〈φ̇〉 = φ̇0 up
to the end where 〈φ̇〉 < 2mf are all covered. This corresponds to dx = L/ 3√N � 2f/φ̇0
and L� 1/m.

We start neglecting the slope and cosmic expansion, such that µ = H = 0. The most
relevant quantities that we want to compute on the lattice are the duration of and the field
excursion during the fragmentation process. From the linear analysis, we know that the
modes that are inside of the first instability band at the time when the barriers appear,
will grow for a time δtamp|φ̇=φ̇0

as in eq. (2.8), where φ̇0 is the initial velocity. After that
time, the instability band moves towards lower k modes due to the backreaction onto the
zero mode. We are interested in the time needed to stop the evolution of the zero mode
and the corresponding field excursion, which were computed in the linear approximation
in eqs. (2.10) and (2.11) to be

∆tfrag '
2fφ̇3

0
3πΛ8

b

log 32π2f4

φ̇2
0

, ∆φfrag '
fφ̇4

0
2πΛ8

b

log 32π2f4

φ̇2
0

, (3.1)

where, for the typical relaxion parameters, we find 2/(3π) log(. . . ) ∼ O(10). Let us also
define the quantities

tnl = fφ̇3
0

Λ8
b

, φnl = fφ̇4
0

Λ8
b

, (3.2)

which control the time and the corresponding distance in field space it takes for the field
to come to a complete stop after fluctuations become non-linear. At the non-linear level,
we generalize the relations in eq. (3.1) via the following parameterization

∆tnl
frag = δtamp + tnl · zt , (3.3)

and
∆φnl

frag = φ̇0δtamp + φnl · zφ . (3.4)

We show in figure 1 the evolution of φ̇(t) (top) and φ(t) (bottom) for different choices of
the initial velocity and of the potential parameters. It can be seen that after the short time
δtamp in which the axion evolves with an almost constant velocity, the field slows down and
stops in a time given in eq. (3.3) with

zt ≈ 2.3 , (3.5)

for 10m ≤ f ≤ 1010m and 5mf ≤ φ̇0 ≤ 20mf . Analogously, in the bottom panel we
see that

zφ ≈ 1.5 . (3.6)

These values are shorter by a factor of O(10) than the ones obtained in the linear analysis.
The reason for this enhanced efficiency found in the lattice analysis is mainly due to the

– 6 –



J
H
E
P
1
2
(
2
0
2
1
)
0
3
7

2 1 0 1 2 3

0

5

10

15

20
av

er
ag

e 
ax

io
n 

ve
lo

cit
y 

/(m
f)

f = 101 m

2 1 0 1 2 3
time (t tamp)/tnl

0

5

10

15

20
f = 103 m

2 1 0 1 2 3

0

5

10

15

20
f = 1010 m

2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

av
er

ag
e 

ax
io

n 
fie

ld
 

/
nl

f = 101 m

0/(mf)
5.0
10.0
20.0

2 1 0 1 2 3
time (t tamp)/tnl

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
f = 103 m

2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
f = 1010 m

Figure 1. Field evolution with slope µ = 0 and no expansion for different initial velocities and
decay constants f . All simulations were run with N = 1283 lattice sides and length L = 20/m along
each side. Top: we clearly see how the stopping process consists of two parts i) a phase where the
modes that are initially enhanced by parametric resonance grow from vacuum to an energy density
ρ ≈ m2f2 in a time δtamp and ii) a nonlinear part that lasts a time of 2.3 tnl (marked by the red
dotted line). Bottom: we see that in the non-linear regime the fields roll a distance ≈ φnl ·1.5 (blue
dashed line), in the limit of large f and φ̇0.

NLO correction that will be discussed in detail in section 4. This difference has a minor
impact on the analysis of the relaxion parameter space of ref. [57] (in which an order of
magnitude uncertainty is always assumed), as we will discuss more in section 6.3.

In figure 2 we show the evolution of the axion field for different choices of the lattice
parameters, which demonstrates the stability of our results.

If the fragmentation process takes place after inflation, one may expect the fluctuations
to be enhanced during inflation compared to the Bunch-Davies spectrum and be frozen until
they re-enter the horizon, with a nearly scale-invariant power spectrum. In figure 3 we show
the axion evolution in a run with an initially flat power spectrum, compared to one with
the Bunch-Davies spectrum. We fix the normalization of the flat power spectrum in such a
way that in the initial resonance band the power spectrum is enhanced with respect to the
Bunch-Davies case by (dρ/d log k)kcr,0 ≈ x × (dρBD/d log k)kcr,0 , and we take x = 108 in
figure 3. As it can be seen from the figure, the only difference in this case is in the duration
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Figure 2. Average axion velocity for f = 103 m, µ = 0, and no expansion as obtained from linear
analysis (eq. (2.9)) and from different realizations of the lattice.

of the amplification time δtamp, which now lasts

δtamp → δtmod
amp ≡

fφ̇

Λ4
b

log
(
x× 16f4

φ̇2

)
, (3.7)

as one would expect. The duration of the non-linear phase tnlzt is instead independent of
the initial power spectrum. We expect this behavior to not depend on the choice of the
power spectrum, but only on the normalization of the initial instability band. This is due
to the dominance of induced secondary fluctuations, as will be discussed below in section 4.

The last quantity that we want to compute on the lattice is the maximal slope of the
potential µmax, which is defined from eq. (2.12) with H = 0:

µ3 < µ3
max ≡

πΛ8
b

2fφ̇2
0

(
W0

(
32π2f4

eφ̇2
0

))−1

. (3.8)

For µ > µmax, fragmentation is not efficient enough to contrast the acceleration induced
by the potential slope. Figure 4 shows the evolution of the zero mode for µ around µmax,
for different values of f and of the initial velocity. It can be seen that the maximal value
of µ for which the field stops respects eq. (3.8) with a percent accuracy.

In the closing of this section, let us briefly comment on the effect of the Hubble friction.
Contrary to the slope term, the Hubble friction acts to slow down the rolling of φ. When
the Hubble friction is the dominant source of the friction, the fluctuation in φ remains
small enough to use the linear analysis shown in [56]. In this regime, the two sources of
the friction can be written as(

dρ

dt

)
frag

= − φ̇
3|φ̈+Hφ̇|
32π2f4 exp

(
πΛ8

b

2fφ̇2|φ̈+Hφ̇|

)
, (3.9)(

dρ

dt

)
Hubble

= −3Hφ̇2. (3.10)

For the derivation of eq. (3.9), see ref. [56]. As long as |(dρ/dt)frag| � |(dρ/dt)Hubble|, the
fragmentation effect is not important and the time evolution of the zero mode is described
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Figure 3. Evolution of the axion field with µ = 0, f = 1010m, φ̇0 = 10mf , and no expansion
for different initial energy spectra. The dark colors correspond to a flat initial energy spectrum (as
expected if fluctuations are enhanced during inflation) where the energy in the initial resonance
band is enhanced by a factor dρ/d log k(kcr,0) ≈ 108 dρBD/d log k(kcr,0) as compared to the Bunch-
Davies vacuum (light colors). The gray and black dashed lines mark δtamp and δtmod

amp, respectively
(see eq. (3.7)), while the thin and thick red dashed lines correspond to δtamp+zttnl and δtmod

amp +zttnl.
Both simulations were run with N = 2563 lattice sides and length L = 80/m along each side.

by the equation of motion φ̈+ 3Hφ̇− µ3 − (Λ4
b/f) sin(φ/f) = 0. The fragmentation effect

becomes important when |(dρ/dt)frag| & |(dρ/dt)Hubble|, which occurs for

H . O(1)× πΛ8
b

fφ̇3 log 32π2f4

φ̇2 . (3.11)

Here, we assumed µ3 . O(1)×Hφ̇ otherwise eq. (2.12) is not satisfied and φ keeps rolling.
Once this condition is satisfied, (dρ/dt)frag quickly dominates over (dρ/dt)Hubble because
of the exponential factor. Thus, we conclude that Hubble friction is not important once
the fragmentation starts, but it controls when this happens. For an ALP rolling down its
potential, fragmentation starts after H drops below the r.h.s. of eq. (3.11). In the case of
the relaxion, fragmentation starts as soon as the barriers appear, if eq. (3.11) is satisfied.
This justifies our choice of not including cosmic expansion in our lattice simulations.

4 Secondary fluctuations

Secondary fluctuations will be sourced as higher order terms in the potential become im-
portant once the initial fluctuations in the resonance band have grown. While our lattice
analysis takes these effects into account to all orders, we here first outline the approach of
calculating them to second order analytically and afterwards compare to the lattice.
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Figure 4. Average axion velocity varying the slope in the range 0.70 < µ/µmax < 1.10, for
f/m = 103 (top) and 1010 (bottom), and φ̇0 = 5mf (left) and 10mf (right). The red dotted line is
at (t− δtamp)/tnl = 2.3.

To capture the secondary fluctuations, we extend the linear ansatz from eq. (2.2) by a
second order term

φ(x, t) = φ(t) + δφ(x, t) + δ(2)φ(x, t). (4.1)

The second order fluctuations δ(2)φ are of O(δφ2) and initially zero. Plugging this ansatz
into the full equation of motion, going to Fourier space, and separating the O(δφ0) and
O(δφ1) pieces we find eq. (2.4) and also an equation for the O(δφ2) terms in the limit of
vanishing expansion

¨δ(2)φk + (k2 + V ′′(φ)) δ(2)φk = −1
2V
′′′(φ)

∫
d3p

(2π)3 δφpδφk−p =: Sk , (4.2)
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which is just the equation of a sourced harmonic oscillator. The particle physics interpreta-
tion of this result is, that higher order terms in the potential cause scattering of two axions
in the excited modes p and k−p into an axion with momentum k. Using the analytic results
for the modes in the resonance band during the period were the backreaction is negligible
and the axion therefore rolls with constant velocity eq. (2.6), the energy spectrum in the
second order fluctuations becomes

dρ(2)

d log k ≈
k2δkcr
29π3

Λ8
b

f6
1
t

exp
(
4δkcrt

)
θ(2kcr − k)

[ 1
k2 + 4δk2

cr

+ 1
(k − 2kcr)2 + 4δk2

cr

+ 1
(k + 2kcr)2 + 4δk2

cr

+ 1
4

1
(k − 4kcr)2 + 4δk2

cr

+ 1
4

1
(k + 4kcr)2 + 4δk2

cr

]
, (4.3)

as calculated in appendix A. In the case of a narrow resonance defined by δkcr/kcr � 1, the
first and second term in the square brackets of eq. (4.3) correspond to secondary resonances
at k = 0 and k = 2kcr. Notice that eq. (4.3) does not predict any resonance at k = 4kcr,
due to the finite k range encoded in the θ function. The non-resonant terms are sizeable
away from the resonance though, and we included them for completeness.

The first two dominating contributions predict a flat spectrum at low momenta 2δkcr .
k . 2kcr, and a secondary peak at k = 2kcr corresponding to collinear scattering processes.
This expectation is indeed confirmed in figure 5, where we show the axion spectrum as
obtained on the lattice for different times. Initially, the axion is taken to be in the Bunch-
Davies vacuum shown in black at the bottom of the plot. On the right side of the plot
we show a close up of the resonance band around kcr. The exponential growth of the
modes in the resonance band with time up to t ≈ tamp is clearly visible as expected from
the analytical result eq. (2.6) (shown in red for comparison). Around t = 0.7 tamp, the
energy in the modes with k < 2kcr starts growing at approximately twice the rate of the
modes in the resonance band. These are the secondary fluctuations that arise as axions
in the resonance band scatter in 2 → 1 processes. The analytic estimate of this effect in
eq. (4.3), shown in orange, predicts the order of magnitude as well as the main features
of the spectrum accurately. As t approaches tamp, the energy in higher momentum modes
is amplified as well. The secondary peak at k = 2kcr predicted by eq. (4.3) is clearly
visible, as well as the primary one at k = kcr. We believe that the additional peaks at
higher momenta are due to higher order effects that eventually lead to the breakdown of
perturbation theory.

Perturbation theory fully breaks down at tamp when the axion zero mode slows down
and the resonance band moves to smaller momenta. The new starting point for the am-
plification of the modes in the resonance band is not the initial spectrum anymore, but
the sum of the initial spectrum and the secondary fluctuations. The time it takes for the
energy in the modes to grow sufficiently to slow down the axion zero mode is therefore
reduced and the axion stops faster, as we observed in section 3. This also explains why
the stopping process becomes independent of the initial spectrum after tamp: if the initial
perturbations are smaller than the induced secondary ones, they are simply negligible after
this point.
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In figure 6 we show the further evolution of the spectrum. Again it is useful to come
up with an expectation in the linear picture to be able to compare to the lattice and
understand the effect of higher order processes. In the linear analysis, we can derive a
simple analytic formula for the energy spectrum dρ/d log k. As the axion loses its kinetic
energy, the resonance band sweeps from its initial position kcr = φ̇0/2f to kcr = m, when
the axion gets trapped in the wiggles. Assuming the axion deposits its energy only into the
resonance band, energy conservation tells us that

∫ φ̇0/2f
φ̇/2f dk dρ/dk = φ̇2

0/2 − φ̇2/2. Then,
we obtain [56]

dρ

d log k = 4f2k2 for m < k <
φ̇0
2f . (4.4)

This estimation from the linear analysis is shown as the solid black line in figure 6. We
see that as the axion slows down, the spectrum is well matched by this estimate for modes
with momenta bigger than the current critical momentum. We notice that the simulated
spectrum is an O(1) factor smaller than the estimate. This can be easily understood, since
higher order processes keep shuffling the energy into high momentum modes. The spectrum
resulting from these processes is clearly visible for modes with k > φ̇0/(2f). Once the axion
has stopped at ∆tnl

frag, there is no further energy injected into the axion inhomogeneities.
The scattering processes however remain active and result in the peak of the spectrum
moving to higher momenta. Such an energy cascade into modes with higher momenta can
be understood as the early state of the thermalization [69–71].

5 Formation of bubbles

A very important point that needs to be discussed is the possibility that the axion field
populates multiple minima in spatially separated regions. If the fragmentation process
takes place during inflation, these multiple minima would not be observable as the cor-
responding regions are stretched by the exponential expansion, and thus in the currently
visible Universe the vacuum would be unique (unless fragmentation takes place during the
last O(60) e-folds of inflation, in which case the discussion below applies). On the other
hand, if fragmentation takes place after inflation, multiple minima can be populated within
one Hubble patch. This scenario has multiple consequences, which we list here:

• First of all, if multiple minima are populated, we expect a bubble wall structure to
develop. Even if the dynamics is such that the field quickly relaxes to one single
minimum within a Hubble volume, the selected minimum need not be the same
in different Hubble patches. Hence, as the horizon grows and previously separated
patches enter into causal contact, we expect at least one domain wall with an area
∼ H−2 to be present at any given time in the visible Universe. Depending on its
energy, this may be problematic as it could lead to overclosure. This is indeed the
case for the self-stopping relaxion, see section 6.1.

• Secondarily, due to the overall slope of the potential −µ3, different vacua have dif-
ferent vacuum energies. If the energy difference is small, this could lead to an in-
homogeneous cosmological constant (CC). If instead the energy difference is large,
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Figure 5. Early evolution of the axion energy spectrum for f/m = 1010, φ̇0 = 10mf . The blue
shaded lines show the spectrum as obtained from a lattice with N = 5123 sites and side length
L = 40/m. The bottom black line is the analytic expression for the initial Bunch Davies vacuum
∝ k4 and the orange lines give the analytic NLO estimate eq. (4.3) for t = 0.7− 1.0 · tamp. On the
right we magnified the region around the peak kcr = 5m and show for comparison the analytic LO
estimate eq. (2.6) for t = 0.1− 1.0 · tamp in red.

100 101

momentum k/m

10 6

10 4

10 2

100

102

en
er

gy
 d

en
sit

y 
d

/d
ln

k
/m

2 f
2

t = 5 tnl
frag

t = tnl
frag

t = tnl
frag/2

t = 2 tamp

Figure 6. Evolution of the axion energy spectrum past δtamp for f/m = 1010, φ̇0 = 10mf . The
blue shaded lines show the spectrum as obtained from the same lattice as in figure 5. The black
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this would worsen the CC problem in that a fine tuning would be required for the
different vacua to average at the correct value.

• Finally, in the case of the relaxion, large spatial inhomogeneities of the field φ would
lead to a inhomogeneous value of the Higgs VEV. We mention this here for complete-
ness, but we do not expect it to be problematic as the differences in the electroweak
VEV would be tiny by construction.

Even though the above possibilities are interesting by themselves, and may be viable de-
pending on the parameters of the model, we will here assume that they do not occur, and
compute the necessary conditions to avoid them. In particular, inhomogeneities may be
created on three different length scales, which need to be analyzed separately.

5.1 Fluctuations on super-Hubble scales

If the axion is light compared to the Hubble scale during inflation, then it will be excited
with a nearly scale invariant spectrum. Due to these fluctuations, we expect patches of the
universe with different initial values of the axion field, meaning the axion velocity will also
differ at the point when the wiggles in the axion potential appear and fragmentation stops
the field shortly after. As we can see from eq. (3.4), different initial velocities result in
the fragmentation process stopping the field at different positions. If these differences are
larger than the fundamental period 2πf , this leads to the field stopping in different minima
and therefore the existence of superhorizon bubbles. Even if dynamics eventually smooth
the field value across the Hubble volume, as the horizon grows more regions in which the
field has settled in different minima will enter into causal contact. Therefore, we expect to
have multiple minima populated at any time within the visible Universe.

We expect inflation at a scale HI to result in approximately scale-invariant fluctuations
with amplitude δφ ∼ HI/(2π) in the field before the scanning process begins. If the height
of the barriers does not depend on φ (as e.g. for generic ALPs), HI . 2πf should be
imposed to avoid domain wall formation. On the other hand, if the height of the barriers
does depend on φ (as in the Graham-Kaplan-Rajendran (GKR) relaxion model [24]), the
constraint on HI is relaxed because the fragmentation starts only when φ reaches the
critical point where the Higgs VEV becomes non-zero and the barriers appear, leading to
a reduction in the fluctuations in φ. In this case the following bound on the inflationary
scale can be derived (see appendix B)

HI .
π2

zφ

Λ8
b

φ̇4
0

∆φscan , (5.1)

in order to avoid superhorizon bubbles in the case where the axion constitutes a subdom-
inant component of the total energy. This is the case if the distance the axion rolls while
scanning is sub-Planckian, i.e., ∆φscan . mpl. The bound in eq. (5.1) is mild, especially
when compared to the original GKR mechanism. As shown in figure 10, HI can be as
large as 1016 GeV. In the original GKR relaxion mechanism instead, it can never exceed
O(102) GeV and it is typically sub-GeV, or even as low as the meV range [57]. In the
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case where the axion dominates the total energy and drives inflation or at least a pe-
riod thereof, this bound disappears since fluctuations in the axion become equivalent to
adiabatic fluctuations rather than isocurvature ones.

5.2 Critical bubbles

It is useful at this point to take a closer look at the different infrared scales involved in our
setup. Regarding the bubbles, we follow ref. [72] to estimate the width of the bubble wall
at rest by minimizing the surface tension, i.e., the energy per unit wall area. While the
surface tension arising from the field being displaced from the minimum of the potential
grows for larger bubble widths, the tension due to the gradient of the field is reduced. With
these considerations, one finds the following estimates for the wall width w and the surface
tension σ

w ≈ 5m−1 , σ ≈ 10mf2 . (5.2)

Notably, the scales where most of the energy is deposited are smaller than m−1 and there-
fore smaller than the width of a bubble wall. The dynamics of these fluctuations therefore
do not resemble the ones of bubbles and we discuss their impact in the next section. Fur-
thermore, one can calculate the critical radius Rcrit a bubble needs to reach such that
the pressure from the non-degeneracy of the vacua driving the expansion of the bubble
overcomes the surface tension.

Rcrit ≈
mf

µ3 . (5.3)

The question we would like to answer in this section is whether bubbles with radii bigger
than Rcrit are formed in the stopping process. Those bubbles would keep expanding and
it is uncertain whether such a system would finally settle in one common minimum. Un-
fortunately, it is impossible to answer this question with lattice simulations alone for the
following reason: when we choose φ̇0 = O(10)mf , such that the field is able to overcome
the barriers initially, we need a lattice spacing ∆x ≈ O(10−2−10−1)m−1 in order to resolve
the UV dynamics properly. Since current computing power only allow for simulations with
O(103) lattice sites along each spatial direction, it is impossible to also include Rcrit, which
in general is much larger than m−1 even when choosing µ ≈ µmax in eq. (3.8). We therefore
highlight below two observations that we can make on the lattice and extrapolate to argue
why there are no expanding bubbles.

Our first observation is that when counting the number of bubbles exceeding a certain
volume V0 once the field has stopped rolling, we find that the number density of such
bubbles is exponentially suppressed as one raises V0. This is shown in figure 7. It becomes
clear, however, that the details of this suppression are very complicated since they show
a dependence on time as well as the parameters φ̇0 and f . Additionally, especially for
simulations with large initial velocities φ̇0, the simulated box cannot be too large without
compromising the resolution of the UV physics of fragmentation, resulting in poor statistics
for very large bubbles. This being said, we note that the critical volume R3

crit is much larger
than the volumes testable on the lattice and in the case of the relaxion where φ̇0 � mf ,
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Figure 7. Dependence of the number density of bubbles with a volume bigger than V0 for different
f and φ̇0 at three different times. The dashed lines show the fit of an exponential decay n(V0) ∝
exp(−ΓV0) to the last few data points for each time.

we also have R3
crit � m−3 such that we can expect the probability of an expanding bubble

forming in the visible universe to be suppressed by a huge exponential factor.

The second argument, which holds for bubbles of slightly larger size, is based on
the fact that in parts of space that are separated by more than the time of the first
exponential amplification tamp or even the full time it takes the axion to stop tfrag, the
stopping processes are (partially) independent. They can be viewed as different instances
of the same experiment, in which the observable is the rate of energy transfer to the field
fluctuations or, equivalently, the minimum in which the field ends up.

If the field ends up in different minima in parts of space where the process takes place
independently, we are left with bubbles at the end, as in the super-Hubble case. Such
a situation can be avoided if the field average after fragmentation is the same at each
instance of the quantum experiment. To check if this is the case, we ran 10 simulations
with the same physical parameters m, f, φ̇0 in boxes with increasing volume V = L3. As
figure 8 shows, the spread of minima the field stops in σφ,frag reduces as the size of the
box is increased. To check whether large, possibly expanding bubbles might exist after
the field has stopped we need to extrapolate this result to infrared scales. To do so, we
estimate the variance of the total field excursion ∆φfrag. We assume that this is entirely
due to the variance of tamp and the corresponding field excursion φ̇0tamp. In appendix C,
we analytically estimate the standard deviation in a box of size tamp (which is the smallest
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of the infrared scales tamp, Rcrit and tfrag) to be

σφ,frag
2πf ≈ O(10)×

[
log

(
8πf2

φ̇0

)]−3/2

, (5.4)

where the multiplicative factor O(10) is added to match the normalization of the analytical
formula with the lattice calculation. For the self-stopping relaxion, this quantity ranges
roughly between 0.1 and 0.01. This means that for a volume (c tamp)3, different minima
occur only at the 10− 100σ level. This number cannot be simply translated into a proba-
bility, because we do not know the probability distribution to such an accuracy. If it were
Gaussian, the probability would be between 10−22 and 10−2200. One of course would have
to impose that this very rare occurrence does not happen in any of the small volumes that
constitute our Universe. Not knowing the actual probability distribution, performing such
a calculation is not illuminating, thus we content ourselves with imposing σφ,frag/(2πf)� 1
in eq. (5.4).

5.3 Small scale fluctuations

While the majority of the energy is dumped into fluctuations on scales ≤ m−1, these
fluctuations are on scales too small to be thought of as bubbles, since they are smaller
than the typical width of a bubble wall of O(m−1). They do however interfere with the
previously discussed fluctuations on larger scales, in that they cause a spread of the field.
If this spread is comparable or larger than one period of the axion potential 2πf , the
dynamics on large scales and of the mean field become less sensitive to the potential. We
will argue below, however, that the spread in the axion field is always smaller than 2πf
(although not by much) such that the expected corrections have only a minor influence on
the discussion above.

We can estimate the spread of the field by using the analytic final energy spectrum in
eq. (4.4), which for relativistic modes k > m results in the following power spectrum

Pφ(k) = 1
k2

dρ

d log k = 4f2 for m < k <
φ̇0
2f . (5.5)
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Integrating this spectrum, we find that the root-mean-square (RMS) of the axion field is
given by

δφrms =
√
〈δφ2〉 = 2f

(
log φ̇0

2mf

)1/2

, (5.6)

so the spread of the field is indeed comparable to the period of the potential, but very high
initial velocities would be required for it to be bigger due to the square root and logarithmic
dependence. In the specific case of the relaxion, we find the square root to be in the range
0.2− 2, implying that the fluctuations on this scale are indeed smaller than 2πf .

In figure 9, we show the evolution of δφrms as the field stops as computed by integra-
tion over the modes with k > m in the axion power spectrum obtained from the lattice.
We see that δφrms starts growing significantly around the time when the production of
axion fluctuations starts to slow down the axion zero mode (around 0 with the chosen
normalization of the x-axis) and reaches its maximum around the time when the axion
stops and no more energy is transferred into axion fluctuations (red vertical line). We note
that the maximal δφrms is smaller than the analytic estimate in eq. (5.6) (given by the
dotted horizontal lines), and that it further decreases after the axion has stopped rolling.
Both of these effects can be attributed to the higher order effects discussed in section 4,
since the scattering of axions redistributes the energy into higher momentum modes in the
non-linear regime. In the relativistic case, the energy density and the power spectrum are
related by a factor k2, so this leads to a reduction in the integral over the power spectrum
(which gives the mean square of the field), while the integral over the energy spectrum is
conserved as it must be. In an expanding universe, one additionally has a depletion of the
energy, so this effect would be pronounced even more.

Note that the amount by which the analytic result overestimates the peak of the
numerical result grows with the initial velocity φ̇0, signaling that the actual dependence of
δφrms on the initial velocity is even weaker than predicted by the analytic estimate. We
therefore conclude that the spread of the axion field is smaller than 2πf for a wide range
of initial velocities, such that our previous considerations are not significantly affected by
the small scale fluctuations.

6 Relaxion considerations

In this section, we discuss implications from our lattice results to the relaxion mechanism.

6.1 Relaxion bubbles

One of the most interesting features of fragmentation as a stopping mechanism is that
the relaxion mechanism does not need strong Hubble friction and therefore the relaxation
phase does not need to take place during inflation [57]. The main advantage of a post-
inflationary relaxation phase is that some of the issues which are typically associated with
the embedding of the relaxion into inflation disappear. In particular, the number of e-folds
does not need to be exceedingly large, but can as well be O(10−100), and the Hubble rate
during inflation can be much larger, being only constrained by eq. (5.1).
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Figure 9. Evolution of the axion RMS field value caused by modes with k > m as computed
by integration of the axion power spectrum obtained from a lattice computation with N = 2563

lattice sites, L = 40/m, and f = 1010m (solid lines). The dotted horizontal lines show the analytic
estimate from eq. (5.6). The horizontal, dotted, red line marks the time around which the axion
stops as estimated in section 3.

However, when relaxation takes place after inflation, there is the possibility of forming
relaxion bubbles, i.e., spatially separated patches in which the relaxion field ends up in
different minima as discussed in section 5. The existence of such bubbles would have the
following consequences: first, since the Higgs VEV depends on the relaxion field, the EW
scale would have slightly different values in each of these regions. This does not seem
problematic since a variation in φ of size ∆φ ∼ 2πf corresponds to a tiny difference in vEW

by construction of the relaxion mechanism. There is however an apparent problem tied to
the fact that the difference in potential energy from one minimum of the relaxion potential
to the next, namely 2πfgΛ3, is much larger than the measured value of the cosmological
constant O(10−47) GeV4. Therefore, even if one assumes that the average value of the CC
matches the observed one, the CC would be unacceptably inhomogeneous. We therefore
assume that such bubbles do not form, under the criteria derived in section 5. In addition,
the scenario discussed in section 5 would result in the presence of at least one domain
wall of area H−2 at any time. The energy density of such an object (given the relaxion
parameters) would overclose the universe, which is another reason to impose eq. (5.1).

6.2 Higgs fluctuations

The full potential in the case where φ is identified as the relaxion field necessarily includes
couplings to the Higgs in order to scan the Higgs mass as well as trigger barriers when the
Higgs acquires a non-zero VEV. The required potential can be written as

V (φ, h) = Λ4 − gΛ3φ+ 1
2(Λ2 − g′Λφ)h2 + λ

4h
4 + Λ4

b

h2

v2
EW

cos φ
f
. (6.1)
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As the relaxion rolls over many fundamental periods, the effective Higgs mass

∂2V

∂h2 = Λ2 − g′Λφ+ 3λ〈h2〉+ 2
(

Λ2
b

vEW

)2

cos φ
f
, (6.2)

is a rapidly oscillating function, leading to an instability that amplifies fluctuations of the
Higgs field. Following the analysis of section 2, there is an instability band for

φ̇2

4f2 −
Λ4
b

v2
EW

< k2 +m2
eff <

φ̇2

4f2 + Λ4
b

v2
EW

, (6.3)

with m2
eff = Λ2− g′Λφ+ 3λ〈h2〉 ≡ m2

h(φ) + 3λ〈h2〉. Initially, the Higgs mass m2
h(φ) ∼ Λ2 is

large and positive so there is no instability and we have 〈h2〉 = 0. However, as the relaxion
field scans the potential, the effective Higgs mass decreases and modes will begin to enter
the resonance band and grow exponentially. In turn, the quartic induced, effective mass
∝ 〈h2〉 grows until the mode again exits the instability band. This interplay between the
decrease in effective mass due to the evolution of the relaxion field and the increase due to
the quartic induced mass leads to a so-called edge solution where the mode stays fixed at
the upper edge of the instability band [31]. Once the edge solution is established, the zero
mode obeys the condition

m2
h(φ) + 3λ〈h2〉 = φ̇2

4f2 + Λ4
b

v2
EW

, (6.4)

meaning that the typical energy in the Higgs field is

ρh ∼ λ〈h2〉2 = 1
9λ

(
φ̇2

4f2 + Λ4
b

v2
EW
−m2

h(φ)
)2

. (6.5)

In order to see the effect of the Higgs fluctuations, let us estimate the energy of the
Higgs field during the last stage of relaxation where we have 0 . m2

h(φ) . v2
EW. First,

we note that Λb .
√

4πvEW is typically expected in simple UV completions, see e.g.,
appendix A of ref. [57]. Therefore, if φ̇/f � vEW is satisfied when the edge solution is
established, then ρh is at most of the order v4

EW, meaning that the Higgs field cannot absorb
a large fraction of the total relaxion kinetic energy and the oscillation of the Higgs zero
mode is negligible compared to the Higgs VEV. This condition is indeed satisfied in the
most of the viable self-stopping relaxion parameter space previously identified in ref. [57],
meaning that the effect of Higgs fluctuations is small compared to the friction from relaxion
fragmentation. Moreover, the regulated growth of the Higgs field due to the quartic leads
to an edge solution which is strictly less efficient than the unregulated exponential growth
of relaxion fluctuations during the scanning phase. We thus conclude that while growth of
Higgs field can occur, it does not significantly alter the success of the self-stopping relaxion
mechanism, nor its parameter space.

On the other hand, if φ̇/f & vEW, the amplitude of Higgs zero mode can be larger
than vEW before relaxation completes. In this case, the analysis of the relaxation process
should involve both the relaxion and the Higgs field, and the stopping condition should be
modified. This scenario is interesting, but beyond the scope of this paper. Here, we will
simply assume that the condition φ̇/f � vEW is satisfied and show its impact on the viable
self-stopping relaxion parameter space in section 6.3.
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6.3 Parameter space

In this section, we want to briefly discuss how the parameter space of the relaxion is
modified once the new conditions discussed in this paper are taken into account. For a
thorough discussion of all the conditions that the model has to satisfy, we refer the reader
to ref. [57]. There are two modifications with respect to this discussion. First, the lattice
simulation of section 3 and the second order calculation of section 4 show that fragmentation
is more efficient than the purely linear expectation. Second, in order to avoid the growth
of Higgs fluctuations, we have to add the condition φ̇/f � vEW as discussed in section 6.2.

Concerning the first point, we proceed as in ref. [57]. There, the parameter space was
derived by using eqs. (2.10) and (2.11), and replacing log(. . .) → 50. Analogously, the
product log in eq. (2.12) was replaced by W0(. . .) → 50. Here we proceed analogously by
keeping eqs. (2.10), (2.11), (2.12) but now we replace log(. . .)→ 2 to account for the shorter
stopping time found in the lattice analysis. However, we keep W0(. . .) → 50 as in [57],
because eq. (2.12) concerns the onset of fragmentation, which occurs when the fluctuations
are still in the linear regime and hence the linear analysis is still valid.

In figure 10, we show a comparison of the parameter space of ref. [57] (in gray, dashed
lines) with that of this work (in red), for three reference scenarios. In the top row, we
consider the case of relaxation during inflation. In the center and bottom rows, relaxation
takes place after inflation. For this latter case, we superimpose the contours of the maximal
allowed value of HI , according to eq. (5.1). We fix g/g′ as in ref. [57], while all other
parameters are left free to vary. We see that the new results of this paper lead to a slight
reduction in the viable parameter space of the self-stopping relaxion model.

7 Conclusion

In this work, we have analyzed axion fragmentation using a classical lattice simulation. We
have confirmed that the kinetic energy of the axion zero mode dissipates into fluctuations
in a manner similar to the expectations of ref. [56], with some important modifications
coming from non-linearities that can only be captured by the lattice simulation. As shown
in figure 2, one such modification is that the dissipation of the zero mode kinetic energy is
even more efficient compared to the linear approximation used in ref. [56] because modes
outside of the instability band are populated due to 2 → 1 processes. These secondary
fluctuations dominate over the initial fluctuations and thus enhance the dissipation effect
in the non-perturbative regime. This is an NLO effect and therefore not included in the
analysis of ref. [56], but is captured to all orders in our lattice simulation. Moreover,
since the amplitude of the secondary fluctuations is determined by 2 → 1 processes, the
fragmentation process in non-perturbative regime is insensitive to the particular choice of
the initial spectrum of fluctuations as shown in figure 3.

In section 5, we have discussed the fluctuations after the completion of fragmentation
as well as bubble/domain wall formation. Since the typical size of the fluctuation 〈δφ2〉 is of
the order of f2, one might worry about problematic domain wall formation. We therefore
determined the conditions such that the dynamics of axion fragmentation do not result
in domain walls of cosmological size, and we showed that they mainly concern the initial

– 21 –



J
H
E
P
1
2
(
2
0
2
1
)
0
3
7

During inflation (section 3.1 of [57])
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After inflation, g/g′ = 1/(4π)2 (section 3.2 of [57])
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Figure 10. Parameter space of the relaxion model including the results of this paper (in red),
compared to the results of ref. [57] (in gray, dashed lines). Top: relaxation during inflation. Center:
relaxation after inflation, with g/g′ = 1. Bottom: relaxation after inflation, with g/g′ = 1/(4π)2.
In the center and bottom rows, we superimpose the contours of log10 H

max
I , defined according

to eq. (5.1).
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condition of the axion evolution, which are set during inflation, and hence the inflationary
Hubble scale HI .

Finally, in section 6, we examined the consequences of bubble formation as well as the
possible excitation of Higgs fluctuations in the relaxion specific case. Bubble formation
in the case of the relaxion leads to unacceptable cosmology and thus must be avoided
by imposing an upper bound on the scale of inflation. Regarding Higgs fluctuations, we
argue that in a large fraction of the viable parameter space for the self-stopping relaxion,
the Higgs field cannot absorb a large fraction of the relaxion’s kinetic energy and thus
the growth of Higgs fluctuations has only a minor impact on the viable parameter space.
The new constraints on the parameter space, including the enhanced dissipation of the
relaxion’s kinetic energy due to NLO effects, are discussed in section 6.3.

In summary, we have shown directly via lattice simulation that fragmentation is a
very efficient mechanism of depleting kinetic energy from an axion field rolling over many
oscillations of a periodic potential. In the special case where the axion is identified as the
self-stopping relaxion, we have quantified the parameter space where fragmentation as a
stopping mechanism leads to successful relaxation of the electroweak scale.
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A NLO calculation

Here we give the details for how to obtain the NLO spectrum eq. (4.3) from the Ansatz
eq. (4.2):

¨δ(2)φk + (k2 + V ′′(φ)) δ(2)φk = −1
2V
′′′(φ)

∫
d3p

(2π)3 δφpδφk−p =: Sk . (A.1)

We start by noting that the V ′′ term on the left averages to zero and is therefore only
relevant for the modes in the resonance band as long as the axion is rolling. These modes
are dominated by the first order perturbations anyhow and we therefore drop the V ′′ from
now on. The equation can then be formally solved to give

δ(2)φk(t) =
∫ t

ti

dt′
sin(k(t− t′))

k
Sk(t′) , (A.2)

with ti → −∞. The energy density in these modes is then given as

〈ρ(x, t)〉 =
〈1

2( ˙δ(2)φ)2 + (~∇δ(2)φ)2
〉

(A.3)

= 1
2

∫
d3k

(2π)3
d3k′

(2π)3 e
−i(~k+~k′)~x〈δ(2)φ̇~kδ

(2)φ̇~k′ + ~k · ~k′ δ(2)φ~kδ
(2)φ~k′〉 (A.4)
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where 〈. . . 〉 = 〈0| . . . |0〉. By plugging eq. (A.2) into (A.3) one obtains

dρ

d log k = k3

4π2

∫ t

ti

dt′dt′′ cos(k(t′ − t′′))S2(k, t′, t′′) , (A.5)

where we defined the unequal time correlator (UTC) S2(k, t′, t′′) as

〈0|S~k(t
′)S∗−~k′(t′′)|0〉 = (2π)3δ(3)(~k + ~k′)S2(k, t′, t′′) . (A.6)

When the axion rolls with a constant velocity φ̇0 = 2fkcr the source reads

Sk(t) = −Λ4
b

f3 sin(2kcrt)
∫

d3p

(2π)3 δφpδφk−p. (A.7)

In the following we are going to consider the case in which the fluctuations in the res-
onance band are initially in Bunch-Davies vacuum δφk(t) = akuk(t) + a−ku

†
−k with the

mode functions uk(t) given by eq. (2.6) for concreteness. When calculating the vacuum
expectation value it turns out that only the following combination contributes for finite
momenta k = k′ 6= 0

〈0| apak−pa†p′a
†
k′−p′ |0〉 = (2π)6[δ(3)(k − p− p′) + δ(3)(p− p′)]δ(3)(k − k′) (A.8)

and we find for the UTC

S2(k, t′, t′′) = Λ8
b

f6 sin(2kcrt′) sin(2kcrt′′)
∫

d3p

(2π)3 2 up(t′)uk−p(t′)u∗p(t′′)u∗k−p(t′′). (A.9)

Since the mode functions only depend on the absolute momentum, we evaluate the mo-
mentum integral choosing |~p| and |~k−~p| as our integration variables, together with a trivial
angular integration, since the problem is invariant under rotations around ~k∫

d3p

(2π)3 = 1
(2π)2

∫ ∞
0

dp

∫ k+p

|k−p|
dq

pq

k
. (A.10)

The mode functions are sharply peaked around k = kcr and can be approximated as
Gaussian in the peak region

uk(t) ≈
1√
2kcr

exp
(
δkcrt−

(k − kcr)2

2δkcr
t

)
sin
(
kcrt+ π

4

)
. (A.11)

For k >
√
δkcr/(t′ + t′′) the Gaussian peak lies fully within the momentum integration

then and we find

S2(k, t′, t′′) = 1
4π

Λ8
b

f6
δkcr

k(t′ + t′′)

×
[

exp
(

2δkcrt′
)(1

4 + 1
2 sin(2kcrt′)−

1
4 cos(4kcrt′)

)]
·
[
t′ → t′′

]
.

(A.12)

When we plug this expression back into the equation for the energy density (A.5), all
we are left with are the two time integrals. Due to the time-dependent exponential, the
integral is dominated by the region t′, t′′ ≈ t. We therefore replace t′+ t′′ in the numerator
above by 2t and expand cos(k(t′− t′′)), which allows us to factorize the two integrals. The
integration can be then done explicitly. After dropping all oscillating terms, which have
frequencies 2nkcr, with n = 1, . . . , 4, we arrive at eq. (4.3).
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B Relaxion cosmology and super-horizon bubbles

In this section we discuss the evolution of perturbations in the relaxion field prior to the
fragmentation. We start with the case in which the relaxation takes place after inflation
and only comprises a subdominant fraction of the total energy density. For simplicity we
assume that the universe is filled with a fluid with constant equation of state parameter
w > −1. In this case one can choose the time coordinate such that the Hubble is given as

H(t) =
(3

2(1 + w)t
)−1

. (B.1)

The relaxion’s zero-mode equation of motion in an expanding universe is

φ̈+ 3Hφ̇+ V ′(φ) = 0. (B.2)

While the relaxion scans the Higgs mass we have V ′ = −µ3. We are going to assume
that around φ = 0 the correct Higgs mass is reached, wiggles in the potential appear and
the relaxion stops shortly after. The solution to the relaxion’s equation of motion is then
given as

φ(t) = −∆φscan + µ3

2
1 + w

3 + w
t2 = −∆φscan + µ3

H2(t)
2

9(1 + w)(3 + w) (B.3)

φ̇(t) = µ3 1 + w

3 + w
t = µ3

H(t)
2

3(3 + w) (B.4)

where ∆φscan is the distance the relaxion has to traverse in order to scan the Higgs mass.
The Hubble when fragmentation takes place and the initial velocity are then given by

H0 =
√

2
9(1 + w)(3 + w)

µ3

∆φscan
(B.5)

φ̇0 =
√

2(1 + w)
(3 + w) µ

3∆φscan. (B.6)

One can easily check that for ∆φscan . mpl the relaxion’s contribution to the total energy
density is indeed subdominant.

To see the effect of isocurvature fluctuations, let us now take the separate universe
approach and consider a patch, where the distance the field has to roll is modified by a
fluctuation ∆φscan → ∆φscan + δφ. In this patch the scanning process takes longer because
the field has to traverse a bigger distance, which will lead to a smaller Hubble when φ = 0
as well as a bigger velocity.

δH0 = −H0
δφ

2∆φscan
(B.7)

δφ̇0 = φ̇0
δφ

2∆φscan
(B.8)

Once fragmentation starts, Hubble friction is negligible and the relaxion stops in a
fraction of a Hubble time. The effect of the perturbation to the Hubble while fragmentation
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is active is therefore negligible. The difference in the initial velocity, however, leads to the
field rolling further ∆φfrag → ∆φfrag + δφfrag, as can be estimated using eq. (3.4).

δφfrag ' 4∆φfrag
δφ̇0

φ̇0
= 2∆φfrag

δφ

∆φscan
, (B.9)

where we assumed that the field excursion during the initial amplification is negligible as
is the case for the parameter space discussed in [57]. Using that the fluctuations on super-
Horizon scales caused by inflation are given by δφ = HI/(2π) and that the fluctuations
after stopping should not exceed πf in order to avoid super-Horizon bubbles, we arrive at
eq. (5.1).

C Variance of ∆φfrag

According to eq. (3.3), the time required for fragmentation to complete ∆tfrag can be split
into a an interval tamp, in which the quantum fluctuations of the axion, with momenta
inside the initial instability band, get exponentially enhanced and classicalized, and another
interval tnl · zt in which the evolution is dominated by higher order scattering processes.
The first interval lasts until the instability band, whose position depends on the zero-mode
velocity, moves to the IR by an amount equal to its initial width. This can be determined
by using energy conservation, and depends on the initial energy of the modes within the
instability band. The latter quantity, which we denote by E0, is a quantum observable, the
variance of which will determine the variance of tamp. We find it reasonable to assume that
the variance of ∆tfrag, and correspondingly ∆φfrag, can be entirely ascribed to the variance
of tamp, since after this point the process proceeds classically and its duration is fixed by
the spectrum within the instability band at tamp.

The time tamp is determined as follows. The energy in the instability band increases as

δE = E0 exp(2δkcrtamp)− E0 ≈ E0 exp(2δkcrtamp) (C.1)

In this time interval, the instability band moves by −2δkcr, thus the variation of the kinetic
energy K is

δK = − dK
dkcr

2δkcr = 2φ̇2
0
δkcr
kcr

= 2Λ4
b . (C.2)

Energy conservation implies

tamp = 1
2δkcr

log
(

2Λ4
b

E0

)
. (C.3)

Within this interval, the field evolves by an amount tampφ̇0. Computing the variance, in
the probabilistic sense, of tamp is complicate task. Here, we will limit ourselves to compute
its variation assuming E0 changes by one standard deviation σE0 :

∆(tamp) ≈
∣∣∣∣dtamp
dE0

∣∣∣∣σE0 = 1
2δkcr

σE0

E0
. (C.4)
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Now we need to compute E0 and σE0 . E0 is the expectation value of the initial energy
density, obtained recalling that in the Bunch-Davies vacuum E[|uk|2] = 1/(2k)

E0 =
∫

d3k

(2π)3k
2 E[|uk|2] = 4πk4

cr(2δkcr)
(2π)3 E[|uk|2] = k3

crδkcr
2π2 = 1

32π2
φ̇2

0Λ4
b

f4 . (C.5)

To compute σE0 , we need to know the variance of uk. uk is gaussianly distributed,
P(uk) ∝ exp(−2k|uk|2). The modulus follows a Rayleigh distribution, P(|uk|) =
4k|uk| exp(−2k|uk|2), thus

E[|uk|2] = 1/(2k) (C.6)

Var[|uk|2] = 1/(2k)2 . (C.7)

The process we are considering takes place in a finite time tamp. In this time, points is
space separated by more than c · tamp can not interfere with each other, hence we can think
of enclosing our problem in a box of size L = c · tamp. Momenta are thus discrete and
given by

~k = 2π
L
~i , (C.8)

with~i = (i1, i2, i3), and ik ∈ Z. The number of modes inside the instability band kcr−δkcr <

k < kcr + δkcr is
N ≈ 4πk2

cr(2δkcr)
(2π/L)3 . (C.9)

Now we can compute the variance, assuming that all modes have the same momentum and
the same variance, which is valid for 2π/L� δkcr � kcr:

Var[E0] = Var
{

1
(2π)3

(2π
L

)3∑
k2|uk|2

}

=
[ 1
L3k

2
cr

]2
Var

[∑
|ukcr|2

]
=
[ 1
L3k

2
cr

]2
N Var

[
|ukcr||2

]
= 1

4π2L3k
4
crδkcr . (C.10)

The standard deviation σE0 is simply (Var[E0])1/2. Combining eq. (C.10) with (C.4), we
obtain

∆(φ̇0σtamp)
2πf = φ̇0

4fL3/2kcrδk
3/2
cr

. (C.11)

Finally, we can plug in L = tamp:

∆(φ̇0tamp)
2πf = φ̇0

4fkcrδk
3/2
cr

(2δkcr)3/2 log
(

2Λ4
b

E0

)−3/2

= 1
2 log

(
8πf2

φ̇0

)−3/2

(C.12)
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Figure 11. Dependence of the spread in the final position of the zero-mode of the field σφ,frag on
the length of the sides of the simulated box L. The different color crosses represent simulations with
different numbers of lattice sites, all with f = 1010m and φ̇0 = 10mf . The solid line corresponds to
the analytic estimate of eq. (C.11), which seems to underestimate the spread by O(10) but captures
the decrease of the spread with increasing length L correctly.

In the parameter space of the self-stopping relaxion, this quantity ranges between 0.01 and
0.001 for φ̇0 = Λ2 = (105)2 GeV2 and f up to 1010 GeV.

Checking eq. (C.12) on the lattice is not easy, because the lattice size is typically
smaller than c · tamp. We can instead compare eq. (C.11) for a smaller box, of size L,
with an estimate of the same quantity obtained by running multiple lattice simulations
and computing the standard deviation of ∆φfrag. The result of such a comparison is shown
in figure 11. We can see that, for relatively small box sizes, the estimate of eq. (C.11)
underestimate the result by a factor of roughly 10, while the dependence on L is compatible
with the one obtained from the lattice.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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