Supporting Information

"Hydrogels based on methylated-alginates as a platform to investigate the effect of material properties on cell activity. The role of material compliance"

Francesca Scognamiglio^{1*}, Michela Cok¹, Francesco Piazza¹, Eleonora Marsich², Sabrina Pacor¹, Olav A. Aarstad³, Finn L. Aachmann³, Ivan Donati¹

¹ Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy.

² Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale
1, 34129 Trieste, Italy.

³ Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway.

*Corresponding author:

Francesca Scognamiglio

e-mail: fscognamiglio@units.it

University of Trieste - Department of Life Sciences, Via Licio Giorgieri, 5 – 34127 Trieste (Italy)

Phone: 0039-0405588731

Figure 1S: Methylated alginate characterization by diffusion ordered spectroscopy (DOSY) recorded at 25°C and 800 Mhz. Dotted lines indicate the diffusion of the molecules in the same and the name of the compound is given. Panel **a**) Methylated M-blocks, **b**) methylated G-blocks, **c**) Alg_MS and **d**) Alg_MH.

Figure 2S: ¹³C HSQC spectra of methylated M-blocks (a) and G-blocks (b) recorded at 800 Mhz and 25°C. The resonance assignment of spectra is based on previously published assignments for alginate¹ as well as structural characterization based on 2D NMR spectra. α and β indicate the signals for the reducing end of alginate, G is guluronate, M is mannuronate, # indicate proton/carbon number in alginate sugar ring, underlined

indicate the residue giving rise to the signal, #O-# indicate 1,2,or 3-O residue on the proton/carbon number in alginate sugar ring, #O-Me indicate 2 or 3 O methyl group.

Figure 3S

Figure 3S: ¹³C HSQC spectra of methylated alginate products in D₂O from Alg_MS (a) and Alg_MH (b) recorded at 800 Mhz and 25°C. The resonance assignment of spectra is based on previously published

assignments for alginate¹ as well as structural characterization based on 2D NMR spectra. α and β indicate the signals for the reducing end of alginate, G is guluronate, M is mannuronate, # indicate proton/carbon number in alginate sugar ring, underlined indicate the residue giving rise to the signal, O=C-O-Me: indicate the methylated (esterified) carboxylate group in alginate, #O-Me indicate 2 or 3 O-methyl group with the proton/carbon number indicating position in the alginate sugar ring.

Figure 4S. Dependence of the ratio $\alpha_s^{2.43}/\alpha_\eta^3$ from the concentration of supporting salt for alginate from *L*. *hyperborea* (black), Alg_MS (blue) and Alg_MH (red).

Figure 5S

Figure 5S. **a**) Storage (G', filled symbols) and loss (G'', open symbols) moduli for *Lhyp*-H (black), for Alg_MS-H (blue) and for Alg_MH-H (red). **b**) Relaxation times of the three Maxwell elements (λ_1 , λ_2 , and λ_3) calculated from the fitting of the experimental data in a). Inset: magnification of the values of λ_1 . Color code as in a). **c**) Viscosity of the three Maxwell elements (η_1 , η_2 , and η_3) calculated from the fitting of the experimental data in a). Inset: magnification of the symperimental data in a). Inset: magnification of the values of $\eta = \eta_1 + \eta_2 + \eta_3$. Color code as in a). **d**) Additional spring constant, G_e, calculated from the fitting of the experimental data. Color code as in a).

Figure 6S

Figure 6S. SEM images of freeze-dried *Lhyp*-H (a), Alg_MS-H (b) and Alg_MH-H (c); (scale bar: 200 µm).

Table 1S: Chemical shift data for A) methylated M-blocks, B) methylated, C) methylated alginate (solution) and D) methylated alginate (gel) in D₂O recorded at 800 Mhz and 25°C. TSP (3-(Trimethylsilyl)propionate-2,2,3,3-d4) is used for chemical shift referance. G is guluronate, M is mannuronate, # indicate proton/carbon number in alginate sugar ring, underlined indicate the residue giving rise to the signal, O=C-O-Me: indicate the methylated (esterified) carboxylate group in alginate, #O-Me indicate 2 or 3 O-methyl group with the proton/carbon number indicating position in the alginate sugar ring.

Position	δc^a	${\pmb \delta}_{H}{}^{b}$	δc^a	$\delta_{H}{}^{b}$	δc^a	$\delta_{H}{}^{b}$	δc^a	$\delta_{H}{}^{b}$	δc^a	${\pmb \delta}_{H}{}^{b}$
	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]
				Methyla	ted M-b	locks				
	Ν	N	1-0	-Me	1 '- C)-Me	2-0	-Me	3-0	-Me
1	4.63	103.1	4.78	103.4	4.57	99.9	4.65	103.7	4.62	103.1
2	3.99	72.6	3.90	71.9	4.78		3.69	82.4	4.16	69.5
3	3.72	74.2	4.03	74.6			3.61	75.3	3.44	83.3
4	3.77	80.4					3.84	81.3	3.80	80.7
5	3.81	77.6					3.75	78.1	3.80	77.9
6	-	176.8					-	177.2	-	177.0
1-O-Me			3.38	58.1	3.48	59.8				
2-O-Me							3.51	64.6		
3- O-Me									3.38	59.7
				Methyla	ted G-b	locks				
	(G	1-O-Me		-		2-0	-Me	3-0	-Me
1	5.04	104.1	4.61	104.1			5.23	102.2	4.99	103.6
2	3.88	68.3	3.61	74.2			3.57	76.9	3.95	67.8
3	3.99	72.2	3.93	73.4			4.19	69.7	3.57	82.2
4	4.12	83.1					4.10	83.4	4.29	79.3
5	4.52	70.2					4.53	69.9	4.45	70.3
6	-	178.0					-	177.4	-	177.5
1-O-Me			3.55	60.3						
2-O-Me							3.35	59.7		
3-O-Me									3.45	62.0
				I	Alg _M S					
	\mathbf{M}	[M	\mathbf{M}	<u>[</u> G	G	G	G	Μ	O=C-	O-Me
1	4.64	102.9	4.70	104.2	5.07	103.4	5.06	102.4		
2	4.03	72.9	3.97	73.3	3.90	68.0	3.98	67.6		
3	3.75	74.3	3.93	73.7	4.03	72.0	4.16	72.2		
4	3.88	80.9	3.77	80.2	4.14	82.6	4.23	82.7		
5	3.76	78.8	3.71	79.0	4.45	70.1	4.72	70.4		
6	-	178.4	-	177.8	-	178.4		178.6	-	173.6
	l	Methylat	tion on N	1]	Methylat	tion on (J		
2-O-Me	3.58	64.7	3.58	64.7	3.38	59.6	3.38	59.6		
3-O-Me	3.38	59.6	3.38	59.6	3.48	61.6	3.48	61.6		
0=C-O-									3.84	56.0
Me										

	Alg_MH								
		Μ	Μ	I-Me		G	G	-Me	-
1	4.70	104.2	4.64	102.9	5.07	103.4	5.06	102.4	
2	3.97	73.3	4.03	72.9	3.90	68.0	3.98	67.6	
3	3.93	73.7	3.75	74.3	4.03	72.0	4.16	72.2	
4	3.77	80.2	3.88	80.9	4.14	82.6	4.23	82.7	
5	3.71	79.0	3.76	78.8	4.45	70.1	4.72	70.4	
6	-	177.8		178.4	-	178.4		178.6	
	Methylation on M					Methylation on G			
2-O-Me	3.58	64.7	3.58	64.7	3.38	59.6	3.38	59.6	
3- O-Me	3.38	59.6	3.38	59.6	3.48	61.6	3.48	61.6	

 $a^{-13}C$ at 200 MHz. $b^{-1}H$ at 800 MHz. Chemical shifts determined from 2D experiments acquired at 25°C.

Table 2S. Intrinsic viscosity of alginate from *L. hyperborea*, Alg_MS and Alg_MG. Table reports also the results obtained for alginate from *L. hyperborea* treated as for the methylation in homogeneous (Alg_MS – No DMS) or heterogeneous (Alg_MG – No DMS) condition but without DMS.

Sample	$[\eta]_{0.1} (dL/g) (\pm s.e.)$
L. hyperborea	6.13 ± 0.02
Alg _M S	3.90 ± 0.01
$Alg_MS - No DMS$	6.12 ± 0.01
Alg _M G	5.70 ± 0.02
$Alg_MG - No DMS$	5.18 ± 0.01

Table 3S. Dependence of the electrostatic persistence length (q_{el}) from the ionic strength for alginate from *L*. *hyperborea* used in the present study. q_{el} was calculated according to eq. 8.

NaCl (M)	q _{el} (nm)
0.015	1.91
0.025	1.20
0.035	0.88
0.04	0.77
0.05	0.62
0.1	0.32
0.2	0.16
0.4	0.08

Table 4S. Total expansion factor, α_s , and squared electrostatic expansion factor, $\alpha_{s,el}$, for the three alginate samples considered in the present study.

NaCl (M)	Lh	уp	Alg	ξ _M S	Alg _M H	
	$\alpha_{s,el}^{2}$	α_s	$\alpha_{s,el}^{2}$	α_s	$\alpha_{s,el}^{2}$	α_s
0.015	1.240	1.321	1.288	1.463	1.087	1.14
0.025	1.208	1.287	1.253	1.360	1.072	1.105
0.035	1.187	1.249	1.229	1.306	1.063	1.087
0.04	1.179	1.233	1.220	1.286	1.059	1.080
0.05	1.165	1.208	1.204	1.257	1.054	1.071
0.1	1.126	1.148	1.158	1.184	1.040	1.048
0.2	1.094	1.105	1.119	1.132	1.029	1.033
0.4	1.069	1.074	1.088	1.094	1021	1.023

Table 5S. Composition of hydrogels from unmodified and methylated alginate samples.

Sample	Polysaccharide	[CaSO ₄] (mM)
Lhyp-H	Alginate from L. hyperborea	16.5
Alg _M S-H	Alg _M S	40
Alg _M H-H	Alg _M H	25