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Abstract In this paper we propose a methodology for valuing future annuity con-
tracts based on the Least-Squares Monte Carlo approach. We adopt, as first step, a
simplified computational framework where just one risk factor is taken into account.
We give a brief description of the valuation procedure and provide some numerical
illustrations. Furthermore, to test the efficiency of the proposed methodology, we
compare our results with those obtained by applying a straightforward and time-
consuming approach based on nested simulations.
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1 Introduction

Over the 20th century, due to health improvements and medical advances, it has
become evident that people tend to live longer and longer. Indeed, the mortality of
individuals over time has exhibited many stylized features. In particular, looking at
the survival curve for most developed countries around the world, it is immediately
clear that mortality levels are decreasing as time passes by, leading to an increase in
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individual’s life expectancy. As a consequence, life insurance companies and pension
providers need to face the so-called longevity risk.

The actuarial literature has increasingly focused, in the last decades, on studying
and proposing several methods for managing and evaluating this source of risk. The
importance of modelling and transferring such a risk is argued in [2]. In particular, it
is highlighted how the new longevity-linked capital market instruments could help in
facilitating the development of annuity markets and hedging the long-term viability
of retirement incomes. As a further consequence, we may recall the non-negligible
impact on liabilities of insurers and pension plans, as studied in [11].

Recently, some attention has been devoted to the valuation of life annuity contracts
issued at a distant future time. This problem has many sources of uncertainty, among
which the most relevant are future interest rate and mortality levels. In this regard,
[5, 7] suggest comonotonic approximations of the life annuity conditional expected
present value. Moreover, [4, 6, 9] propose an approach based on a Taylor series
approximation of the involved conditional expectation.

In this paper, we propose a simulation basedmethod to evaluate the distribution of
future annuity values. In particular, we aim at avoiding the straightforward approach
based on nested simulations which is quite time-demanding, especially in a complex
framework. The methodology described in what follows provides an application
of the well-established Least-Squares Monte Carlo algorithm (LSMC), originally
proposed by [10] for pricing American-type options. The most important advantage
of this method is its flexibility to accommodate any type of Markov mortality model,
and the possibility to extend it to more complicate frameworks without increasing
the complexity of the involved computations.

The paper is structured as follows. In the next section we introduce the problem
under scrutiny and describe our assumptions and the methodology used to solve it,
in Sect. 3 we present a numerical example, and Sect. 4 contains some conclusions.

2 Problem and Methodology

The ever-increasing interest on adequately evaluating life insurance products or
retirement incomes at a future time relates to the need of providing a reliable valuation
of the cost of life expectancy, and to prevent somehow possible insolvency issues.
In this paper, we aim at simulating the distribution of the value of an immediate life
annuity contract issued to an individual aged x + T at a future time horizon T .

Wedefine the current value at the future time T > 0 of a unitary immediate annuity
for an individual then aged x + T as

ax+T (T ) =
+∞∑

i=1

B(T, T + i) i px+T (T ) , (1)
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where B(T, T + i) is the i-th years discount factor prevailing at time T > 0 and

i py (T ) is the i-th years survival probability for an individual aged y at time T .
The quantities B(T, T + i) and i py(T ) appearing in (1) are both random variables

at time 0 (today), and consequently also ax+T (T ) is random. More precisely, these
variables are expectations conditional on the information available at time T .

To evaluate these conditional expectations we need models for describing the
stochastic evolution of both interest and mortality rates. Under some circumstances,
some closed form formulae for computing them are available, for instance when
affine processes are used (see [1]), but in general this is not guaranteed. As pre-
viously mentioned, a straightforward approach would rely on a simulation within
simulation procedure, also known as nested simulations; however, since it is quite
computationally time-consuming, we are going to propose an application of the
LSMC method.

2.1 Framework: Stochastic Mortality Dynamics

Although we have just mentioned that there are at least two sources of uncertainty
affecting the value of an annuity, in this paper we assume a constant risk-free rate
and adopt a stochastic model only for projecting future mortality levels. To this
end, we use the Poisson version of one of the most significant and widely applied
stochastic mortality models, i.e. the Lee-Carter model (see [8]). Hence, we assume
that the number of deaths at age x and calendar year t , Dx;t , is Poisson distributed
with parameter Ex;tmx;t , where Ex;t and mx;t denote the central exposure and the
central death rate, respectively. Moreover, according to [8], we assume that the force
of mortality is constant over each year of age and calendar year and equal to the
corresponding central death rate mx;t , modelled as

logmx;t = αx + βxκt ,

where αx , βx are age specific parameters and κt is a period index dictating the
decrease over time in mx;t .

Therefore, by exploiting the fact that κt is usually modelled as a Markov process,
and typically as a random walk with drift, we have:

i px+T = E
[
exp

{− (
mx+T ;T + · · · + mx+T+i−1;T+i−1

)} | κT
]
,

and, within this framework, we can rewrite (1) as

ax+T (T ) = E

[
ω−T−x∑

i=1

exp
{− (

ir + mx+T ;T + · · · + mx+T+i−1;T+i−1
)} | κT

]
,

(2)
where ω is the ultimate age and r the constant interest rate.
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2.2 Valuation Procedure

The previously introduced framework does not produce a closed form formula for (2),
as typically the central death rates have a lognormal distribution so each exponent in
(2) involves the sum of lognormal variables. Hence, a possible strategy is to evaluate
the involved conditional expectation through simulation based methods.

A straightforward approach would rely on a nested simulations procedure. This
strategy requires first to simulate all relevant risk factors up to time T (outer sce-
narios); then, for each simulated time T value of such factors, one would need to
simulate forward starting from that particular value (inner simulations), and finally
compute conditional expectations by averaging across all inner simulations. It fol-
lows that this method can be computationally expensive, in particular when several
annuity values (at different times and/or ages) are needed.

Therefore, in order to reduce the computational complexity, we propose an alter-
native methodology based on the LSMC approach and, to check the accuracy of the
results, we compare themwith those obtained through nested simulations, so that the
latter acts as benchmark for evaluating the efficiency and the accuracy of the LSMC
procedure (see [3]).

The LSMC approach involves two main steps: firstly, we need to perform sim-
ulations of future mortality patterns; then, we use regression across the simulated
trajectories in order to obtain estimates of future annuity values. In thisway, the condi-
tional expectation is evaluated through regression taking into account the information
available at time T (i.e. the simulated values of the time index parameter κT exploited
as predictor). Moreover, this method allows to obtain an estimate of the probability
distribution of annuity values at future time horizon T for individuals aged x + T at
that date. Finally, a single set of simulations, without increasing the computational
demand, can be used for different ages and time horizons.

3 A Numerical Example

In this section, we provide an example based on an immediate life annuity issued
to an individual aged 40 at different future time horizons T ∈ {10, 20, 30, 40}. In
order to simulate future mortality patterns, we fit the Poisson Lee-Carter model
to the Italian male population data over the period 1965–2014 and range of ages
0–90, obtained through the Human Mortality Database. Further, we assume that
year 2014 corresponds to the evaluation time 0 (today). The risk-free rate is set at
the (constant) level r = 0.03. Moreover, we simulate 10000 different trajectories of
future mortality and, in the nested simulation approach, we further simulate another
10000 paths starting from each value generated at time T ; in total this amounts to
100 millions inner simulations. Regarding the basis functions, we use polynomials
with degree p = 4.
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Table 1 Distribution of annuity values at time horizon T for individuals aged 40 in year 2014 + T

Mean Std dev Skewness Kurtosis 10th perc. 90th perc.

T = 10 MC 24.42 0.11 −0.08 2.94 24.27 24.56

LSMC 24.42 0.11 −0.06 2.91 24.27 24.56

T = 20 MC 24.78 0.14 −0.14 3.04 24.60 24.96

LSMC 24.78 0.14 −0.11 3.02 24.61 24.96

T = 30 MC 25.11 0.16 −0.20 3.05 24.91 25.30

LSMC 25.11 0.15 −0.19 3.04 24.91 25.30

T = 40 MC 25.40 0.16 −0.23 3.13 25.20 25.60

LSMC 25.40 0.16 −0.24 3.05 25.20 25.60

Table1 reports some statistics of the distributions of future annuity values obtained
through the two valuation algorithms. Looking at the results, it immediately turns
out that, as the time horizon T increases, the distribution changes. Specifically, its
mean increases, which is quite reasonable and in line with the ever-increasing life
expectancy registered in the last decades. In addition, its standard deviation increases
as well, which implies a more dispersed distribution. This result also seems to be
reasonable due to the higher uncertainty caused by the longer time horizon. Fur-
thermore, it seems that the distributions tend to be increasingly left-skewed, which
implies a longer left tail, hence the distribution is concentrated on the right tail (i.e.
higher values of the annuity contract). Finally, we see that the kurtosis increases,
meaning that we recognize a heavier tailed distribution, hence a greater propensity
to result in extreme annuity values with respect to the Gaussian case.

Concerning the validation procedure, we can see from Table1 that the LSMC
approach provides quite accurate estimates. Moreover, the reliability of the proposed
approach is evidenced by the fact that the obtained distribution overlaps substantially
with the one produced through nested simulations; this is also confirmed by the
Kolmogorov–Smirnov test (KS, see Table2). In addition, we have constructed the
Q-Q plots by considering the distribution obtained through nested simulations as the
theoretical one, and these graphs, once again, confirm the goodness of the proposed
method in approaching this kind of problem.1

Finally, for a more comprehensive analysis, we checked whether the LSMC
approach tends to over- or under-estimate the quantities of interest. In this regard, in
Table2 we report the frequency with which the LSMC estimates lie inside the 95%
confidence interval obtained through the nested simulation procedure or outside (on
the left or on the right, respectively). Looking at this result, we can see that most
of the time the LSMC method provides an estimate which lies within that interval.
However, even if there is a small signal of under-estimation effect which could be
due to biases in the regression, we can assess the goodness of the proposed method.

1 We do not report the distribution graphs and the Q-Q plots for space considerations.
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Table 2 Frequency of hitting the confidence intervals (left table) and KS Test (right table)

Left (%) Inside (%) Right (%) KS stat. Value p-value

T = 10 8.09 87.68 4.23 0.0059 0.9950

T = 20 12.57 80.43 7.00 0.0094 0.7689

T = 30 5.35 87.50 7.15 0.0036 0.9996

T = 40 12.67 83.47 3.86 0.0053 0.9990

4 Conclusions

In this paper, we faced the problem of approximating future annuity values. We
proposed a methodology based on the LSMC approach which turns out to be quite
accurate. Our results highlight the need of developing reliable actuarial models able
to capture the source of risk arising from longevity. This is not a negligible aspect,
especially for solvency purposes. This paper can be extended in several directions,
by assuming more complicated valuation frameworks (e.g., stochastic interest rates),
or by dealing with other types of life annuity contracts such as variable annuities,
equity-indexed products, or by implementing de-risking strategies for pension plans,
e.g. Buy-Ins and Buy-Outs, which require an accurate valuation of annuities.
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