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1 Introduction

The analysis of the galaxy bispectrum has received significant attention in the last years,
slowly becoming a standard component in a complete cosmological study of spectroscopic
galaxy redshift surveys [1–7].

Measurements of the galaxy bispectrum multipoles in redshift space are characterized by
a signal distributed over a large number of triangular configurations (see, e.g. [8–11]). This
implies that a standard analysis requires the accurate evaluation of a rather large covariance
matrix for the data-vector including power spectrum and bispectrum multipoles. This has
been obtained in the past from a large set of mock catalogs (see, e.g. [12] for the BOSS
survey) but a straight-forward numerical estimate of covariance properties is becoming more
challenging for current and up-coming surveys such as, for instance, Euclid [13], or DESI [14],
since the large number of realizations required is limited by the high-resolution necessary for
a proper description of the galaxy samples. This led to several proposals for data compression
(see [15–23] for recent applications to the bispectrum problem) or methods to reduce the
sampling noise typically affecting numerical estimates of the covariance matrix [24–27].

Another possibility is given by an analytical prediction of the covariance properties of the
observable at hand. As an example, the case of the galaxy power spectrum multipoles, includ-
ing all non-Gaussian contributions and the BOSS survey geometry effects, has been studied
in [28] (but see also [29–31]) and applied to data analysis in [32], while the configuration-space
2- and N -point function has also been the topic of several works [33–35].

The case of the galaxy bispectrum has also been considered in a few instances in the past.
A comparison between the Gaussian theoretical prediction and numerical results can be found,
in real space and for the redshift-space monopole in [36]. In both cases the analytical model
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is shown to underestimate the numerical estimate, based on 300 full N-body simulations
of a dark matter halo distribution. The study in [37] provides a second, more detailed
comparison of the Gaussian model, including higher-order multipoles and accounting for
discreteness effects in mode counting based on a much more precise determination of the
numerical covariance matrix obtained from 10,000 catalogs produced with the approximate
method implemented in the Pinocchio code [38, 39]. These works show that the Gaussian
prediction fails (up to 20%) in particular for squeezed triangular configurations, where one
wavenumber is much smaller than the other two. The relevance of non-Gaussian contributions
for these specific triangles has been pointed-out already in [40] and explored extensively, in
real space by [41], taking advantage of a large set of more than 2,000 N-body simulations.
This work proposes a simple, approximate modeling of such non-Gaussian contributions, that
can account for most of the off-diagonal bispectrum covariance elements. The implications
for the determination of primordial non-Gaussian parameters, a primary goal of bispectrum
analyses, are studied in [42]. Furthermore, these same squeezed configurations have the
largest correlation with power spectrum measurements (see [43] for a recent assessment of
the diagonal approximation and relevance of non-Gaussian contributions).

A theoretical model, based on Perturbation Theory, of the covariance of redshift-space
power spectrum and bispectrum is considered in [17, 44] as an ingredient of their compression
method and in [45] as the basis for a hybrid covariance where few parameters are calibrated
against simulations. The model includes the non-Gaussian contributions expected for mea-
surements in boxes with periodic boundary conditions but no additional source of covariance
due to super-sample fluctuations [8, 46–48]. The difference with the full numerical estimate,
based on the PATCHY mocks of [12] that does include survey geometry effects, is provided
in terms of constraints on the model parameters showing negligible differences for a data
vector including power spectrum monopole and quadrupole and bispectrum monopole.

A similar analytical model is adopted in [30]. In its evaluation all quadratic local and
nonlocal bias terms are neglected, along with any modeling Finger-of-God effects. In addition,
they also do not account for survey geometry effects, but still compare their predictions
with the same PATCHY mocks that include observational effects. Despite the limitations of
the model, the agreement at the level of the covariance matrix is qualitatively rather good,
particularly for the statistics autocorrelations. This is because shot-noise represents the
largest contribution where higher-order corrections are neglected. Indeed, the most severe
discrepancies are observed for the cross-covariance between power spectrum and bispectrum
and between the bispectrum monopole and quadrupole.

In this work we focus our attention on the non-Gaussian contributions to the power
spectrum and bispectrum cross-covariance and bispectrum covariance up to mildly non-linear
scales that are expected even in the absence of super-sample effects, extending to redshift
space the results of [41] (see [49] for a first take on super-sample bispectrum covariance).
Unlike [45] that follows the bispectrum estimator definition of [50] and [30] that adopt the
decomposition introduced in [51], we consider the estimator choice of [52] and [53]. We
study the validity of the approximation of [41] for the non-Gaussian bispectrum covariance
against a precise numerical estimate based on a very large set of mock halo catalogs. While
this will not constitute a full description of the power spectrum and bispectrum errors in
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the setting of a realistic survey, we expect it to provide a sufficiently accurate estimate of
one of its multiple contribution.

This paper is organized as follows: in section 2 we present a theoretical description of
the full covariance of redshift-space power spectrum and bispectrum multipoles, including
the approximation tested in [41] in real space. In section 3 we provide a comparison of our
prescription with a precise numerical estimate of the covariance and check the quality of the
analytical inverse covariance matrix. Finally, we draw our conclusions in section 4.

2 Power spectrum and bispectrum covariance in redshift space

In this section, we review the theoretical modeling of the covariance of power spectrum
and bispectrum multipoles in redshift space along with their cross-covariance. We will
not consider any super-sample contribution to these quantities, expected in actual galaxy
surveys due to finite-volume effects. While our models will correspond to contributions
also present in real-survey observations, they only constitute a complete description of the
power spectrum and bispectrum covariance properties as measured in simulation boxes with
periodic boundary conditions.

For this reason, we adopt the following definition for a generic N -point correlation function
in Fourier space, PN , accounting explicitly for the discrete nature of the wavenumbers k,

⟨δ(k1) · · · δ(kN )⟩ ≡ δK(k1...N )
k3

f

PN (k1, . . . , kN ) . (2.1)

Here we adopt the notation k1...N = k1 + · · ·+kN and assume a finite cubic volume leading to
the wavenumbers values k = n kf , multiples of the fundamental frequency kf ≡ 2π/L, with
L being the side of the box. We also introduce the adimensional Kronecker symbol δK(k) = 1
for k = 0, vanishing otherwise. We work in the plane-parallel approximation throughout.

2.1 Power spectrum estimator and covariance

The covariance of the power spectrum has already been studied, in its Gaussian and non-
Gaussian components, in several works both for measurements in simulation boxes with
periodic boundary conditions [29–31, 33, 54–57] and in the more general case of a realistic
galaxy survey including finite volume effects (see [28] and references therein).

We assume the standard estimator for the power spectrum multipoles given by (see
e.g. [53])

P̂ℓ(k) = (2ℓ + 1)
k3

f

Nk

∑
q∈k

δs(q) δs(−q) Lℓ(µq) , (2.2)

where δs is the redshift-space galaxy (or halo) number density in Fourier space, Lℓ a Legendre
polynomial with µq = q̂ ·n̂ being the cosine of the angle between q and the line of sight n̂, while

Nk =
∑
q∈k

≃ 1
k3

f

∫
k

d3q = 4πk2∆k

k3
f

(2.3)
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is the number of modes inside the k-bin of radial size ∆k, defined as k−∆k/2 < |q| ≤ k+∆k/2.
The result in the above equation holds in the continuum limit approximation, valid as long
as many grid modes are present in each shell.

The covariance associated with the power spectrum multiple estimator is defined as

CP
ℓ1ℓ2(ki, kj) ≡ ⟨[P̂ℓ1(ki) − ⟨P̂ℓ1(ki)⟩][P̂ℓ2(kj) − ⟨P̂ℓ2(kj)⟩]⟩ , (2.4)

and, as is well known, it comprises a Gaussian contribution CP (P P ), dominant at large scales
(see e.g. [33]) and only depending on the power spectrum, plus an additional non-Gaussian
component CP (T ) sourced by a non-vanishing trispectrum [54].

An explicit expression for the Gaussian component is given by [33]

CP (P P )
ℓ1ℓ2

(ki, kj) = (2ℓ1 + 1)(2ℓ2 + 1)
Nki

Nkj

δK
ij

∑
q∈ki

P 2
tot(q) Lℓ1(µq) [Lℓ2(µq) + Lℓ2(−µq)] , (2.5)

where Ptot(k) is the anisotropic halo power spectrum including the shot noise contribution
equal, in the Poisson limit, to 1/[(2π)3n̄], with n̄ the galaxy number density. Expanding
the power spectrum in multipoles as Ptot(q) =

∑
ℓ Ptot,ℓ(q)Lℓ(µ), this last equation can be

written in the continuum limit as

CP (P P )
ℓ1ℓ2

(ki, kj) = (2ℓ1 + 1)(2ℓ2 + 1)
2Nki

δK
ij

∞∑
ℓ3=0

∞∑
ℓ4=0

Ptot,ℓ3(ki)Ptot,ℓ4(ki)

×
∫ 1

−1
dµ Lℓ1(µ) [Lℓ2(µ) + Lℓ2(−µ)] Lℓ3(µ)Lℓ4(µ) . (2.6)

where we used the thin-shell approximation assuming P (q) ∼ P (k). Since higher-order
multipoles are suppressed, it is typically a good approximation to include only the first
few terms in this sum.

In this work, we will ignore the non-Gaussian contribution to the power spectrum
covariance as it is beyond its scope. Furthermore, while in some cases relevant, it is
subdominant w.r.t. to the Gaussian component at large scales, (see, e.g. [28]), unlike what
happens in the case of the bispectrum.

2.2 Bispectrum estimator and covariance

A theoretical expression for the full bispectrum covariance excluding finite-volume effects is
given in [8] with specific expressions for the redshift-space multipoles presented in [7, 30, 37, 45].
In particular, [37] provides a detailed comparison of its Gaussian approximation with numerical
estimates, while a more complete test, including non-Gaussian contributions, has been
considered in [30].

The expansion in spherical harmonics of the anisotropic bispectrum adopts the convention
of [52, 53]:

Bs(k1, k2, k3, n̂) ≡
∞∑

ℓ=0

ℓ∑
m=−ℓ

Bm
ℓ (k1, k2, k3) Y m

ℓ (µk1 , ξk12) , (2.7)
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Figure 1. Naming convention and axis orientation for the vectors and angles in the harmonic
decomposition of equation (2.7).

where µk1 = k̂1 · n̂ and ξk12 is the azimuthal angle of k2 around k1 with respect to the plane
formed by k1 and n̂ as shown in figure 1. Furthermore we define

Bℓ(k1, k2, k3) ≡

√
2ℓ + 1

4π
B0

ℓ (k1, k2, k3) , (2.8)

and we will refer to these quantities as bispectrum multipoles in the rest of the paper. We
will ignore the case m ̸= 0 thereby restricting ourselves to averages over the azimuthal angle
ξ (see [58] for an estimate of the additional information in higher-m multipoles). We will also
assume, with no (further) loss of generality, the vector k1 to be the largest of the triplet.1

In the plane-parallel approximation, the bispectrum multipoles estimator is then given by

B̂ℓ(t) = (2ℓ + 1)
k3

f

Nt

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123)δs(q1)δs(q2)δs(q3)Lℓ(µq1) , (2.9)

where t represents the wavenumbers triplet (k1, k2, k3). We will refer to it as the “triangle
bin”, with the “fundamental” (i.e. located on a kf -spaced grid) wavenumbers qi satisfying the
relations ki − ∆k/2 ≤ |qi| < ki + ∆k/2 for all i = 1, 2 and 3 and ensuring the closed triangle
condition as q123 = 0. The normalization factor corresponds to the number of fundamental
triplets (q1, q2, q3) falling in the triangle bin (k1, k2, k3), given by

Nt =
∑

q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123) . (2.10)

The bispectrum multipoles covariance is defined as

CB
ℓ1ℓ2(ti, tj) ≡ ⟨[B̂ℓ1(ti) − ⟨B̂ℓ1(ti)⟩][B̂ℓ2(tj) − ⟨B̂ℓ2(tj)⟩]⟩ . (2.11)

1We do notice that the opposite choice, i.e. k1 being the smallest, could lead to simpler expressions for our
final results. However, this would lead, given the approximations that we will consider in its evaluation, to
more severe systematic effects related to the discrete nature of the wavenumbers.
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It can be split into a Gaussian and three, distinct non-Gaussian contributions [8, 30]

CB
ℓ1ℓ2(ti, tj) = CB (P P P )

ℓ1ℓ2
(ti, tj) + CB (BB)

ℓ1ℓ2
(ti, tj) + CB (P T )

ℓ1ℓ2
(ti, tj) + CB (P6)

ℓ1ℓ2
(ti, tj) , (2.12)

where CB (P P P ) refers to the Gaussian covariance, CB (BB) and CB (P T ) refer to the discon-
nected non-Gaussian contributions containing two bispectra and a trispectrum respectively,
and CB (P6) refers to the connected six-point function contribution.

Gaussian contribution. The Gaussian term in the bispectrum covariance can be written
as [7, 37]

CB (P P P )
ℓ1ℓ2

(ti, tj) = (2ℓ1 + 1)(2ℓ2 + 1)
NtiNtj k3

f

δK
ij

∑
q1∈k1,i

∑
q2∈k2,i

∑
q3∈k3,i

δK(q123)Ptot(q1)Ptot(q2)Ptot(q3)

×
[

(1 + δK
k2,i,k3,i

)Lℓ1(µq1)Lℓ2(−µq1)

+(δK
k1,i,k2,i

+ δK
k1,i,k2,i

δK
k2,i,k3,i

)Lℓ1(µq1)Lℓ2(−µq2)

+(δK
k1,i,k3,i

+ δK
k1,i,k2,i

δK
k2,i,k3,i

)Lℓ1(µq1)Lℓ2(−µq3)
]

, (2.13)

for ℓ1 = ℓ2 = 0 the terms in the squared parenthesis reduce to a factor equal to 6, 2 and 1 for
equilateral, isosceles and scalene triangles, respectively. Expanding the anisotropic power
spectrum in multipoles and using the thin-shell approximation, that is evaluating functions
of the momenta at the bin centres, the Gaussian covariance becomes

CB (P P P )
ℓ1ℓ2

(ti, tj) = (2ℓ1 + 1)(2ℓ2 + 1)
Ntik

3
f

δK
ij

∑
ℓ3,ℓ4,ℓ5

Ptot,ℓ3(k1,i)Ptot,ℓ4(k2,i)Ptot,ℓ5(k3,i)

× Rℓ1,ℓ2,ℓ3,ℓ4,ℓ5(k1,i, k2,i, k3,i) , (2.14)

where

Rℓ1,ℓ2,ℓ3,ℓ4,ℓ5(t) = 1
Nt

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123)Lℓ3(µq1)Lℓ4(µq2)Lℓ5(µq3)

×
[

(1 + δK
k2,i,k3,i

)Lℓ1(µq1)Lℓ2(−µq1)

+(δK
k1,i,k2,i

+ δK
k1,i,k2,i

δK
k2,i,k3,i

)Lℓ1(µq1)Lℓ2(−µq2)

+(δK
k1,i,k3,i

+ δK
k1,i,k2,i

δK
k2,i,k3,i

)Lℓ1(µq1)Lℓ2(−µq3)
]

. (2.15)

As long as there are many grid modes in each shell, this expression can be simplified in the
continuum limit by replacing the sum with integrals, yielding an approximated analytical
formula for the Gaussian covariance. The procedure and formula are detailed in equation (A.7)
and appendix A. For this procedure to work the triangles need to be closed, i.e. to satisfy
k1 > k2 + k3. As per the case of the power spectrum, we disregard the contribution of
high-ℓ multipoles. In fact, we only consider ℓ3,4,5 = 0, 2 and the results in section 3.2
will show that no higher mixing is needed to accurately model the covariance of both the
monopole and quadrupole.
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Non-Gaussian contributions. We begin by considering the non-Gaussian contribution
depending on the product of two bispectra, that is

CB (BB)
ℓ1ℓ2

(ti, tj) = (2ℓ1 + 1)(2ℓ2 + 1)
Nti Ntj

∑
q′s∈ti

∑
p′s∈tj

δK(q123)δK(p123)δK(q3 + p12)δK(p3 + q12)

× Btot(q1, q2, p3)Btot(p1, p2, q3)Lℓ1(µq1)Lℓ2(µp1) + 8 perm. , (2.16)

where we used the short-hand notation∑
q′s∈t

≡
∑

q1∈k1

∑
q2∈k2

∑
q3∈k3

, (2.17)

for the sum over all values for the vectors qi in the triangle bin t = (k1, k2, k3). Btot(k1, k2, k3)
is the anisotropic bispectrum including the shot noise contribution. It should be noted that the
first term on the r.h.s. is non-vanishing only if k3,i = k3,j while the other eight permutations
correspond to all other possible equalities between one element of the triplet ti and one
of the triplet tj .

Using the harmonic decomposition of the anisotropic bispectra, as well as the thin-shell
approximation we can write

CB (BB)
ℓ1ℓ2

(ti, tj) = (2ℓ1 + 1)(2ℓ2 + 1)
∑

ℓ3,m3

∑
ℓ4,m4

Bm3
tot,ℓ3

(k1,i, k2,i, k3,j) Bm4
tot,ℓ4

(k1,j , k2,j , k3,i)

× S
(3,3)
ℓ1,ℓ2,ℓ3,ℓ4;m3,m4

(ti, tj) + 8 perm. , (2.18)

where the mode-counting factor S
(a,b)
ℓ1,ℓ2,ℓ3,ℓ4;m3,m4

is defined as

S
(a,b)
ℓ1,ℓ2,ℓ3,ℓ4;m3,m4

(ti, tj) = 1
NtiNtj

∑
q′s∈ti

∑
p′s∈tj

δK(q123) δK(p123) δK(qa − pb)

× Lℓ1(µq1)Lℓ2(µp1)Y m3
ℓ3

(µq1 , ξq12)Y m4
ℓ4

(µp1 , ξp12) . (2.19)

As pointed out in [40, 41], the leading contribution to the non-Gaussian covariance comes
from squeezed triangles that share the smallest momentum (long mode). Moreover, when
considering these configurations the result of equation (2.18) is dominated by the permutation
where the long modes, k3,i and k3,j , are exchanged. Thus in our prediction, we focus on
this contribution and ignore all other permutations. It is worth noting that we employ this
approximation for all triangle pairs that share at least one side, regardless of them being
squeezed or not, as to avoid imposing an arbitrary threshold to separate the two groups. In
the latter case, disregarding other permutations may lead to a significant underestimation of
the non-Gaussian contribution to the covariance. However, this does not affect the quality of
the results, as non-Gaussian covariance terms are already negligible for non-squeezed triangles.

We ignore the contribution coming from m ̸= 0 multipoles as it is suppressed both
by the amplitude of the multipoles of the bispectrum and by the angular integrals. The
final expression for the covariance is

CB (BB)
ℓ1ℓ2

(ti, tj) = (2ℓ1 + 1)(2ℓ2 + 2)δK
k3,i,k3,j

Σ33
ij

∑
ℓ3,ℓ4

Btot,ℓ3(ti)Btot,ℓ4(tj) Iℓ1ℓ2ℓ3ℓ4(ti, tj) , (2.20)
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where

Iℓ1ℓ2ℓ3ℓ4(ti, tj) = 4π
S

(3,3)
ℓ1,ℓ2,ℓ3,ℓ4;0,0(ti, tj)

Σ33
ij

√
(2ℓ3 + 1)(2ℓ4 + 1)

(2.21)

and the quantity Σ33
ij ≡ S

(3,3)
0,0,0,0;0,0(ti, tj) was first defined in [41].2 For closed triangles, it

is equal in the continuum limit to

Σ33
ij = 16π3

k9
f NtiNtj

k1,ik2,ik1,jk2,j∆k5 , (2.22)

and expressions for non-closed triangles can be found in appendix A of [41]. The expression for
Iℓ1ℓ2ℓ3ℓ4 in the continuum limit is presented in equation (A.10) of appendix A. In the evaluation
of equation (2.20) for ℓ1,2 = 0, 2 we only consider contributions up to the quadrupole, that
is we keep only ℓ3,4 = 0, 2.

Regarding the CP T contribution to the covariance from equation (2.12), it is

CB (P T )
ℓ1ℓ2

(ti, tj) = (2ℓ1 + 1)(2ℓ2 + 1)
NtiNtj

∑
q′s∈kis

∑
p′s∈kjs

δK(q123)δK(p123)δK(q3 + p12)δK(p3 + q12)

Ptot(q3)Ttot(q1, q2, p1, p2)Lℓ1(q̂1 · n̂)Lℓ2(p̂1 · n̂) + 8 perm. . (2.23)

Again, we keep only the leading term, which is the permutation with the power spec-
trum evaluated on the long mode (i.e. the one written explicitly in this expression). For
that permutation, it is argued in [41] that the products Ptot(q3) Ttot(q1, q2, p1, p2) and
Btot(q1, q2, q3) Btot(p1, p2, q3) have the same limit for squeezed triangles (taking q3 = |q1+q2|
much smaller than all other momenta). The same argument holds in redshift space (see for
example [59, 60]). Since this contribution is expected to be important only for squeezed
triangles, we account for it by writing CB (P T ) ≃ CB (BB). We disregard the contribution
coming from the connected six-point function, as argued in [41]. Thus, our non-Gaussian
covariance is approximated by

CB
ℓ1ℓ2 ≃ CB (P P P )

ℓ1ℓ2
+ 2CB (BB)

ℓ1ℓ2
(2.24)

where CB (BB)
ℓ1ℓ2

is given by equation (2.20). In section 3, we will demonstrate the accuracy of
this formula by comparing it to the bispectrum covariance obtained from a large suite of mocks.

2.3 Power spectrum-bispectrum cross-covariance

Moving to the cross-covariance among power spectrum and bispectrum, this is defined as

CP B
ℓ1ℓ2(ki, tj) ≡ ⟨[P̂ℓ1(ki) − ⟨P̂ℓ1(ki)⟩][B̂ℓ2(tj) − ⟨B̂ℓ2(tj)⟩]⟩ , (2.25)

and it comprises two terms

CP B
ℓ1ℓ2(ki, tj) = CP B (P B)

ℓ1ℓ2
(ki, tj) + CP B (P5)

ℓ1ℓ2
(ki, tj) , (2.26)

2The ordering of the sides of the triangles in [41] is reversed with respect to the one assumed here, that is
the long mode there is k1; thus our Σ33

ij corresponds to their Σ11
ij .
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where CP B (P B) refers to the disconnected contribution, and CP B (P5) refers to the fully-
connected 5-point function contribution. Ignoring the latter, as it is subleading at large scales
(see [41] and our numerical results later), the relevant term is

CP B (P B)
ℓ1ℓ2

(ki, tj) = (2ℓ1 + 1)(2ℓ2 + 1)
Nki

Ntj

2
∑
q∈ki

∑
q′s∈tj

δK(q123)Ptot(q)Btot(q1, q2, q3)

× [δK(q + q1) + δK(q + q2) + δK(q + q3)] Lℓ1(µq)Lℓ2(µq1) . (2.27)

Similarly to what was done earlier, we decompose Ptot in Legendre polynomials and Btot in
spherical harmonics, disregarding m ̸= 0. We apply the thin-shell approximation to get:

CP B (P B)
ℓ1ℓ2

(ki, tj) = (2ℓ1 + 1)(2ℓ2 + 1)
∑
ℓ3

∑
ℓ4

Ptot,ℓ3(ki)Btot,ℓ4(tj) Ĩℓ1ℓ2ℓ3ℓ4(ki, tj) , (2.28)

where the quantity Ĩℓ1ℓ2ℓ3ℓ4 is defined as

Ĩℓ1ℓ2ℓ3ℓ4(ki, tj) = 2
Nki

Ntj

∑
q′s∈tj

δK(q123)Lℓ2(µq1)Lℓ4(µq1) (2.29)

×
[
δK

ki,k1,j
Lℓ1(µq1)Lℓ3(µq1) + δK

ki,k2,j
Lℓ1(µq2)Lℓ3(µq2) + δK

ki,k3,j
Lℓ1(µq3)Lℓ3(µq3)

]
.

Its expression in the continuum limit can be found in appendix A, see equation (A.11).
To sum up, our approximate model for the cross-covariance of power spectrum and

bispectrum is

CP B
ℓ1ℓ2 ≃ CP B (P B)

ℓ1ℓ2
(2.30)

with CP B (P B)
ℓ1ℓ2

is given by the expression above.

3 Validation: comparison with numerical results

3.1 Data

Our benchmark is a numerical estimate of the power spectrum and bispectrum covariance
from 10000 mock halo catalogs created with the Pinocchio code [38, 39, 61] implementing
an approximate method to describe the halo distribution based on Lagrangian Perturbation
Theory. These mocks share the same cosmology, box size, and resolution as the Minerva
simulations of [33], tracking the evolution of 1 billion dark matter particles in a box of size
L = 1500 h−1Mpc per side. The reference Minerva halo catalogs are defined in terms of
a minimum mass of 1.12 × 1013 h−1M⊙. The mass threshold in the Pinocchio mocks is
set to closely match the amplitude of the large-scale halo power spectrum of the N-body
simulations, including shot-noise.

The Pinocchio halo catalogs were introduced for the real-space bispectrum analyses
carried out in [62, 63] while the redshift-space measurements were made for [37] following
equation (2.9) for the bispectrum estimator. We consider all triangular configurations up
to a kmax ≃ 0.12 h Mpc−1. As shown in [37], the bispectrum of the mocks is systematically
underestimated (a few percent on these scales) with respect to the N-body simulations, as it
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is typical for approximate schemes based on Lagrangian perturbation theory. However, its
variance is accurately reproduced since the dominant contribution to the covariance depends
on the power spectrum, which is matched to the N-body results. Of course non-Gaussian
contributions to the covariance that depend on the bispectrum or trispectrum are likely to
be underestimated as well, but since the suppression amounts at most to a ∼ 10% correction
on these scales (and less for squeezed configurations), this corresponds a sub-percent effect
on the final covariance.

We will compare the numerical estimates of the bispectrum and cross covariance with
the approximate model of equations (2.24) and (2.30). Both expressions only require the
evaluation of power spectrum and bispectrum multipoles and the large shot-noise contributions
for our halo catalogs at small scales. However, as we are mainly interested in testing the
validity of these models, we will make use of the average values ⟨P̂ℓ(k)⟩ and ⟨B̂ℓ(t)⟩ of the
measurements obtained from all realizations to build our covariance matrix. This would
account also for any effect due to the Pinocchio approximate displacements based on
Lagrangian perturbation theory.

3.2 Bispectrum covariance

The three plots in figure 2 show the ratio between the analytical and numerical covariance
of bispectrum multipoles for the elements where we expect a Gaussian contribution. These
correspond to the variance

σ2
ℓℓ(t) ≡ CB

ℓℓ(t, t) , (3.1)

along with the covariance between different multipoles for the same triangular configuration,
that is B0(t) and B2(t),

σ2
02(t) ≡ CB

02(t, t) . (3.2)

In each panel we show the comparison of both the Gaussian model and of the model including
non-Gaussian contributions according to equation (2.24). Triangular configurations are
ordered by increasing value of the smallest wavenumber k3; then for each k3 bin, delimited
by vertical dashed lines in the figure, triangles are ordered by increasing k2, and then k1
(remember that the triangle sides satisfy k1 > k2 > k3.)

Let us focus on the monopole variance, σ2
00. Very squeezed triangles are located at the

left of the figure where most configurations have a small value for k3, and toward the right
for each bin, where the other two sides are larger. We see that the variance of such triangles
is underestimated by the Gaussian approximation by more than ≳ 10% in some cases, while
the agreement is greatly improved when including the non-Gaussian term. It’s worth noting
that the model still systematically underestimates the true value of the covariance by around
2%, as it is evident from the very last bins in the plot. This is the cumulative effect of all
subleading non-Gaussian terms that are ignored in our approximation. While the magnitude
of non-Gaussian corrections is comparable across monopole and quadrupole, the Gaussian
covariance is much larger for the latter, up to a factor ≳ 5 for squeezed configurations. Thus,
non-Gaussian contributions appear to be relatively less important for higher multipoles.
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Figure 2. Bispectrum monopole variance σ2
00(t) (top panel), covariance between the different

multipoles for the same triangular configuration σ2
02(t) (middle) and quadrupole variance σ2

22(t)
(bottom). Each panel shows the ratio of the Gaussian prediction to the numerical estimate in the
upper half, while in the lower half the model includes the non-Gaussian contributions according to
equation (2.24) as well. The triangles are ordered in groups sharing the same k3 (smallest mode),
then k2, and finally k1, for all values from kf ≃ 0.004 h Mpc−1 up to kmax = 29kf ≃ 0.12 h Mpc−1.
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Figure 3. Bispectrum monopole and quadrupole correlation matrix, equation (3.3). The triangles
are ordered in groups that share the same k3 (smallest mode), then k2, and finally k1. The axes
labels mark increasing values of k3, with all triangles with fixed k3 appearing between each value.
The upper-left part of the plot shows the estimate coming from the 10000 mocks while the model is
plotted on the lower-right half. Submatrices along the diagonal, namely r00 and r22 are split down
the middle while the cross-covariance among monopole and quadrupole is shown in two separate plots,
since it is not symmetric. Modes range from kf ≃ 0.004 h Mpc−1 up to kmax = 9kf ≃ 0.04 h Mpc−1.

We notice that the cross-covariance σ2
02 displays the most noise. This is because its

Gaussian part is dominated by the mixing between the power spectrum monopole and
quadrupole P0P0P2, equation (2.14), while in the other two cases, corresponding to the
proper variance, the largest contribution comes from the P0P0P0 term. These results agree
with what was shown in [37].3

Figure 3 shows the same comparison for the whole correlation matrix, defined as

rB
ℓ1ℓ2(ti, tj) ≡

CB
ℓ1ℓ2

(ti, tj)√
CB

ℓ1ℓ1
(ti, ti)CB

ℓ2ℓ2
(tj , tj)

. (3.3)

3Note that we have a different ordering of the triangles. We also take the continuum approximation by
replacing sums by integrals, while [37] perform the sums over the grid points inside each triangle bin. This
gives a noticeable difference only for the configurations involving the smallest modes.
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Symmetric sub-matrices, i.e. r00 and r22, are split down the diagonal into its numerical
and analytical estimates (above and below the diagonal, respectively). For r02 instead we
show two separate plots: the top left presenting the numerical estimate while the bottom
right the model prediction.

The Gaussian model would be perfectly diagonal, and would miss the off-diagonal
structure observed here, that is the blocks appearing along the diagonal. One can notice how
the non-Gaussian terms of equation of (2.24) capture most of such structure. The largest
covariance elements are between different squeezed triangle configurations sharing the same
long mode. This is similar to what happens in real space [41]. As already noticed discussing
the variance and Gaussian terms, we can see here as well the off-diagonal terms induced
by non-Gaussianity are less important for higher multipoles, along with the fact that the
covariance between different multipoles is noisier. We finally notice that some additional
structure away from the main block-diagonal elements is not captured by our model. We
will get back to this in section 3.4.

3.3 Power spectrum bispectrum cross-covariance

We show in figure 4 the power spectrum-bispectrum cross-correlation coefficients, defined as

rP B
ℓ1ℓ2(ki, tj) ≡

CP B
ℓ1ℓ2

(ki, tj)√
CP

ℓ1ℓ1
(ki, ki)CB

ℓ2ℓ2
(tj , tj)

. (3.4)

As for the bispectrum covariance we observe that the main non-Gaussian features are
accurately reproduced by the model, and, again, the monopole-quadrupole correlation is
noisier while higher multipoles show less correlation. We see that the largest elements
correspond to triangular configurations where the smallest side coincides with the power
spectrum mode k, as already noted in real space [41]. The model also reproduces the
subdominant features due to bispectrum triangles sharing the larger sides, k1 and k2, with
the power spectrum.

3.4 Tests on the inverse covariance

Approximate theoretical models for the covariance of complex data vectors such as the
combination of power spectrum and bispectrum multipoles are not guaranteed to provide
invertible covariance matrices. Indeed, imposing such (necessary) condition in general terms
is not a simple problem. In practice we could expect that some level of consistency among
the different components can help obtaining a well defined matrix.

In this respect, we notice that using the expression for CP B(ki, tj) in equation (2.28)
and (2.29) returns a matrix with negative eigenvalues. This is likely related to the fact that
these formulae consider all possible permutations when sharing the mode of the power spectrum
with the bispectrum triangle, i.e. they account for ki = k1,j , k2,j , k3,j , whereas in the covariance
of the bispectrum, CBB(ti, tj), we only account for the leading contribution corresponding to
the triangles sharing the long mode. We find that keeping only the term with ki = k3,j and
discarding the other two in the cross-covariance leads to an invertible matrix. Thus, for the
results in this section we employ this simplified version of the cross-covariance model.
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Figure 4. Comparison of the power spectrum-bispectum correlation coefficients, equation (3.4), from
the numerical estimate (left) to the model (right). Abscissae denote power spectrum modes while
ordinates denote triangular bispectrum configurations. Modes range from kf ≃ 0.004 h Mpc−1 up to
kmax = 29kf ≃ 0.12 h Mpc−1.

– 14 –



J
C
A
P
0
8
(
2
0
2
4
)
0
4
6

4500 5000 5500
0.000

0.001

0.002

0.003

0.004

Monopole and quadrupole

2250 2500 2750
0.000

0.002

0.004

0.006
Monopole only

300 400 500 600
0.000

0.005

0.010

0.015
Squeezed monopole only

χ2
th

N
or

m
al

iz
ed

co
u

n
ts

χ2

Model

Gaussian

Figure 5. Distribution of χ2
th,i values, as defined in equation (3.5). The different results assuming

Gaussian and non-Gaussian models for the covariance are shown in different colors while the expected
χ2 distribution is shown with a solid line. The top panel shows the results considering all triangles for
both monopole and quadrupole while the bottom panels correspond to a data vector limited to the
monopole only (left) and to squeezed monopole configurations (right), the latter defined as triangles
with k2 > 3 k3.

In order to assess the quality of our analytical covariance matrix and its inverse, we
perform two tests, following [41]. For the first, we compute, for each realization i, the quantity

χ2
th,i = (di − d̄) C−1

th (di − d̄)T , (3.5)

where di is the data vector containing the measured power spectrum and bispectrum monopole
and quadrupole. If the model is a good description of the covariance, this quantity should
follow a χ2 distribution with the number of degrees of freedom equal to the dimension of di.

In figure 5, we plot the histograms obtained for the distributions of this quantity using
both the Gaussian covariance and the non-Gaussian model from section 2.2, comparing it
with the χ2 distribution. We consider the results for the full data vector along the cases
corresponding to limiting the data vector to the bispectrum monopole and to the squeezed
configurations of the monopole. We see that the non-Gaussian model consistently improves
upon the Gaussian approximation. The effect is more pronounced for the monopole alone
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Figure 6. Half-inverse test as defined in equation (3.6). The lower-right portion of the plot shows
the matrix F. The upper left portion of the plot shows a random matrix with the expected noise level
for comparison.

since, as discussed above, non-Gaussian contributions are less relevant for the quadrupole
covariance. Furthermore, the last panel confirms that our model for non-Gaussian terms grows
more accurate when looking at squeezed configurations. Notice also that the improvement
is less dramatic than in [41] because we are considering less squeezed triangles in our mock
measurements. Ultimately, this test shows that the inclusion of non-Gaussian covariance
terms from our model would mainly affect constraints on parameters susceptible to squeezed
configurations, such as local fNL.

As a second check we perform the “half-inverse test” [64] to gain more insight on the
relevance of all additional contributions not captured by the model. We compute the matrix

F = C−1/2
th Ĉ C−1/2

th − 1 , (3.6)

where Ĉ is our numerical estimate of the true covariance, measured from N data vector
realizations. If the theory covariance is an unbiased model of the true one, F is a random
matrix following a Wishart distribution [35, 65] whose variance scales as 1/

√
N . We plot the

half-inverse matrix for the covariance of the bispectrum in the lower-right portion of figure 6.
For comparison, we also plot a Gaussian random matrix with the expected amplitude of the
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noise in the upper-left portion of the same plot. The matrix elements where the model deviates
the most show a particular structure due to our choice of considering only contributions
from correlations based on sharing the long mode (see section 2.2). Indeed, these are pairs
of triangular configurations that share other combination of sides, corresponding to the 8
permutations of equation (2.18), so that their analytical covariance is underestimated by
∼ 2% in our simplified model. Overall we see, however, that the model agrees very well
with the numerical covariance.

4 Conclusions

In this work we provide a test for the approximate model for the bispectrum covariance
proposed in [41], here extended to redshift-space bispectrum multipoles. This model accounts
for the leading non-Gaussian contributions to the covariance expected for squeezed triangular
configurations. For these triangles, the non-Gaussian term depending on the product of the
power spectrum and trispectrum can be approximated by the product of two bispectra. We
consider as well a model for the power spectrum-bispectrum cross-covariance, including all
elements where the power spectrum bin coincides with a side of the bispectrum configuration.
In this treatment, the main non-Gaussian contributions to the full covariance are written as
a function of power spectrum and bispectrum multipoles alone, simplifying their evaluation.
Our expressions, obtained in the thin-shell approximation, include as well accurate estimates
of the mode-counting factors defined as sums over the Fourier-space grid as integrals in
the continuum limit.

We verify the accuracy of our model by comparing it with the numerical covariance
obtained from a large suite of 10000 mock halo catalogs. We find that the bispectrum monopole
covariance shows significant non-Gaussian contributions for squeezed configurations, of the
order of ∼ 10%, and that our model correctly recovers these features. We also see that
non-Gaussian terms are relatively less important for the covariance of the quadrupole and for
the cross covariance between monopole and quadrupole. The same considerations apply for
the cross-covariance among power spectrum and bispectrum. The most relevant result, is
that our model, despite the approximations, captures all the leading non-Gaussian effects
responsible for the off-diagonal structure of the power spectrum and bispectrum covariance
matrix. As such it provides a simple analytical expression that can be improved by fitting a
few nuisance parameters to a small set of measurements of the data-vector when these are
not sufficient for a robust purely numerical estimate of the covariance (see for instance [66]).

There are two main applications of our results. In the first place, the model can replace
the simple Gaussian approximation in the analysis of power spectrum and bispectrum
measurements from numerical simulations with periodic boundary conditions. It provides an
approximate, but essentially complete description of the statistical errors involved, including
the correlation between the two statistics. In the second place, it constitutes one of the
ingredients in a more general analytical model for the power spectrum and bispectrum
covariance as measured in galaxy redshift surveys, where additional contributions from
finite-volume effects should be taken into account. In this case it is possible that even our
treatment of squeezed triangular configurations will be affected, due to the characteristic
long mode, by window effects. We leave these investigations for a future work.
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Additional material. A Python module providing a numerical implementation of the
model for the covariance of the bispectrum (both Gaussian and non-Gaussian) and for the
cross-covariance with the power spectrum can be found in the GitLab repository bisque
(https://gitlab.com/jacopo.salvalaggio/bisque).

A Integrals in the continuum limit

Applying the continuum limit changes sums into integrals:

∑
q∈k

≃
∫ 1

−1
dµq

∫ 2π

0
dϕq

∫ k+∆k/2

k−∆k/2

q2dq

k3
f

≡
∫

k

d3q

k3
f

, (A.1)

δK(q) ≃ k3
f δD(q) , (A.2)

where in the first line we define the shorthand notation for the integral over the k-shell:
µq is the cosine of the polar angle θq between q and the LOS n̂ and ϕq is the azimuthal
angle of q’s rotation around it. δD is the Dirac delta and kf is the fundamental frequency
of the wavevector grid.

First, let us focus on the Gaussian covariance. We can rewrite equation (2.15) in
this limit as

1
Nt

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123) g(µq1 , µq2 , µq3)

≃ 1
Ntk6

f

∫
k1

d3q1

∫
k2

d3q2

∫
k3

d3q3 δD(q123) g(µq1 , µq2 , µq3) , (A.3)

where, for the sake of brevity, we wrote the argument of the sum as a general angular function
g. In order to simplify the integral, we first make a change of variables from µq2 , ϕq2 to
νq12 , ξq12 , where the former is the cosine of the angle between q1 and q2 and the latter is the
polar angle of q2 around q1 as seen in figure 1. In this new basis we have [52]

µq2(µq1 , νq12 , ξq12) = µq1νq12 −
√

1 − µ2
q1

√
1 − ν2

q12 cos ξq12 . (A.4)

Then, we can simplify the delta function as νq12 only depends on the magnitude of the
three sides. In the thin-shell limit:

ν⋆
q12 ≃ k2

3 − k2
2 − k2

1
2k1k2

. (A.5)

As pointed out in section 2.2 this is only applicable to closed triangles.
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The delta function thus becomes:

δD(q123) = 1
q1q2q3

δD(νq12 − ν⋆
q12)δD(µq3 + µq12)δD(ϕq3 + ϕq12) , (A.6)

where µq12 and ϕq12 are the angular polar coordinates of q12 ≡ q1 + q2. Plugging this
into equation (A.3) we get:

1
Nt

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123) g(µq1 , µq2 , µq3)

≃ 1
4π

∫
dµq1

∫
dξq12 g (µq1 , µq2(µq1 , ξq12), −µq12(µq1 , ξq12)) , (A.7)

where the dependence on νq12 was dropped as for any given triangle it is a fixed quantity,
as shown in equation (A.5). A Python function containing the exact solution for CB(P P P )

ℓ1ℓ2

(equation (2.14)) for ℓ1, ℓ2 = 0, 2 is provided in the module gaussian.py of bisque.
Moving on to the non-Gaussian contributions to the bispectrum covariance, we will

provide here a detailed expression for the I term in equation (2.20). The first steps are
analogous to what was shown earlier. Carrying out all straightforward integrals one is left with

Iℓ1ℓ2ℓ3ℓ4(ti, tj) = 1
8π2

∫
dµq1dξq12dµp1dξp12δD(µq12 − µp12)

× Lℓ1(µq1)Lℓ2(µp1)Lℓ3(µq1)Lℓ4(µp1) . (A.8)

We will proceed by solving the Dirac delta argument for ξp12 . There are two roots in the
[0, 2π) interval, ξ±

p12 :

cos ξ±
p12 =

(k1,i+k2,i µq12)µq1 − (k1,j +k2,j µp12)µp1 − k2,i

√
1−µ2

q1

√
1−µ2

q12 cos ξq12

k2,j

√
1 − µ2

p1

√
1 − µ2

p12

≡ ζp12 .

(A.9)
After integrating out the delta we get

Iℓ1ℓ2ℓ3ℓ4(ti, tj) = 1
2π2

∫
dµq1dξq12

∫
D

dµp1
k3,jLℓ1(µq1)Lℓ2(µp1)Lℓ3(µq1)Lℓ4(µp1)

k2,j

√
1 − ν⋆ 2

p12

√
1 − µ2

p1

√
1 − ζ2

p12(µq1 , ξq12 , µp1)
,

(A.10)
where D is the set of values of µp1 where the integral is well-defined, i.e. where ζ2

p12 <1.
A Python function to solve equation (A.10) numerically can be found in the module
non_gaussian.py of bisque.

Finally, we show the thin-shell expression for the cross-covariance factor Ĩ. The steps
are similar to the ones shown above. After performing some angular integrals and integrals
over the magnitudes q1, q2, q3, and simplifying a factor of Nt the quantity defined in
equation (2.29) can be written as

Ĩℓ1ℓ2ℓ3ℓ4(ki, tj) = 1
2Nki

∫
dµq1Lℓ2(µq1)Lℓ4(µq1)

×
[

δK
ki,k1,j

Lℓ1(µq1)Lℓ3(µq1)

+δK
ki,k2,j

Lℓ1(µq2(µq1 , ξq12))Lℓ3(µq2(µq1 , ξq12))

+δK
ki,k3,j

Lℓ1(−µq12(µq1 , ξq12))Lℓ3(−µq12(µq1 , ξq12))
]

. (A.11)
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An exact solution of equation (A.11) for ℓ1, ℓ2 = 0, 2 is coded in the module cross.py
of bisque.
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