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Abstract. We investigate novel SoC-FPGA solutions for fast and
energy-efficient ranking based on machine-learned ensembles of decision
trees. Since the memory footprint of ranking ensembles limits the effec-
tive exploitation of programmable logic for large-scale inference tasks,
we investigate binning and quantization techniques to reduce the mem-
ory occupation of the learned model and we optimize the state-of-the-art
ensemble-traversal algorithm for deployment on low-cost, energy-efficient
FPGA devices. The results of the experiments conducted using pub-
licly available Learning-to-Rank datasets, show that our model compres-
sion techniques do not impact significantly the accuracy. Moreover, the
reduced space requirements allow the models and the logic to be repli-
cated on the FPGA device in order to execute several inference tasks
in parallel. We discuss in details the experimental settings and the fea-
sibility of the deployment of the proposed solution in a real setting.
The results of the experiments conducted show that our FPGA solution
achieves performances at the state of the art and consumes from 9× up
to 19.8× less energy than an equivalent multi-threaded CPU implemen-
tation.

Keywords: Learning to Rank · Model Compression · Efficient
Inference · SoC FPGA

1 Introduction

This work investigates the use of cost-effective SoC-FPGA (System on Chip -
Field Programmable Gate Arrays) devices for speeding-up inference tasks based
on complex machine-learned ensemble models. Latency and throughput at infer-
ence time are critical aspects in many applications of machine learning where
the rate of incoming requests is high and tight constraints on prediction qual-
ity impose the adoption of computationally-expensive models. In these cases,
quality-of-service requirements entail the optimization of the accuracy of the
models subject to performing inference in near real-time or within a limited
time budget. As a use case where finding the best trade-off between model accu-
racy and inference time is definitely important and challenging, we consider the
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task of ranking documents according to their relevance for user queries. Indeed,
ranking for ad-hoc retrieval entangles challenging effectiveness and efficiency
constraints in many online services deployed in large-scale Web search engines,
e-Commerce platforms and online social networks [6].

We specifically study techniques for performing document ranking with SoC-
FPGA devices at a competitive level of quality and speed with respect to the
state of the art, but using a fraction of the energy. SoC-FPGA technology pro-
vides an energy-efficient alternative to traditional computing due to the possi-
bility of adapting the design of the logic to a specific architecture optimized for
the task addressed. The cost and power/performance competitiveness of SoC
FPGA makes this technology very attractive for specific tasks such as ranking,
where the high cost and power consumption of GPUs make their adoption pro-
hibitive [27]. We claim that SoC-FPGA architectures can provide an efficient and
sustainable solution for large-scale query-processing since they can offer efficient
ranking capabilities based on state-of-the-art solutions at a fraction of the energy
cost incurred by CPU-based or GPU-based solutions. Recently, Molina et al. fol-
lowed the same research line and proposed SoC-FPGA solutions for speeding-up
inference based on Learning-to-rank (LtR) ensembles of decision trees [26]. The
study identifies in the memory footprint the main issue limiting the computa-
tional performance. In this paper, we address this limitation by investigating the
use of binning and quantization techniques for reducing the memory occupation
of both the ranking model and the feature vectors representing the document-
query pairs to be scored. Reducing the memory footprint of the model allows
to replicate the ranking logic on the FPGA device to execute several inference
tasks in parallel. Furthermore, by compressing the document-query feature vec-
tors, we minimize the transmission costs incurred for transferring them to the
FPGA device. We discuss the feasibility of the deployment of the proposed solu-
tion in a real setting and evaluate its performance using publicly available LtR
datasets. The experiments conducted show that our solution does not impact
the quality of the ranking and it provides highly competitive computational
performance with very low energy consumption.

The remainder of the paper is organized as follows. Section 2 discusses the
related work. Section 3 describes SoC-FPGA technologies. Section 4 introduces
ensemble models and the challenges related to their use in the learning to rank
scenario. It then discusses the use of binning and quantization for reducing the
memory footprint and effectively deploying the ranking process on SoC-FPGA
devices. Section 5 discusses the efficiency and effectiveness of the SoC-FPGA
deployment compared to the traditional CPU one. It then details an evaluation
of the latency introduced by transferring data from the host machine to the SoC-
FPGA device. Moreover, it also reports an analysis of the energy consumption
provided by both SoC FPGA-based and CPU-based scoring solutions. Finally,
Sect. 6 concludes the paper and draws some future work.
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2 Related Work

Several effective LtR algorithms and libraries have been proposed in the last
years to train complex models able to precisely rank the documents matching
a query [9,16,19]. State-of-the-art LtR models include those based on additive
ensembles of regression trees learned by Mart [11] and λ-Mart [3,31] gradient
boosting algorithms. Since such ranking models are made of hundreds of addi-
tive regression trees, the tight constraints on query response time require suit-
able solutions able to provide an optimal trade-off between efficiency and ranking
quality [6]. Among the main contributions in the area of efficient ranking, we cite
the algorithms for the efficient traversal of tree ensembles [1,10,20,34]. Alterna-
tive methods are concerned with: i) strategies for pruning the ensemble during
or after the training phase [21,22,24], ii) budget-aware LtR algorithms [1,30],
and iii) end-to-end learning of multi-stage LtR pipelines [8,12]. Furthermore,
researchers investigated early termination heuristics aimed to reduce, on a doc-
ument or query-level basis, the cost of the ensemble traversal process without
(or minimally) impacting quality [4,5,25]. An analogous strategy was recently
proposed to reduce the computational cost of neural re-ranking based on bi-
directional transformer networks [32].

Previous work showed that SoC-FPGA devices can handle the complex com-
putation of LtR training algorithms and provide high computing efficiency with
low power consumption. Xu et al. describe the design of a FPGA accelerator for
a LtR algorithm to reduce training time [33]. Gao and Hsu evaluate a LtR algo-
rithm deployed on a FPGA and explore the design space of the implementation
choices [13]. Similar to our work, Qiang et al. present a fixed-point quantization
approach for LtR algorithms on FPGA [18]. Experimental results show that the
FPGA-based algorithm achieve a 4.42× speedup over a GPU implementation
but with 2% accuracy loss. Differently from these previous works focusing on
the offline, LtR training phase, we are interested in the online inference phase,
where the machine-learned model is deployed in a large infrastructure and used
under tight latency constraints. To the best of our knowledge, only Molina et al.
previously investigated this important aspect and highlighted the memory usage
on the FPGA device as the main issue limiting the computational performance.
This work addresses this limitation by exploiting binning and quantization to
compress the ranking model and the feature vectors.

3 Using Programmable Logic for Ranking

The features of current SoC-FPGA devices allow their adoption for high-
performance computing tasks such as inference under tight time constraints
where they can provide an efficient and energy-efficient solution. A SoC-FPGA
device integrates on the same chip a general-purpose Processing System (PS) and
a Programmable Logic (PL) unit. The PS includes a processor and a memory of
greater capacity than the memory available in the PL. The PL includes blocks
of memories (BRAM), control and logic components like the Flip Flop (FF) or
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Fig. 1. Hardware design inside the IP block of the FPGA device.

the LookUp Table (LUT). These components are used to implement Intellec-
tual Property (IP) blocks which actually execute the algorithms on the FPGA.
The amount of components available in the FPGA is limited and this limitation
in turn constrains the design and the deployment of the algorithm which usu-
ally involves a trade-off between processing speed and resource utilization. To
take full advantage of FPGA logic, we need to process data in parallel, possi-
bly avoiding jumps and recursive calls. To this end, High Level Synthesis (HLS)
tools are used to create hardware from a high-level description, using directives
to specify concurrency and pipelining opportunities. The HLS tool translates the
code to a Register Transfer Level (RTL) specification of the hardware and also
returns an estimation of execution latency and resource utilization. In this way,
the designer is able to broadly evaluate the performance of different implemen-
tation strategies before actually deploying them on the hardware. In this phase
the designer is also asked to detail the data communication occurring between
the PS and PL. To exploit SoC-FPGA characteristics for ranking, we rely on
QuickScorer (QS), the state-of-the-art algorithm for the traversal of large
tree ensembles [10,20]. QS exploits a representation of the tree ensemble based
entirely on linear arrays accessed with high locality. This characteristic permits a
very fast traversal of the tree ensemble at inference time by effectively exploiting
features and peculiarities of modern processors and memory hierarchies [17,23].

To estimate resource consumption and execution times several directives are
inserted in theQSC++ code. Unrolling techniques are used to parallelize the exe-
cution of loop constructs such as for, while, do...while, repeat. These loops can
be synthesized if and only if the loops bounds and the condition expression can
be calculated during compilation time. In other words, the condition expression
determining loop exiting cannot dynamically change at run-time. To tackle this
problem, the QS algorithm has been modified by removing any dynamic condi-
tion expression from the loops and by including additional if-else statements to
split the loops into sub-loops of fixed size which can be processed in parallel.

We propose a FPGA hardware design composed of a single Direct Memory
Transfer (DMA) and one IP block responsible for accelerating the QS algorithm.
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Both the IP and the DMA belong to the PL. In Fig. 1, we show how the QS
algorithm is replicated into different Processing Elements (PE) inside the IP
block to perform inference in parallel on different instances. To avoid off-chip
memory transactions, the input of the IP is a stream composed of batches of
instances (i.e., query-document feature vectors) to be predicted and the output
is a stream formed by the actual predictions (i.e., the query-document scores pro-
ducing the final ranking of the documents for a given query). We implement an
array demultiplexer and apply the ARRAY PARTITION directive to distribute
the input feature vectors among the PEs.

We also implement task-level pipelining, allowing functions and loops to
overlap in their operation, increasing the overall throughput of the design. The
PIPELINE directive optimizes the insertion (push) and extraction (pop) of data
from the stream. After inference, the final predictions are packed into an output
stream adding the corresponding control signals. The PIPELINE directive is also
used to speed-up the execution of the function admitting new inputs.

4 Ranking Model Compression

Ensembles of decision trees are among the most successful Machine Learning
(ML) models and the winning solutions in many ML competitions.1 However,
inference with ensemble-based models can be computationally expensive since it
requires the complete traversal of the tree ensemble, aimed at identifying all the
tree leaves contributing to the prediction. To this end, each tree of the ensemble
is visited from its root to a leaf by evaluating the splitting conditions (i.e.,
a test over a single feature with a learned threshold) associated with internal
nodes. The contributions of all the leaves reached (i.e., a class label in case of a
classification task or a numeric value in case of a regression task) are aggregated
to compute the final prediction. This process has a complexity proportional to
the number T of trees in the ensemble multiplied by the average depth d of
the decision trees. For document ranking, the use case considered in this paper,
typical LtR ensembles are made up of hundreds or even thousands of regression
trees usually having each from 5 to 9 levels (corresponding to a number of leaves
ranging from 32 to 512) [6]. For example, the winning solution of the Yahoo!
Learning to Rank challenge used a linear combination of 12 ranking models, 8 of
which were λ-Mart boosted tree models each composed of about 3,000 trees for
a total of 24,000 trees [7]. Since the traversal has to be repeated for each one of the
K candidate documents to be scored for a user query, we have that the per-query
ranking cost is proportional to T ·d ·K. Also the amount of memory needed for a
LtR ensemble is quite large even if we do not consider the data structures needed
to support the inference process. We can roughly estimate a lower bound for the
space required to store an ensemble by considering the compact representation
of each tree obtained by implicitly encoding its structure (parent/child nodes)
in a linear array using a breadth-first order. Internal nodes require 8 bits for the
feature identifier (assuming to have at most 256 features) and 32 bits for the
1 https://dataaspirant.com/xgboost-algorithm/.
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threshold value, summing up to 40 bits per node. Leaf nodes, on the other hand,
are usually represented with 32-bit floating-point values. In the LtR case, these
values represent the additive contribution of the specific tree to the ranking score
predicted for the query-document pair. Let us consider for example an ensemble
with T = 1, 000 and d = 9: its compact representation requires about 4.4 MB of
memory. Such size surely fits in the memory available on a low-cost FPGA device
but reducing the memory requirements provides an interesting opportunity to
fully exploit the FPGA logic and increase the number of inference tasks processed
concurrently. To this regard, in this work we investigate the use of two popular
techniques, namely binning and quantization, to lower the memory occupation
of ensemble models and to parallelize the inference on FPGA devices.

– Binning consists in bucketing continuous feature values into discrete bins and
representing each value with the index of its bin. It is commonly used to speed
up training [16], but, at the best of our knowledge its usage for model com-
pression at inference time has not been previously investigated. Specifically,
we used binning to encode each internal node of the trees with only 16 bits: 8
bits for the feature identifier and 8 bits for the identifier of the bin associated
with one of the possible 256 threshold values. Another advantage of binning
the thresholds is that it allows to represent similarly with only 8 bit instead
of 32 also the elements of the feature vectors representing the instances to be
predicted. The splitting condition in the internal nodes of each decision trees
moves than from feature[i] <= threshold to binned feature[i] <= bin, with
feature vectors values that can now be represented with a single byte storing
the bin identifier in place of 32 bits. Let us consider one of the LtR datasets
used for the experiments (Istella-S) where each query-document pair to be
predicted is represented by 220 real-valued features for a memory occupation
of 880 bytes. Binning these values into 256 bins results in a 3/4 reduction of
the space needed, thus impacting both the number of instances that can be
predicted in parallel on the FPGA and the cost of memory transfers.

– Quantization, on the other hand, consists in mapping continuous real values
into a discrete set of finite values. This technique is popular for example
to compress deep neural network models [14]. We apply quantization to the
leaf values of each tree of the ensemble, so as to further lower the memory
footprint. Specifically, we represent the 32-bits real value stored in each leaf
of the original model with a 8-bits unsigned integer by mapping the min/max
among the actual leaf values to the min/max in the range [0, 255]. This
reduces of 3/4 also the space needed for storing the leaves of the ensemble.

The combination of the above binning and quantization techniques permit to
represent the ensemble model previously mentioned by using only 1/3 of the
original space. In Sect. 5, we will show experimentally that such compression
does not introduce significant degradation in the resulting ranking effectiveness.
On the other hand, we will show the benefits of compression in lowering the
FPGA resources used and the data transmission time.
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5 Experiments

We evaluate the impact of the proposed binning and quantization techniques for
compressing ensemble models on two publicly available LtR datasets, namely
MSLR-WEB30K-F1 (Fold 1)2 [19], hereinafter simply abbreviated as MSN30K,
and Istella-S3 [22]. Both datasets contain more than 30K queries and about
3,5M query-document pairs, where each pair is represented with 136 features
on MSN30K and 220 features on Istella-S. The query-document pairs in both
datasets are labeled by relevance judgments ranging from 0 (irrelevant) to 4
(perfectly relevant). While the two datasets are comparable in size, they differ
in the proportion between positive (label > 0) and negative (label = 0) examples.
Indeed, in the MSN30K dataset about 48% of the documents are labeled with a
positive judgement, while in the Istella-S dataset this proportion lower to 11%.
The detailed characteristics of the two datasets are listed in Table 1.

Table 1. Characteristics of the two datasets used.

Dataset MSN30K Istella-S

queries 31,351 33,018

query-document pairs 3,771,125 3,408,630

features 136 220

positive examples 48.53% 11.39%

Each dataset is split in train, validation and test set according to a 60%-
20%-20% scheme. We use training and validation sets to train ensemble models
with the λ-Mart [3,31] algorithm, while the test set is used for evaluating the
performance of the model. The learning process of λ-Mart is controlled by sev-
eral hyper-parameters, some of them controlling the generalization power and
the training speed of the learning phase, while others controlling the shape of
the trees. Since our objective is to fasten the inference time by exploiting pro-
grammable SoC devices, which are limited in the amount of available resources,
we start by finding the most compact model providing state-of-the-art perfor-
mance, i.e., we investigate the optimal trade-off between model size and ranking
effectiveness. To this end, we performed several grid searches by varying the
hyper-parameters controlling the shape of the final model and allowing each
grid exploits the remaining ones. In particular, we varied the number of leaves
in {64, 128, 256, 512} by keeping fixed the maximum number of trees to 800. We
used the implementation of λ-Mart available in the LightGBM library [16] for
training and the HyperOpt library [2] for tuning the hyper-parameters. When
comparing the performance of different models, we also evaluated statistical sig-
nificance by using the randomization test with 10,000 permutations and p-value
≤ 0.05 [29].
2 http://research.microsoft.com/en-us/projects/mslr/.
3 http://quickrank.isti.cnr.it/istella-dataset/.
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Table 2. Efficiency/effectiveness trade-off: NDCG@10 vs. model size in MB.

Dataset Model Version per-tree leaves

64 128 256 512

MSN30K Full Precision 0.524 (0.30) 0.526 (0.87) 0.527 (1.59) 0.528 (2.73)

Bin. + Quant. 0.524 (0.10) 0.526 (0.29) 0.527 (0.53) 0.528 (0.91)

Istella-S Full Precision 0.771 (0.44) 0.775 (0.87) 0.779 (1.74) 0.781 (3.38)

Bin.+ Quant. 0.770 (0.14) 0.776 (0.29) 0.779 (0.58) 0.782 (1.12)

5.1 Effectiveness Assessment

We report on the effectiveness of the resulting fine-tuned models on the MSN30K
and Istella-S datasets as a function of the size of the models, with and without
model compression. It is worth noting that only quantization can affect effec-
tiveness. Binning in fact, even if not exploited previously for model and feature
compression, is natively used by the LightGBM library to speed-up model train-
ing and has no impact on the quality of the model trained. Table 2 reports the
value of NDCG@10 [15] and the size in MB of the full precision and compressed
models trained on the two datasets. In terms of absolute effectiveness, the fine-
tuned model with 64 leaves achieves a NDCG@10 equal to 0.524 on MSN30K
(0.771 on Istella-S), while the best performing model with 512 leaves reaches 0.528
(0.781). We note that with a quality loss lower than 1% on MSN30K and 1.3%
on Istella-S the models with 64 leaves are about 9× smaller than the ones with
512 leaves. Thus, these models largely offer the best effectiveness/space trade-off
and are most suited for an efficient FPGA deployment in presence of strict mem-
ory constraints. By looking at the NDCG@10 values reported in each column of
the table, we see that the impact of quantization on the ranking performance
is limited. In most case we do not have differences in the NDCG@10 measured
on the test set and in all the cases the differences are not statistically signifi-
cant. To further investigate the impact of quantization on effectiveness, Fig. 2
reports the NDCG@10 of the ranking models with 64 leaves as a function of the
number of trees. Each one of the plots in the figure shows three curves: one for
the original, full precision models where the values associated with tree leaves
are represented as 32-bit floating point values, and two for models exploiting
quantization with 8 and 4-bit representations. The curves plotted confirm that
quantization using 8-bit representations does not introduce performance penalty
despite it permits to reduce of 4× the space needed for coding the leaves. On the
other hand, the models using 4-bit representations perform slightly worse than
the full precision ones, showing also a statistically significant difference. Consid-
ering the difficulties in working with binary representations smaller than a single
byte, hereinafter we will consider models with 64 leaves and 8-bit quantization
only. These fine-tuned models have 559 and 649 trees (out of the 800 maximum
trees), for the MSN30K and Istella-S datasets, respectively.
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MSN30K Istella-S

Fig. 2. Impact of quantization on NDCG@10 of λ-Mart models.

5.2 Efficiency Assessment

We assess the impact of the proposed binning and quantization techniques on the
efficiency of the scoring process by using two versions of QS: the original version
[20] and a new one supporting binned and quantized models. Both the versions
have been deployed on a high-end multi-core CPU and a SoC-FPGA device. The
multi-threaded CPU version [17] runs on a server machine running Ubuntu 20.04
LTS and equipped with two Intel Xeon CPU E5-2630 v3 clocked at 2.40 GHz,
120 GB of RAM. The CPU exploits three levels of cache: 32 KB + 32 KB of L1
cache (data + instructions), 256 KB of L2 cache, and 20,480 KB of L3 cache. The
code was compiled with GCC 7.5 with the -O3 optimization flag. We also imple-
mented the same two versions of QS on our SoC-FPGA device by using Vivado
HLS 2019.2.1 to directly convert the annotated and optimized C++ code into
Register Transfer Level (RTL) code for the FPGA logic.4 We tested the FPGA
implementation on a Zynq UltraScale+MPSoC ZCU102 device with a quad-
core ARM CortexTM-A53 processor, dual-core Cortex-R5 real-time processor
and Mali-400 MP2 graphics processing unit. The UltraScale FPGA consists of
a PS and a PL block integrated on a single die and running independently.

We present the efficiency achieved by our QS deployments on CPU and
FPGA for the MSN30K and Istella-S datasets in Table 3. Results are reported
in terms of per-instance average inference time measured in µsecs by varying
the replication factor (up to 12). In the case of the FPGA this indicates how
many times we replicate the PEs inside the IP block (see Fig. 1). For the CPU
implementation, it indicates instead the number of parallel threads used to pre-
dict the scores. In both cases the execution time is measured on the whole test

4 Code available at https://github.com/hpclab/model compression for ranking on
fpga.
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Table 3. Per-instance average inference time (µsec).

Dataset QS version Replication Factor

1 2 4 8 12

MSN30K FPGA-FP 944 502.8 252.4 - -

FPGA-BQ 10.8 9.1 4.4 3.3 3.1

CPU-FP 14.2 7.16 4.15 2.29 1.23

CPU-BQ 12.8 6.45 3.88 2.15 1.10

Istella-S FPGA-FP 1072 601.5 338.2 - -

FPGA-BQ 9.9 6.7 4.9 4.1 3.8

CPU-FP 17.5 8.79 5.13 2.87 1.34

CPU-BQ 16.1 8.11 4.71 2.63 1.24

set and then divided by the number of instances in the test set. The FPGA
Full-Precision version (FPGA-FP in Table 3), i.e., the one that do not exploit
binning and quantization, obtains an average instance scoring time of 252.4 µs
for the MSN30K and 269.2 µs for the Istella-S with 4 replicas. We are not able to
increase further the replication factor due to the over-utilization of the resources.
The model compression techniques detailed in Sect. 4 allow instead to increase
the number of replicas of the scoring logic up to 12. Moreover, the QS version
exploiting binning and quantization also improve significantly the inference time
due to the many optimizations introduced.

We report the results achieved with the optimized version (FPGA-BQ), which
includes loop unrolling and additional if-else statements splitting the QS loops
in fixed-size blocks of instructions processed in parallel by the FPGA hardware.
By introducing all these optimizations, QS shows a significantly improved aver-
age scoring time ranging from 10.8 to 3.1 µs for MSN30K and from 9.9 µs to 3.8
µs for Istella-S. In both cases with 12 replicas we measure a resource utilization
exceeding 82%. On the other side, the multi-threaded CPU version of QS that
uses binning and quantization (CPU-BQ) techniques also outperforms the ver-
sion implemented without these techniques (CPU-FP), thus proving that model
compression is advantageous even on traditional hardware. Overall, with 8 or
more threads running on different cores, the CPU-BQ version obtains lower scor-
ing time than the optimized FPGA-BQ version. However, these slightly higher
inference times are counterbalanced by a much lower power consumption as dis-
cussed in Sect. 5.4.

5.3 Data Transfer Assessment

The experimental evaluation reported in Table 3 does not include the time
needed to transfer data from the host machine performing the retrieval of the
candidate documents to the SoC-FPGA device aimed at re-ranking the list of
candidates to produce the final results. We experimentally evaluated the impact
of the data transfer by conducting additional tests with the MSN30K dataset on
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an instance of Amazon AWS EC2 F1 node equipped with Xilinx UltraScale+
VU9P FPGAs. These devices are in fact connected to the host machine via a ded-
icated PCIe Gen3 ×16 bus supporting data transfer with a maximum bandwidth
of up to 16 GB/s. We used the AWS instance above for running a simulation
measuring the actual bandwidth available when transferring: i) batches of query-
document feature vectors from the AWS Amazon EC2 node to the SoC-FPGA,
and ii) the resulting scores back from the FPGA to the server.

The result of this simulation shows that the PCIe interface connecting the
host machine and the SoC-FPGA device allows to transfer each vector of 136
features, represented with only 136 bytes thanks to our lossless binning tech-
nique, with an average latency of 0.24 µs. This latency, although very low, is
not an additional overhead to be included in the whole query processing sys-
tem. Indeed, in a real-world scenario the host device and the SoC-FPGA device
operate in pipeline. The host is aimed at retrieving candidate documents from
the index and computing query-document feature vectors. The FPGA is instead
responsible of inferring the final score to be assigned to each document by using
the compressed ensemble model and the QS algorithm. The two operations can
be easily pipelined. The resulting scores packed and returned back to the host
device can be managed in a similar way. All these query processing operations
can be thus overlapped during execution, and the final throughput is given by
the slower stage of the pipeline. Since the data transfer time is one order of
magnitude lower than the inference on the FPGA (0.24 µs � 3.1 µs) we can
conclude that the impact of transferring data from the host to the FPGA and
viceversa is negligible on the total latency in a real-world production system.

5.4 Energy Consumption Assessment

We present the results of our energy consumption analysis for running on CPU
and FPGA the inference task in Table 4. We report the results as the average
energy (in μJoule) spent by the QS algorithm for scoring one single instance.
For CPU implementations, we perform the analysis by employing the Mammut5

library [28]. We use Mammut to read the total energy consumption of the CPU
exposed by means of hardware energy counter registries available on Intel CPU
architectures. All energy measures obtained are discounted by the energy spent
by cores not used by the scoring process. For the FPGA implementation, we
employ the Maxim Power Tool USB-to-PMBus Interface Dongle.6 All energy
measures obtained include the energy spent by all components in the PS and
in the PL. The PL frequency is set at 200 MHz. Results in Table 4 show that
the FPGA-BQ deployment significantly reduces on both datasets the energy
consumption measured with respect to the CPU implementations. Specifically,
on FPGA we measure an energy consumption for inference that is from 9× up
to 19.8× lower than on the CPU. This large difference, consistent with measures

5 https://github.com/DanieleDeSensi/mammut.
6 https://www.maximintegrated.com/en/products/power/switching-regulators/

maxpowertool002.html.
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Table 4. Per-instance average energy consumption (μJoule).

Dataset QS version Replication Factor

1 2 4 8 12

MSN30K FPGA-BQ 37 35 16 14 13

CPU-BQ 492 316 239 180 173

Istella-S FPGA-BQ 31.1 22 17.2 17.6 16.9

CPU-BQ 616 398 294 224 217

reported in literature for other computing tasks [27], show that an accurate
design of the most demanding components of the ranking pipeline with FPGA
technology can impact significantly web-scale systems where energy is a major
source of cost.

6 Conclusions and Future Work

Modern programmable logic provide an interesting energy-aware alternative to
traditional servers for several high-performance tasks. In this paper we tackled
the exploitation of SoC-FPGA devices for demanding inference tasks based on
complex machine-learned models. We proposed to use binning and quantiza-
tion to compress additive ensemble of decision trees and increase the number of
inference tasks processed in parallel on the FPGA logic. The use case considered
was ad-hoc retrieval with fully-optimized LtR models, where finding the best
trade-off between accuracy and efficiency is definitely important. Reproducible
experiments show that our model compression techniques do not impact the pre-
diction accuracy in a statistically significant measure and that the deployment of
a ranking solution based on state-of-the-art algorithms on a low-cost SoC-FPGA
device achieves scoring times comparable to those measured on high-end multi-
core CPUs. We also showed that the data transfer supplied by the PCIe interface
connecting the FPGA to the host machine contribute with a negligible latency
with respect to the one of the scoring. On the other hand, the SoC-FPGA solu-
tion consumes one order of magnitude less energy in performing the inference.
This result can impact significantly large-scale systems where inference is a key
task and energy is a major source of cost.

As future work we will investigate the exploitation of SoC-FPGA architec-
tures in the design of optimized algorithms for other inference tasks possibly
benefiting from programmable logic. Specifically for the IR domain, we will study
the feasibility of this technology for neural ranking.
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