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ABSTRACT

Context. Observational studies carried out to calibrate the masses of galaxy clusters often use mass–richness relations to interpret
galaxy number counts.
Aims. Here, we aim to study the impact of the richness–mass relation modelled with cosmological parameters on mock mass
calibrations.
Methods. We build a Gaussian process regression emulator of high-mass satellite abundance normalisation and log-slope based on
cosmological parameters Ωm,Ωb, σ8, h0, and redshift z. We train our emulator using Magneticum hydrodynamic simulations that span
different cosmologies for a given set of feedback scheme parameters.
Results. We find that the normalisation depends, albeit weakly, on cosmological parameters, especially on Ωm and Ωb, and that their
inclusion in mock observations increases the constraining power of these latter by 10%.On the other hand, the log-slope is ≈1 in every
setup, and the emulator does not predict it with significant accuracy. We also show that satellite abundance cosmology dependency
differs between full-physics simulations, dark-matter only, and non-radiative simulations.
Conclusions. Mass-calibration studies would benefit from modelling of the mass–richness relations with cosmological parameters,
especially if the satellite abundance cosmology dependency.
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1. Introduction

Properties of galaxies within galaxy clusters (GCs) are con-
nected to the properties of their underlying halo. This relation-
ship, defined as the galaxy–halo (G–H) connection (see
Wechsler & Tinker 2018, for a complete review on the topic
and its applications), provides a powerful framework with which
to test galaxy formation models (Reid et al. 2014; Coupon et al.
2015; Rodríguez-Puebla et al. 2017) and constrain cosmological
parameters (Leauthaud et al. 2017), and can be used as a proxy
to calibrate halo masses (Zenteno et al. 2016).

One key topic related to the G–H connection is the halo occu-
pation distribution (HOD, see Kravtsov et al. 2004, for a pio-
neering study), which is the conditional probability distribution
P(N |M) that a halo of mass M has a galaxy abundance N. In the
context of HOD, galaxy counting is separated into central Nc and
satellite Ns abundances, so that

N ≡ Nc + Ns. (1)

Indeed, central and satellite galaxies belong to two different
populations as they experience different processes (Guzik &
Seljak 2002), as shown by both observations (Skibba 2009) and
numerical simulations (Wang et al. 2018): the satellite galaxy
abundance distribution P(Ns|M) (i.e., the satellite HOD) is typ-
ically modelled with a Poisson distribution at each mass bin

(Kravtsov et al. 2004) and its average value should increase with
halo mass; while the number of central galaxies Nc tends to
unity asymptotically with respect to the galaxy-mass selection
threshold. The average Ns−M relation in observational works
is typically modelled with a power law at high halo masses
(see Costanzi et al. 2019) as

〈Ns〉M ∝ Mβ. (2)

The subhalo population is affected by the host halo accretion
history (Giocoli et al. 2008) and HOD normalisation has a mild
evolution with redshift as noted in Kravtsov et al. (2004). The
log-slope β plays a key role in galaxy formation efficiency and is
not yet well constrained.

Constraining the HOD is crucial for interpreting many obser-
vational studies (see e.g., Ross et al. 2010), and efforts have
been made to model HOD using additional halo properties
besides mass: assembly bias (Hearin et al. 2016), the environ-
ment (Voivodic & Barreira 2021; Hadzhiyska et al. 2021b), and
a combination of the two (Yuan et al. 2021), as well as concentra-
tion (Avila et al. 2020) and velocity dispersion (Hadzhiyska et al.
2021a). However, most observational studies deal with a cata-
logue that contains little or no information about their halo accre-
tion histories (see e.g., Costanzi et al. 2019), and part of this work
is devoted to understanding whether or not the dependency of
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satellite abundance on cosmological parameters. can improve
mass-calibration studies.

There are studies in the literature that explore how galaxy
populations are affected by variation of cosmological param-
eters (see e.g., van den Bosch et al. 2005; Wang et al. 2008).
However, as baryons are known to play a role inside galaxy clus-
ters (Despali & Vegetti 2017; Castro et al. 2021), in this work we
focus on high-mass satellite abundance in full-physics (FP) sim-
ulations. Because of limited resolution, we only study the high-
mass subhaloes and model the mass–richness relations with a
power law (as done in some observational works).

First, we motivate the use of FP simulations as opposed to
dark matter only (DMO) simulations, as their mass–richness
relations depend differently on cosmological parameters; we
then show that mock observations can benefit from modelling of
the mass–richness relation based on cosmological parameters.

We use the Magneticum1 suite of hydrodynamic simulations
(Biffi et al. 2013; Saro et al. 2014; Steinborn et al. 2015, 2016;
Teklu et al. 2015; Dolag et al. 2015, 2016; Bocquet et al. 2016;
Remus et al. 2017; Ragagnin et al. 2019). Here we employ a set
of 15 runs with the same initial conditions and run on different
cosmological parameters (Singh et al. 2020; Ragagnin et al.
2021) but with the same feedback scheme parameters.

The paper is structured as follows: in Sect. 2, we describe
the numerical setup of the simulations used in this work in
detail. In Sect. 3, we justify the need to study HOD cosmology
dependency with FP simulations instead of DMO simulations.
In Sect. 4, we fit the satellite abundance for all our simulations
and snapshots, build an emulator, and test it. We devote Sect. 5
to studying the effect of employing an emulator in mock obser-
vations. We draw our conclusions in Sect. 6.

2. Magneticum simulations

Magneticum simulations are based on the N-body code
P-Gadget3, which is an improved version of P-Gadget2
(Springel et al.2005b;Springel2005;Boylan-Kolchin et al.2009)
with an improved neighbour search (Ragagnin et al. 2016),
and an improved smoothed particle hydrodynamics solver
(Beck et al. 2016). These simulations include a treatment of
radiative cooling, heating, ultraviolet (UV) background, star
formation, and the stellar feedback processes (as in Springel et al.
2005a) connected to a detailed chemical evolution and enrichment
model (as in Tornatore et al. 2007), which follows 11 chemical
elements (H, He, C, N, O, Ne, Mg, Si, S, Ca, and Fe) with
the aid of the CLOUDY photoionisation code (Ferland et al.
1998). Fabjan et al. (2010), Hirschmann et al. (2014) describe
prescriptions for black hole growth and for feedback from active
galactic nuclei (AGNs).

Haloes together with their member galaxies are respectively
identified using the friends-of-friends halo finder (Davis et al.
1985) and an improved version of the subhalo finder SUBFIND
(Springel et al. 2001) that takes into account the presence of
baryons (Dolag et al. 2009). In this work, we mainly focus on
a set of 15 simulations labelled Box1a/mr C1–C15 simulations.
These span a range of total matter fraction 0.153 < Ωm <
0.428, baryon fraction 0.0408 < Ωb < 0.0504, power spec-
trum normalisation 0.650 < σ8 < 0.886, and reduced Hubble
constant 0.670 < h0 < 0.732, and are chosen using a Latin
hypercube sampling (see Sect. 2 in Singh et al. 2020, for more
details), as presented in Tables 1 and 2, and are centred around
simulation C8, which has WMAP7 cosmological parameters.

1 www.magneticum.org

For each simulation, we study the haloes at a time slice with
redshift z = 0.00, 0.14, 0.29, 0.47.

In order to study the resolution and mass range of our emu-
lator, we use three additional Magneticum simulations, all with
the same WMAP7 cosmology as C8: we use a high-resolution
(HR) simulation Box2/hr2 (Hirschmann et al. 2014); we use an
ultrahigh-resolution simulation Box4/uhr (Teklu et al. 2015) to
study the emulator mass-range validity on low-mass haloes; and
a large-volume MR simulation (Box0/mr, Bocquet et al. 2016)
in order to validate our high-mass satellite HOD results up to the
most massive galaxy clusters of the Universe. We note that the
phases of the initial conditions of these three boxes are different.

In this work, all masses and radii are expressed in physical
units (except in Table 1 where the units have been chosen differ-
ently for the sake of conciseness), and are therefore not implic-
itly divided by (1 + z) or h0 as in other works on simulations.

3. Comparison of DMO and FP simulations

In this section, we describe our motivation to use running FP
simulations over multiple cosmologies as opposed to DMO sim-
ulations. As we show, the two setups produce mass–richness
relations that depend differently on cosmological parameters.
Figure 1 shows 〈Ns〉M for two cosmologies of which we have
the norad counterparts, Box1a/mr C1 and C15, and for two cos-
mologies of which we have the DMO counterpart, C8 and C1.
As DMO and norad simulations have no stars, here we count
galaxies based on their total mass MGAL,tot > 1012 M� re-scaled
by Ωm/Ωm,WMAP7.

First of all, we note that the C8 DMO Ns−M relation is
systematically steeper than the respective FP run. Therefore,
these kinds of relations are strongly affected by the presence of
baryons. Additionally, we can see that C15 and its norad coun-
terpart have almost the same satellite count, while C1 and its
norad counterpart differ by more than a factor of two. There-
fore, the effect of baryons on the Ns−M relation depends on cos-
mological parameters. These two experiments show that study-
ing HOD dependency on non-FP simulations would have pro-
duced a different cosmology dependency from the one found
in this work.

We now test the possibility of recovering the mass–richness
relation using the subhalo abundance matching (SHAM) tech-
nique. In particular, we perform SHAM based on the subhalo
peak of circular velocities estimated at infall (Vpeak), as various
works in the literature found this technique to be very effective
(see e.g., Chaves-Montero et al. 2016; Hadzhiyska et al. 2021b;
Campbell et al. 2018). In order to estimate which cut on Vpeak
we should apply to our haloes so that our richness accounts only
for well-resolved satellites, we estimated the median value of
Vpeak that would provide the same richness of a stellar mass
cut of 1011 M� h−1, so that Ns(> Vpeak) = Ns(> 1011 M� h−1).
We show the distribution of Vpeak for C15 FP haloes (Mvir >

5 × 1014M� h−1) in Fig. 2 and we can see that the median value
of Vpeak is approximately 400 s−1 km. We then present our mass–
richness results in Fig. 3 (where we applied the same cut as
before, so that Vpeak = 400 s−1 km) for FP simulations of C1 and
C15 cosmologies and their SHAM counterpart to C15 FP. We
note that richness coming from Vpeak-SHAM helps in reproduc-
ing abundances across cosmological parameters; however, it sys-
tematically over-predicts the C1 SHAM number of satellites (see
that the dashed red line lies above the black solid line) because

2 Box2/hr halo data are available at the web portal presented in
Ragagnin et al. (2017).
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Table 1. Magneticum simulation specifications used in this work: Box0/mr, Box1a/mr, Box2/hr, and Box4/uhr.

Name Cosmologies Box size mDM mgas εDM εgas εstars

[aMpc h−1]
[
M� h−1 Ωm

Ωm,WMAP7

] [
M� h−1 Ωb

Ωb,WMAP7

]
[akpc h−1] [akpc h−1] [akpc h−1]

Box0/mr C8 2688 1.3 × 1010 2.6 × 109 10 10 5
Box1a/mr C1-15 896 ” ” ” ” ”
Box2/hr C8 352 6.9 × 108 1.4 × 108 3.75 3.75 2
Box4/uhr C8 48 3.6 × 107 7.3 × 106 1.4 1.4 0.7

Notes. Columns from left to right present, the name, cosmology (see Table 2), box size in comoving Mpc h−1, dark matter and initial gas particle
masses mDM,mgas, and gravitational softening for dark matter, gas, and stars εDM, εgas, and εstars.

Table 2. List of Magneticum cosmologies for the Box1a/mr C1–C15
simulations.

Name Ωm Ωb σ8 h0

C1 0.153 0.0408 0.614 0.666
C2 0.189 0.0455 0.697 0.703
C3 0.200 0.0415 0.850 0.730
C4 0.204 0.0437 0.739 0.689
C5 0.222 0.0421 0.793 0.676
C6 0.232 0.0413 0.687 0.670
C7 0.268 0.0449 0.721 0.699
C8? 0.272 0.0456 0.809 0.704
C9 0.301 0.0460 0.824 0.707
C10 0.304 0.0504 0.886 0.740
C11 0.342 0.0462 0.834 0.708
C12 0.363 0.0490 0.884 0.729
C13 0.400 0.0485 0.650 0.675
C14 0.406 0.0466 0.867 0.712
C15 0.428 0.0492 0.830 0.732

Notes. Row C8? represents the original runs on WMAP7 cosmological
parameters. Columns from left to right present the name and cosmolog-
ical parameters Ωm,Ωb, σ8, and h0, respectively.

of the different structure number counts in the two cosmologies.
From this experiment we conclude that, in order to estimate
the mass–richness relation at different cosmologies, running
multiple FP simulations (as done in this paper) is more accurate
than running DMO simulations and applying SHAM to them.

4. Satellite abundance emulator

In this section, we train an emulator in order to extrapolate the
mass–richness relation for some arbitrary cosmological param-
eters (that are within the range of the parameters of our simu-
lations). We use this emulator in the following section, where
we estimate the benefit of using it in mock mass–calibration
studies. To this end, we first searched for a stellar-mass cut
that causes the richness of Box1a/mr C8 to converge with its
high-resolution counterpart Box2b/hr (see Appendix A for more
details), and found that if we limit ourselves to galaxies with
M? > 2×1011 M�, then the two simulations have the same mass–
richness relations. This relatively high stellar-mass cut could
introduce a bias in the satellite population; however, this mass
range should still be enough to constrain the normalisation and
log-slope of a power-law modelling.

We find that the Box2/hr satellite HOD offset between its
fiducial stellar mass cut (1010 M�) and the C8 stellar mass cut:

1014 1015

M200c[M ]

100

101

N
s,

20
0c

MSH,tot > 1012M × m/ m, WMAP7

C1 ( DM = 0.112)
C8
C15 ( DM = 0.379)
full physics
DMO
norad

Fig. 1. Satellite count Ns,200c vs. halo mass M200c for Box1a/mr C1 (blue
higher lower lines), C8 (black intermediate lines), and C15 (orange
lower lines) simulations, their non-radiative (dotted lines, abbreviated
with norad) counterpart, and their DMO counterparts (dashed lines).
For galaxy masses MSH,tot of greater than 1012 M� ×Ωm/Ωm,WMAP7.

200 400 600 800 1000
Vpeak[s 1km]

0

20

40

60

80

PD
F

Fig. 2. Distribution of Vpeak of C15 haloes needed to obtain the same
richness of a stellar mass cut of 1010 M� h−1, so that Ns(> Vpeak) =
Ns(> 1011 M� h−1).

(2 × 1011 M�) is

Ns

(
M? > 1010 M�

)
Ns

(
M? > 2 × 1011 M�

) ≈ 31. (3)

We consider this ratio useful to compare MR satellite abun-
dances with HR simulations in the literature with a cut
M? > 1010 M�.

To estimate the satellite count and compare it consis-
tently between different cosmologies, one must choose a min-
imum stellar mass cut for each set of cosmological parameters.
Following Anbajagane et al. (2020), we decided to rescale the
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1056 × 104

Mvir × m, WMAP7/ m[h 11010M ]

100

101

N
s

C15 FP
C1 FP
SHAM C1DMO  C15 FP
SHAM C15DMO  C15 FP

Fig. 3. Satellite count with a cut of Vpeak > 400 s−1 km, and richness
Ns as a function of the halo mass for FP simulations (solid lines) of
C15 (black lines) and C1 (red lines), and for SHAM from their DMO
counterpart to C15 FP (dashed lines).

satellite stellar-mass cut with M? > 2 × 1011 M� · fb/ fb,WMAP7.
In order to keep the satellite HOD in the power-law regime, we
imposed a halo mass cut so that a given mass bin has at least
one halo with eight satellites. After this cut, we found that two
setups ended with only a few haloes above the mass cut, and so
we removed them from further analyses.

4.1. Ns−M relation fit

We model the average satellite abundance as a power law of halo
mass as in Eq. (2), with a normalisation A and log-slope β as
follows

〈Ns〉M = Ns (M, A, β) = A ·
(

M
Mp

)β
, (4)

where we use Mp = 5×1014 M� as pivot mass because it approx-
imates the median mass of the haloes selected at z = 0 in the
reference cosmology C8.

We fit A and β parameters by maximising a likelihood L
that models satellite HOD as the convolution of a Poisson and
possible deviations from it (as studied in Boylan-Kolchin et al.
2011; Jiang & van den Bosch 2017) with a positive-value
Gaussian distribution, with fractional scatter σ on the aver-
age satellite abundance. This kind of modelling has been used
in mass-calibration studies, such as Costanzi et al. (2019) and
Abbott et al. (2020), where the positive-value Gaussian scat-
ter accounts for different accretion histories. The likelihood is
calculated as follows:

L (A, β, σ) =
∏

i

∫
0
P

(
Ns,i|n

)
N

(
n
∣∣∣Ns (Mi, A, β) , σNs (Mi, A, β)

)
dn∫

0
N

(
n
∣∣∣Ns (Mi, A, β) , σNs (Mi, A, β)

)
dn

,

(5)

where i runs over all haloes that we selected in a snapshot.
We maximised3 the likelihood in Eq. (5) for all simula-

tions separately and Fig. 4 shows the power-law fit for C8 and
C15 at all available redshifts (left panel) and for all simula-
tions at z = 0 (right panel). The shaded area corresponds to the
Gaussian scatter σ, showing that average satellite abundances

3 We usedpythonpackageemcee from Foreman-Mackey et al. (2019).

differ on different cosmologies. We can qualitatively see that
different cosmologies and redshift lead to values of β that are
close to 1 and a normalisation that can vary by up to a factor
of two. See Appendix B for more details on the fit values. We
note that C6 cosmology in Fig. 4 has a low normalisation and
a larger uncertainty with respect to the other cosmologies. This
is because C6 has a relatively low number of satellites, which
implies a higher halo mass cut (we remind that this cut is chosen
so at least one halo has eight satellites). The consequent small
sample size leads to a larger uncertainty. In the following sec-
tions, we show that the low richness of C6 may be due to a com-
bination of its low σ8 and Ωb values.

One may argue that the dependency of Ns on cosmological
parameters is rooted in the fact that Ns depends on halo con-
centration and the halo concentration depends on cosmology.
However, even if concentration and assembly bias play a role
in the satellite count, this alone cannot account for the depen-
dency between cosmological parameters shown in Fig. 4. In
fact, the Box1a/mr C13 simulation has an outstandingly low
number of satellites (it has no halo with Ns ≥ 8 and is not
included in the emulator), while it does not have a particularly
high concentration–mass normalisation (see Fig. 2 in Ragagnin
et al. 2021).

In Fig. 5, we summarise the parameters A, β, and σ found
by maximising Eq. (5) for ∆200c, where we can see a mild red-
shift evolution of A and β as found in Kravtsov et al. (2004). An
increase in Ns with redshift could be expected, because towards
high redshift we are selecting an increasing number of young
clusters (the mass cut does not change with redshift), and young
clusters are known to be richer (see Bose et al. 2019).

4.2. The Gaussian process regression emulator

In order to model the HOD as a function of cosmological param-
eters and redshift, we build an emulator based on Gaussian pro-
cess regression (GPR) with the aim of predicting A, β, andσ. Our
main motivation is that these parameters do not follow simple
functional forms, such as a power law, as can be seen in Fig. 5.

For this purpose, we train the GPR model4 on an array of
Ai, βi, and σi residuals with respect to a power-law fit on cos-
mological parameters (where i runs in all setups). We present fit
posteriors in Appendix C, and below we report the results and
errors from the fit:

ln (A200c) = 0.5510.045
−0.041 − 1.3040.246

−0.224ln
( Ωm

Ωm,p

)
+ 3.0081.093

−1.104ln
( Ωb

Ωb,p

)
+ 4.0370.610

−0.823ln
( σ8

σ8,p

)
− 0.8031.974

−1.982ln
( h0

h0,p

)
− 0.8780.267

−0.323ln
( a
ap

)
± 0.2 (6)

ln (β200c) = 0.0430.028
−0.030 + 0.2880.177

−0.185ln
( Ωm

Ωm,p

)
− 0.9310.850

−0.826ln
( Ωb

Ωb,p

)
− 1.0560.690

−0.664ln
( σ8

σ8,p

)
− 0.7751.590

−1.586ln
( h0

h0,p

)
+ 0.0800.162

−0.155ln
( a
ap

)
± 0.1, (7)

where pivot cosmology parameters are set to C8 values and pivot
scale factor is a = 0.87.

4 We used sklearn package (Pedregosa et al. 2011).
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z=0.47
C8
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M200c[M ]
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m

Fig. 4. Average satellite count within R200c vs. halo mass for different simulations and redshifts as resulting from maximising the likelihood in
Eq. (5). Left panel: satellite count vs. halo mass relation for simulations Box1a/mr C8 (dashed lines) and C15(dotted lines) at three different
redshifts (the redder the higher the redshift). Right panel: each line represents a simulation at z = 0, colour coded with green with increasing Ωm;
line thickness covers the Gaussian scatter (Poissonian scatter is omitted).
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1.00
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1.00
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0.4
0.5
0.6
0.7
0.8
0.9

2.0

200c

2 × 10 1 3 × 10 1 4 × 10 1

m

0.01
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1.00

Fig. 5. Fit parameters of Eqs. (4) and (5) for Ns,200c. From left to right, parameters A, B, and σ as a function of Ωm, and colour coded by 1 + z
(the redder, the higher the redshift). Vertical error bars corresponds to the uncertainty given from the likelihood posterior in Eq. (5).

We trained our emulator on log-scaled values, as follows:
Xi =

[
ln

( Ωm,i

Ωm,p

)
, ln

( Ωb,i

Ωb,p

)
, ln

(σ8,i

σ8,p

)
, ln

( h0,i

h0,p

)
, ln

(1 + zp

1 + zi

)]

yi =

[
ln

( Ai

A∆

)
, ln

( βi

β∆

)
, ln

( σi

σ∆

)]
,

(8)

where X = {Xi} is the input data; y = {yi} the output data;
i runs over all data points (i.e., all selected snapshots) for which
we maximised the likelihood in Eq. (5); A∆, β∆, and σ∆ are a
function of cosmology; and, as pivot values, we used the same
as in Eqs. (6) and (7).

Concerning the GPR model, we modelled our kernel K as a
constant K0 times a Gaussian radial basis function kernel with
length scale l:

K(x1, x2) = K0 × exp
(
−
‖x1 − x2‖

2

2l2

)
, (9)

where the norm ‖. . . ‖ is the euclidean distance.
We maximised the log marginal likelihood as proposed in

Eq. (2.30) in Rasmussen & Williams (2005) and allowed param-
eters K0 and l to vary in the maximisation. Hereafter, we
define the Emulator predictions as AEmu, βEmu,which themselves
depends on a cosmology and scale factor (Ωm,Ωb, σ8, h0, a).

We define the emulated average number of satellites Ns,Emu as

Ns,Emu = AEmu ×

(
M
Mp

)βEmu

, (10)

where AEmu and βEmu are predicted by our emulator and depend
on cosmology and redshift.

4.3. Emulator error estimate

To estimate the precision of our emulator, we use the same tech-
nique as used by Bocquet et al. (2020): for each data vector
available (Xi, yi), we (i) build a predictor trained on the com-
plete data-set except that point (i.e., [X,Y]i = [{X} \ Xi, {Y} \ yi]),
hereafter OEmu,i , and (ii) for each predictor we compute its
relative error in predicting the untrained value yi. To contextu-
alise the relative error of the emulator, we compare it with the
relative error obtained by predicting yi using only the average of
all values (thus ignoring any cosmology dependency).

As we can see in Fig. 6, the residual PDF of the A from the
emulator (top panel, orange steps) is much more peaked around 1
than the PDF from the predictor based on the averages (blue
steps). This implies that the emulator is effective in predicting
mass–richness normalisation A. On the other hand, there is no
significant gain in recovering the log-slope β.

The residuals distribution of the emulator within ∆200c corre-
sponds to a precision of ≈10−20%, and the average of the GPR
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Fig. 6. PDF of residuals for predictor Pi = Emui and the residual based
on predictions from the average values (Pi = 〈Y〉), with respect to the
missing data point yi. Data are computed on overdensity ∆200c. The
upper row shows the PDF for yi = Ai (normalisation), and the lower
row shows the PDF for yi = βi (log-slope). The scatter obtained with
the emulator is significantly smaller than the residuals on average. Grey
lines correspond to the residuals when the emulator is trained without
either σ8 (dotted line), h0 (dashed line), or when using Ωb/Ωm instead
of training it with Ωb and Ωm separately (dash-dotted line).

error estimations in the missing points is of the same order of
magnitude, and therefore the emulator is capable of correctly
predicting its own uncertainty.

Finally, we study whether we need to train our HOD emu-
lator with the four cosmological parameters Ωm,Ωb, σ8, and h0
or we can reach the same precision by dropping some of these
parameters. For this reason, in Fig. 6, we show the residuals
of the emulator trained without σ8 (dotted line) or without h0
(dashed line) by using Ωb/Ωm instead of training on Ωb and Ωm
separately (dash-dotted line). We find that in all these scenar-
ios, the residuals of the predictions are larger than the complete
setup, which motivates us to use all parameters.

4.4. Mass range

In this subsection, we test the mass range validity of our satellite
HOD across various orders of magnitude in order to identify the
halo mass range of it.

Figure 7 shows that the same power-law satellite abundance
holds from the most massive galaxy clusters M200c ≈ 6×1015 M�
down to haloes of M200c ≈ 5× 1013 M�. It is at this mass that the
low-mass drop of the M? > 1010 M� cut starts, which is partic-
ularly visible in the Box4/uhr regime haloes. Both Box0/mr and
C8 satellite abundances are rescaled using Eq. (3). We estimated

the fractional difference between the average Ns value estimated
using the emulator and that from Magneticum boxes (Box0/mr,
Box2/hr, Box4/uhr) and find that, on average, the relative dif-
ference is ≈5%. This shows that Eq. (3) holds between richness
values from boxes with varying resolutions.

Finally, we study how each cosmological parameter affects
the Ns−M relation. Figure 8 shows the variation of parameters A
and B as a function of the fractional variation of each cosmo-
logical parameter – namely Ωm,Ωb, σ8, h0, and scale factor –
separately around WMAP7 values. We also note that the
decrease in the normalisation with decreasing σ8 and Ωb is in
agreement with the low mass–richness normalisation of C6 cos-
mology.

5. Impact on mock observations

In this section, we test the cosmology-dependence of the HOD
on mock catalogues in order to estimate its impact on the cosmo-
logical parameter constraints. To this purpose, we consider the
richness, which is a weighted sum of the galaxy members often
used as a mass proxy in cluster surveys driven by photometric
data. We recast Eq. (4) in terms of a richness–mass relation:

〈λ〉M = Aλ ·

(
M
Mp

)βλ
, (11)

with Aλ = A0 · Aemu = 72.4 ± 0.7 and βλ = β0 · βemu =
0.935 ± 0.038 (from table IV of Costanzi et al. 2021). Here,
Aemu and βemu are the predictions of the emulator and contain
the dependence on cosmology, while A0 and β0 represent the
cosmology-independent part of the total parameters.

To perform the analysis, we extract a catalogue of halo
masses corresponding to the C8 simulation at redshift z = 0, fol-
lowing the Despali et al. (2016) analytical mass function. This
step ensures that we have a proper description of the mass func-
tion, which we use to obtain an unbiased estimation of parame-
ters. We obtain a catalogue with ∼2.8 × 105 objects, with virial
masses above Mvir > 1013 M�, to which we assign richness by
applying Eq. (11) plus a Poisson scatter. To ease the analysis,
we neglect the intrinsic scatter of the HOD, which is subdomi-
nant with respect the Poisson one. In the end, we compute the
number counts by considering five richness bins in the range
λ = 30−300, where the sample is complete in mass.

We then maximise a Gaussian likelihood:

L(x | µ, C) =

exp
{
−

1
2

(x − µ)T C−1(x − µ)
}

√
2π det C

, (12)

where x is the mock ‘observed’ number count, µ is the count
from a Monte Carlo Markov chain (MCMC) likelihood maximi-
sation, and C is the covariance matrix computed following the
analytical model of Hu & Kravtsov (2003). As in this test we
only aim to give an estimation of the impact of the cosmology-
dependent HOD, we run a simplified MCMC process with only
two free cosmological parameters, Ωm and log10 As (and thus
σ8), neglecting the dependence of the HOD on Ωb and h0, and
neglecting the redshift dependence. Following the approach of
Singh et al. (2020), we compare three different cases below.

Case no cosmo: We ignore the cosmology dependence of the
HOD so that Aλ = A0 and βλ = β0 and we assume flat uninfor-
mative priors both on Ωm and log10 As and on Aλ and βλ.

Case cosmo: We assume flat uninformative priors on
Ωm, log10 As, A0, and β0, plus Gaussian priors on Aλ and
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Fig. 7. Satellite count Ns,200c vs. halo mass M200c for three Magneticum simulations, Box4/uhr (blue coloured and moved slightly down to improve
readability), Box2/hr (green coloured), and Box0/mr (red colour) to account for resolution effects. Data points represent single haloes and coloured
lines represent average values per mass bin. The black line is the emulator prediction, and the shaded area corresponds to the relative uncertainty
from Poisson distribution. Emulator and Box0/mr data are rescaled with Eq. (3).

βλ, respectively, given by N(72.4, 7.0) and N(0.935, 0.038).
The cosmology-dependent parameters Aemu and βemu are com-
puted by the emulator at each step of the MCMC process, and, to
take into account the emulator inaccuracy, we randomly extract
a value from a Gaussian distribution with its centre in the emu-
lator prediction and amplitude equal to σlog Aemu = 0.06 and
σlog βemu = 0.09.

Case cosmo +WL: we add the weak lensing (WL) cosmolog-
ical dependence – which affects the mass calibration in the real
observations – to figure out whether or not the combination of
the cosmology-dependent HOD and other cosmological probes
could improve the parameter constraints. We model the depen-
dence by modifying the prior on Aλ, which becomes a Gaussian
prior with the same amplitude as the previous case, but centred
on

A′λ = Aλ − ln 10∆(Ωm), (13)

with ∆(Ωm) = βλ
d ln MWL

d Ωm
(Ωm − 0.3), where d ln MWL

dΩm
= −0.68 is

the average value from Table I of Costanzi et al. (2019).
In Fig. 9, we show the posterior distributions resulting from

the three analyses. As expected, the marginalised posteriors
recovered by the cosmo case are similar to the ones from the
no cosmo case, but in addition the former is able to constrain the
cosmology-dependent and cosmology-independent components
of the richness–mass relation separately. This can be an advan-
tage, because the components of Aλ show a stronger degeneracy
with cosmological parameters with respect to the one shown by
Aλ alone. This degeneracy can be exploited when combined with
other cosmological probes. On the contrary, this decomposition
for βλ does not present the same advantage, as the full parameter
has a higher degeneracy with cosmological parameters than its
components do.

The third case presents similar posteriors to the simple cosmo
case; to better compare the differences, we quantify the accuracy
of the parameter estimation by computing the figure of merit
(FoM; Albrecht et al. 2006):

FoM(Ωm, σ8) =
1√

det C(Ωm, σ8)
, (14)

where C(Ωm, σ8) is the parameter covariance matrix obtained
from the posteriors. The FoM is proportional to the inverse of

1008 × 10 1 9 × 10 1

fractional variation
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Fig. 8. Variation of Ns,200c emulator A, β, and σ as a function of frac-
tional variation of cosmological parameters Ωm,Ωb, σ8, h0, and scale
factor. Shaded areas show 1 standard deviation provided by the Gaus-
sian process error estimation.

the area enclosed by the ellipse representing the 68% confi-
dence level: the higher the FoM, the more accurate the param-
eter evaluation. The result, shown in Table 3, indicates that the
use of the cosmology-dependent HOD allows us to obtain pos-
teriors that have greater constraining power, and that are further
improved by the addition of the WL information. To prove that
the cosmo+WL result is not achieved only thanks to the addi-
tion of WL, we also show the FoM for the no cosmo +WL case,
which has a constraining power similar to the simple no cosmo
case. By comparing the FoM of the three cases, we obtain an
improvement of about 6% for the cosmo case and of about 11%
for the cosmo + WL case with respect to the no cosmo case.

6. Conclusions

We tackled the problem of studying the dependency of the
satellite count–halo mass relationship on cosmological param-
eters and redshift and studied how modelling could improve
observational studies designed to obtain mass calibrations using
mass–richness relations. To this end, we used FP Magneticum
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Fig. 9. Contour plots at 68 and 95% confidence level for the three cases described in Sect. 5: no cosmo (black), cosmo (blue), and cosmo+WL
(red) contours. The grey dashed lines represent the input values of parameters.

Table 3. Figure of merit in the Ωm–σ8 plane for the three cases of Fig. 9,
plus the no cosmo + WL case.

Case FoM ∆FoM/FoMnc

No cosmo 980 −

No cosmo + WL 993 0.01
Cosmo 1044 0.06
Cosmo + WL 1088 0.11

Notes. The right column shows the normalised differences with respect
to the no cosmo case.

simulations Box1a C1–C15 (see Table 1), which were run
with the same initial conditions but different cosmological
parameters, namely Ωm,Ωb, σ8, and h0. We did not recalibrate

feedback parameters over the various runs, and in this study we
focus on the effect of cosmological parameters on the high-mass
satellite abundance Ns for a fixed feedback configuration. Our
main findings can be summarised as follows:

– We show that DMO and FP subhaloes have different depen-
dencies on cosmological parameters, showing the impor-
tance of parametrising mass–richness relations with results
from FP simulations rather than DMO ones.

– We built an emulator capable of predicting normalisa-
tion, log-slope, and log-scatter of the high-mass power-law
regime of the N−M relation based on GPR modelling in
order to predict the number of satellites for a given cosmol-
ogy. We estimate its error to be ≈20%. This error is compa-
rable to the same uncertainty predicted by the GPR, which
shows that the GPR learned to extract mean values as well as
their associated uncertainties.
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– We tested whether or not parametrising the mass–richness
relation with cosmological parameters can improve mass-
calibration studies. The likelihood analysis on mock mass-
calibration showed that the use of a cosmology-dependent
HOD provides an improvement (∼5%) in the constraining
power over a simple cosmology-independent HOD, which
can be further improved (∼10%) if combined with multiple
mass proxies, such as the weak lensing signal.

This study was carried out over a small number of cosmologies
and with a resolution limited to the high-mass regime of haloes.
It shows that mass-calibrations can benefit from modelling
mass–richness relations with cosmological parameters from
hydro-simulations. Future studies could focus on the depen-
dency of the radial distribution of substructures on cosmology.
The emulator log-slope predictions have a large uncertainty (see
Fig. 8 where the shaded area spans β ∈ [0.9, 1]), which means
there is a need for simulations that consider additional cosmo-
logical parameters and feedback parameters in order to improve
GPR interpolation.
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Appendix A: Stellar mass cut

To build our HOD emulator, first of all we estimate which stellar
mass cut to apply to the satellite count of our Box1a/mr C1–
C15 simulations. For this purpose, we vary the stellar mass cut
of both C8 and its HR counterpart (Box2/hr) until their Ns − M
relations statistically match. Figure A.1 shows convergence tests

for stellar mass of C8 satellites. The left panel shows the Ns−M
relation of C8 and Box2/hr with the fiducial Box2/hr mass cut
M? > 1010M� (as chosen in Anbajagane et al. 2020); the central
panel shows that a stellar mass cut M? > 1011M� is not high
enough to make C8 match its HR counterpart; the right panel
shows that a stellar mass cut M? > 2 · 1011M� is capable of
reconciling the two simulations.

1013 1014 1015

M200c[M ]

100

101

102

N
s(r

<
M

20
0c

)

M > 1010M

C8
Box2/hr

1013 1014 1015

M200c[M ]

M > 1011M

1013 1014 1015

M200c[M ]

M > 2 1011M

Fig. A.1. Galaxy abundance of HR (Box2/hr in orange) and MR (C8 in blue) simulations for varying minimum stellar mass of galaxies: M? >
1010M� (left panel), M? > 1011M� (middle panel), and M? > 2 · 1010M� (right panel).
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Appendix B: Satellite abundance fit for each
simulation

Table B.1 reports the fit parameters of average satellite abun-
dance as a function of halo mass, for all setups that had a
p−value below 0.9 and higher than 0.01. The problematic fits
were those at z = 0.67, where a few of them failed, which is
probably because the resolution of our simulations is not always
enough to reach this redshift. Only a total of 48 fits were suc-
cessful.

In order to fit the power-law halo-mass region of the satel-
lite abundance relation, we imposed a halo mass cut at Mvir =
3 · 1014M� for C8 simulation and scaled the mass cut to other
simulations according to their baryon fraction. Some cuts were
modified in order to manually shrink or enlarge the halo range
so as to maximise the number of data points and yet not cross
the mass cut at low halo masses.

Figure B.1 shows the posterior of the fit for simulation
Box1a/mr C8 z = 0. Here we can see that the fractional scat-
ter σ is consistent with zero.

Table B.1. Values of the halo mass cut (Mcut in units of 1014 M�), and mass–richness fit parameters lnA, β, and σ (as in of Eq. 4) for each simulation
used in this work.

z = 0.00 z = 0.14 z = 0.29 z = 0.47
Mcut lnA β σ Mcut lnA β σ Mcut lnA β σ Mcut lnA β σ

C1 - - - - - - - - - - - - - - - -
C2 15.2 −0.76 1.76 1.39 4.0 0.72 0.87 0.06 - - - - - - - -
C3 4.8 0.73 1.05 0.03 4.5 0.87 0.98 0.04 4.5 0.98 0.98 0.04 5.0 1.05 0.88 0.05
C4 9.6 0.25 1.20 0.14 9.7 0.69 0.83 0.16 - - - - 6.6 0.85 0.76 0.24
C5 8.4 0.49 1.01 0.08 7.1 0.50 1.15 0.07 9.6 0.49 1.23 0.10 7.5 0.33 1.45 0.10
C6 11.0 −0.41 1.62 0.33 - - - - 7.8 −0.04 1.71 0.22 - - - -
C7 16.3 −0.88 1.62 1.40 6.0 0.61 0.83 0.07 6.1 0.84 0.72 0.09 5.7 0.84 0.52 0.11
C8 4.3 0.78 0.98 0.03 4.8 0.93 0.90 0.03 5.1 1.01 0.89 0.03 4.6 1.04 1.01 0.04
C9 7.9 0.60 0.99 0.04 8.1 0.63 1.08 0.04 7.1 0.87 0.86 0.04 7.0 0.87 0.97 0.06
C10 4.8 0.73 1.02 0.02 4.0 0.88 1.00 0.02 3.6 0.99 1.02 0.02 4.5 1.13 0.94 0.02
C11 7.4 0.47 1.01 0.03 7.3 0.65 0.93 0.02 5.4 0.70 0.92 0.04 7.3 0.63 1.13 0.05
C12 4.8 0.56 1.00 0.02 6.1 0.70 0.98 0.02 7.1 0.83 0.95 0.03 5.9 0.85 1.02 0.04
C13 - - - - - - - - - - - - - - - -
C14 10.4 0.18 1.06 0.03 9.4 0.31 1.04 0.03 7.6 0.38 1.02 0.03 10.2 0.24 1.33 0.07
C15 9.4 0.23 1.01 0.03 9.2 0.44 0.91 0.04 9.6 0.28 1.14 0.04 10.5 0.55 0.92 0.09

Notes. Each row corresponds to a given cosmology C1–C15, column-groups report redshift slices. Cells containing a dash report cosmology–
redshift configurations for which the setups had an insufficient number of haloes within the mass cut, as explained in Sect. 4.2.
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Fig. B.1. Posterior associated to likelihood (5) for Box1a/mr C8 at z = 0
for ∆ = 200c. Parameters A and β are as in Eq. (4) andσ is the fractional
scatter in the likelihood.

Appendix C: Cosmology-dependent power-law fit
posteriors

In this Appendix, we report the results of the A200c fit. To fit A200c
and similarly also β and σ for both ∆200c and ∆vir, as in Eqs. (6)
and (7), we maximised a likelihood as follows:

lnL (lnA0, eθ, σ)

= −
1
2

∑
i

ln(2πσ2) +

(
ln A200c (lnA0, eθ,Ci, zi) − ln A200c,i

σ

)2 , (C.1)

where i runs over all setups, Ci and zi are the cosmol-
ogy and redshift of that setup, A200c,i is the normalisation
found in Sect. 4 for a given setup, eθ is a set of expo-
nents (em, eb, eσ, eh, ea) for the respective input parameters θi =
(Ci, ai) = (Ωm,i,Ωb,i, σ8,i, h0,i, ai), where σ is the fractional scat-
ter, and A200c has a power-law dependency from cosmological
parameters, as follows:

ln A200c (lnA0, eθ, θi) = lnA0 +
∑

i

eiln
θi

θi,p
, (C.2)

where the pivot values θi,p are presented in Sect. 4.2. Figure
C.1 shows an example of a posterior distribution of param-
eters (lnA0, eθ, σ) for a single snapshot. The evaluation of
β200c, σ200c, Avir, βvir and σ200c was performed in the same way
as described above.
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Fig. C.1. Posterior associated to the likelihood in Eq. (5). The parameter lnA0 is the normalisation 0.64+0.03
−0.03 in Eq. (6), σ is the Gaussian scatter of

the fit, and em, eb, eσ, eh, ea are, respectively, the exponents for the logarithm of Ωm,Ωb, σ8, h0, 1/(1+z) divided by the respective pivot as discussed
in Sect. 4.1.
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