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A B S T R A C T

Predictions from machine learning algorithms have often supported decision-making in industrial processes.
Despite this, complex models can be challenging to interpret, sometimes shrouding the entire prediction
process in an undesirable mystery. Understanding how the classifiers’ recommendations are made helps human
experts understand the phenomenon and develop better data-driven solutions. Therefore, this study takes
advantage of Shapley additive explanations to explain the predictions obtained by the classifier and select
the most appropriate features for the approaches. The experiments use extreme gradient boosting to evaluate
temporal, spectral, and wavelet features of three-phase induction motor current signals. The proposed approach
effectively reduces the number of attributes without losing performance, provides an understanding of how
each feature affects the model over a wide range of voltage unbalances and torque values, and detects early
inter-turn short circuits with severity of 1%. The results show that combining the intelligent model with Shapley
explanations improves stator winding fault diagnosis in these highly problematic situations.
1. Introduction

The three-phase induction motor (TIM) is considered a robust and
reliable electrical machine, but it is often exposed to unsuitable con-
ditions that can lead to failure. Power quality issues, excessive over-
loading operation, and natural aging are common factors that lead
to insulation degradation and inter-turn short circuit (Gundewar &
Kane, 2020; Merizalde et al., 2017). If an inter-turn short is not de-
tected early, it can quickly evolve into coil-to-coil, phase-to-phase, and
phase-to-ground faults. In this case, the damage to the machine could
be irreversible (Husari & Seshadrinath, 2022). In addition, according
to Gundewar and Kane (2020), Gyftakis and Cardoso (2020) and Mer-
izalde et al. (2017), about 28% to 40% of TIM failures are related to
tator windings. For these reasons, short circuits in windings are an
mportant problem in the industrial context, and an incipient defect
ust be detected as soon as possible.

A monitoring strategy is required to prevent motor failures and
educe downtime for maintenance (Gyftakis & Cardoso, 2020). Model-
ased approaches rely on complex mathematical models that describe
he machine’s behavior. In this case, the strategy may use equivalent
ircuits, finite element methods, or analytical models. However, the
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diagnosis’ reliability depends on the quality of the mathematical model
that simulates the adverse conditions to which the motor may be
subjected. The signal-based method allows the creation of fault indices
from various signals collected from TIM. Some typical signals are stator
current and voltage, vibration, audio, and electromagnetic flux.

The study by Drif and Cardoso (2014) highlights that most inter-
turn short circuit (ITSC) diagnostic strategies are sensitive to phase
imbalances in the power grid. The authors stated that distinguishing
between a failure and this power quality problem is complex and
almost impossible at very early stages. According to Alloui et al. (2022),
voltage imbalances lead to similar symptoms as winding faults. The
proposed approach to overcome this problem involves the application
of short-time least square Prony’s (STLSP) in combination with the
Fortescue transform to voltage signals. In the recent work of Sonje et al.
(2019), the discrete wavelet transform (DWT) and Park’s vector modu-
lus (PVM) are applied to current signals. The authors demonstrated the
effectiveness of the fault indicator in the face of voltage fluctuations
and different load levels. In these works, elaborated strategies have
been presented, and their potential for ITSC identification has been
1
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demonstrated. However, for industrial applications, it is critical to
implement an automatic process.

In this context, a machine learning (ML) algorithm is usually imple-
mented to detect the fault patterns automatically (Brito et al., 2022).
upport vector machine (SVM) is commonly used for classification
asks. Lee et al. (2023) proposed the application of SVM joint to
eature variable dimensional coordination to detect failures in TIM. The
ethod uses Mahalanobis distance to extract and coordinate features

rom massive data, which reduces computational costs. Random forest
RF) is another method used in recent works (Liling et al., 2019; Roy

et al., 2020; Tian et al., 2021). It comprises a collection of decision
trees (DT) that typically employs a bootstrap-bagging strategy to ag-
gregate individual predictions into a lower variance output (Liling
et al., 2019). Roy et al. (2020) proposed detecting bearing faults using
features extracted from autocorrelograms of vibration signals. They
demonstrated that RF achieved the best accuracy compared to SVM, k-
nearest neighbors (kNN), and naive Bayes (NB). Comparatively, Liling
et al. (2019) combined RF and wavelet transform (WT) to detect inter-
turn short circuits. The approach achieved high accuracy, even with few
samples, and outperformed SVM, demonstrating the method’s potential.

Boosting is another strategy used to train ensembles. Here, the base
models work sequentially, with the adjusted models in the previous
steps forming the basis for performing the next ones. This technique
aims to apply gradient descent to minimize a loss function at each
iteration. In the work of Tian et al. (2021), RF and extreme gradient
boosting (XGBoost) are applied to diagnose air gap eccentricity and
stator failure. The object of study was the traction motor of a high-
speed train, and the dataset was obtained from a simulation platform.
The proposed approach combines wavelet-packet decomposition (WPD)
and principal component analysis (PCA) with stator current for feature
extraction and reduction. They demonstrated that RF and XGBoost
method increase detection accuracy compared to a conventional mul-
tilayer perceptron (MLP) and SVM. A similar comparison can be found
in Wu et al. (2020), where XGBoost, SVM, and adaptive boosting were
contrasted for diagnosing a fault in a wind turbine. It was clear that
the XGBoost performed the best among the experimental models in this
study. The study presented by Ehya et al. (2021) aims to investigate the
feasibility of combining many intelligent models to perform a robust
diagnosis of the inter-turn short circuit in rotor field windings of a
synchronous machine. Various combinations of SVM, kNN, and XG-
Boost were experimented with others ML algorithms, working together
as base classifiers in a stacking scheme. Then, the models’ outcomes
are aggregated by logistic regression as a meta-classifier into a unique
model. The results showed that the stacking classifier often achieves
better generalizations than the individual tools. However, it is also
more complex and computationally expensive.

The work of Haroun et al. (2018) extracts features from stator
currents using the Park transform, zero crossing time, and envelope.
The strategy applies SVM and ReliefF to select relevant features. The
authors have demonstrated that the self-organizing map correctly iden-
tifies winding failures using the proposed approach. The recent work
by Kumar et al. (2021) effectively classifies ITSC using Park’s vector
and MLP. PCA was used for dimension reduction, which improved
the predictor performance. Despite the success of ReliefF and other
related algorithms in selecting important features, they only focus on
improving the performance of ML models. These methods are not able
to make the models interpretable and transparent to detect possible
bias or improve end-user confidence. On the other hand, although PCA
is a powerful tool to make the predictors more accurate, the causal
relationship between the defect and the features is lost by creating
new orthogonal variables. The present work aims to promote a clear
association between the failure event and its indicators. Therefore,
Shapley additive explanations (SHAP) are better suited than these
groups of techniques to help with this task.

Frequently, sophisticated models can achieve high accuracy. How-
2

ever, it is not easy to understand what causes the model to make
a particular prediction. On the other hand, high-bias ML techniques,
such as DT and logistic regression, are comprehensive but lack pre-
dictive power (Aas et al., 2021). In Lundberg and Lee (2017), SHAP
is introduced to address these inconveniences. It is a unified frame-
work that increases the transparency of classifications and builds on
the emerging concept of explainable artificial intelligence (XAI). In
general, XAI techniques can effectively take advantage of systems
based on computer intelligence without compromising classification
performance. Interpretation of a model is essential to debugging it
and extracting its full potential. A recent work of Gashi et al. (2022)
compared SHAP with ten other XAI methods, including interpretML,
explainX, Eli5, and interpretable model-agnostic explanations (LIME).
The authors conclude that SHAP excels in computational resources
and interactive exploration of model predictions and is the only XAI
method with a solid theoretical foundation that ensures a uniform
distribution of predictions across feature values for a local explanation.
In addition, Lundberg and Lee (2017) proposed SHAP to unify six
other XAI methods. Their work showed that SHAP improves compu-
tational performance and matches human intuition better than other
approaches. For the aforementioned reasons, SHAP is used to interpret
the predictions in this work.

Since SHAP is a model-agnostic technique, it analyzes only the
input features and the output, so it does not require access to the
ML structure (Brito et al., 2022). This means that SHAP can handle
any prediction method (Aas et al., 2021). Recently, SHAP has been
used to evaluate and interpret predictions in studies from different
fields of knowledge. In Dikshit and Pradhan (2021), SHAP is applied to
develop a robust drought prediction model. In this study, long short-
term memory (LSTM) was employed to generate predictions and SHAP
was used to analyze the relationships among variables and their effects
on forecasting. The work of Veerappa et al. (2022) investigates the
applicability of XAI methods in the maritime domain. A residual neural
network (ResNet) is used to classify vessel types using positional infor-
mation, speed, and other characteristics. The authors demonstrated that
methods based on SHAP reveal the truthfulness of the explanations. In
the biomedical field, Nohara et al. (2022) adopted SHAP to interpret
gradient boost and promote cerebral infarct prediction using real hospi-
tal data. The approach of Santos et al. (2022) employed LSTM to extract
dynamic features and classify events in power systems, while SHAP was
applied to evaluate predictions and help users understand the model’s
decisions. The effectiveness of combining XGBoost and SHAP was also
tested by Smith and Alvarez (2021) for COVID-19 mortality. Analysis
of model predictions at local and global levels allowed the assessment
of which variables positively or negatively affect the probability of
mortality. In Brito et al. (2022), the detection and diagnosis of mechan-
ical failures in rotating machinery are performed by applying vibration
signals and different ML models. Then, to explain and compare the
results, two XAI techniques are used, SHAP and Local Depth-based
Feature Importance for the Isolation Forest (Local-DIFFI). The reports
revealed more relevant features to identify an anomaly and indicated
which ones are directly or indirectly associated with a specific type
of failure. In the work of Zhang et al. (2022), XGBoost and SHAP
were used to diagnose faults in oil-filled transformers. The SHAP values
explained the model and the influence of attributes in each operating
condition, improving the classification performance.

Although advances in TIM fault diagnosis, a robust and reliable
identification system is still challenging (Gyftakis & Cardoso, 2020;
Husari & Seshadrinath, 2022). The XGBoost training method enables
all processor resources to grow learners in parallel, resulting in higher
computational speed than neural approaches (Chen & Guestrin, 2016).
On the other hand, RF is not a deterministic algorithm. As a result,
it can be challenging to obtain coherent explanatory power since the
model can produce different results from the same dataset. The accu-
racy of deterministic prediction is an advantage of XGBoost (Li et al.,
2021), and it is a desirable property to support the comprehension of

the predictions required in this study. XGBoost is a relatively recent



r
(

d
s
s
s
f

f
T
u
e
o
T
u
e

2

t
c
c
d
m
o
e

c
m
i
0
m

𝜙

technique, and few studies have experimented with it in TIM fault
diagnosis scenarios. Its iterative training focused on residual error
promotes special attention to misclassified observations, which could
be suitable for many applications with great prediction power (Chen &
Guestrin, 2016). In this context, this work uses the XGBoost to detect
ITSC stator windings and SHAP to support feature selection and explain
the model’s predictions.

Therefore, the main contributions of the study are listed:

• This work considers fault detection in the early stages, with 1%
turns in the experiments. According to Garcia-Calva et al. (2022),
the stator fault can be considered incipient before exceeding
about 3% of damaged turns. Detecting ITSC in the early stages
is one of the biggest challenges for TIM diagnostic systems (Gyf-
takis & Cardoso, 2020). ITSC evolves fast (Mejia-Barron et al.,
2021), so the monitoring system must detect the fault as soon as
possible (Rangel-Magdaleno, 2021).

• The dataset used considers several levels of supply voltage imbal-
ance. This condition is considered highly problematic for ITSC di-
agnostics since its effects can be confused with the fault (Gangsar
& Tiwari, 2020; Sonje et al., 2019). Moreover, this issue is
widespread in industrial facilities (Adekitan & Abdulkareem,
2019).

• Six different loads are considered, including no-load and over-
load. Typical industrial processes usually require different torques
(Mejia-Barron et al., 2021), so the diagnostic system must operate
over the entire load range.

• Post-hoc interpretation of the classification results is performed
using SHAP to explain the relationship and effects of the input
features. According to Gangsar and Tiwari (2020), many stud-
ies do not address the description of the behavior of a failure
indicator in different situations. Moreover, Zhang et al. (2022)
states that research efforts rarely discuss the interpretability of
the diagnostic model in selecting failure characteristics. There-
fore, this work aims to uncover the correlation between failure
and features. In addition, features from temporal, spectral, and
wavelet approaches are investigated.

• This work implements a data-driven system that provides au-
tomatic fault classification. It is common to find works that
propose new methods for fault detection but do not implement
an intelligent detection system (Gangsar & Tiwari, 2020).

As many studies report, it is difficult to identify incipient ITSC
under adverse conditions caused by the industrial environment, such
as unbalanced voltage supply and different torque values. To overcome
this problem, the methodology proposed in this work explores different
approaches by extracting and combining features calculated in time,
frequency, and time–frequency domains. Moreover, the method shows
the correlation between the features and the failure, helping to describe
how these problematic operating conditions affect the predictions.

2. Technical work preparation

This section presents a theoretical framework and details of data
collection and methodology.

2.1. XGBoost

Basically, the XGBoost algorithm uses boosting to train multiple
classification and regression trees (CART) (Wu et al., 2020). As de-
scribed in Chen and Guestrin (2016), the method for estimating the
esult �̂�𝑖 from a database with 𝑛 samples and 𝑚 features is shown in
1).

�̂�𝑖 =
𝐾
∑

𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹 (1)
3

𝑘=1
Here, 𝐾 is the additive functions (total number of trees), 𝑥𝑖 is the
ataset of the 𝑖th input, 𝑓𝑘 is a function corresponding to a particular
tructure 𝑞, and leaf weights 𝑤 the set of all models is the functional
pace 𝐹 =

{

𝑓 (𝑥) = 𝑤𝑞(𝑥)
}

(𝑞 ∶ R𝑚 → 𝑇 ,𝑤 ∈ R𝑇 ), 𝑞 represents the
tructure of each tree, 𝑇 is the number of leaves in the tree. Thus, the
inal prediction is calculated by summing up the 𝑤 values in the leaves.

Additive training in XGBoost changes the objective function by
ixing the previous prediction and adding a new tree at each step.
hus, the algorithm trains a base model and uses its prediction to
pdate the training data so that the following model fits better. In
ach cycle, the additional base model focuses on the pseudo-residuals
f the previous rounds and aims to minimize the objective function.
he algorithm guides the structure to focus on misclassified instances,
sing the regularization term to control the complexity of the entire
nsemble.

.2. SHAP

SHAP is a method that assigns each attribute a value corresponding
o its importance in a particular prediction. It helps to understand the
lassification process by quantifying the relevance of predictors. SHAP
an be used for global and local explanations. The global interpretation
escribes which features have the greatest influence on the overall
odel. However, when the goal is to understand how the combination

f input features influenced a particular prediction, it is called a local
xplanation (Aas et al., 2021).

In 2017, the study of Lundberg and Lee (2017) proposed the cal-
ulation of SHAP values 𝜙𝑖 using (2), where 𝑥′ are simplified inputs
apped by 𝑥 = ℎ𝑥(𝑥′), 𝑀 is the number of simplified input features, 𝑓

s the original prediction model, and 𝑧′ ∈ {0, 1}𝑀 . Here, ℎ𝑥 maps 1 or
to the original input space, indicating if the input is included in the
odel or not, and 𝑓𝑥(𝑧′) = 𝑓 (ℎ𝑥(𝑧′)).

𝑖(𝑓, 𝑥) =
∑

𝑧′⊆𝑥′

|𝑧′|!(𝑀 − |𝑧′| − 1)!
𝑀!

[𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧′⟍𝑖)] (2)

The strategy of additive feature attribution of SHAP values is shown
in (3) and demonstrates local accuracy in approximating the original
model for a single input 𝑥𝑖 (Lundberg & Lee, 2017).

𝑓 (𝑥) = 𝜙0 +
𝑀
∑

𝑖=1
𝜙𝑖𝑥

′
𝑖 (3)

The value of 𝜙0 corresponds to the expected model prediction,
i.e., the base value 𝐸[𝑓 (𝑧)]. This means that the SHAP values explain
how and why a specific instance prediction 𝑓 (𝑥) deviates from the base
value (Aas et al., 2021). Then the SHAP values comprise a conditional
expectation function of an ML model. That is, the SHAP values for each
input feature sum the difference between the expected output 𝐸[𝑓 (𝑥)]
and the output of the current model 𝑓 (𝑥) for a given sample. In this
way, it is possible to quantify how far a prediction for a given sample
is from the baseline value and how the features interact to obtain this
result. The greater the distance between 𝑓 (𝑥) and 𝐸[𝑓 (𝑥)], the greater
the degree of certainty that a given sample belongs to one category or
the other.

2.3. Data collection and organization

For the development of this work, stator current signals were ac-
quired from induction motors with different numbers of shorted turns,
5%, 3%, 1%, and 0% (no-fault). The percentage of shorted turns de-
pends on the severity of the fault that the approach should detect. The
lower the percentage, the more incipient the fault and the more difficult
it is to detect. Since higher degrees of fault severely damage the coil,
a TIM monitoring system must detect the fault early to avoid a critical
situation. The method used to emulate ITSC in the laboratory was to
intentionally damage the insulation at specific points on the coil and

connect it to external taps. It is worth noting that the coils of all three
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Fig. 1. General scheme for experiments.
Table 1
Number of damaged turns and corresponding severity level.

Severity level TIM 1 TIM 2

1% 3 turns 8 turns
3% 9 turns 23 turns
5% 15 turns 39 turns

phases were rewound in this procedure. This ensures the symmetry of
the assembly. This procedure was performed for two induction motors,
TIM 1 and TIM 2. Both machines are four-pole, 60 Hz, squirrel-cage
type. However, TIM 1 is a 1 HP, 4.06 N m, 1730 rpm, while TIM 2 is
a 2 HP, 8.02 N m, 1750 rpm motor. The stators of the TIMs have six
coils, with 306 turns per phase for TIM 1 and 780 turns for TIM 2. The
fault severity corresponds to the percentage of turns that are shorted
(Table 1), which is defined using the taps (Fig. 1). Therefore, this
method does not require resistors to simulate different fault intensities.

Fig. 1 provides a comprehensive overview of the test bench. A direct
current (DC) machine coupled to the induction motor is controlled by
a DC power supply that allows variation of the resistive load. A resistor
bank is connected to the armature to dissipate the electrical power
generated. The TIM 1 database contains examples with mechanical
loads ranging from 0.1𝑇𝑛 to 1.25𝑇𝑛, where 𝑇𝑛 is the nominal torque.
or TIM 2, the range is from 0.1𝑇𝑛 to 1.125𝑇𝑛. Three independent
ingle-phase variable voltage transformers are used in the panels to
enerate the various combinations of voltage unbalance employed in
his work. For all fault and load conditions, 60 samples of undervoltage
nd overvoltage were collected for the three phases as described in the
iagram of Fig. 2. The undervoltage in phase A reached 10% of the

nominal voltage (𝑉𝑛) in 0.02𝑉𝑛 steps. Overvoltages and undervoltages
were applied simultaneously in phases B and C, limited to ±8% of
𝑉𝑛. The signals have a duration of 1.5 s at a sampling frequency
of 15.5 kHz. A set of Hall-effect current sensors and a DAQ6221
connected to a microcomputer via USB are responsible for measuring
and storing the data. It is worth noting that each of the 60 samples
considers a different operating condition, either due to load variations
or imbalances.
4

2.4. Methodology

Fig. 3 shows the proposed methodology used in the fault diagnosis.
The strategy explores the XGBoost classification potential using fea-
tures computed in the temporal, spectral, and wavelet domains. The
strategy in the time domain is to extract features from the raw signal.
Consequently, no signal processing techniques and less computational
effort are required. For this reason, this approach serves as the basis
for comparison. In addition, since each procedure promotes analysis
from a different perspective, using different analysis domains can help
distinguish authentic ITSC-related patterns from those created by other
operating conditions to which the TIM is exposed.

Table 2 exhibits the full list of features used for each approach.
Details of each feature can be found in Barandas et al. (2020). In
Approach 1, the twenty listed features were computed directly from the
time series. On the other hand, Approach 2 performs the fast Fourier
transform (FFT) of the current signal and splits the obtained spectrum
into segments of 30 Hz, from 0 to 600 Hz (𝑠1 to 𝑠20). Ten features were
obtained from each spectral segment, for a total of over two hundred
features. It should be noted that other segment sizes from 10 to 50 Hz
were also tested, up to a limit of 1000 Hz, but this configuration proved
more promising. Similarly, sixteen attributes were computed from the
detail coefficients (𝑐𝐷) of the discrete wavelet transform compound of
the wavelet feature set in Approach 3, yielding a total of 160 features.
The Daubechies wavelet 𝑑𝑏10 is used to perform the decomposition
up to the tenth level, 𝑐𝐷10, which is the maximum level of signal
decomposition. In the preliminary analysis, other filter orders were
also tested, but 𝑑𝑏10 was better for the predictions of this approach.
The experiments were performed with the current of phase A, whose
winding was subjected to failure.

Before classification, the input features must be preprocessed. Re-
moving highly correlated features is important to obtain a consistent
interpretation of SHAP. According to Aas et al. (2021), the explanation
by SHAP can be misleading and unrealistic if the features are highly
correlated. In this step of fault diagnosis, pairwise correlation is calcu-
lated using Pearson’s method to determine the collinearity of pairs of
features. This procedure can also minimize the complexity of the model.

The recursive feature elimination (RFE) procedure is employed
to eliminate redundant features, which quantifies the importance of

attributes using SHAP scores. The algorithm discards less relevant



Fig. 2. Arrangement of the dataset.
Table 2
List of features grouped by domain.
Temporal domain (20 features):
Absolute Energy (AbsEn), Area Under the Curve (ArUC), Autocorrelation (AutoCorr), Centroid
(Ctd), Entropy (Ent), Kurtosis (Kurt), Interquartile Range (IQRange), Maximum (Max), Mean,
Mean Abs. Deviation (MeanAD), Median, Median Absolute Deviation (MedAD), Minimum
(Min), Number of Peaks (NPeaks), Peak to Peak Distance (PPD), Root Mean Square (RMS),
Skewness (Skn), Standard Deviation (StD), Variance (Var), Zero Crossing Rate (ZCR)

Spectral domain (10 features from each spectral segment):
Absolute Energy (AbsEn_𝑠𝑥), Autocorrelation (AutoCorr_𝑠𝑥), Centroid (Ctd_𝑠𝑥),
Entropy (Ent_𝑠𝑥), Kurtosis (Kurt_𝑠𝑥), Maximum (Max_𝑠𝑥), Mean (Mean_𝑠𝑥),
Number of Peaks (NPeaks_𝑠𝑥), Skewness (Skn_𝑠𝑥), Standard Deviation (StD_𝑠𝑥)

Wavelet domain (16 features from each detail coefficient):
Absolute Energy (AbsEn_𝑐𝐷𝑥), Area Under the Curve (ArUC_𝑐𝐷𝑥), Autocorrelation
(AutoCorr_𝑐𝐷𝑥), Entropy (Ent_𝑐𝐷𝑥), Interquartile Range (IQRange_𝑐𝐷𝑥), Kurtosis
(Kurt_𝑐𝐷𝑥), Maximum (Max_𝑐𝐷𝑥), Mean (Mean_𝑐𝐷𝑥), Minimum (Min_𝑐𝐷𝑥),
Number of Peaks (NPeaks_𝑐𝐷𝑥), Root Mean Square (RMS_𝑐𝐷𝑥), Skewness (Skn_𝑐𝐷𝑥),
Standard Deviation (StD_𝑐𝐷𝑥), Variance (Var_𝑐𝐷𝑥), Zero Crossing Rate (ZCR_𝑐𝐷𝑥)
features in each cycle and XGBoost performs a new classification. The
best feature set is selected based on its size and the model performance
criterion: if one or more feature sets provide mean values for predic-
tions with equivalent performance metrics, the smallest feature set is
chosen.

In the experiments, a binary classification was developed for each
fault severity. The diagnostic system indicates whether an observation
is indexed to a healthy or faulty signal. As shown in Fig. 2, the dataset
consists of 60 samples for each fault severity, plus 60 healthy samples.
Therefore, there are 120 instances for each test. The operating condi-
tion in which each sample was collected is unique, so the intelligent
model must learn the general fault patterns to classify them correctly.

Labeling was performed by assigning 0 (healthy) and 1 (failure)
values to the instances. For this purpose, a target vector was created
with the same size as the attribute dataset, presented to the ML models
only during the training phase.

Splitting data into training and testing subsets is often used to
evaluate the performance of supervised learning models and avoid
overfitting. In this case, the training subsets consist of 75% of the
data, i.e., 90 samples, while the other 30 samples have been reserved
for testing. A validation method is also recommended to improve the
reliability of the model. In this study, 𝑘-fold cross-validation is applied,
5

i.e., the training dataset is divided into 𝑘 subsets, and training/testing
is performed by interchanging the subsets 𝑘-folds. Here, 10-fold cross-
validation is applied, i.e., 𝑘 = 10. The algorithm repeats this process
ten times, shuffling the samples. The average values of the performance
metrics and the respective standard deviations are then calculated. The
𝑘-fold procedure is a well-established method considered less biased
than hold-out because it uses all available data for training and testing,
and it is less variable than leave-one-out because it averages over
multiple runs.

Accuracy, receiver operating characteristic (ROC), the area under
the ROC curve (AUC), precision, recall, F1-score, kappa, and the con-
fusion matrix are commonly used performance metrics for evaluating
ML algorithms. AUC can summarize the information provided by the
ROC curve, while F1-score is the harmonic mean of precision and recall.
Therefore, AUC, F1-score, and kappa are used in this study because they
provide comprehensive information about many other performance
metrics and allow a concise and reliable assessment of the results. All
possible values for these parameters are limited from 0 to 1.

Finally, tuning the ML parameters can also significantly affect clas-
sification results. Among other benefits, adjusting the parameters can
help achieve more robust and accurate predictions, reduce the impact
of outliers in the data, and minimize overfitting. The XGBoost hyper-
parameters are tuned for each experiment using grid search. It consists
of testing multiple combinations of hyperparameters within specified

limits. This makes it more likely to find the optimal hyperparameters



Fig. 3. The proposed methodology is divided into three stages: data collection and
pre-processing, feature extraction, and, concomitantly, feature selection and fault
diagnosis.

than some alternative methods, such as random search and Bayesian
optimization. Some bounds have been set, as follows:

• The learning rate determines the step size at which the model
updates other parameters for the next cycle. If it is too large, the
model may not converge, and if it is too small, the model may get
stuck in a suboptimal solution. So the values tested are 0.05, 0.1,
0.3 and 0.5;

• The estimators are the weak learners, or trees, that compound the
ensemble. The number of estimators tested is 20, 50, 70, 100, 150,
and 200;

• The maximum depth of a tree impacts the model complexity.
Large values must be avoided to prevent overfitting, while smaller
6

Table 3
Detection of 5% ITSC in TIM 1, using temporal, spectral, and wavelet approaches.

Domain Feature set AUC F1 kappa

Temporal All 0.730 (0.102) 0.770 (0.113) 0.730 (0.102)
Selected 0.818 (0.083) 0.820 (0.079) 0.746 (0.058)

Spectral All 0.976 (0.051) 0.960 (0.049) 0.919 (0.101)
Selected 0.983 (0.030) 0.978 (0.018) 0.972 (0.034)

Wavelet All 0.980 (0.029) 0.979 (0.030) 0.959 (0.061)
Selected 0.986 (0.023) 0.986 (0.023) 0.972 (0.047)

Fig. 4. Importance of features selected from temporal, spectral, and wavelet domains.

values can lead to underfitting. Thus, the values tested are 2, 3,
4 and 5;

• The Lagrangian multiplier, also called gamma, is a regularization
parameter that prevents overfitting. However, the higher the
gamma value, the more difficult for the model to find an optimal
local variance/bias. Thus, the gamma values tested were 0, 0.1,
0.5, 1, 3, and 5.

Considering the combination of these parameters, 2304 possibilities
were tested to achieve the optimal solution in each experiment.

3. Fault diagnosis and interpretability

In the following experiments, the predictions are made using the
TIM 1 dataset stratified by the fault severity. Table 3 demonstrates
the average AUC, F1, and kappa values for 5% of ITSC detection. The
standard deviation is given in parentheses. In all cases, the classification
performance with the selected features is higher than the original
feature set. In general, this is because there are redundant predictors in
the initial stage, and the classification algorithm tries to fit all of them
into the model. By removing the unnecessary attributes, the algorithm
focuses on learning only the important patterns. The increment is small
for spectral and wavelet approaches, but more substantial for temporal
approaches. Fig. 4 shows the mean of the absolute SHAP values for the
selected feature sets. It allows the interpretation of the model result by
quantifying the importance of each predictor.

The metrics demonstrated that the spectral and wavelet approaches
are equivalent for 5% ITSC. However, the performance observed for
the attributes obtained from the signal in the time domain is far below.
Moreover, the standard deviation is about 0.08, indicating a high
dispersion of the results. Clearly, the different combinations of torque
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Table 4
Detection of ITSC with spectral features.

ITSC Data AUC F1 kappa

3% TIM 1 0.860 (0.041) 0.861 (0.042) 0.719 (0.083)
TIM 2 0.800 (0.074) 0.876 (0.070) 0.599 (0.148)

1% TIM 1 0.819 (0.045) 0.822 (0.044) 0.641 (0.090)
TIM 2 0.660 (0.072) 0.675 (0.077) 0.319 (0.146)

Table 5
Detection of ITSC with wavelet features.

ITSC Data AUC F1 kappa

3% TIM 1 0.847 (0.054) 0.846 (0.053) 0.692 (0.107)
TIM 2 0.895 (0.051) 0.897 (0.058) 0.790 (0.102)

1% TIM 1 0.781 (0.078) 0.777 (0.082) 0.562 (0.156)
TIM 2 0.784 (0.087) 0.784 (0.085) 0.568 (0.176)

on the shaft and disturbances in the three-phase input voltages mask
the current changes caused by the fault. Consequently, the features
extracted from the raw signal needed to be more comprehensive to pro-
mote a distinction between categories in the classifications. Therefore,
this strategy is discarded in the following experiments.

Tables 4 and 5 present the classification reports for 3% and 1%
ITSC, using spectral and wavelet attributes, respectively. In addition,
these classifications also use the TIM 2 dataset. Table 4 shows that
AUC and F1 for 1% of short in TIM 2 reach 0.675, and kappa is 0.319.
However, for other classifications, AUC and F1 remain above 0.8, with
a standard deviation of about 0.04 for 3% ITSC and 0.07 for 1% ITSC.
The prediction for 3% of fault in TIM 1 has the highest concordance
rate, with a kappa value of 0.719. Fig. 5 presents insight into how the
features interact to achieve these results. One can observe that kurtosis
recurs in the predictions: 𝐾𝑢𝑟𝑡_𝑠14 and 𝐾𝑢𝑟𝑡_𝑠12 are important features
for TIM 1, while 𝐾𝑢𝑟𝑡_𝑠1 and 𝐾𝑢𝑟𝑡_𝑠10 are important for the TIM 2
dataset. Other features that stand out are the absolute energy and the
mean value. The recurrence of segments 𝑠1, 𝑠2, 𝑠5, 𝑠14, and 𝑠19 indicates
a high relevance of these specific spectral intervals.

From Table 5, both AUC and F1 scores indicate that XGBoost
learned more efficiently from the patterns in the TIM 2 dataset. How-
ever, the difference cannot be considered significant for failures in 1%
of turns. The degree of agreement, expressed by the kappa coefficient,
is higher for 3% ITSC, TIM 2, and smaller for 1% ITSC, TIM 1. Fig. 6
depicts the importance of the attribute for these predictions. It can be
seen that 𝐾𝑢𝑟𝑡, 𝑁𝑝𝑒𝑎𝑘𝑠, and 𝐴𝑏𝑠𝐸𝑛, related to the DWT coefficients 𝑐𝐷1
and 𝑐𝐷5, strongly influenced the TIM 1 classifications for both short
circuit levels. For the 3% ITSC of the TIM 2 dataset, the attributes
from coefficients 𝑐𝐷2 and 𝑐𝐷3 are the most important, and for 1%
ITSC the relevance is spread over many DWT levels. In general, kurtosis
and absolute energy are more common in all classifications, but with
different levels of importance.

Analyzing the computational cost of an algorithm is essential to
make fair comparisons. The asymptotic analysis expresses the upper
bound of the complexity of an algorithm. Among the techniques used,
FFT is associated with a complexity of (𝑝 log 𝑝), while DWT is associ-
ated with (𝑝), where 𝑝 is the number of data points of the analyzed
ignal (Mörchen, 2003). Although the linear logarithm function is
ore complex than the linear one, neither of such algorithms can be

onsidered particularly computationally intensive compared to other
rocessing methods used in this context (e.g., MUSIC and ESPRIT have
ubic complexity, (𝑝3) Riera-Guasp et al., 2015).

The following experiment checks if a fusion of the most important
eatures from spectral and wavelet approaches can better assist XG-
oost in learning healthy and faulty signal patterns. For each case, the
eatures shown in Figs. 5 and 6 are used jointly as input sets. Table 6 has
hown that this strategy improves the average model performance for
ll tests performed compared to Tables 4 and 5, some to a greater, some

to a lesser degree. The local interpretation provided by the SHAP values
7

Fig. 5. Importance of selected features (spectral domain).

Table 6
Detection of different levels of ITSC with the fusion of features in spectral and wavelet
domains.

ITSC Data AUC F1 kappa

3% TIM 1 0.863 (0.065) 0.871 (0.067) 0.705 (0.130)
TIM 2 0.903 (0.031) 0.904 (0.030) 0.807 (0.061)

1% TIM 1 0.845 (0.033) 0.837 (0.067) 0.660 (0.129)
TIM 2 0.846 (0.052) 0.850 (0.044) 0.695 (0.103)

can help better understand how the intelligent model performs the
presented diagnosis. This analysis considers the influence of features on
the predictions for each sample in the test subset. Since the presentation
of the local explanation is not appropriate for all experiments, the
following section examines the classification for TIM 1 with 1% ITSC.

To compare the performance of XGBoost with other intelligent
models, RF, SVM, and MLP scored AUC of 0.828, 0.841, and 0.749,
respectively, on the TIM 1 dataset for 1% ITSC. Although SVM and RF
achieved results close to XGBoost, their complexity can be estimated
as (𝑚3𝑛) for SVM (Geron, 2019) and (𝐾𝑚𝑛2 log 𝑛) for RF (Louppe,
2014). On the other hand, the XGBoost algorithm requires fewer in-
structions to execute, which is maintained by the function (𝑟𝐾𝑑 +
𝑟 log𝐵), where 𝑟 is the number of non-missing entries and 𝐵 is the block
length of the XGBoost structure (Chen & Guestrin, 2016).

3.1. Local interpretability

We have selected the most important features for the experiments
based on the global interpretation of the model. The influences of the
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Fig. 6. Importance of selected features (wavelet domain).

eatures were measured by the mean of the SHAP absolute values of
ll the samples provided. On the other hand, this subsection focuses on
nderstanding how the interaction of the features impacts each sample
o build the final model.

The local interpretation allows the comparison of a result for a
iven sample with the global expected baseline model. Fig. 7 shows

the local explanation for specific samples in the test subset. In each
chart, starting from the global baseline, E[𝑓 (𝑋)], a value SHAP is added
for some variables and subtracted for others. In this way, the final
prediction is formed. This baseline represents the expected value of
the model output for all observations in that classification. For a single
sample, the final observation value 𝑓 (𝑥) indicates whether the model
assigns this instance to one class or another: If the model considers the
sample healthy, 𝑓 (𝑥) <E[𝑓 (𝑋)], otherwise as faulty, 𝑓 (𝑥) >E[𝑓 (𝑋)].
This means that positive SHAP values contribute to the fault indication
for each feature and vice versa. And the further 𝑓 (𝑥) remains away from
the global baseline value, the more likely the prediction is correct.

In Fig. 7, sample 02, sample 06, and sample 34 are healthy, while
sample 61, sample 120, and sample 110 are faulty. The observed 𝑓 (𝑥)
agrees with the labels, indicating that the model correctly classified
these samples. In Fig. 7a, some features indicate the wrong class, and
the corresponding SHAP values are low (SHAP value for 𝐶𝑡𝑑_𝑠1 is +0.26
and for 𝐴𝑏𝑠𝐸𝑛_𝑠14 is +0.06). Consequently, 𝑓 (𝑥) for this observation is
−4.570. In Fig. 7b, 𝑓 (𝑥) reaches a value of 4.159. In both samples, the
oad on the shaft is small, and the three-phase voltage is balanced. In
ontrast, for the representations in Fig. 7c and d, one can notice that

more features indicate high misclassification. For example, 𝐾𝑢𝑟𝑡_𝑠14 is
an important predictor in the previous context (samples 02 and 06),
but it pushes 𝑓 (𝑥) into the wrong category with a considerable module
alue. Therefore, the |𝑓 (𝑥)| for these predictions is 2. Consequently,
hese classifications are correct but have been associated with lower
onfidence. Both samples correspond to an overload condition. A sim-
lar analysis for Fig. 7e and f suggest that voltage imbalance in phases
8

s

B and C are more problematic for this approach than an imbalance in
phase A.

It is interesting to note that all features sometimes shift the pre-
diction into the incorrect category. Otherwise, a single feature would
be enough for a perfect classification. Nevertheless, it can be seen
that if one predictor contributes to a wrong classification, the other
features must compensate. Since the dataset used in this work covers
multiple loadings and unbalanced situations, the model has learned
multiple patterns depending on the combination of features for a given
situation. This approach can be employed to determine the feature or
group of features that are more important for classification in each
tested condition. However, some features that seem irrelevant to one
sample may be the key to correctly classifying another sample. These
insights, provided by local explanations, can increase the reliability of
the diagnostic system since they enable one to understand how features
interact to induce the model to classify a single sample as faulty or not.

3.2. Comparison with related works

Next, the performances presented in this article are compared with
other methods in recent studies. The work of Haroun et al. (2018)
reported a classification accuracy of 100%. However, the dataset used
includes about 3.8% to 12.5% of the shorted turns. In addition, the
authors found that the power supply voltage was not exactly balanced
during the experiments, but no intentional phase imbalance was ap-
plied. In Kumar et al. (2021), the methodology considered up to 10%
shorted turns and did not address voltage imbalances in the supply.

In contrast, the works of Alloui et al. (2022) and Drif and Cardoso
2014) consider voltage imbalance at certain levels in the experiments.
owever, no intelligent system was implemented, making it difficult to
ompare objectively.

Among works that used the same dataset as the present study, Bazan
t al. (2017) and Palácios et al. (2017) reported 99% and 96% of
ccuracy, respectively. However, the experiments include up to 10%
horted turns and an unbalanced supply limited to 4% of nominal. Vitor
t al. (2023) presented an accuracy of 100%, but the fault severity is
%, and no voltage unbalances are considered.

Table 7 shows the summarized information about related works. It is
orth noting that voltage unbalances are a major challenge for stator

ault classification, and the present work covers up to 10% of phase
nbalance levels. In addition, most of the work uses data from a single
achine or equivalent machines of the same size. The present work
emonstrates its robustness using experimental signals collected from
wo TIM of different sizes, with 1 HP and 2 HP, including overload
onditions.

. Conclusion

The objective of this work was to identify ITSC in TIM, which are
xposed to typical industrial environments. To overcome the combina-
ion of power quality problems and different loads, the strategy is based
n the extraction of several features from the stator current time series,
he FFT spectrum and the DWT coefficients. XGBoost and SHAP were
ombined with the RFE algorithm to create a small set of meaningful
ttributes. The results show that this compact set of attributes provides
quivalent or even higher performance metrics than the original set.

It was found that features collected in the time domain did not
rovide enough information to correctly classify incipient faults, and
here was no evident advantage to using FFT or DWT features. How-
ver, there is an increase of the system performance when spectral and
avelet features were used simultaneously.

The local interpretation allowed us to understand why a single
ase receives its prediction. It has been shown that some features are
mportant fault indicators when there is no voltage unbalance and light
oads are applied. However, these same features are irrelevant in other
ituations or can disrupt correct prediction. It was concluded that the
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Fig. 7. Local interpretation of the classification for 1% of ITSC in TIM 1 with combined spectral and wavelet features. (a) Sample 02 (0.25𝑇𝑛, 𝑉𝑎 = 𝑉𝑏 = 𝑉𝑐 = 𝑉𝑛), (b) Sample 61
(0.1𝑇𝑛, 𝑉𝑎 = 𝑉𝑏 = 𝑉𝑐 = 𝑉𝑛), (c) Sample 06 (1.25𝑇𝑛, 𝑉𝑎 = 𝑉𝑏 = 𝑉𝑐 = 𝑉𝑛), (d) Sample 120 (1.25𝑇𝑛, 𝑉𝑎 = 𝑉𝑛, 𝑉𝑏 = 1.08𝑉𝑛, 𝑉𝑐 = 0.92𝑉𝑛), (e) Sample 34 (0.75𝑇𝑛, 𝑉𝑎 = 1.1𝑉𝑛, 𝑉𝑏 = 𝑉𝑐 = 𝑉𝑛),
(f) Sample 110 (0.25𝑇𝑛, 𝑉𝑎 = 𝑉𝑛, 𝑉𝑏 = 1.06𝑉𝑛, 𝑉𝑐 = 0.94𝑉𝑛).



Table 7
Related works for comparison.

Ref. Loading levels Unbalanced Supplya ITSC severity Success rate

Haroun et al. (2018) No load to full load No 3.8% to 12.5% (mixed) 100%
Kumar et al. (2021) NSc No Up to 10% (mixed) 99%
Drif and Cardoso (2014) No load to full load Up to 1% 1% to 12% NSc

Alloui et al. (2022) No load to 30% of nominal Up to 4% 1.5% and 3% NSc

Bazan et al. (2017)b No load to overload Up to 4% 1%, 3%, 5%, and 10% (mixed) 93%–99%
Palácios et al. (2017)b No load to overload Up to 4% 1%, 3%, 5%, and 10% (mixed) 89%–96%
Vitor et al. (2023)b No load to full load No 7% 86%–100%

This work No load to overload Up to 10% 1%, 3%, and 5% 98% (5% ITSC)
90% (3% ITSC)
85% (1% ITSC)

aIntentionally applied.
bSame dataset as this work.
cNS: not specified.
-
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features interact differently depending on TIM operating conditions and
their respective contributions are unique to each case.

In this work, an effective method for detecting incipient stator wind-
ing short circuits under problematic operating conditions has been pro-
posed, taking into account a wide range of voltage unbalances and me-
chanical load levels. Current signals from two different TIMs are used
in the experiments to demonstrate the robustness of the method. While
this study has demonstrated the feasibility of the method on direct-
fed machines, further research could apply the proposed approach to
diagnose TIMs controlled by frequency converters and investigate other
TIM failures.
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