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Abstract: The nearest-neighbor Villain, or periodic Gaussian, model is a useful tool to
understand the physics of the topological defects of the two-dimensional nearest-neighbor
XY model, as the two models share the same symmetries and are in the same universality
class. The long-range counterpart of the two-dimensional XY has been recently shown to
exhibit a non-trivial critical behavior, with a complex phase diagram including a range of
values of the power-law exponent of the couplings decay, σ, in which there are a magnetized,
a disordered and a critical phase [1]. Here we address the issue of whether the critical
behavior of the two-dimensional XY model with long-range couplings can be described by
the Villain counterpart of the model. After introducing a suitable generalization of the
Villain model with long-range couplings, we derive a set of renormalization-group equations
for the vortex-vortex potential, which differs from the one of the long-range XY model,
signaling that the decoupling of spin-waves and topological defects is no longer justified
in this regime. The main results are that for σ < 2 the two models no longer share the
same universality class. Remarkably, within a large region of its the phase diagram, the
Villain model is found to behave similarly to the one-dimensional Ising model with 1/r2
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1 Introduction

In the context of the study of critical phenomena, the universality class of the two-
dimensional (or 1 + 1) XY model holds a special place, as its phenomenology is rad-
ically different from those of the other O(n) models. As both bosonic and fermionic
systems described by complex order parameters naturally exhibit a U(1) symmetry, such
an universality class is important to describe the physics of a large variety of high energy,
condensed matter and field theory systems, including superconductors, Helium, spin models,
and the complex |φ|4 theory [2]. A remarkable property is that, even in absence of a
finite order parameter, the model undergoes a phase transition — usually referrend to
as Berezinskii-Kosterlitz-Thouless (BKT) — between a phase with power-law correlation
functions, described in the infrared by a line of fixed points, and a disordered one [3–5]. The
study of the nearest-neighbor XY model is made easier by the introduction of the so-called
Villain model, introduced in [6]. i.e. a simplified version of the XY Hamiltonian, which is
able to faithfully reproduce the features of the BKT transition in two dimensions [7, 8]. The
advantage of the Villain model is that it allows for an exact mapping to the Hamiltonian
of a Coulomb gas, in which topological defects interact through a logarithmic potential
as charged particles [5]. Within this Coulomb gas picture, the BKT transition can be
understood in terms of the unbinding of vortex pairs. While this mapping is no longer
present in higher dimensions, further studies suggests that, also in this case, the two models
share the same universality class [8, 9].
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Beyond its link to the XY model, the Villain Hamiltonian has drown considerable
attention per se, proving interesting both from the theoretical [10–15] and numerical [16–20]
point of view, with applications running from the study of quantum-phase transitions [21]
and superconductivity [22] to lattice gauge theories [8, 9, 23–25], deconfinement [26] and
duality [27] in high-energy physics. It is thus customary in the literature to refer to the
Villain approximation when the coupling is adjusted to reproduce in the best way the XY
model free energy, and to the Villain model when the model is studied by itself [8]. The
fate of the model in presence of long-range couplings, which is the subject of this work, is
thus an interesting problem in itself.

The addition of non-local, long-range potentials between the microscopic components
of the system, is known to give rise to plenty of new physics of both classical [28] and
quantum [29] many-body systems. The study of this models have recently sparked a new
wave of interest, due to the possibility of experimental realizations in atomic, molecular
and optical (AMO) systems [29–36]. In particular, as the hypotheses of the celebrated
Hohenberg-Mermin-Wagner theorem [37] are no longer met, long-range interactions can
induce a spontaneous symmetry breaking (SSB) in a low-dimensional system, as discussed
in the classic papers [38–41]. In any case, sufficiently slow-decaying interactions are known
to alter the universal features of the critical behavior of the systems, e.g. the critical
exponents [40, 42].

For the case of the classical O(n) model, the relevance of long-range interactions to the
critical behavior can be understood through the Sak criterion [43]. If we consider power-law
couplings of the form ∼ 1/rd+σ, where d is the system dimension, the criterion states that
the addition of long-range couplings can affect the critical properties of the system as long
as σ < σ∗ = 2 − ηsr, ηsr being the anomalous dimension in the nearest-neighbours limit
(σ →∞). For σ > σ∗ we recover the short-range regime.

While the criterion has been investigated carefully [44, 45], the n = 2, d = 2 case (i.e.
the two-dimensional XY model) anyway escapes to such criterion. As already mentioned,
in this case the critical behavior of the short-range counterpart of the model is peculiar,
as its low-temperature phase is not described, at the renormalization-group (RG) level,
by an isolated fixed point, but rather by whole line of fixed points. As a consequence the
short-range anomalous dimension ηsr is not unambiguously defined.

It has been recently shown [1, 46, 47] that the addition of long-range couplings to
the two-dimensional XY model gives rise to a complex phase diagram, showing that the
transition between the short-range regime and the long-range one cannot be captured within
Sak’s picture. It is however unclear whether, in the long-range regime, XY model still
allows for such description in terms of topological charges, and whether a generalization
of the Villain model to long-range interactions is able to reproduce the complex critical
behavior of the long-range XY model. Loosely speaking, long-range interactions are known
to effectively increase the dimensionality of the systems (see [42, 48] and refs. therein);
while this would suggest that the two models exhibit the same critical behavior even in
the long-range regime, we are going to see that the case of the two-dimensional Villain
model is considerably subtler, due to the interplay between topological excitations and
long-range couplings.
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The paper is structured as follows. After discussing a way to generalize the Villain
model to the case of long-range couplings in section 2, in section 3 we derive the vortex-gas
description of the model, analogous to the Coulomb gas one. In section 4 we derive the
corresponding real-space RG equations and we describe the corresponding phase diagram.
Finally, in section 5 we comment on our result in the light of field-theoretical description of
the model.

2 Definition of the model

We consider thus a set of N planar spins sj, such that s2
j = 1, arranged on a two-dimensional

square lattice. If we parameterize each spin with the phase θj as sj ≡
(
cos θj, sin θj

)
, the

XY Hamiltonian, for a generic choice of the couplings, takes the form

βH = 1
2
∑
i 6=j

J(r)
[
1− cos

(
θi − θj

)]
(2.1)

with i, j ∈ Z2, r = i − j, r = |r|. The model exhibits a global O(2) symmetry which, in
terms of the angular variables θj, can be written as θj → θj + α. On top of this, the phases
θj are periodic, which results into the local symmetry

θj = θj + 2πNj (2.2)

where, for each j, Nj ∈ Z. This symmetry is indeed crucial, in the short-range case, to allow
for the presence of vortices, i.e. topological configurations in which the variable θj increases
of an integer multiple of 2π as we follow a closed loop on the lattice.

In the nearest-neighbor case, the Hamiltonian of the Villain model is instead given by

H = J

2
∑
〈i,j〉

(
θi − θj − 2πni,j

)2
, (2.3)

where i, j ∈ Z2, the θj ∈ R while ni,j ∈ Z are discrete link variables which couples nearest-
neighbor pairs and obey the relation ni,j = −nj,i.

The main advantage of the model is that the presence of this auxiliary integer link
variables is able to reproduce the periodicity of the interaction in the XY Hamiltonian (2.1)
(with J(r) = Jδr,1), without introducing a direct interaction between the angular variables.
This can be seen explicitly by noticing that Hamiltonian (2.3) is invariant under the local
transformation

θj → θj + 2πNj

ni,j → Nj −Ni,
(2.4)

with Ni ∈ Z, which can be thought of as a discrete gauge symmetry on the lattice [5, 8].
Restricted to the continuous variables θj this is exactly the local symmetry (2.2) of the
original XY model, so that the model can account for its non-trivial critical properties due
to the presence of topological configurations.
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Now we want to introduce the generalization of the Villain model to the case of
long-range, power-law decaying couplings, i.e.

J(r) ∼ Jr−2−σ (2.5)

for r � 1. Here we choose σ > 0 in order to preserve the extensive nature of the
thermodynamical quantities [28, 49]. The naive generalization of the Hamiltonian (2.3),
in which the sum runs all over the lattice sites i,j and J is replaced by eq. (2.5), is
problematic, as in this case we would have to deal with link-variables whose number grows
super-extensively (as O(N2)).

In order to overcome this problem, and to define a sensitive generalization of the model,
we have to give a more general definition of the Villain model. For our proposes, thus, we
define the Villain model as a quadratic model in the θj, which preserves both the global
O(2) and the local symmetry of eq. (2.2). This more general definition, not only allows us
to deal with a generic choice of the couplings, but also defines naturally the continuum
limit of the model in a field-theoretical language. We observe that alternative choices could
possibly be made, and although one should certainly investigate whether fall or not into
the same universality class, one can anyway expect that this is indeed the case.

We now see how to explicitly construct the Villain Hamiltonian corresponding to
an XY model with a generic choice of the couplings J(r). To better understand the
procedure, however, it is more convenient to address firstly the continuous version of the
XY Hamiltonian, in which θj is replaced by a continuous field θ(x). The so-called Berezinskii
approximation, i.e. the substitution

1− cos (θ(x + r)− θ(x))→ 1
2 (θ(x + r)− θ(x))2 , (2.6)

breaks the local symmetry (2.2), which accounts for the periodicity of θ(x). In the continuum
limit, this property can be stated by saying that θ(x) is not a single-valued function (but
rather is defined up to integer multiples of 2π) so that for each closed path ∂A on the plane∮

∂A
∇θ(x) · dx =

∫
A
∇×∇θ(x) d2x = 2πM(A) (2.7)

with M(A) ∈ Z and ∇ × a = εj,k∂jak, εj,k being the completely antisymmetric rank-2
tensor. If we divide the region of the plane A enclosed by ∂A into two subregions A1, A2
we will have that M(A) = M(A1) + M(A2) so that M(A) has the meaning of the total
topological charge enclosed into the region of the plane A. Accordingly, eq. (2.7) can also
be put in a local form, namely

∇×∇θ(x) = 2π
∑
k

mkδ(x− xk), (2.8)

where mk ∈ Z and xk can be interpreted as vortex charges and thepositions respectively.
In the continuum limit then the Villain model can be defined as a boson θ(x), interacting
with point-like charges mk through the constraint (2.8). In formal terms

Z =
∑
{mi}

∫
D(∇θ) e−βH0(θ)δ(∇×∇θ − 2πn(x)), (2.9)

– 4 –



J
H
E
P
0
2
(
2
0
2
3
)
2
3
8

where the sum represent the trace all over all the possible vortex configurations, βH0 the
quadratic Hamiltonian

βH0 = 1
4

∫
d2xd2r J(r) (θ(x + r)− θ(x))2 , (2.10)

and we introduced the vortex density

n(x) =
∑
k

mkδ(x− xk). (2.11)

Let us notice how we are now integrating over the configurations of ∇θ, which are single-
valued, instead of θ(x).

Let us now see how we can built the Villain model directly on lattice. Once again, the
quadratic approximation alone, namely

1− cos
(
θj+r − θj

)
→ 1

2(θj+r − θj)2, (2.12)

would break the local symmetry of eq. (2.2), and thus the possibility of correctly de-
scribe topological configuration. Indeed, given a closed loop of P points on the lattice
j1,j2,. . . ,jP ,jP+1 ≡ j1 the lattice equivalent of the integral in eq. (2.7) is given by

P∑
p=1

(
θjp+1 − θjp

)
≡ 0. (2.13)

In order to overcome this problem, we follow the original idea of the seminal Villain’s work
i.e. we introduce an integer-valued link variable ni,j (ni,j = −nj,i) for each paof lattice points
and we make the further replacement

θj+r − θj → θj+r − θj + 2πni,j. (2.14)

As a consequence, the Villain Hamiltonian becomes

βH0 = 1
4
∑
i 6=j

J(r)
(
θi − θj − 2πni,j

)2
, (2.15)

(with r = |j− i|) while the closed-loop integral of eq. (2.7) is now

P∑
p=1

(
θip+1 − θjp − 2πnjp,jp+1

)
= 2π

P∑
p=1

njp,jp+1 . (2.16)

In this language, the lattice-analogous of the constraint eq. (2.7) imposes that the charge
enclosed in the region A defined by the jp,

M(A) =
∑
∂A

ni,j ≡
P∑
p=1

njp,jp+1 , (2.17)

is extensive, such that for any bipartition of the region in two sub-regions A1, A2 M(A) =
M(A1) +M(A2). As a consequence, we can introduce for each point of the dual lattice z
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Figure 1. A topological configuration, namely a vortex with charge mz = 1, and a corresponding
choice of the Villain link variables which encircle a parallelogram in such a way to satisfy the
constraint (2.18). In agreement with the symmetry (2.4) the choice of the ni,j which is different
from zero is arbitrary.

its corresponding vortex charge mz so that the constraint finally reads as∑
∂A

ni,j =
∑
z∈A

mz. (2.18)

See figure 1 for a graphic interpretation of the constraint (2.18) within a prototypical
topological configuration. Strictly speaking, one or more of the z could lie on the boundary
∂A of the region A. This could, in principle, cause some problems. However, as we are
going to see, this boundary issue is not a problem in the thermodynamic limit as only the
large loops are going to contribute to the critical behavior.

Finally, the partition function of the model takes the form

Z =
∑
{mi}

∫ ∏
j
dθj e

−βH0δ

(∑
∂A

ni,j =
∑
z∈A

mz

)
, (2.19)

with H0 given by (2.15) and we assume J(r) to have the form of eq. (2.5).

3 Vortex-vortex interaction

In this section we derive the effective interaction between topological charges mz in eq. (2.19).
To this aim, we define the Fourier transformed variables

θj = 1√
N

∑
q
θqe

iq·j nj,j+r = 1√
N

∑
q
nq,re

iq·(j+ r
2 ), (3.1)

– 6 –



J
H
E
P
0
2
(
2
0
2
3
)
2
3
8

with q a vector of the reciprocal lattice. The Hamiltonian eq. (2.15) becomes:

βH0 = 1
4
∑
q,r

J(r)
∣∣∣∣2i sin q · r

2 θq − 2πnq,r

∣∣∣∣2 . (3.2)

In order to integrate out the θj, it is useful to introduce the new variables

ψq = θq + 2πi
K(q)

∑
r
J(r) sin q · r

2 nq,r (3.3)

where
K(q) =

∑
r
J(r) (1− cos q · r) = 2

∑
r
J(r) sin2 q · r

2 (3.4)

In terms of the new variables the Hamiltonian decouples into two pieces, a spin-wave term
and a topological term, which only depends on the discrete link variables

βH0 = HSW(ψj) +Htop(mj) (3.5)

The two pieces are given by:

HSW = 1
2
∑

q
K(q)|ψq|2

Htop = π2∑
q

1
K(q)

∑
r,r′

JrJr′

∣∣∣∣sin q · r′

2 nq,r − sin q · r
2 nq,r′

∣∣∣∣2 . (3.6)

We notice that the spin-wave part of the Hamiltonian exactly corresponds to the quadratic
approximation of the original long-range XY Hamiltonian. The asymptotic behavior of
K(q) for small q is worked out in appendix A. We find the usual nearest-neighbours scaling
relation K(q) ∼ q2 for σ > 2, while for 0 < σ < 2 we have

K(q) = Jcσq
σ +O(q2) (3.7)

with cσ an universal function of σ.
Let us now focus on Htop: we can notice that, back to the real space, this takes the

form

Htop =
∑
r,r′

JrJr′
∑
j,j′

f(j− j′)(∇rnj,j+r′ −∇r′nj,j+r)(∇rnj′,j′+r′ −∇r′nj′,j′+r), (3.8)

where
f(x) = π2

4N
∑

q

eiq·x

K(q) (3.9)

and we introduced the notation of the discrete curl

∇rnj,j+r′ −∇r′nj,j+r ≡ nj,j+r + nj+r,j+r+r′ + nj+r+r′,j+r′ + nj+r′,j. (3.10)

As expected, once the continuous field has been integrated out, the interaction depends
only on gauge invariants. Indeed, we have that:

∇rnj,j+r′ −∇r′nj,j+r =
∑

∂P(j,r,r′)
ni,i′ , (3.11)

– 7 –
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where the P(j, r, r′) denotes the region of the plane corresponding to a parallelogram with
vertices j, j + r, j + r + r′, j + r (and thus sides r,r′). Thus, as a consequence, the symmetry
of eq. (2.4) leaves these quantities invariant.

By means of the constraint (2.18) finally, we can express the Hamiltonian in terms of
the topological charges enclosed in each parallelogram, obtaining an interaction Hamiltonian
of the form

Htop =
∑
z,z′

mzmz′U(z− z′), (3.12)

for some potential U(R). The exact form of U , along with its large-distance behavior,
are derived in appendix B. In particular, we find that the small q behavior of the Fourier
transform of the potential U(R) is given by

U(q) = 2π2

σ − 1
K(q)
q4 . (3.13)

We see then the proportionality constant I(σ) converges as long as σ > 1. The proportional-
ity constant diverges for σ → 1+ (as seen in appendix B, this can be seen as an infrared diver-
gence). This means that, as σ → 1+, in the thermodynamic limit, we cannot excite the vor-
tices for any temperature, so that only the spin wave part HSW of the Hamiltonian survives.

For 1 < σ < 2 the vortex-vortex potential should be taken into account. In Fourier
space, for q � 1, it takes the form:

U(q) ∝ K(q)
q4 ∼ Jqσ−4 +O(q−2) (3.14)

In turn, this implies that for R� 1 (R being the distance between a paof vortices)

U(R) ∼ J
∫ 1/R

1/L
qσ−3dq = J

2− σ
(
L2−σ −R2−σ

)
(3.15)

The additive constants L2−σ brings a term ∝ L2−σ (∑imi)2 in the Hamiltonian (3.12),
which kills all the non neutral configurations, exactly as in the short-range case. Then,

Htop =
∑
i,j

mimjU(ri − rj)

= U(0)
∑
i

m2
i +

∑
i 6=j

mimjU(ri − rj)

=
∑
i 6=j

mimj (U(ri − rj)− U(0))

(3.16)

where now we denoted with {ri} and {mi} respectively the position and the charge of
the vortices of a given configuration, and noticed that, for any neutral configuration∑
i 6=jmimj = −∑im

2
i . We can thus write

U(R)− U(0) ∼ J
∫

d2q
(2π)2

eiq·R − 1
q4−σ ∼ −J R2−σ. (3.17)

Let us notice that, now that the sum runs only on i 6= j, U(r) is no longer defined up to
an additive constant. It is customary, however, to define the energy so that it is zero for
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r = 1, which is the minimum distance at which a pacan be created. This means that in the
Hamiltonian we can write:

Htop =
∑
i 6=j

mimj (U(ri − rj)− U(1)) + (U(0)− U(1))
∑
i

m2
i . (3.18)

Now we can finally introduce

V (r) = U(r)− U(1) = g

∫
d2q
2π

eiq·r − eiq·n

q4−σ = −γ
(
r2−σ − 1

)
(3.19)

(with g, γ ∝ J) and the finite quantity εc = U(0)− U(1) > 0, which physically represents
the core energy associated with the creation of a vortex paat the minimum possible distance.
In terms of these quantities the Hamiltonian becomes

Htop =
∑
i 6=j

mimjV (ri − rj) + εc
∑
i

m2
i (3.20)

while, the (topological part of the) partition function is given by

Ztop =
∑
{mj}

∫ ∏
j

d2rje−Htop . (3.21)

Finally, in the σ > 2 case we recover the usual logarithmic interaction of the two-dimensional
Coulomb gas as

U(R) ∼ J
∫ 1/R

1/L
q−1dq = J(lnL− ln r). (3.22)

Since in this case, as noticed, the dispersion relation K(q) of the spin waves has the same
form of the nearest-neighbours one, we can safely conclude that the Villain model is in the
same universality class of the nearest-neighbours case for all σ > 2.

4 Renormalization and phase-diagram of the model

We are going to carry out the RG procedure in the vortex gas representation. To this extent
we then introduce the renormalization parameter ` such that the effective lattice spacing a`
is given by a` = e`. Our picture is the following: at scale ` the vortex-antivortex pairs with
scale < a` renormalizes the vortex-vortex potential. While the ultraviolet potential V`=0(r)
is given by eq. (3.19), there is no reason for the effective potential at scale `, V`(r), to have
the same functional form.

Since in the ultraviolet the potential grows as a power law a simple energy-entropy
scaling argument would suggest that the fugacity y ≡ e−εc is not relevant at any temperature.
However, as we are going to see, these naive expectations are defied by the RG calculations,
which shows that, for every finite value of `, the behavior at large distances of the potential
is no longer given by the power law of eq. (3.19). The renormalization procedure we present
here is the straightforward generalization of those introduced for the short-range case by
Kosterlitz and Thouless [3] to arbitrary (well-behaved) interaction potential and it is similar
to those present in [50] for a screened Coulomb interaction. However, up to our knowledge,
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the corresponding treatment for the case of a potential which grows boundlessly is absent
in the literature.

The details of the calculations are given in appendix C. The corresponding renormalzi-
ation equations for the potential V` and the fugacity y turn out to be

∂`V`(r) = rV ′` (r)− V ′` (1)− π

2 y
2
` (∆V`(r)−∆V`(1))

dy`
d`

= y`
(
2 + V ′` (1)

)
+O(y3)

(4.1)

with ∆V given by the convolution

∆V (r) =
∫
d2x

(
∇V`(x) · ∇V`(x + r)− |∇V`(x)|2

)
. (4.2)

Starting from these equations, we now want to derive the phase diagram of the model,
discussing the behavior of the renormalization flow described by eqs. (4.1). Quite surprisingly,
in spite of the fact that we are dealing with a non-linear functional set of equations, it is
possible to solve them analytically.

Let us start by noticing that, since ∆V` in eq. (4.2) involves a convolution, it is natural
to write V`(r) as

V`(r) =
∫

d2q

(2π)2U`(q)
(
eiq·n − eiq·r

)
, (4.3)

with n2 = 1 and U`=0(q) = −gq−4−σ, in agreement with eq. (3.19). In terms of U`(q), the
first equation of eq. (4.1) becomes

∂`U`(q) = − (2 + q∂q)U`(q) + π

2 y
2
` q

2U`(q)2, (4.4)

which, in turn, can be rewritten as

∂`U
−1
` (q) = (2− q∂q)U−1

` (q)− π

2 y
2
` q

2. (4.5)

Taking into account our initial condition we can solve this equation by using the ansatz:

U−1
` (q) = −A`q4−σ −B`q2, (4.6)

finding:

dA`
d`

= −(2− σ)A`
dB`
d`

= π

2 y
2
`

(4.7)

along with the initial condition A0 = g−1, B0 = 0. We have then that A` → 0 in the
infrared, while B0 grows as long as y` 6= 0. The vortex-vortex potential becomes then:

V`(r) = −
∫

d2q
(2π)2

eiq·n − eiq·r

A`q4−σ +B`q2 = −
∫
dq

2π
1− J0(qr)

A`q3−σ +B`q
, (4.8)
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Jk(qr) being the k-th order Bessel function of the first kind. By computing V ′(r) we
can derive the equation for y which, together with eqs. (4.7), gives the reduced RG set of
equation of the model

dy`
d`

= y`

(
2−

∫
dq

2π
J1(q)

B` +A`q2−σ

)
(4.9)

From eqs. (4.7) it follows that for any finite ` we have B` > 0, so that the second term
in the denominator of eq. (4.8) dominates for q � 1 and V`(r) ∼ − ln r for r � 1. As
announced then, the infrared behavior of the vortex-vortex potential is, for any finite value
of `, qualitatively different to the ultraviolet behavior. In particular, as in the infrared
A` → 0, the RG equations (4.1) and (4.9) can be approximated as

dB`
d`

= π

2 y
2
`

dy`
d`

= y`

(
2− 1

2πB`

)
,

(4.10)

i.e. exactly the form of the BKT RG flow for the short-range XY model.
As a consequence, we also have here a line of stable fixed points y = 0, B < 1

4π ,
corresponding to a phase in which the vortices are not relevant. At the same time it will
exist a transition temperature TBKT such that, for T > TBKT, the vortices unbind so that
the system flows toward a disordered phase. Also in this case, the correlation length ξ in
the disorder phase (T > TBKT), is expected to exhibit the usual BKT scaling, namely

ln ξ ∼ (T − TBKT)−1/2. (4.11)

Let us notice, however, how here the low-temperature phase (T < TBKT) does not
correspond to a quasi-long-range-ordered phase. Indeed, since the vortices are irrelevant
and it is not possible to excite vortex-antivortex pair, the constraint (2.18) tells us that in
the infrared the link variables ni,j are suppressed as well. As a consequence, from eq. (3.3)
we have that in the infrared we have the identification

θ(x)→ ψ(x). (4.12)

In turn, since HSW is a quadratic Gaussian model, with the dispersion relation K(q) ∼ qσ,
we have the effective action

S ∼ −1
2

∫
d2q qσ|θ(q)|2. (4.13)

This, in turn, implies finite magnetization m: indeed, being the measure Gaussian and
s = (cos θ, sin θ), we have

m2 =
〈
s2(0)

〉
=
〈
e2iθ(0)

〉
= e−2〈θ(0)2〉, (4.14)

while 〈
θ(0)2

〉
∼
∫
d2q
qσ

, (4.15)

which is finite.
The same pheonomenology is present for σ < 1, for any value of the temperature, as

the vortices are never relevant in this regime.
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1 2
σ

0

T

BKTSSB

D

TBKT

Figure 2. Qualitative phase diagram of the long-range Villain model. For σ > 2 the system exhibits
a BKT transition between the quasi-long-range-ordered BKT phase and the disordered (D) one
(grey line). For 1 < σ < 2, at low temperatures the model exhibits a low-temperature spontaneous-
symmetry-broken (SSB) phase with a finite magnetization. As the temperature increases, we have a
jump in the magenetization to the disordered (D) phase (red line). This transition, however, still
falls within the BKT universality class. For σ → 1+ the transition temperature diverges, so that
only the SSB phase survives for σ < 1.

In summarizing, we found the following phase diagram for the Villain model:

• For σ > 2, the long-range Villain model exhibits the same phases as its nearest-neighbor
counterpart, i.e. it undergoes a BKT phase transition between a low-temperature
quasi-long-range ordered phase and a high-temperature disordered one. The phase
diagram is thus analogous to the ones of the XY model with σ > 2.

• For 1 < σ < 2 the model undergoes a phase transition which falls as well under
the BKT universality. In this regime, however, we have spontaneous symmetry
breaking, and a first-order phase transition in the order parameter as the temperature
is increased.

• For 0 < σ < 1 the topological defects cannot be excited at any temperature so that
the model does not undergo any phase transition and exhibits spontaneous symmetry
breaking at any temperature.

A qualitative depiction of the phase diagram of the model is presented in figure 2. This
phase diagram is the main result of our paper. A main comment about it is that it differs
from the corresponding phase diagram of the XY model with long-range interactions for
σ < 2, and therefore we conclude that for σ < 2 the Villain model and the XY model
are not longer in the same universality class (notice that our generalization of the Villain
model exactly reduces to the short-range Villain model for σ →∞). This challenges the
naive expectation that the long-range Villain model could be mapped in a higher-dimension
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short-range Villain model as, in d > 2, the latter is expected to be in the same universality
class [8] of the (short-range) XY model, see figure 3.

5 Field-theory representation of the model

In this section we see how some of the results obtained through the lattice calculations,
starting from the partition function (2.19), can be understood in terms of its continuum
limit (2.9) within the field theory formalism.

Let us start by expressing the quadratic action in terms of its Fourier modes

βH0 = J

4

∫
d2qK(q)|θ(q)|2 ∼ J

∫
d2q qσ|θ(q)|2, (5.1)

or, in terms of the single-valued, vector field v = ∇θ(x):

βH0 ∼ J
∫
d2q qσ−2|v(q)|2. (5.2)

It is now possible to solve the constraint in eq. (2.9) by introducing an auxiliary field ϕ(x)
so that

Z ∼
∑
{mi}

∫
D(v)

∫
D(ϕ) e−J

∫
d2q qσ−2|v(q)|2 e−i

∫
d2x ϕ(x)(∇×v−2πn(x)). (5.3)

After noticing that

− i
∫
d2x ϕ(x) ∇× v =

∫
d2q v(q)× ϕ(q), (5.4)

we can trace out the θ, obtaining, for the topological part of the partition function

Ztop ∼
∑
{mi}

∫
D(ϕ) e−J−1

∫
d2q q4−σ |ϕ(q)|2e−2πi

∫
d2x ϕ(x)n(x) (5.5)

From here, by integrating out the auxiliary field as well we get

Ztop ∼
∑
{mi}

e−J
∫
d2q qσ−4|n(q)|2 ∼

∑
{mi}

e
−
∑

j,k
mjmkU(rj−rk) (5.6)

with U(q) ∼ Jqσ−4, which is precisely the form of the (large-distance) vortex-vortex
interaction we worked out in section 3. Let us notice, however, how this field theory
approach is not able to predict the divergence in the coupling constant for σ → 1.

On the other hand, from eq. (5.5), one could trace out the vortices, obtaining an
effective field theory of the model in terms of the field ϕ. To this extent, it is necessary to
introduce by hand the core energy of the vortices, whose presence is not captured by the
long-distance, field-theoretical description. We get

Ztop ∼
∑
{mi}

∫
D(ϕ) e−J−1

∫
d2q q4−σ |ϕ(q)|2e−2πi

∫
d2x ϕ(x)n(x)e−εc

∑
i
m2
i . (5.7)
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Figure 3. Qualitative phase diagram of the long-range XY model as predicted in ref. [1], which
differs from the one obtained for the Villain model in figure 2. In particular, the critical value σ∗ of
σ at which the long-range behavior takes over depends on T and varies from 7/4 and 2.

Working in the limit of low fugacity y = e−εc , we sum over the configurations such that
mi = ±1. This means that, for each point in space we get a term of the form

1∑
m=−1

ym
2
e−2πiϕ(x)m = 1 + y cos 2πϕ ≈ ey cos 2πϕ (5.8)

obtaining
Ztop ∼

∫
D(ϕ) e−S , (5.9)

with
S = J−1

∫
d2q q4−σ|ϕ(q)|2 − y

∫
d2x cos(2πϕ). (5.10)

This is a Sine-Gordon action with a peculiar dispersion relation of the kinetic term ∼ U−1(q).
Within this field-theoretical picture, it is the latter that is responsible for the peculiar
form of the RG flow. Indeed, q4−σ is less relevant than the usual q2 short-range dispersion
relation; on the other hand, if we perform a perturbative RG for small y (e.g. in the Wilson
picture) it is known that the Sine-Gordon term, would generate, at the second order in y,
short-range kinetic terms ∼ q2|ϕ(q)|2 in the Lagrangian (see e.g. refs. [51, 52]). This means
that the action (5.10) would flow in the infrared to the usual Sine-Gordon theory, which
falls in the universality class of the BKT transition. At the field theoretical level the origin
of the difference between the critical behavior of the long-range Villain and XY model can
be traced back to the fact that, as shown in refs. [1, 46], the expansion of the cosine at
the second order in eq. (2.1) is no longer justified. Rather, the long-range XY model can
described in the continuum by the action

SXY ∼
∫
d2q qσ|ψ(q)|2, (5.11)
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with ψ(x) = eiθ(x), which automatically account the periodic nature of the spin variables.
While for sufficiently large values of σ the model can be effectively mapped in a short-range
Villain model (see in particular ref. [46]), the fact that (5.11) is non-quadratic in θ(x) leads
to the peculiar short-range, long-range crossover shown in figure 3.

6 Conclusions

The interplay between topological defects and complex interaction patterns in two- and
quasi-two-dimensional systems is known to give rise to complex phase diagrams and
exotic scaling behaviors, e.g. in the case of coupled XY planes [53], two-dimensional
systems with anisotropic dipolar interactions [54, 55], high-dimensional systems with Lifshitz
criticality [56, 57], and the anisotropic 3d XY model [58].

This paper constitutes a further advancement in the understanding of such phenomenol-
ogy. Here, we studied Villain model with a power-law decaying coupling J(r) ∼ Jr−2−σ.
Surprisingly, we found that, unlike its XY counterpart, the model falls within the Berezinskii-
Kosterlitz-Thouless (BKT) universality class for any σ > 1. Indeed, while at the lattice
level (as expected) the interaction potential between topological defects has a different form
in the σ < 2 regime, in the infrared it flows toward the usual logarithmic potential of the
two-dimensional Coulomb gas.

This results is noticeably different from the scenario of the long-range XY model,
studied in ref. [1] and [46]. There, the BKT transition is present only for σ > 7/4, while an
order-disorder transition, described by a new universality class, appears for σ < 2. We can
thus conclude that the Villain model and the XY model are not in the same universality class
for σ < 2 (see the comparison between figure 2 and figure 3). This means that, apart from
the symmetries, in the long-range case also the form of the interaction plays a crucial role.
This can be understood by thinking, that even for a smooth configuration, the quadratic
approximation of the cosine is not justified, as the interaction between pairs of lattice sites
which are far away (and thus uncorrelated) is no longer negligible. As a consequence, the
interaction between spin-waves and vortices is not guaranteed to be irrelevant.

Recent numerical results (see refs. [59, 60]), suggest that the diluted version of the
long-range two-dimensional XY model, in which the lattice sites interact with a probability
∼ r−2−σ, does not reproduce the phase diagram of the long-range XY as well. This suggests,
again, that the universality class of non-local O(2) symmetric models in two-dimension is
rather sensitive to changes in the interaction.

We conclude that, while in the 1 < σ < 2 region the renormalization-group flow is still
described by BKT-like equations, due to the different dispersion relation of the spin-waves
the phase diagram (figure 2) of the long-range Villain model is different from the one of
the nearest-neighbor XY model. In particular, the long-range Villain model exhibits a
low-temperature ordered phase with a finite magnetization, which jumps discontinuously
to zero at T = TBKT. This behavior is indeed completely analogous to the one of the
one-dimensional Ising model with 1/r2 interactions (σ = 1) [41, 61, 62]. Furthermore, in
both systems, the correlation length exhibits the usual BKT scaling while approaching
the transition temperature from above. Further analytical and numerical investigation is
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needed in order to understand whether there is a deeper reason for this and whether this
equivalence could be seen already at the lattice level.
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A Behavior of K(q)

We will now derive the asymptotic form of K(q). We write down J(r) = JS(r) + Jr−2−σ

where JS(r) is a non-universal short-range term. We have then, from eq. (3.4)

K(q) = 2
∑

r
JS(r) sin2 q · r

2 + 2J
∑

r
r−2−σ sin2 q · r

2 . (A.1)

Since, by hypothesis,
∫
r>a d

2r r2JS(r) is finite, we can Taylor expand the cosine in the first
integral on the r.h.s. getting a term proportional to q2 for small values of q. The same is
true for the second terms as well, provided that σ > 2, so that we can conclude that

K(q) ∼ q2 ∀ σ > 2 (A.2)

with some non-universal proportionality constant.
Let us consider now the regime σ ∈ (0, 2). To understand the small q behavior of the

second term in eq. (A.1), we can replace the sum with an integral

2J
∑

r
r−2−σ sin2 q·r

2 ≈ 2J
∫
r>1

d2r
r2+σ sin2 q·r

2 = 2J
∫ ∞

1

dr

r1+σ

∫ 2π

0
dθ sin2 qr cosθ

2 , (A.3)

or, in term of ρ = qr/2 cos θ

K(q) = qσ21−σJ

∫ ∞
q| cos θ|

dρ

ρ1+σ sin2 ρ

∫ 2π

0
dθ| cos θ|σ. (A.4)

Now, if σ < 2 the integral has no ultraviolet divergence and we can extend the integral on
ρ to the whole axis, committing an error of order q2. Then, we find

K(q) = Jcσq
σ +O(q2) ∀ σ ∈ (0, 2) (A.5)

with:
cσ = 21−σ

∫ ∞
0

dρ

ρ1+σ sin2 ρ

∫ 2π

0
dθ| cos θ|σ = 21−σπ|Γ(−σ2 )|

σΓ(σ2 ) (A.6)
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Figure 4. For a given point of the plane z, all the parallelograms P of sides r, r′ such that z ∈ P
(as the red and the blue one in figure) are such that the centers belong to a parallelogram of sides
r, r′, centered in z.

B Derivation of the vortex-vortex potential

We now derive the form of the potential U in eq. (3.12). We start from the expression of
Htop eq. (3.10), taking into account the constraint (2.8). We find thus

Htop =
∑
r,r′

JrJr′
∑
j,j′

f(j− j′)

 ∑
z∈P(j,r,r′)

mz

 ∑
z′∈P(j,r,r′)

mz′

 . (B.1)

Remarkably, only the congruent parallelograms (which share the same r and r′) do interact.
Reshuffling the sums we finally find the vortex-vortex potential

Htop =
∑
z,z′

mzmz′U(z− z′), (B.2)

with
U(z− z′) =

∑
r,r′

JrJr′
∑

j,j′|z∈P(j,r,r′)z′∈P(j′,r,r′)
f(j− j′). (B.3)

We want now to derive an approximate expression for this potential valid for large
distances. In this limit, we can as well replace the sum in eq. (B.3) with an integral. Since
only congruent parallelograms interact we can replace j− j′ with the distance between the
centers of the two. To correctly parametrize the integral, we notice that, once z and r, r′

have been fixed, the parallelogram such that z ∈ P are those whose centers belong to a
second parallelogram centered in z of sides r, r′ (see figure 4). In turn, each point of this
parallelogram can be written as j = z + λr + µr′ with λ, µ ∈ [−1/2, 1/2]. By choosing λ, µ
as our coordinates we have to carry a factor |r× r′| due to the jacobian. Finally, we can
express U as

U(z− z′) =
∫
d2r

∫
d2r′(r× r′)2J(r)J(r′)

×
∫ 1/2

−1/2
dλdλ′

∫ 1/2

−1/2
dµdµ′f

(
z− z′ + (λ− λ′)r + (µ− µ′)r′

)
.

(B.4)
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So far, all our considerations are equally valid for any choice of J(r). In what follows we
are going to replace J(r) with its asymptotic form J(r) ∼ Jr−2−σ valid for r � 1. This is
safe, since we are interested in the large-distance limit.

By exploiting the definition (3.9) of f(x) which, in the continuum limit, becomes

f(x) = π2

4

∫
d2q

(2π)2
eiq·x

K(q) , (B.5)

we find the expression for the Fourier transform of U(q) of U(z− z′) to be

U(q) = π2J2

4K(q)

∫
d2r
r2+σ

∫
d2r′

r′2+σ (r× r′)2
∫ 1/2

−1/2
dλdλ′

∫ 1/2

−1/2
dµdµ′eiq·((λ−λ

′)r+(µ−µ′)r′)

= (2πJ)2

K(q)

∫
d2r
r2+σ

∫
d2r′

r′2+σ (r× r′)2 sin2(q · r/2)
(q · r)2

sin2(q · r′/2)
(q · r′)2

= (2πJ)2

K(q)

∫ 2π

0
dθdθ′

∫
dr

r1+σ

∫
dr′

r′1+σ sin2(θ − θ′)sin2(qr/2 cos θ)
(q cos θ)2

sin2(qr′/2 cos θ′)
(q cos θ′)2 .

(B.6)

Now we notice that, ∀σ < 2, through the substitution ρ = qr/2 cos θ

J

∫
dr

r1+σ sin2(qr/2 cos θ) = J2−σqσ| cos θ|σ
∫

dρ

ρ1+σ sin2 ρ (B.7)

In appendix A we derived the expression of K(q) for small values q, namely K(q) ∼ Jcσqσ.
By exploiting the expression of cσ derived there we have that, for small q,

J

∫
dr

r1+σ sin2(qr/2 cos θ) ∼ 1
2K(q)| cos θ|σ

(∫
dθ′| cos θ′|σ

)−1
. (B.8)

Finally we have
U(q) ∼ I(σ)K(q)

q4 , (B.9)

where

I(σ) = π2
(∫

dθ′′| cos θ′′|σ
)−2 ∫

dθdθ′ sin2(θ − θ′)| cos θ|σ−2| cos θ′|σ−2

= 2π2
∫
dθ sin2 θ| cos θ|σ−2∫

dθ′| cos θ′|σ = 2π2

σ − 1 .
(B.10)

we find thus the expression we where looking for. If we carefully insert an infrared cutoff L,
it is easy to see that the divergence for σ ≤ 1 is actually an infrared divergence (∝ L1−σ, L
being the linear size of the system).

C Renormalization procedure

We now give the details of the derivation of eq. (4.1). In order to carry out the renormalization
process, we assume that y � 1: in this regime only the vortices with charge ±1 will actually
contribute to the renormalization procedure. Then, by the neutrality condition, every
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possible configuration will have the same number of positive and negative charges, and the
partition function takes the form

Ztop =
∞∑
p=0

y2p
`

p!2
∫
|ri−rj |>1

p∏
i=1

dr+
i d

2r−i e
−
∑

i 6=j mimjV`(ri−rj) (C.1)

where r±i are the positions of the vortices with positive/negative charge respectively.
To perform the renormalization we integrate all over the pasuch that 1 < |ri− rj | < eδ`.

In order to do so, let us consider the sector with p pairs of vortices in the partition function
of eq. (C.1). There are p2 equivalent ways to choose the pato trace out. Then, assuming
the coordinates of this couple to be r±p ≡ r± we have an additional term given by

y2pp2

p!2
∫
|ri−rj |>eδ`

p∏
i=1

d2r+
i d

2r−i
∫

1<|ri−rj |<eδ`
dr+
p dr−p e

−
∑′

i 6=j mimjV (ri−rj)

= y2p

(p− 1)!2
∫
|ri−rj |>eδ`

p−1∏
i=1

dr+
i dr−i e

−
∑′

i 6=j mimjV (ri−rj)

×
∫

1<|r+−r−|<eδ`
d2r+d2r−e−V (r+−r−)−

∑′
i
mi(V (ri−r+)−V (ri−r−)),

where we are denoting with ∑′ the summation all over the remaining charges, namely
i, j 6= p and we are dropping the subscript ` in V (r) and y in order to keep the notation
easy. This gives nothing but a p− 1-paterm with the additional interaction

y2(p−1)

(p− 1)!2
∫
|ri−rj |>eδ`

p−1∏
i=1

d2r+
i d

2r−i e
−
∑′

i 6=j mimjV (ri−rj)(1 +A)

≈ y2(p−1)

(p− 1)!2
∫
|ri−rj |>eδ`

p−1∏
i=1

d2r+
i d

2r−i e
−
∑′

i 6=j mimjV (ri−rj)+A
(C.2)

where we introduced the quantity

A = y2
∫

1<|r+−r−|<eδ`
d1r+d2r−e−V (r+−r−)−

∑′
i
mi(V (ri−r+)−V (ri−r−)). (C.3)

We now introduce ξ = r+−r−, x = r++r−
2 . Moreover, since ξ = 1+O(δ`) and V (1) = 0, we

have that V (r+− r−) = O(δ`2) and can be neglected. At the same time, since the potential
is supposed to vary slowly at large distance, we can expand V (ri − r+) − V (ri − r−) =
ξ · ∇V (ri − x) +O(ξ3). Then we obtain

A = y2
∫

1<ξ<eδ`
d2ξd2xe−ξ·

∑′
i
mi∇V (x−ri)

= y2
∫

1<ξ<eδ`
d2ξd2x

(
1− ξ ·E + 1

2ξaξbEaEb +O(ξ4)
) (C.4)

where we introduced the electric field E(x) = ∑
imi∇V (x− ri). Performing the integral

over ξ:

A = const + y2(eδ` − 1)π2

∫
d2x E2 = δ`

πy2

2

∫
d2x E2 +O(δ`2) (C.5)
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where we got rid of the additive constant which has no physical meaning. Now we have to
compute the electrostatic energy: in the ultraviolet, the electric field of a single charge goes
as ∇V ∼ r1−σ for r � 1; taking into account the global neutrality we have E ∼ r−σ and
E2 ∼ r−2σ so that the integral is convergent only for σ > 1, which is exactly the range of
the parameter we are interested in. In this case we can write

∫
d2x E2(x) =

′∑
i,j

mimj

∫
d2x∇V (x + ri) · ∇V (x + rj)

=
′∑
i,j

mimj

∫
d2x∇V (x) · ∇V (x + rj − ri)

=
′∑
i 6=j

mimj

∫
d2x

(
∇V (x) · ∇V (x + rj − ri)− |∇V (x)|2

)
,

(C.6)

where we once again used the charge neutrality to write everything in terms of the sum with
i 6= j. Thus, setting p′ = p− 1, we end up with a partition function with the same form of
eq. (C.1) with a renormalized two-body interaction given by V`(r)→ V (r)− π2

2 y
2
`∆V (r),

with
∆V (r) =

∫
d2x

(
∇V`(x) · ∇V`(x + r)− |∇V`(x)|2

)
. (C.7)

Finally, in order to correctly write the change of the partition function under the
renormalization procedure, we have to redefine the length-scale r̃ = re−δ` so that the new
cutoff length a`+δ` is 1 as well. From the integration measure of eq. (C.1), we get a factor
e4pδ` which can be reabsorbed into a renormalization of the fugacity, y` → y`e

2δ`. In terms
of r̃, the potential becomes V`(r) = V` (r̃)+ r̃ V ′` (r̃)δ`+O(δ`2). From now on we will rename
r̃, r. Thus, up to higher orders in δ`, we can write V`(r)→ V`(r) + δV (r) where

δV (r) = δ`

(
rV ′` (r)− πy2

2 ∆V (r)
)

(C.8)

The new interaction energy, however, no longer respects the condition V (1) = 0, so that
the procedure cannot be properly repeated. To make up for it we can exploit once again
the neutrality condition to have:

Htop =
∑
i 6=j

mimj (V`(ri − rj) + δV (ri − rj))

=
∑
i 6=j

mimjV`+δ`(ri − rj)− δV (1)
∑
i

m2
i

(C.9)

with V`+δ`(r) = V`(r) + δV (r)− δV (1). The last term can be absorbed into the renormal-
ization of the fugacity:

y`+δ` = y`e
2δ`eδV (1) (C.10)

In summarizing, we have been able to put the partition function in the same form of the
original one, with a different fugacity y`+δ` and a different vortex interaction energy V`+δ`(r),
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given by

∂`V`(r) = rV ′` (r)− V ′` (1)− π

2 y
2
` (∆V`(r)−∆V`(1))

dy`
d`

= y`
(
2 + V ′` (1)

)
+O(y3)

(C.11)

with ∆V form eq. (C.7). These are the renormalization equations given in the main text.
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