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ABSTRACT

Context. Number counts of galaxy clusters across redshift are a powerful cosmological probe if a precise and accurate reconstruction of the
underlying mass distribution is performed – a challenge called mass calibration. With the advent of wide and deep photometric surveys, weak
gravitational lensing (WL) by clusters has become the method of choice for this measurement.
Aims. We measured and validated the WL signature in the shape of galaxies observed in the first three years of the Dark Energy Survey (DES Y3)
caused by galaxy clusters and groups selected in the first all-sky survey performed by SRG (Spectrum Roentgen Gamma)/eROSITA (eRASS1).
These data were then used to determine the scaling between the X-ray photon count rate of the clusters and their halo mass and redshift.
Methods. We empirically determined the degree of cluster member contamination in our background source sample. The individual cluster shear
profiles were then analyzed with a Bayesian population model that self-consistently accounts for the lens sample selection and contamination and
includes marginalization over a host of instrumental and astrophysical systematics. To quantify the accuracy of the mass extraction of that model,
we performed mass measurements on mock cluster catalogs with realistic synthetic shear profiles. This allowed us to establish that hydrodynamical
modeling uncertainties at low lens redshifts (z < 0.6) are the dominant systematic limitation. At high lens redshift, the uncertainties of the sources’
photometric redshift calibration dominate.
Results. With regard to the X-ray count rate to halo mass relation, we determined its amplitude, its mass trend, the redshift evolution of the mass
trend, the deviation from self-similar redshift evolution, and the intrinsic scatter around this relation.
Conclusions. The mass calibration analysis performed here sets the stage for a joint analysis with the number counts of eRASS1 clusters to
constrain a host of cosmological parameters. We demonstrate that WL mass calibration of galaxy clusters can be performed successfully with
source galaxies whose calibration was performed primarily for cosmic shear experiments, opening the way for the cluster cosmological exploitation
of future optical and NIR surveys like Euclid and LSST.
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1. Introduction

General relativity describes the gravitational force as the curva-
ture of space-time induced by mass and energy densities. This
curvature determines the so-called null geodesics on which pho-
tons travel through space-time. As a consequence, the path of the

light from a distant source to the observer is deflected by inter-
vening gravitational potentials, with a deflection angle that is
proportional to the path integral of the transverse component of
the negative gradient of the potential. Indeed, Dyson et al. (1920)
measured the predicted displacement in the positions of distant
stars when observed close to the Sun during a solar eclipse. In the
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cosmological context, the original position of the sources is not
known. In general, the gravitational potential of the intervening
lenses is also unknown because the majority of cosmic matter is
believed to be invisible, and its density is among the targets of
our experiments.

On cosmic scales, gravitational lensing of distant galaxies
thus relies on the fact that the differential deflection of neigh-
boring light paths locally induces a magnification and a distor-
tion of the source galaxy image (for a pedagogical introduc-
tion see Schneider 2006). In this regime, large-scale gravita-
tional potentials create spatially coherent, small distortions in
the observed shapes of background galaxies, a process called
weak gravitational lensing (hereafter WL). A special case is
the WL caused by massive gravitationally collapsed, virialized
structures, referred to as halos, which dominate the line-of-
sight-integrated gravitational potential (for a review see Umetsu
2020). These objects induce a tangential distortion in the shapes
of the background galaxies, that traces the density contrast of the
2D projected density profiles. The 3D density profiles of halos
are well understood in simulations and are found to tightly fol-
low a parametric class of functions with two free parameters: the
total halo mass and the typical halo scale (Navarro et al. 1996).
Fitting predictions derived from this family of models to the tan-
gential reduced shear profiles thus enables the direct measure-
ment of the halo mass.

The most massive halos host galaxy clusters, whose
observed properties display tight correlations among them-
selves (Mohr & Evrard 1997), and with the host halos mass
(Angulo et al. 2012), enabling a clean halo selection. For such
samples of galaxy clusters, the WL mass information is then
used to reconstruct the differential number density of halos
as a function of mass and redshift, the halo mass function.
This function traces the growth of the structure in the Uni-
verse and is therefore a sensitive probe to the total matter den-
sity, the accelerated expansion, and gravity itself (Haiman et al.
2001; Majumdar & Mohr 2004; Allen et al. 2011). Examples
of such analyses are Mantz et al. (2015), who used X-ray-
selected galaxy clusters with pointed WL observations, and
Bocquet et al. (2019), who used galaxy clusters selected at
millimeter wavelengths. Both of these analyses resulted in
competitive cosmological constraints, which are largely com-
plementary and independent of other cosmological probes (for
a recent review, see Huterer 2023).

Our ability to detect larger numbers of massive halos
has recently been transformed by eROSITA, which performed
its first all-sky survey from December 2019 to June 2020
(Predehl et al. 2021; Sunyaev et al. 2021), detecting more than
1 million X-ray sources in the Western Galactic Hemisphere
(Merloni et al. 2024). Among these X-ray sources, ∼12 k are
confirmed as clusters of galaxies through significant extended
X-ray emission and associated red galaxy members in the
12791 deg2 footprint covered by the DESI Legacy Survey DR9
and DR10 data (Bulbul et al. 2024; Kluge et al. 2024). In this
work, we restricted ourselves to the 5263 clusters selected for
the cosmology sample via a higher extent likelihood cut. These
clusters have percent-accurate photometric redshifts, in the range
of 0.1–0.8, and a well calibrated selection function (Clerc et al.
2024).

We complement the eROSITA data with the wide pho-
tometric Dark Energy Survey year 3 (DES Y3) data
(Sevilla-Noarbe et al. 2021). From these data, we used more than
108 galaxy shape measurements measured in the riz bands by
Gatti et al. (2021) in an effective survey area of 4143 deg2 of
the southern sky. The strength of the WL signal around galaxy

clusters depends not only on their mass but also on the geomet-
rical configuration of the lens and source. To statistically esti-
mate the latter’s distance, we leveraged the exquisite accuracy of
the photometric redshift calibration of the DES Y3 sources by
Myles et al. (2021).

Besides the uncertainty on the shape and photometric red-
shift measurements for the source galaxies, percent-accurate
cluster WL measurements need to account for the cluster mis-
centering errors and contamination of the source sample by clus-
ter galaxies (for a complete analysis on DES year 1 data, see
McClintock et al. 2019). Even if all observational systematics
are well calibrated and accounted for, the modeling uncertain-
ties of baryonic feedback processes alter the mass distribution
of galaxy clusters. This poses a theoretical limit to our ability
to calibrate cluster masses via WL (Grandis et al. 2021a). As
argued in that work, setting up many realizations of realistic,
synthetic cluster WL mock datasets and analyzing them with the
same mass extraction method as the real data allows one to cal-
ibrate both the absolute values and – crucially – the uncertainty
of the WL mass bias. This approach has already been success-
fully demonstrated in work by Chiu et al. (2022) in the context
of Hyper Supreme Camera (HSC) observations of the eROSITA
Final Equatorial-Depth Survey (eFEDS) used for science
verification.

This paper is organized as follows: In Sect. 2, we describe the
lens and source catalogs, as well as the calibration products used
in this analysis. Section 3 then describes the measurement pro-
cess for the tangential reduced shear and the suite of associated
validation and calibration steps. In Sect. 4, we then describe the
shear profile model used for the mass measurement, as well as
its calibration on realistic synthetic data. These two sections fol-
low in significant part the analysis performed by Bocquet et al.
(2023) of the DES Y3 WL signal around South Pole Telescope
(SPT) selected clusters. The actual mass calibration is then per-
formed and validated in Sect. 5, and we discuss our results in
Sect. 6. Halo masses in this work are reported as spherical over
density masses M∆c, with ∆ = 500, 200. This means that they
are defined via the radius R∆c enclosing a sphere of average den-
sity ∆ times the critical density of the Universe at that redshift,
that is, M∆c = 4π

3 ∆ρcrit(z)R3
∆c. We used a flat ΛCDM cosmol-

ogy with the parameters ΩM = 0.3, and h = 0.7 as the refer-
ence cosmology, where not specified otherwise. Throughout this
work, we use lens redshift zl, and cluster redshift zcl interchange-
ably, depending on which is more applicable to the context of the
discussion.

2. Data

2.1. eRASS1 cluster and group sample

As a lens catalog, we use the cluster catalog acquired from
the first eROSITA All-Sky Survey on the Western Galactic
Hemisphere, completed on June 11, 2020. The detection prop-
erties of the X-ray sources detected in this survey, including
extended sources, are discussed in detail in Merloni et al. (2024),
Bulbul et al. (2024). We use the cosmology catalog described
in detail in Bulbul et al. (2024), comprised of X-ray sources
detected as significantly extended, with reliable photometric
confirmation and redshift estimation using the DESI Legacy Sur-
vey DR10 (Dey et al. 2019). Specifically, Kluge et al. (2024) run
an adapted version of the redMaPPer algorithm (Rykoff et al.
2014, 2016; Rozo et al. 2015) on the X-ray cluster candidate
position, thus measuring their richness and photometric red-
shift. Of the 5263 clusters and groups in that catalog, 2201
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Fig. 1. Lens sample composed of the eRASS1 cosmology cluster and
group sample with DES WL data, plotted in redshift against richness
and with the X-ray count rate color coded. The gray lines mark the
edges of the richness–redshift bins used for the calibration and valida-
tion of the WL measurement. Cosmology ready WL data products are,
however, produced for each cluster individually.
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Fig. 2. Source redshift distributions of the tomographic redshift bin of
the DES Y3 data. We plot the mean of the 1000 realizations (full line),
together with the 16–84 percentile (filled region) and the 2.5–97.5 per-
centile (faded lines). The first tomographic bin is not used, while the
others are weighted to ensure a lens-dependent background selection.

have DES Y3 shape and photo-z information (described below),
and are therefore used for the WL analysis in this work (see
Ghirardini et al. 2024, Fig. 1 for a comparison of the two sur-
vey footprints). Their distribution in redshift, richness and X-ray
photon count rate is shown in Fig. 1. The bulk of the lens sample
lies at low redshift, ideally placed for WL studies. Some objects
at low richness have redshifts much larger than expected for an
X-ray-selected sample. We account for these contaminants in our
mass calibration (see Sect. 5.1.1).

2.2. DES WL data

The Dark Energy Survey is an approximately 5000 deg2 pho-
tometric survey in the optical bands grizY , carried out at the
4 m Blanco telescope at the Cerro Tololo Inter-American Obser-
vatory (CTIO), Chile, with the Dark Energy Camera (DECam
Flaugher et al. 2015). In this analysis, we utilize data from the
first three years of observations (DES Y3), covering the full sur-
vey footprint.

2.2.1. The shape catalog

The DES Y3 shape catalog (Gatti et al. 2021) is built
from the r, i, z-bands using the Metacalibration pipeline
(Huff & Mandelbaum 2017; Sheldon & Huff 2017). Other
DES Y3 publications contain more detailed information about
the photometric dataset (Sevilla-Noarbe et al. 2021), the Point-
Spread Function modeling (Jarvis et al. 2021), and image sim-
ulations (MacCrann et al. 2022). We refer the reader to these
works for more information. After applying all source selec-
tion cuts, the DES Y3 shear catalog contains about 100 million
galaxies over an area of 4143 square degrees. Its effective source
density is 5–6 arcmin−2, depending on the exact definition. In
Sect. 3, we will derive the exact values of effective source den-
sity.

2.2.2. Source redshift distributions and shear calibration

Our analysis uses the same selection of lensing source
galaxies in tomographic bins as the DES 3× 2pt analy-
sis (Dark Energy Survey Collaboration 2022). This selection is
defined in Myles et al. (2021). In that work, source redshifts are
estimated with Self-Organizing Maps, and the method is thus
referred to as SOMPz. The final calibration accounts for the
(potentially correlated) systematic uncertainties in source red-
shifts and shear measurements, as determined in the image simu-
lations by MacCrann et al. (2022). For each tomographic source
bin b, the estimated redshift distribution PH (zs|b) is provided,
and the systematic uncertainties on this estimate are captured
through 1000 realizations (see Fig. 2). These realizations are
indexed via the hyperparameter H , which takes integer values
between 0 and 999 (Cordero et al. 2022). For convenience, these
redshift distributions are normalized to varying values (1 + m),
where the varying m spans the range of the multiplicative shear
bias values. Note that the DES Y3 survey only has minor depth
variations over the survey area. The survey averaged quanti-
ties, like the source redshift distributions, thus apply to the joint
eROSITA-DE – DES Y3 footprint.

We will also use dnf (De Vicente et al. 2016) and bpz
(Benítez 2000) source redshift measurements to constrain the
amount of cluster member contamination in our source sam-
ple (see Sect. 3.3.1). While bpz is a Bayesian template fit-
ting code, dnf is based on a nearest-neighbor interpolation on
the color-magnitude space of spectroscopic reference samples.
As such, bpz is more robust against the incompleteness of the
spectroscopic reference samples, while dnf is more data-driven
and avoids the biases that occur from the template choice (see
Sevilla-Noarbe et al. 2021, Sect. 6.3, for more details).

3. Measurement

In this section, we shall outline (1) the methods used to mea-
sure the WL signal around eROSITA selected clusters, (2) the
steps undertaken to calibrate this measurement correctly, and (3)
the use of this measurement to determine the mass scale of the
eROSITA selected clusters and groups. Note that the methods
presented in this work draw significantly upon those presented
in Bocquet et al. (2023).

3.1. WL by massive halos

Assuming that background galaxies are isotropically oriented
intrinsically, the coherent tangential distortion induced by the
gravitational potential on background galaxy images at a radius
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R from the halo center can be obtained, to linear order, by aver-
aging the tangential component of their ellipticities,

gt(R) = R−1〈et〉R, (1)

where gt(R) is the reduced tangential reduced shear, and R
is the average response of the measured ellipticity to a shear
(shear response). In practical applications, instrumental effects
and noise make it different from 1. It is determined through
galaxy shape measurement and validated through image simula-
tions. Below, we discuss how we include this effect in our mea-
surements and how we account for nonlinear responses. While
the ellipticity field itself is not Gaussian, our reduced shear esti-
mator is constructed by averaging many sources. The central
limit theorem thus ensures that the statistical error of the shear
estimate can be directly derived from the effective dispersion
σeff in the ellipticity of the source galaxies and their effective
number Neff . Below, we will discuss how we estimate these two
quantities.

Given a source galaxy at redshift zs, the lens redshift zl, and
the surface mass density Σ(x) in the lens plane, the tangential
reduced shear in any position on the sky θ = x/Dl is given by

gt(θ) =
γt(x)

1 − κ(x)
with κ(x) = Σ−1

critΣ(x), (2)

where γt(x) is the tangential component of the shear, κ(x) the
convergence, Dl the angular diameter distance to the lens, and
Σ−1

crit the inverse of the critical lensing surface density. The latter
expresses the geometrical configuration of the source and lens
and is given by

Σ−1
crit,ls =

4πG
c2

Dl

Ds
max [0,Dls] , (3)

where G is the gravitational constant, c the speed of light.
Furthermore, we use the angular diameter distance between
observer and source (Ds), and lens and source (Dls). Note that for
sources in front of the lens, Dls becomes negative. These sources
are not lensed, which we account for by setting their inverse crit-
ical lensing surface density to zero. Hence the term max [0,Dls].

In general relativity, the azimuthally averaged tangential
shear at projected radius R is proportional to the density con-
trast,

γt(R) = Σ−1
crit

[
〈Σ(<R)〉 − Σ(R)

]
, (4)

while the orthogonal, B-mode-like component γx, called cross-
shear (see below for the exact definition of the decomposition),
averages to zero when integrated over closed paths such as radial
bins,

γx(R) = 0. (5)

We will use the latter as a validation test for our measurement.

3.2. Measurement

To perform the measurement, for each lens l, we query the
shape catalog for all sources at a projected physical distance of
<15 h−1 Mpc in the reference cosmology (h = 0.7, ΩM = 0.3).
For each source lens pair (i, l), we compute the position angle ϕ
at which the source is seen from the lens’ position.

We then project the ellipticity components e1,2 onto the tan-
gential and cross components as

et = −e1 cos 2ϕ + e2 sin 2ϕ
ex = e1 sin 2ϕ + e2 cos 2ϕ. (6)

We use the tangential/cross decomposition for the case where the
e2-component is defined with respect to right ascension, which
is the case in the DES Y3 shape catalog1 We also record the
source weight ws

i , and the photometric redshift estimates in the
form of the SOMPz cell cSOM,i of the source, and the photometric
redshift estimates ẑdnf,i and ẑbpz,i. Furthermore, we compute the
response Ri of every single source by interpolating the response
as a function of size with respect to to the PSF and signal-to-
noise, as presented in the upper right panel of Fig. 4 in Gatti et al.
(2021), Sect. 4.3.

To select only sources in the background of each lens, we dis-
card the first tomographic redshift bin and apply a weight to each
source depending on the tomographic redshift bin b it resides
in,

wb =


〈
Σ−1

crit,ls

〉
s∈b

for zl < zmed,b and b > 1
0. otherwise,

(7)

where the average is taken using the mean source redshift dis-
tribution of the tomographic bin, as reported by Myles et al.
(2021). Our background selection is thus a weighted sum of
the tomographic bin selections. This is convenient, as the shear
and photo-z calibration (Myles et al. 2021; Cordero et al. 2022;
MacCrann et al. 2022) is only valid for the specific selection
criteria of the tomographic redshift bins. It can be extended to
our analysis by using the same weights as above. Our selection
excludes the 2nd tomographic redshift bins for zl > 0.47, and the
third for zl > 0.74.

To validate and calibrate the cluster WL measurement, we
define lens richness bins (3, 16, 26, 38, 55, 250), and redshift
bins (0.10, 0.19, 0.27, 0.35, 0.48, 0.8), shown as gray lines in
Fig. 1, and tuned to result in approximately even occupations of
the lenses. In these bins, we measure the following quantities for
radial bins whose upper edges are log-equally spaced between
0.2–15 h−1 Mpc at the lens redshift in the reference cosmology:

– the raw tangential and cross-shear, with the tangential com-
ponents shown in Fig. 3,

gα, raw =

∑
b=2,3,4 wb ∑

i∈b ws
i eα,i∑

b=2,3,4 wb ∑
i∈b ws

iRi
for α ∈ (t, x), (8)

where i ∈ b stands for the source i in the tomographic bin
b and in the respective lens richness, redshift, and distance
bins.

– the effective number of sources

Neff =

(∑
b=2,3,4

∑
i∈b wbws

iRi

)2

∑
b=2,3,4

∑
i∈b

(
wbws

iRi

)2 , (9)

– the effective dispersion of source ellipticities

σ2
α, eff =

∑
b=2,3,4

∑
i∈b

(
wbws

i

)2
e2
α, b,i∑

b=2,3,4
∑

i∈b

(
wbws

iRi

)2 for α ∈ (t, x), and (10)

– the source redshift distribution for fine source redshift bins
with edges (zs−, zs+), reading

1 The prevalent notation (e.g. Umetsu 2020, Eq. (83)) is valid for e2
defined for a right-handed, local coordinate system (x ∝ −RA). It can
be recovered by the transformation e2 7→ −e2.
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Fig. 3. Absolute value of the raw tangential reduced shear profile, Eq. (8), in bins of cluster redshift (panels: lowest redshift left, higher redshift
right) and of richness (color coding), for our background selection. Stars denote positive values, while empty circles denote negative values. The
profiles show a clear increase toward the cluster centers, as well as a trend with richness, in line with our qualitative expectations.

P̂β(zs) =

∑
b=2,3,4 wb ∑

i∈b ws
iRi Is(ẑβ,i)∑

b=2,3,4 wb
∑

i∈b ws
iRi

for β ∈ (bpz,dnf), (11)

where Is(ẑβ,i) = 1 when zs− < ẑβ,i < zs+. Practically speak-
ing, this is a weighted histogram of the photo-z estimates ẑβ,i.

It is important to note that also the estimates of the effective
source density, the shape dispersion and the redshift distribution
need to take the shear response R into account. For a derivation
for Eqs. (9) and (10), we refer the reader to Appendix A, where
we present the derivation of the effective number of sources
and their effective shape dispersion in the presence of a shear
response and un-normalized weights.

3.3. Calibration and validation

We shall now discuss several calibration and validation steps we
take to ensure the quality of our WL measurements.

3.3.1. Cluster member contamination

As suggested by their name, galaxy clusters are substantial over-
densities not only in matter but also in the galaxy field. As a
result, an a priori unknown fraction of the cluster members con-
taminates any source background selection. These cluster mem-
ber contaminants carry no shear distortion signal from the clus-
ter potential and therefore dilute the shear signal (Hoekstra et al.
2012; Gruen et al. 2014; Dietrich et al. 2019; Varga et al. 2019).
This effect is equivalent to source-lens clustering in other
WL applications (compare, for instance, with Prat et al. 2022,
Sect. III.B). Current simulations are not accurate enough to
reconstruct the colors and magnitudes of cluster member galax-
ies with sufficient fidelity to calibrate this effect directly in sim-
ulations. We therefore resorted to empirical calibration methods.
We shall outline in the following paragraphs the model for the
cluster member contamination, and the two methods we use to
fit for it, as well as a comparison of the fit results.

Cluster member contamination model. In modeling the
cluster member contamination, we adopt an approach that was
developed previously in Paulus (2021). We parametrize the
radial fraction of cluster contaminants as

fcl(R|λ, z) =
A(λ, z,R)

1 + A(λ, z,R)
with

A(λ, z j,R) = eA j

(
λ

25

)Bλ
Σnorm

NFW

(
R
∣∣∣∣rS = c−1

(
λ

20

)1/3)
, (12)

where A j is a free amplitude parameter for each cluster redshift
bin j we consider, Bλ describes the richness trend of the cluster
member contamination, and Σnorm

NFW(R|rS ) is a 2d projected NFW
profile, normalized to 1 at its scale radius rS , which we parame-
terize via a concentration c and a scaling with richness.

As shown in Appendix B, A(λ, z,R) is proportional to the
radial number density profile of the cluster member contami-
nants, which we therefore modeled as a 2d projected NFW pro-
file. Given that at this stage of the analysis, the cluster mass is
still unknown, we resort to using the richness as a mass proxy.
For ICM-selected cluster samples, the richness is known to scale
approximately linearly with mass (Saro et al. 2015; Bleem et al.
2020; Grandis et al. 2020, 2021b). Furthermore, the richness
provides a convenient proxy for the total number density of
cluster member galaxies. It also has contributions from corre-
lated structures along the line of sight that would also contribute
almost unsheared contaminants to the background sample.

Regularisation. Given the complex interactions of cluster
redshift, cluster member colors, photo-z estimation, and back-
ground selection, we opt for a non-parametric fit for the redshift
evolution by fitting independent amplitudes A j for each cluster
redshift bin. To impose a data-driven smoothness on the redshift
evolution, we place a Gaussian prior with unknown variance σ2

reg
on the difference between the amplitudes of neighboring redshift
bins, implemented via the Gaussian likelihood

lnLreg =
nz−bins − 1

2
lnσ2

reg −
1

2σ2
reg

∑
j

(
A j − A j+1

)2
, (13)

where nz−bins is the number of redshift bins used. This likelihood
adds an extra fit parameter, σreg, when added to the primary like-
lihood of the cluster member contamination.

Source density fit. The cluster member contamination can
be fitted from the effective source density as a function of pro-
jected distance from the clusters (which are our lenses) stacked
in bins of cluster redshift and richness, which we present in
Fig. 4. This density is computed by dividing the effective number
of sources, Eq. (9), by the geometric area of the radial bin. Given
the presence of cluster member galaxies obstructing the detec-
tion of background galaxies and of detection masks, this results
in an underestimation of the actual source density, as explored in
detail by Kleinebreil et al. (2024) in the context of Kilo Degree
Surveys (KiDS) WL around SPT selected clusters. This can be
seen most clearly in the reported number density in the most
central radial bin R < 0.2 h−1 Mpc. On these radial scales, clus-
ter lines of sight are typically dominated by the massive central
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Fig. 4. Effective source density estimated from the effective number of source, Eq. (9), and the geometric area of the radial bins stacked in bins
of cluster redshift (panels, lowest redshift left, higher redshift right) and of richness (color coding) as stars, for our background selection. Cluster
members contaminating our background source sample leads to an increase of the effective source density toward the cluster center, which depends
on both cluster richness and redshift. This signal needs to be determined, as cluster member contaminants are not sheared and dilute the shear
estimator. Our model (lines) captures this trend well.

galaxy and its stellar envelope. We exclude this radial bin from
the following analyses.

We fit the effective number density of cluster members as
a function of projected radius R for a cluster of richness λ and
redshift z as

neff(R|λ, z) =
nfield(z)

1 − fcl(R|λ, z)
, (14)

where the effective number density in the field nfield(z) is
extracted around our clusters in the outer regions, 11 h−1 Mpc<
R < 15 h−1 Mpc. This choice of background is designed to mea-
sure the excess source lens clustering induced by the photomet-
ric misclassification of cluster members as background sources,
which is the sole goal of the cluster member contamination cor-
rection.

For the fit of the parameters of the cluster member contam-
ination, pcl = (A j, Bλ, c), we set up a Gaussian likelihood for
the effective number density measured in the above mentioned
richness-redshift bins. Our data vector, the effective source den-
sity, results from the weighted sum of all tomographic redshift
bins (see Eq. (9)). We therefore fit one global cluster member
contamination for our overall background selection. We assume
a covariance matrix that combines Poisson noise from the effec-
tive number of sources and the variance we find in the outer
radial bin as a proxy for the cosmic variance in the source den-
sity. Sampling this likelihood together with the regularization
likelihood gives us constraints on the parameters of the cluster
member contamination.

Source redshift distribution decomposition. The estimate
from the effective source density around clusters needs to be val-
idated independently, as in the current implementation, we did
not consider source obstruction and masking. As demonstrated
by Varga et al. (2019), and applied by McClintock et al. (2019),
Paulus (2021), Shin et al. (2021), Bocquet et al. (2023), cluster
member contamination can also be determined by decomposing
the source redshift distribution as a function of the radius into a
field component and a Gaussian component of cluster members,
that is,

P(zs|R, λ, z) = (1− fcl(R|λ, z))P̂field(zs|z)+ fcl(R|λ, z)Pcl(zs|z), (15)

where the field source redshift distribution P̂field(zs|z) is mea-
sured in the outer radial bin. The cluster member component
is modeled as a Gaussian Pcl(zs|z) = N(zs|z + µ(z), σ2(z)) with
mean offset µ(z) = µ0 + µz(z − z0), and standard deviation

σ(z) = σ0 + σz(z − z0), with pivot z0 = 0.3, close to the clus-
ter redshift median. This technique adapts the method proposed
by Gruen et al. (2014) to wide photometric surveys with readily
available photometric redshift estimates. Given that we fit for the
shape of a normalized source redshift distribution, the amount of
masking does not impact this inference. The likelihood is

lnLβ =
∑

Neff P̂β(zs) ln P(zs|R, λ, z) for β ∈ (bpz,dnf), (16)

where the sum runs over richness, cluster redshift, cluster-centric
distance and source redshift bins2. Sampled together with the
regularization likelihood, this provides us with constraints on the
parameters of the cluster member contamination. We perform
this fit for redshift distributions constructed both for bpz and
dnf photo-zs.

Results and comparison. The best-fit results of the number
density fit are over-plotted as lines on the effective source den-
sity data in Fig. 4, demonstrating that our model can capture the
trends in the data well. Furthermore, we find a concentration for
the contaminants profile of c = 2.5 ± 0.1. This matches the con-
centration values found for the galaxy populations of massive
clusters (Hennig et al. 2017). Our results also indicate a slight
richness slope of the contamination fraction of Bλ = 0.47 ± 0.1.
The redshift evolution is shown in Fig. 5 in green (with the filled
band corresponding to the 1-sigma uncertainty region and the
green lines indicating the 2-sigma). For a cluster at richness pivot
λ = 25 at a cluster-centric distance of R = 1 Mpc, we find that
the contamination fraction increases from around fcl ≈ 0.01 at
zcl = 0.1 to fcl ≈ 0.05 for zcl > 0.5, with the strongest increase
happening between redshifts 0.25 < z < 0.4. We will use this
setting to gauge the impact of the different cluster member con-
tamination fits with respect to other systematics.

As our source selection is discontinuous as a function of lens
redshift, we investigate the stability of our results with respect
to to the presence of the regularisation condition (Eq. (13)),
which might impose an unphysical constraint on the cluster
member contamination. As discussed above, we exclude the sec-
ond tomographic redshift bin for lens redshifts zl > 0.47. This
could induce a sudden reduction of the cluster member con-
tamination. We explore the impact of this by fitting the source
redshift decomposition without the regularisation likelihood. We

2 This follows directly from the likelihood of a sample xi being drawn
from a model distribution P(x), lnL =

∑
i∈b ln P(xi). In our case, the

model distribution is P(zs|R, λ, z), and the number of samples in each
richness, cluster-centric distance, source redshift bin is Neff P̂β(zs).
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Fig. 5. Cluster redshift trend of the cluster member contamination of a
richness λ = 25 object at 1 Mpc from the cluster center. In green, the
fit to the effective source number density, while in blue and orange, the
constraints from the dnf and bpz source redshift distribution decompo-
sition are shown. The latter method is independent of masking. While
we find marginal agreement between the contamination fractions deter-
mined by the two methods, the difference is smaller than the rela-
tive error induced by shape and photo-z systematics – plotted in black
extending from the source density fit for comparison.

forego a rebinning of our data, as the first four redshift bins up to
zl > 0.48 comprise mainly lenses for which we did not exclude
the second tomographic redshift bin. Similarly, most lenses of
the highest lens redshift bin, 0.48 < zl < 0.8, utilize the third and
fourth tomographic bins, as we exclude the third tomographic
bin for lenses with zl > 0.74. We find shifts in the amplitude
parameter no larger than |∆A j| < 0.1, mostly in the last to lens
redshift bins. This implies that the regularisation impacts the
cluster member contamination fcl no more than 10% in relative
terms, and |∆ fcl| < 0.004 in absolute term. These shifts are neg-
ligible compared to other sources of systematic uncertainty, as
discussed below.

The source redshift distribution decomposition fits are vali-
dated by plotting differences between the measured source red-
shift distribution and the re-scaled field distribution, as shown
in Fig. 6 for 1 Mpc from the center. This subtraction clearly
highlights an approximately Gaussian component, that is well
described by our model, plotted as full lines. The low ampli-
tude negative dips at source redshifts slightly larger than the
Gaussian component show that our field re-scaling, and thus
our cluster member estimate, is imperfect. These residuals are
clearly smooth in nature, making it very unlikely that they are of
statistical origin. They might be systematically due to an alter-
ation of the source redshift distributions in cluster lines of sight.
Nonetheless, they are less than 1% in amplitude. This is within
our systematic error budget, as discussed below (see Sect. 3.3.2).
We therefore accepted the source redshift distribution decompo-
sition as a valid fit.

Constraints on the concentration of the contaminants profile
and the richness trend of the contamination fraction are in sta-
tistical agreement between the fit to the effective number density
and the source redshift distributions. The contamination fraction
resulting from the source redshift distribution is plotted in Fig. 5.
It shows qualitative agreement with the contamination fraction
constrained from the effective source density at low redshift. We
will argue in the following, why the high redshift differences will
not bias the mass calibration.

3.3.2. Shape measurement and photo-z uncertainty

We compare the difference between the cluster member contam-
ination estimates to the shape and photo-z measurement uncer-
tainties of the DES Y3 data as follows. The shape and photo-z
uncertainties of the tomographic redshift bin b are summarized
by realizations of the source redshift distributions, PH (zs|b), run-
ning over a hyperparameter H . The variation in the shape of
these distributions expresses the uncertainty in the photo-z cal-
ibration, while variation in the normalization expresses uncer-
tainties in the multiplicative shear bias 1 + m, as described in
more detail in Cordero et al. (2022). Folding this together with
our background selection, implemented via lens-redshift depen-
dent weights wb for the different tomographic redshift bins b
(e.g., Eq. (7)), we find a fractional uncertainty of mean lensing
efficiency

rgt,s =

√
VarH

[∑
b wb

∫
dzs PH (zs|b)Σ−1

crit,ls

]
EH

[∑
b wb

∫
dzs PH (zs|b)Σ−1

crit,ls

] , (17)

which we take to express the impact of shear and photo-z mea-
surement uncertainties on the measured shear profiles. As the
source redshift distributions for the tomographic redshift bins
are already response-weighted, no further response-weighting is
necessary for the expression above.

The fractional uncertainty increases from 0.55% at zcl = 0.1
to 4.3% at zcl = 0.8. We plot these systematic uncertainties
around the best-fit values for our cluster member contamina-
tion from the effective source density in Fig. 5. The difference
between our different cluster member contamination estimates is
smaller than this systematic uncertainty. We therefore concluded
that we can determine the cluster member contamination to a
higher accuracy than provided by the shape and photo-z mea-
surement uncertainties.

3.3.3. Shape noise

In Fig. 7, we show the measured effective shape noise as a func-
tion of cluster redshift and richness and as a function of cluster-
centric projected distance. The effective shape noise increases
with cluster redshift and richness and decreases toward the clus-
ter center. In conjunction with the cluster member contamination
estimate from the previous section, we can reconstruct the effec-
tive shape noise of cluster members from this decrement. To this
end, we fit the measured effective shape noise with a squared
sum of field shape noise determined in the outskirt of the clus-
ters and an unknown cluster-member shape noise. The latter is
found to be between 18% (for 0.1 < zcl < 0.19) and 6% (for
0.48 < zcl < 0.80) lower than the field shape noise, with the
trend steadily decreasing with redshift. Given that most of the
signal-to-noise in cluster mass measurements comes from scales
larger than R > 1 h−1 Mpc, we ignore this effect. In future work,
we aim to investigate if this is due to cluster member galaxies
being inherently rounder, if the survey-averaged shear response
is impacted by the stronger blending in the crowded cluster lines
of sight, or if cluster members are just brighter, and therefore
have a smaller shape measurement uncertainty contribution to
the effective shape noise.

For our shape noise modeling, we instead focus on these
larger scales, where we measure that the effective shape noise
increases with source redshift, as shown in Fig. 8, both for the
tangential and the cross component. This trend matches the sur-
vey averaged effective shape dispersion found by Friedrich et al.
(2021) for the tomographic redshift bins. For later use in our
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Fig. 6. Validation of the source redshift distribution decomposition for dnf (top) and bpz (bottom) source redshift estimates. In different richness
(color coded) and redshift bins (different panels), we show the difference between the source redshift distribution measured along the cluster
line of sights and the field distribution extracted at a safe distance from the cluster center, shown as stars. Both are shown here for the projected
cluster-centric distance of 1 Mpc in our reference cosmology. The resulting increment is well modeled by a Gaussian component (lines) caused by
the cluster members contaminating the source sample. The amplitude of this component scales with cluster richness.
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Fig. 7. Effective shape noise as a function of cluster-centric distances stacked in bins of cluster redshift (panels: lowest redshift left, higher redshift
right) and of richness (color coding). Despite significant scattering, increasing toward the cluster center, a trend of lower-shaped noise toward the
center is visible. As gray horizontal lines, the effective shape noise in the field, used for the semi-analytical covariance of the shear profiles, is
shown.

semi-analytical covariance matrix modeling, we fit this trend
with the quadratic expression

σeff(zcl) = 0.2635 + 0.0300 z2
cl − 0.0008 zcl. (18)

This fit is shown as a dashed line in Fig. 8, excellently match-
ing the trend we measure in the data. Extrapolated to zcl → 0, it
matches closely the value reported by Gatti et al. (2021). With-
out a reliable estimate for the uncertainty of the effective shape
noise, we forego reporting error bars on this fit, using it as an
effective smoothing to avoid noise on the error estimate of our
target quantity, the reduced shear profile.

3.3.4. Cross-shear

Using our fitting formula for the effective shape noise,
for each bin in richness and lens-redshift, we can com-

pute the consistency of the cross-shear signal with zero
as

χ2
x =

∑
r−bins

g2
xNeff

σ2
eff

· (19)

These squared losses follow a chi-squared distribution with
nr degrees of freedom, where nr is the number of radial
bins we consider, as shown in Fig. 9. This demonstrates
that our cross-shear component averages to zero, consis-
tently with the expectation of well calibrated shape mea-
surements distorted by gravity. We also visually inspect the
cross-shear profiles in the above-defined richness and redshift
bins and find no significant deviations from zero. Computing
instead the global degree of consistency of the raw tangential
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Fig. 8. Cluster redshift trend of the effective shape noise in the field
(shown as blue and orange diamonds for the cross and tangential
reduced shear, respectively). Given our cluster redshift-dependent back-
ground selection, the mix of source galaxies changes as a function
of cluster redshift. The trend is well-fitted by a quadratic expression,
shown as a black dashed line.
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Fig. 9. Distribution of the uncertainty-scaled squared residuals of the
cross-shear profile with respect to zero signal, as a blue histogram. In
orange, the chi-squared distribution for 15 degrees of freedom matches
the number of radial bins. The squared loss distribution is well described
by the chi-squared distribution, indicating that the cross-shear profiles
are consistent with zero given our shape noise modeling.

reduced shear profiles with zero, we find a signal-to-noise
of 923.

3.3.5. Shear response

As a further validation test of our WL measurement, we compute
the mean shear responses in richness, redshift, and distance bins,
given by

R =

∑
b=2,3,4 wb ∑

i∈b ws
iRi∑

b=2,3,4 wb ∑
i∈b ws

i
for α ∈ (t, x), (20)

shown in Fig. 10.
Notably, the shear response increases toward the cluster cen-

ter while also showing a gentle trend with richness. The shear

3 Here we use the definition of signal-to-noise S/N =

√∑
χ2

t , summed
over all bins. This quantity does not enter our analysis and is simply
used to give a rough estimate of the constraining power of our dataset.

response used here is a smooth function of the source relative
size with respect to the PSF and its signal-to-noise. Cluster mem-
ber galaxies are both larger and brighter than the average field
population, which could explain the trend we see. However, this
signal seems to affect all lens redshift bins equally, indepen-
dently of their cluster member contamination levels. Another
contributing effect could be that field galaxies in cluster lines of
sight are magnified by the cluster potential, altering their sizes
and signal-to-noise ratios compared to the field galaxies. While
interesting, at the scales that we will use for mass calibration,
R > 0.5 h−1 Mpc, the effect is smaller than 1%. We can thus
safely ignore it in light of the other, larger systematic uncertain-
ties. We plan to investigate how these properties are impacted by
cluster lines of sight in future work.

3.4. Selection response

The quantities that we use for our source selection are impacted
by the shear we try to measure. For instance, the flux of a sheared
galaxy is different from the flux of the original galaxy if it was
not sheared. This means that the shear we try to measure impacts
our selection of source galaxies and biases our estimators. To
correct this bias, we have to measure how our estimator fares on
catalogs selected from artificially sheared versions of the actual
DES Y3 images. Four such catalogs have been created, each
with an artificial shear of ∆γ = 0.01 positive/negative (+/–) on
the first/second Cartesian component. The selection response in
richness, redshift, and distance bins, is given by

Rα, sel =
Rα, sel,1 + Rα, sel,2

2

=
1

2∆γ

(
〈gα, raw〉

1+ − 〈gα, raw〉
1− + 〈gα, raw〉

2+ − 〈gα, raw〉
2−

)
,

(21)

for α ∈ (t, x). Here 〈gα, raw〉
1+ denotes the tangential reduced

shear estimator on the source sample extracted from the images
that have been artificially sheared in positive (+) direction along
the first (1) Cartesian shear component, and similarly for the neg-
atively sheared images (−), and the second Cartesian component
(2), respectively. The radial, richness, and redshift trends of the
selection response are shown in Fig. 11. Especially for high clus-
ter redshift bins, the selection response is very noisy such that no
evident trends can be made out.

A reliable estimate can thus only be obtained after aver-
aging over richness and radius. We find that the global selec-
tion response is positive and bounded by Rα, sel < 0.001 for
zcl < 0.48, and Rα, sel ∼ 0.004 for 0.48 < zcl < 0.8.

Direct comparison between the mean shear responses and
the selection response shows that the latter is of order 0.1%
of the former for zl < 0.4, increasing to 0.5% for the redshift
bin 0.48 < zl < 0.8. In both cases, this is a factor of a few
less than the uncertainty induced by shape and photo-z measure-
ments and, as such, can be ignored. This assessment contrasts
the selection response’s impact on galaxy-galaxy lensing studies
(Prat et al. 2022). The main difference is that we do not consider
each tomographic bin independently but rather make a selection
based on the lens redshift. For low lens redshifts, zl < 0.48, we
thus include a large fraction of the total source sample, reduc-
ing the impact of selection effects compared to a tomographic
redshift bin selection. At high lens redshift, 0.48 < zl < 0.8,
the close proximity of the source sample to the lens dramatically
increases the effects of photo-z uncertainties on the lensing effi-
ciency, dwarfing the effect of the selection response.
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Fig. 10. Average shear response, as a function of cluster-centric distance, stacked in bins of cluster richness (color coded), and cluster redshift
panels: lowest redshift left, higher redshift right. Noticeably, the shear response increases toward the cluster center. Interestingly, this signal seems
to affect all lens redshift bins equally, independently of their cluster member contamination levels. We account for this effect in the cosmology-
ready data products.
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Fig. 11. Selection response of our tangential (full lines) and cross (dashed lines) shear estimator, averaged over artificial shears in the two Cartesian
coordinates, as a function of cluster-centric distance, stacked in bins of cluster richness (color coded), and cluster redshift panels: lowest redshift
left, higher redshift right. The selection response is very noisy but shows no significant trends with richness or cluster-centric distance.

Cosmology-ready data products. Given the various dis-
tance dependencies of the WL signal, the mass calibration is
cosmology-dependent. To marginalize this dependency in this
work and to enable the WL mass calibration of our sample
self-consistently with the cosmological number counts experi-
ment in Ghirardini et al. (2024), we need to define cosmology-
independent data products. Furthermore, given that we pursue
a Bayesian population analysis in which each individual cluster
likelihood is evaluated, we construct the following data products
for each cluster in the cosmology sample that has DES Y3 lens-
ing information:

– the measured reduced shear profile

ĝt =

∑
b=2,3,4 wb ∑

i∈b ws
i et, b,i∑

b=2,3,4 wb ∑
i∈b ws

iRi
, (22)

in radial bins with 0.5 h−1 Mpc< R < 3.2(1 + zcl)−1 h−1 Mpc,
in our reference cosmology. The outer bin is chosen following
Grandis et al. (2021a) to limit our extraction to the 1-halo term
region. We use only the shear response Ri, and ignore the selec-
tion response, as argued in Sect. 3.4;

– the statistical uncertainty on the reduced shear,

δgt =
σeff(zcl)
√

Neff

with Neff =

(∑
b=2,3,4

∑
i∈b wbws

iRi

)2

∑
b=2,3,4

∑
i∈b

(
wbws

iRi

)2 , (23)

in the same bins. Note here that we use the quadratic fit to the
global shape noise given in Eq. (18) to suppress the noise in the
individual shear variance estimators;

– the average angular distance of the binned sources from the
cluster position in the corresponding radial bins

θ =

∑
b=2,3,4 wb ∑

i∈b ws
iRi θi∑

b=2,3,4 wb ∑
i∈b ws

iRi
· (24)

We report the angular scale, because in the cosmological infer-
ence, the distance–redshift relation needs to be self-consistently
re-calculated while the data binning is frozen, and

– the field source redshift distribution extracted in the outer
regions of the cluster (11 h−1 Mpc< R < 15 h−1 Mpc) based on
the SOM-Pz redshift estimation method,

P(zs) =

∑
b=2,3,4 wb ∑

i∈b ws
iRi P(zs|ĉi)∑

b=2,3,4 wb ∑
i∈b ws

iRi
, (25)

where ĉi is the SOM cell in which the respective source falls.
This extraction ensures that our source redshift distribution is a
representation of the local field sources.

Using these scale cuts, we reduce the signal-to-noise ratio
in the tangential reduced shear to 65. These cuts are necessary
to avoid the increased systematic uncertainty toward the cluster
centers (see Grandis et al. 2021a, Sect. 3.2). The upper limit was
chosen to limit our WL observable to the 1-halo regime for high
mass systems, M500c > 2 × 1014 h−1 M�. As such, we avoid the
2-halo regime with its more complicated cosmology dependence
and possible effects of assembly bias for a majority of our cluster
sample and in the higher WL signal-to-noise regime.
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Table 1. Overview of the simulation inputs used for the calibration of the WL bias and scatter.

Name Use case Section

TNG300 Projected surface mass density of massive halos at different redshift snapshots 4.1
Magneticum Pathfinder Offsets between X-ray surface brightness peak and projected halo center 4.2.1
eROSITA all-sky survey twin Offsets between X-ray surface brightness peak and measured X-ray position 4.2.2

Mapping between halo mass and redshift, and detection likelihood and extent 4.4
Monte Carlo realizations Propagation of systematic uncertainties to error budget on the WL bias 4.5

Notes. The respective references, as well as detailed explanations, are given in the respective sections.

4. Calibration of mass extraction

Proper cosmological exploitation of the data products derived
above must accurately map the WL signal to the halo mass
used in the number counts experiment. In this work, we fol-
low the approach of Grandis et al. (2021a) by simulating syn-
thetic shear profiles starting from hydrodynamical simulations,
WL survey specifications, and characteristics of the lens sam-
ple. The actual mass measurement is performed on the synthetic
shear profiles, resulting in the so-called WL mass, which dis-
plays a bias and scatter with respect to the true halo mass. Priors
on the WL bias and scatter are derived from Monte Carlo realiza-
tions of the synthetic shear profiles, which sample the range of
systematic uncertainties on the input specifications. The differ-
ent simulation inputs used for this calibration are summarized in
Table 1.

4.1. Hydrodynamical simulations input

We base the creation of our synthetic shear profiles on the
surface mass maps of halos with M200c > 3 × 1013 h−1 M�,
extracted with the technique outlined in Grandis et al. (2021a)
from the cosmological hydrodynamical TNG300 simulations
(Pillepich et al. 2018; Marinacci et al. 2018; Springel et al.
2018; Nelson et al. 2018, 2019; Naiman et al. 2018) at red-
shifts zsnap = 0.24, 0.42, 0.64, 0.95. To boost the statistical
sample size, for each halo, we created three maps by pro-
jecting them along each Cartesian coordinate. As described in
Grandis et al. (2021a), these maps are processed into scaled tan-
gential shear Γt(R, φ|Rmis) and scaled convergence Σ(R, φ|Rmis)
maps, binned in polar coordinates (R, φ) around isotropically
mis-centered positions for a range of mis-centering distances
Rmis. Σ(R, φ|Rmis) is the surface mass density in units of
h M�Mpc2, which multiplied by the inverse critical surface den-
sity gives the convergence, κ = Σ−1

critΣ. The definition of Γt has
been introduced in Grandis et al. (2021a) to signify the result of
applying the inverse of Kaiser–Squires algorithm to the surface
mass density Σ(x), and then determining the tangential compo-
nent with respect to the chosen center. As both these operations
are linear, the resulting quantity is directly related to the tangen-
tial shear map as γt(R, φ|Rmis) = Σ−1

critΓt(R, φ|Rmis). Being inde-
pendent from the specific source redshift distribution, this is a
convenient simulation output.

This data format conserves the azimuthal anisotropy sourced
by the halo triaxiality and by the mis-centering. Possible inac-
curacies induced by the correlation between halo shape and
mis-centering direction, recently highlighted by Sommer et al.
(2023), have been shown to not significantly impact the cosmo-
logical results derived from the mass calibration presented in this
work (see Ghirardini et al. 2024, Sect. 5.1), but likely need to be
accounted for in future analyses with larger statistical constrain-
ing power.

Note also that we employ in this work the strategy to
mitigate hydrodynamical modeling uncertainties proposed by
Grandis et al. (2021a) and used by Chiu et al. (2022, 2023),
Bocquet et al. (2023). The hydrodynamical simulations from
which we source the surface density maps have gravity-only
twin runs with the same initial conditions. It is well established
that both runs form exactly the same halos (Castro et al. 2021;
Grandis et al. 2021a), albeit with different masses. We purpose-
fully choose the fictitious mass in the gravity-only simulation, as
the halo mass functions used in the number counts experiment
are calibrated on gravity-only simulations. We can thus use these
calibrations to absorb the effects of hydrodynamical feedback on
the mass distributions of massive halos in the mapping between
the (gravity-only) halo mass and the WL mass, and account for
the uncertainty in this mapping in the systematic error budget
(see Sect. 4.5).

4.2. Mis-centering

A faithful simulation of synthetic shear profiles requires us to
account for the fact that the observed position of the lens is
mis-centered from the projected position of the true halo center,
which is defined consistently through this work as the position
of the most bound particle. The surface mass maps are centered
around this position (Grandis et al. 2021a).

We distinguish two sources of mis-centering: (1) the offset
between the noise-free peak of the 2d X-ray surface brightness
profile and the 2d position of the halo center (hereafter called
intrinsic), and (2) the offset between the noise-free peak of the
2d X-ray surface brightness profile and the measured X-ray posi-
tion (hereafter called observational). The latter displacement is
induced by the photon shot noise and the PSF of the eROSITA
cameras and is a special case of the astrometric uncertainty dis-
cussed in Merloni et al. (2024).

4.2.1. Intrinsic mis-centering

The intrinsic mis-centering is studied through the use of
Box2b/hr of the hydrodynamical cosmological simulation suite
Magneticum Pathfinder4 (Dolag et al., in prep.), performed
assuming the WMAP-7 cosmology as Ω0 = 0.272 and h = 0.704
as given by Komatsu et al. (2011). The volume of the Box2b/hr
box is (909 cMpc)3, allowing for a broad range of galaxy cluster
masses up to virial masses Mvir of several times 1015 M�. The
galaxy cluster sample, comprised of 116 clusters with Mvir ≥

1014 M� at z = 0.252, is described in detail in Kimmig et al.
(2023). We select an additional 75 galaxy clusters at z = 0.518
to account for redshift trends. The second sample is taken from
a different box of equal resolution, Box2/hr of size (500 cMpc)3,
to avoid double counting the halos at different redshifts.
4 www.magneticum.org
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Fig. 12. Joint distribution on the WL bias and scatter parameters (bWL
l , sl = ln(σWL

l )2), and their mass slopes (bWL
M , σM), along with the principal

sources of systematic uncertainty: the lensing efficiencies Σcrit,l to the snapshots l, in units of 1015 h M�Mpc−2, and the scale of the intrinsic mis-
centering σintr. The high redshift biases anticorrelate with the respective lensing efficiencies, indicating that in this regime, we are limited by the
DES Y3 photo-z accuracy. Conversely, the low redshift biases and the scatter values correlate among themselves, as they are dominated by the
hydro uncertainty floor we added. Insert: Redshift interpolation of the WL lensing bias in cyan (filled region 1 sigma, faded lines 2 sigma), together
with the 1 sigma uncertainty due to hydro modeling (green), explorations of the mean impact of the multiplicative shear bias m modeling (red), and
the additional omission of the high mis-centering tail f = 0 (dashed red), and the posteriors of the WL bias in the four snap-shots. Hydrodynamical
modeling uncertainties are dominant at low redshift. When considering our multiplicative shear bias modeling choices, the bias is consistent with
zero, while the presence of the highly mis-centered tail does not affect the WL bias.

Every cluster is projected from 100 random viewing angles.
We then determine the projected center-of-mass via the shrink-
ing sphere method (Power et al. 2003) and around this center,
the peak of the X-ray emission between 0.5−2 keV. The intrin-
sic mis-centering is then the projected displacement between the
X-ray peak and the center of the halo, given by the most-bound
particle.

We find that the mis-centering is well described by a sin-
gle Rayleigh distribution with mean

〈
Rintr

mis

〉
= σintrR500c, with

σintr = 0.104 ± 0.016, and with no further resolved mass
or redshift trends. As shown below in Sect. 4.5 and Fig. 12,
this uncertainty is not relevant when taken together with other
systematic effects, especially photometric source redshift and
hydrodynamical modeling uncertainties. Valid concerns about
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the fidelity of the Magneticum prediction of the surface bright-
ness in inner cluster regions are therefore unlikely to impact
our results. In future analyses, we plan to validate the centering
choice more carefully, for instance, through the blind compari-
son of the results based on different centers (as done for instance
by Bocquet et al. 2023).

4.2.2. Observational mis-centering

For the observational mis-centering, we use the offset θsep
between input and output positions of clusters in the “eROSITA
all-sky survey twin” (Comparat et al. 2019, 2020; Seppi et al.
2022), which produces and analyses simulations of the X-ray
signature from a realistic active galactic nucleus and cluster pop-
ulation in eRASS1 observational conditions that include expo-
sure time variations and background. Furthermore, the X-ray
cluster finding algorithm, as described in Merloni et al. (2024),
Bulbul et al. (2024) is run on the event file generated from this
simulation, ensuring that PSF and shot noise of the real obser-
vations are well mapped. We select the input clusters matched
with simulated sources that have detection likelihood Ldet > 3,
extent likelihood LEXT > 6, and extent 4 ≤ EXT ≤ 60, to match
the real cosmology sample. For each such object, we compute
the separation θsep between input and output position, using the
entries described in Table A.1 by Seppi et al. (2022).

We model the distribution of mis-centering with a mixture
of a Rayleigh distribution and a Gamma distribution with shape
parameter 2 as

P
(
θsep|

〈
θsep

〉
, f , λ

)
=

1
1 + f

θsep〈
θsep

〉2 exp

−1
2

θ2
sep〈

θsep

〉2


+

f
1 + f

λ2θsep〈
θsep

〉2 exp

− λθsep〈
θsep

〉 , (26)

with the mean observational mis-centering given by

〈
θsep

〉
=

〈
θsep

∣∣∣α, σ0, k
〉

=

(
Ldet

38.7

)−α √
σ2

0 + k2EXT2, (27)

where Ldet is the detection likelihood, EXT the extent, as
defined by the best-fit detection beta model, and pmct =
(α, σ0, k, ln f , ln λ) are free parameters. f is the fraction of mis-
centered objects in the heavy-tailed component, α the detection
likelihood trend of the mean observational mis-centering, σ0 the
extrapolated mean observational mis-centering for a point source
(EXT = 0), k the slope of the mean mis-centering with respect to
the sources extent, and λ the length of the mis-centering tail in
units of the mean mis-centering.

We fit these by sampling the likelihood

lnL =
∑
v

ln P
(
θvsep

∣∣∣ 〈θvsep

∣∣∣α, σ0, k
〉
, ln f , ln λ

)
, (28)

assuming flat priors on all parameters, with v running over the
clusters selected from the digital twin simulation. All parame-
ters are well constrained; Table 2 reports their means and stan-
dard deviations. Noticeably, the mean dependence on the detec-
tion likelihood α = 0.43±0.02 is quite close to the α = 0.5 trend
one would expect for matched filter extraction in the presence
of Gaussian noise (Story et al. 2011; Song et al. 2012). Our con-
straint on ln f translates into a relative weight of 0.318±0.043 for
the flatter Gamma distribution component, albeit only a part of

Table 2. Calibration parameters with their priors for the Monte Carlo
marginalization of the WL bias and scatter determination.

Cluster member contamination (Sect. 3.3.1)

log10 c = 4.83 ± 0.22 Bcl = 0.467 ± 0.017
lnσreg = −0.61 ± 0.43 A0 = −4.75 ± 0.11
A1 = −4.38 ± 0.05 A2 = −3.68 ± 0.04
A3 = −3.25 ± 0.04 A4 = −3.04 ± 0.04

Mis-centering parameters (Sect. 4.2)
σ0[arcsec] = 4.83 ± 0.22 k = 0.308 ± 0.007
α = 0.443 ± 0.012 ln f = −0.76 ± 0.11
ln β = −0.18 ± 0.04 σintr = 0.104 ± 0.016
ln λ = −0.18 ± 0.04
Richness mass relation (Chiu et al. 2022, Appendix A)
Aλ = 36.2 ± 3.6 Bλ = 0.881 ± 0.083
Cλ = −0.46 ± 0.52 σλ = 0.274 ± 0.066

Photo-z and shape calibrations
H ∼ Int(0, 999) (∗) αNL = 0.6 ± 0.4 (†)

Hydrodynamical modeling uncertainties
∆b = 0.02, ∆bM = 0.018 ∆s = 0.25, ∆sM = 0.59

Notes. Note that the parameters for the cluster member contamination
and the mis-centering are actually drawn from the respective poste-
rior fits to conserve correlations among the parameters. (∗)Int(a, b) is
a uniform distribution over the integers a ≤ i ≤ b (cf. Sect. 3.3.2);
(†)nonlinear multiplicative shear bias (Grandis et al. 2021a, Sect. 2.1.7).

that distribution populates the high mis-centering tail. Our other
fit parameters result in a typical mis-centering

〈
θsep

〉
∼ 11 arcsec.

We also check that once the individual mis-centerings are
corrected for the typical mis-centering of sources of that detec-
tion significance and extent, the residuals show no correlation
with exposure time. This ensures that our parametrization cap-
tures the main trends of the observational mis-centering and that
it can be safely used despite the exposure time varying over
the survey footprint. To further validate our model, we draw
mock catalogs by selecting a random posterior point pmct =
(α, σ0, k, ln f , ln λ). For each simulated cluster, we then com-
pute the typical mis-centering

〈
θsep

〉
and draw a mock separation

angle θsep from Eq. (26). This procedure creates 1000 mock clus-
ter samples that follow our model by drawing 1000 independent
posterior points. In Fig. 13 we plot in blue the mis-centering dis-
tribution of the actual data, while in orange data points, the dis-
tribution of mock data, sampled from our posterior, are shown.
The two are indistinguishable, indicating that the actual mis-
centering distribution from the digital twin looks like data drawn
from our mis-centering model. Comparisons of the maximum
likelihood of the data and the mocks show that this also holds
at the likelihood level (see insert of Fig. 13). Our observational
mis-centering model is therefore a good fit.

4.3. Extraction model

When performing the mass measurement, we need to spec-
ify a mass extraction model and coherently apply it to both
the real and the synthetic data. In this analysis, we choose a
simplified mis-centered model, corrected for the mean cluster
member contamination, as suggested by Grandis et al. (2021a).
This model faithfully captures the main biases induced by mis-
centering and cluster member contamination while not adding
numerical complexity compared to the plain 2d-projected NFW
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Fig. 13. Observational mis-centering between the input X-ray surface
brightness peaks and the output positions of clusters in the eROSITA
digital twin, θsep, scaled by the best-fit average offset,

〈
θsep

〉
, shown in

blue as a histogram. Overlaid in orange are realizations of mock offsets
drawn from the posterior of our model. The data is indistinguishable
from the mock draws. Our model is also validated by comparing, in the
insert, the likelihood of the data in blue with the likelihood of the mocks
in orange.

model. This approach is well suited for the repeated calls in
the Monte Carlo Markov chains used for parameter inference.
Bocquet et al. (2023) make the same choices for the same rea-
sons.

For the model, we assume that a cluster of radius R500c

and mean observational mis-centering
〈
θsep

〉
is effectively mis-

centered by a physical distance

Rextr
mis =

√(
σintrR500c

)2
+

(
Dl

〈
θsep

〉)2
, (29)

evaluated at the mean of the observational mis-centering param-
eters determined in Sect. 4.2.2. The radius R500c is derived from
the input mass of the extraction model. The cluster surface mass
distribution is then well approximated by

Σ(R|M) =

{
ΣNFW(Rextr

mis |M) for R < Rextr
mis , and

ΣNFW(R|M) otherwise,
(30)

where ΣNFW(R|M) is the 2d projected NFW profile, evalu-
ated with the mean concentration mass relation reported by
Ragagnin et al. (2021). Deviations of this concentration mass
relation from the one in the simulations are absorbed in the WL
bias, while scatter in concentration at fixed mass contributes to
the WL scatter. As shown in Bocquet et al. (2023), this surface
mass profile results in a radial density contrast ∆Σ(R|M) = 0 for
R < Rextr

mis , and

∆Σ(R|M) = ∆ΣNFW(R|M) −
(

Rextr
mis

R

)2

∆ΣNFW(Rextr
mis |M), (31)

at a larger projected radius. This expression is numerical of the
same complexity as evaluating the 2d density contrast of NFW
profile ∆ΣNFW(R|M) but is significantly more accurate.

We then considered the average lensing efficiency

Σ−1
crit,l =

〈
Σ−1

crit,ls

〉
Pl(zs)

(32)

of the lens l, obtained by averaging the lensing efficiency of the
individual source, Σ−1

crit,ls, Eq. (3), with the source redshift dis-
tribution Pl(zs). Using also the cluster member contamination

fraction fcl(R|λ, z), evaluated at the mean cluster member con-
tamination parameters, for the cluster richness λ and the cluster
redshift zcl, we defined the reduced shear model:

gmod
t (R|M) =

Σ−1
crit,l∆Σ(R|M)

1 − Σ−1
crit,lΣ(R|M)

(1 − fcl(R|λ, zcl)) . (33)

This extraction model also depends on the clusters detection
likelihood Ldet and extent EXT, and the mean parameters of
the mis-centering through the mean extraction mis-centering,
Eq. (29). All these quantities are readily available for each
cluster.

Any mismatches between the real profiles and the extraction
model are captured by considering that the best-fit mass assum-
ing this model, the WL mass MWL, will be biased and scattered
around the true halo mass.

4.4. Synthetic shear profiles

The creation of the synthetic shear profiles proceeds as follows.
1. The redshift of the synthetic clusters is fixed to the redshift

of the hydro-simulation outputs.
2. Assuming the mean concentration c200c–mass relation

by Child et al. (2018), we convert the masses M200c from the
simulation to M500c, using the customary transformations (see
for instance Ettori et al. 2011, Appendix A). Note that the
concentration–mass relation employed here was calibrated on
gravity-only simulations, which matches the fact that our halo
masses are also gravity-only masses.

3. We assign a synthetic source redshift distribution Psnth
l (zs)

based on the tomographic bin weights wb(zl), as defined
in Eq. (7), and the realisations of their redshift distribution
PH (zs|b), as provided by Myles et al. (2021), discussed in
Sect. 3.3.2, and shown in Fig. 2. The normalization of these dis-
tributions takes account of the multiplicative shear bias.

4. Each cluster is assigned a richness λ based on the
richness–mass relation calibrated in Chiu et al. (2022). For later
use, we remind the reader that this relation is defined by the
parameters of the richness–mass relation pλM. The richness is
required both as an input for the extraction model, as well as to
simulate the cluster member contamination, fcl(R|λ, zcl, pcl), on
the synthetic shear profile, where pcl are the parameters of the
cluster member contamination.

5. Querying the halos with |∆ log10 M500c/M�| < 0.1 and
|∆z| < 0.05 from the eROSITA digital twin, we select the detec-
tion likelihood Ldet and extent EXT of a random pick. These two
observables are needed to define the mean mis-centering needed
by the extraction model and to assign a correct mis-centering
distribution P(Rmis|M500c, z,Ldet, EXT, pmct), resulting from the
convolution of the observational and intrinsic mis-centering dis-
cussed in Sect. 4.2. Note that this step depends on the parameters
of the mis-centering pmct, determined in the same section.

6. Improving on previous work, we now compute the reduced
shear not only for each polar position in the map but also for each
source redshift zs, as presented also in Bocquet et al. (2023). The
azimuthal and source redshift average are computed after the
computation of the reduced shear as follows

gsnth
t (R|Rmis) =

∫
dzsPsnth(zs)

∫
dφ
2π

Σ−1
crit,lsΓt(R, φ|Rmis)

1 − Σ−1
crit,lsΣ(R, φ|Rmis)

·

(34)
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Fig. 14. Scatter plot of the input halo mass versus the output WL mass from one realization of the synthetic shear profiles. Color coded by the value
of the mis-centering distribution for that specific halos’ mis-centering, and as solid black lines, the mis-centering-distribution-weighted scaling
between WL and halo mass, which results in an estimate for the WL bias. The scatter around this relation results in the WL scatter. Generally
speaking, extreme outliers also have highly improbable mis-centering.

Deviating from this integration order leads to biases in the syn-
thetic profiles of the order of 0.01, which is unacceptable given
our accuracy requirements.

7. We add cluster member contamination following the fit
we derived in Sect. 3.3.1, specifically the number density fit. We
also add a nonlinear shear bias and extra noise from the uncorre-
lated large-scale structure along the line of sight, as discussed in
Grandis et al. (2021a).

8. The extraction of the WL mass via the extraction model
and the fit for the WL bias and scatter weighted by the mis-
centering distribution follow exactly the method outlined in
Grandis et al. (2021a).

The output data product of such synthetic shear profile pro-
duction and subsequent fit with the extraction model is shown
in Fig. 14. There, we plot the input halo masses versus the WL
masses, color coded by the mis-centering distribution probabil-
ity for the respective synthetic halo. Note that extreme outliers in
WL mass are associated predominantly with highly mis-centered
synthetic clusters and are thus quite rare, given the mis-centering
distribution. As such, they contribute only marginally to the fit.

4.5. WL bias and scatter

At the end of the synthetic shear profile production and WL
extraction, we get a bias and scatter (bWL

l , σWL
l ) for each snap-

shot l, as well as a mass trend for both the bias (bWL
M ), and the

scatter (sM). They were obtained by fitting the relation〈
ln

MWL

M0

∣∣∣∣∣M, zcl

〉
= bWL

l + bWL
M ln

(
M
M0

)
lnσ2

WL = sl + sM ln
(

M
M0

)
, (35)

with pivot mass M0 = 2 × 1014 M�, and sl = ln(σWL
l )2. The fit

of the relation includes cluster-by-cluster weights corresponding
to the probability of the mis-centering of the individual synthetic
halo, as discussed in Grandis et al. (2021a). The mean relations
resulting from the fit at each redshift are shown in Fig. 14 as
black lines.

Systematic uncertainty estimation. The uncertainty on
these quantities is obtained by re-running the synthetic shear pro-
file creation and WL mass extractionO(1000) times with slightly
perturbed input parameters. Specifically, we vary the hyperpa-
rameter of the DES Y3 source redshift distributionsH ∈ (0, 999)
(Myles et al. 2021, and as outlined in Sect. 3.3.2), the parameters
of the richness–mass relation pλM within the posterior reported
by Chiu et al. (2022), the parameters of the cluster member con-
tamination pcl within the posterior determine in Sect. 3.3.1, the
parameters of the mis-centering distribution pmct within the pos-
terior determine in Sect. 4.2, as well as a wide prior on the non-
linear shear biases. To these uncertainties, we add a hydrody-
namical modeling uncertainty of 2% on the WL bias and cor-
responding values for the other parameters, as determined by
Grandis et al. (2021a, Table 2).

The resulting parameter posterior distributions are presented
in the contour plots in Fig. 12. We omit parameters that do not
(anti)correlate with the WL bias and scatter parameters. These
include, but are not limited to, the parameters of the richness
mass relation pλM. This indicates that the weak lensing bias cal-
ibration is insensitive to the richness assignment in our synthetic
simulations. Indeed, the extraction model (Eq. (33)) and the syn-
thetic shear profiles depend in very similar ways on the rich-
ness via the cluster member contamination. To first order the
assumed richness–mass relation thus cancels. Also, the nonlin-
ear multiplicative shear bias αNL does not affect our systematics
despite its large uncertainty. Despite the stronger shears expected
in cluster lines of sight compared to the field, we thus do not
require a dedicated nonlinear shear bias calibration.

We also report critical surface densities Σcrit,l =〈
Σ−1

crit,s,l

〉−1

Psnth
l (zs)

for each snapshot l, defined as the inverse

lensing efficiency, reported in units of 1015 h M�Mpc−2. This
helps visualize the impact of the marginalization over the
photometric redshift uncertainties, which is implemented via the
hyperparameter H . As can be seen in Fig. 12, the WL bias in
the highest redshift snapshot bWL

4 anticorrelates tightly with the

critical surface density Σcrit,4 =
〈
Σ−1

crit,s,l=z4

〉−1

Psnth
z4 (zs)

This indicates
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that the uncertainty on this bias parameter is dominated by the
uncertainty on the lensing efficiency, as induced by the photo-z
uncertainty. The other WL bias parameters have a more gentle
correlation with the lensing efficiencies, indicating a smaller
impact of photo-z uncertainties in lower redshift clusters.

Compression. In principle, the full distribution of weak
lensing biases bWL

l , the logarithm weak lensing squared scat-
ters sl, as well as their mass trends, should be used as priors
for a mass calibration analysis of the actual data to account for
the systematic uncertainties. This would, however, significantly
bloat the parameter space of that likelihood analysis. As we sam-
ple the mass calibration likelihood presented in this work simul-
taneously with the cosmological inference from number counts
in Ghirardini et al. (2024), reducing the number of parameters is
of great benefit.

We compress the 4-dimensional posterior on the WL bias
parameters bWL

l into mean values µb,l, and two principal com-
ponents δb1,l and δb2,l, scaled by their variances. The other two
principal components of the 4-dimensional random variable are
found to not contribute significantly to the overall scatter in the
WL bias posterior. This means that a realization of the WL bias
at an arbitrary redshift zcl can be constructed by interpolating the
mean and principal components and drawing two random stan-
dard normal variates AWL, BWL, such that

b(zcl) = I(zcl|zl, µb,l) + AWLI(zcl|zl, δb1,l) + BWLI(zcl|zl, δb2,l),
(36)

where I(zcl|zl, µb,l) is the interpolation of the data vectors
(zl, µb,l) at redshift zcl. The resulting posterior on the WL bias as
a function of cluster redshift is shown in the insert of Fig. 12 in
blue bands for the 1σ region, and faded lines for the 2σ regions,
together with the results for the 4 snapshots as black data points.
For the 4 values of the natural logarithm of the variance, whose
posterior is dominated by the uncertainty from hydrodynamical
modeling, we employ a single principal component (see below,
Eq. (45)). We do not compress the mass trends of the bias and
the variance. These compressions reduced the number of free
parameters from 10 to 5 while still capturing the relevant system-
atic uncertainties. As we consider 2 principal components for the
weak lensing bias, we also represent the systematic uncertainty
on its redshift evolution.

Sensitivity study. The numerical value of our WL bias is
somewhat low, ranging from −0.05 to −0.1. A contributing fac-
tor is the response of the WL bias to our treatment of the mul-
tiplicative shear bias. While we include the multiplicative shear
bias in the synthetic shear profiles, we do not include this bias
in the model to reduce the number of independent calibration
products we need to communicate to the cosmological number
counts analysis (Ghirardini et al. 2024). To gauge the impact of
this modeling choice on the numerical value of the bias, we per-
form a synthetic shear and mass extraction run at the mean val-
ues of all parameters but artificially set the multiplicative shear
bias m = 0, that is, we normalize the synthetic source redshift
distributions to 1. This results in a shift, shown as the red line in
the insert of Fig. 12 of the order of −0.03. It is two sigma away
from our inferred bias values (black data points). Discounting
for this effect, we would find bias values ranging from −0.03
to −0.07, and thus consistent with zero bias at less than 2σ of
our systematic error budget. This qualitatively indicates that our
simplified extraction model is a good representation of the much
more complex synthetic data. Slightly negative WL biases can be
explained by the fact that the density contrast of a halo is reduced

by the projection of nearby correlated structure, resulting in a
WL mass that is lower than the halo mass (Oguri & Hamana
2011; Becker & Kravtsov 2011; Bahé et al. 2012).

We also test the sensitivity of the WL bias to the presence
of the highly mis-centered tail in the eROSITA digital twin
(cf. Sect. 4.2). A similar large mis-centering tail is found by
Bulbul et al. (2024), Sect. 5 and Fig. 9, left panel, when com-
paring the centers obtained from the source detection algorithm
and the X-ray post-processing. While the origin of this tail is
still under investigation, we explore the hypothesis that the large
mis-centering tail is completely suppressed by the X-ray post-
processing. Setting the fraction f = 0 fully suppresses the high
exponential tail but only mildly alters the WL bias, as can be
seen by the difference between the red solid and dashed line.
Our WL bias numbers, and therefore the mass anchoring of the
number counts experiments, are stable with respect to the pres-
ence of this highly mis-centered tail, which might be an artifact
of the eROSITA digital twin processing, and be corrected by the
X-ray post-processing.

Summary. The two main contributions to the uncertainty of
the WL bias are the systematic floor resulting from the com-
parison of different hydrodynamical simulations established by
Grandis et al. (2021a), and, at high redshift zl > 0.6 also the
uncertainty of the DES Y3 photometric redshift distributions,
shown in Fig. 2. Several other effects we studied, such as mis-
centering and nonlinear multiplicative shear bias, do not con-
tribute significantly to the systematic uncertainty of the mass
extraction from our WL data. We compress the results of our
synthetic simulations via principle component analysis, finding
that 5 nuisance parameters are sufficient to represent all the sys-
tematic uncertainty trends our simulations revealed.

5. Mass constraints

WL measurements around galaxy clusters provide a highly
accurate (see Sect. 4) mass proxy. They have, however, a quite
low precision at the individual object basis, considering that the
approximately 2.2 k clusters we consider collectively only reach
a signal-to-noise of 65 (cf. Sect. 3.4). A natural approach to
counter-act this is to perform the mass measurement on stacked
lensing signals (e.g. McClintock et al. 2019; Bellagamba et al.
2019). While this simplifies the mass measurement task, it
significantly complicates the modeling in a cosmological
context by introducing scale-dependent selection bias effects
(Sunayama et al. 2020; Dark Energy Survey Collaboration 2020;
Wu et al. 2022; Sunayama 2023). In this work, we therefore
followed the Bayesian Population modeling approach pioneered
by Mantz et al. (2015), Bocquet et al. (2019), Grandis et al.
(2019), which predicts the distribution of expected shear profiles
given the selection observable as a function of the parameters
governing the scaling between halo mass and selection observ-
ables. Complete derivations of this analysis framework can be
found in Ghirardini et al. (2024), Bocquet et al. (2023) in the
context of eROSITA–selected clusters and SPT–selected clusters,
respectively. Our results here are based on the implementation
described in Ghirardini et al. (2024), Sect. 4.

5.1. Constraints of the count rate–mass relation

In the following, we discuss the likelihood setup used for
the mass calibration as well as the resulting mass cali-
bration constraints. In general, WL mass calibration relies
on statistically determining the scaling relation between the
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observables and halo mass (Mantz et al. 2016; Dietrich et al.
2019; Schrabback et al. 2021; Zohren et al. 2022, for instance).
In our case, we expand this standard treatment to accommodate
for the residual contamination of our sample by random super-
positions of X-ray candidates and optical systems and, more
importantly, misclassified active galactic nuclei (see Bulbul et al.
2024; Kluge et al. 2024; Ghirardini et al. 2024). Misclassified
AGNs and random superpositions are expected to produce far
less WL signal than clusters, which inhabit massive halos. We
therefore employ a mixture model, a weighted sum of the dif-
ferent sub-populations, to perform the mass calibration in the
presence of non-negligible contamination.

5.1.1. Mixture model

For each individual cluster, we construct the probability density
function (PDF) of its shear profile gt given the cluster observ-
ables count rate ĈR, redshift zcl and sky position Ĥ as

P(ĝt|ĈR, zcl, Ĥ) = fC(ĈR, zcl, Ĥ) P(ĝt|ĈR, zcl, Ĥ ,C)

+ fRS(ĈR, zcl, Ĥ) P(ĝt|RS)

+ fAGN(ĈR, zcl, Ĥ) P(ĝt|AGN, zcl), (37)

a weighted sum of the PDF of the shear profile for clusters (C),
random superpositions (RS), and misclassified active galactic
nuclei (AGN), with their respective frequencies fτ(ĈR, zcl, Ĥ)
as a function of count rate, redshift and sky position, where
τ ∈ (C, RS, AGN). Naturally,

∑
τ fτ(ĈR, zcl, Ĥ) = 1, where the

sum runs over τ ∈ (C, RS, AGN). As outlined in Bulbul et al.
(2024), Kluge et al. (2024), Ghirardini et al. (2024), the shape
of the AGN and the random superpositions contributions are
calibrated partially on X-ray image simulations, partially with
optical follow-up of random positions and point sources, and
have amplitudes ( fRS, fAGN) that are fitted for using the rich-
ness distribution of the sample at a given count rate, redshift,
and sky position. They find fRS = 0.0061 ± 0.0023 and fAGN =
0.0462 ± 0.0038, which we adopt as priors.

For the WL modeling, we assumed that the density contrast
of a random source is zero, resulting in their shear profile PDF
being

ln P(ĝt|RS) = −
1
2

∑
k

ĝ2
t,k

δg2
t,k

, (38)

where the sum runs over the radial bins k, with the measured
shear profile ĝt,k defined in Eq. (22), and its shape noise error
δgt,k defined in Eq. (23). In practice, all objects in our lens sam-
ple have a richness λ̂ > 3. At the lens redshift, the random source
will thus have a few red galaxies along their lines of sight. Their
density contrast is, however, expected to be small compared to
cluster density contrasts.

For AGNs we assume that their density contrast ∆ΣAGN(R)
follows the profile measured by Comparat et al. (2023) for AGN
in eFEDS using HSC WL data. We multiply this with the average
lensing efficiency Σ−1

crit,c = 〈Σ−1
crit,cs〉Pc(zs), evaluated as a function of

cosmology for the source redshift distribution Pc(zs) constructed
in Eq. (25). The PDF thus reads

ln P(ĝt|AGN, zcl) = −
1
2

∑
k

1
δg2

t,k

(
ĝt,k − Σ−1

crit,c∆ΣAGN(R = Dcθk)
)2
,

(39)

where Dc is the angular diameter distance to the cluster, and
θk the average angular distance to the sources in the respective

radial bin k, as computed in Eq. (24). In practice, the density
contrast of AGN is much smaller than that of galaxy clusters,
given the lower host halo mass.

For galaxy clusters, the PDF of the shear profile depends on
our extraction model gmod

t , and the WL mass MWL defined by
this model (cf. Sect. 4.3). It therefore reads

ln P(ĝt|C, zcl,MWL) = −
1
2

∑
k

1
δg2

t,k

(
ĝt,k − g

mod
t (R = Dcθk |MWL)

)2
,

(40)

with the extraction model depending on a host of cluster-specific
observables, as outlined above. Note that in all three PDFs, we
omitted the normalization term, which is the same for all three,
and just depends on δgt,k, thus being constant with respect to the
parameters of the inference.

The PDF of the shear profile for clusters needs to be
marginalized over the distribution of WL masses MWL compat-
ible with the clusters count rate ĈR, redshift zcl, and sky posi-
tion Ĥ , that is P(MWL|ĈR, zcl, Ĥ , pSR), whose construction and
dependence on model parameters pSR we shall discuss below.
The PDF of the shear profile for the cluster component is thus

P(ĝt|ĈR, zcl, Ĥ ,C) =

∫
dMWLP(ĝt|C, zcl,MWL)

P(MWL|ĈR, zcl, Ĥ , pSR). (41)

The distribution of WL masses given the count rate, redshift
and sky position is proportional to

P(MWL|ĈR, zcl, Ĥ , pSR) ∝
"

dMdCRP(MWL,CR|M, zcl, pSR)

P(I|CR, zcl, Ĥi)P(ĈR|CR)P(M, zcl),
(42)

with P(ĈR|CR) modeling the observational uncertainty on the
count rate, P(M, zcl) being proportional to the halo mass func-
tion, and P(I|CR, zcl, Ĥi) the X-ray incompleteness due to
the extent selection. This ensures that we correctly model
Eddington bias, which manifests as more low-mass objects scat-
tering up to a given observable value than high-mass objects
scattering down to the same observable values. This happens
even when the observable–mass scatter is modeled as symmet-
ric because there are just many more low-mass than high-mass
objects. This fact is quantitatively expressed by the halo mass
function. The expression given above is normalized to be a PDF
in MWL via integration in MWL and subsequent re-scaling. See
Ghirardini et al. (2024) for an alternative, but equivalent, deriva-
tion of the same likelihood.

5.1.2. Scaling relation

Given their deep potential wells, cluster observables scale tightly
with the host halos mass. Leveraging this strong physical prior,
we model the distribution of WL mass MWL and intrinsic (that is
noise-free) count rate CR at given halo mass M and redshift z as
a bi-variate log-normal, reading

P(MWL,CR|M, zcl, pSR) = N(µ̄, Σ̄), (43)

with mean and variance

µ̄ = [〈ln CR|M, zcl〉 , 〈ln MWL|M, zcl〉]
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Table 3. Calibration of WL bias and scatter for DES Y3 WL on eRASS1
clusters.

z 0.24 0.42 0.68 0.95

µb −0.066 −0.075 −0.101 −0.092
δb1 −0.013 −0.018 −0.034 −0.092
δb2 −0.019 −0.022 −0.023 0.015
µs −3.094 −3.232 −2.925 −1.833
δs 0.272 0.270 0.275 0.283

bM = 1.030 ± 0.021 sM = −0.919 ± 0.608

Notes. Numerical values for the WL bias (µb, δb1, δb2) and scatter (µs,
δs) calibration at different redshift z, and their global mass trends bM,
and sM, respectively.

Σ̄ =

[
σ2

X ρWL,XσXσWL
ρWL,XσXσWL σ2

WL

]
where 〈ln CR|M, zcl〉 and 〈ln MWL|M, zcl〉 are the scaling relations
between true mass and count rate and WL mass, respectively,
σX and σWL their intrinsic scatters, and ρWL,X the correlation
coefficient between the two intrinsic scatters. Inclusion of the
latter is crucial to marginalize over possible selection effects like
more concentrated halos simultaneously having a higher count
rate and WL mass compared to other objects at their mass and
redshift, or any other effect that might similarly correlate the
intrinsic scatters.

As calibrated on dedicated simulations in Sect. 4, the mean
WL mass – halo mass relation is given by〈

ln
MWL

Mp

∣∣∣∣∣M, zcl

〉
= b(zcl) + bM ln

(
M
Mp

)
, (44)

with the pivot value for the mass Mp = 2 × 1014M�, the red-
shift dependent amplitude of the WL bias given by Eq. (36), and
the mass trend bM = µbM + CWL · σbM , with mean and standard
deviation derived in Sect. 4.5 and reported in Table 3.

The scatter is similarly modeled as

σ2
WL = exp

{
I(zcl|zl, µs,l) + DWLI(zcl|zl, δs,l)

}
, (45)

where µs,l and δs,l are the mean and standard deviations of the
WL scatter in the simulation snapshot l, derived in Sect. 4.5 and
reported in Table 3, and I(zcl|zl, µs,l) is the interpolation of the
data vectors (zl, µs,l) to the redshift zcl. Given the tight correla-
tions between the systematic uncertainties in the WL scatters of
the different redshift seen in Fig. 12, we opt to model the WL
scatter with a single principal component. We also set the mass
trend of the scatter to sM = 0 as in this work, we are not inter-
ested in exploring mass trends in the intrinsic scatter of the other
observables.

The count rate–mass relation is modeled as〈
ln

CR

CR,p

∣∣∣∣∣M, zcl

〉
= ln AX + bX(M, zcl) · ln

M
Mp

+ eX(zcl) (46)

where CR,p = 0.1s−1 is the pivot value for the count rate, Mp =

2 × 1014M� is the pivot value for the mass. bX(M, z) expresses
the mass-redshift dependent slope of the scaling relation, given
by

bX(M, zcl) =

(
BX + CX · ln

M
Mp

+ FX · ln
1 + zcl

1 + zp

)
(47)

where BX is the classic standard single value mass slope, CX
allows the slope to be mass dependent, and FX allows the slope

to be redshift dependent, and zp = 0.35 is the pivot value for
the redshift. As shown in Grandis et al. (2019), Appendix B, FX
needs to be sampled to retrieve unbiased cosmological results
from the number counts. Chiu et al. (2023) explored the impact
of allowing for a mass dependence in the slope in a cosmological
analysis of the eFEDS sample, finding that giving the scaling
relation that freedom is unnecessary. We thus set CX = 0.

The redshift evolution eX(zcl) of the X-ray scaling
relation is

eX(zcl) = DX · ln
dL(zcl)
dL(zp)

+ EX · ln
E(zcl)
E(zp)

+ GX · ln
1 + zcl

1 + zp
(48)

where EX = 2 and DX = −2 are the values predicted by the self-
similar model. The last term, with GX, quantifies the deviation
from the self-similar model. E(zcl) = H(zcl)/H0 is the dimen-
sionless Hubble factor. The intrinsic scatter of our scaling rela-
tion is represented by a single value, σX, independent of mass
and redshift.

5.1.3. Likelihood setup and priors

As outlined in Ghirardini et al. (2024), the total likelihood of our
shear profiles ĝt,κ of several clusters, given their count rate ĈR,κ,
redshift zcl,κ and sky position Ĥκ, where κ runs over the cluster
catalog, is given by

lnLWL =
∑
κ

ln P(ĝt,κ|ĈR,κ, zcl,κ, Ĥκ). (49)

In light of the derivations above, this is a function
of the parameters of the WL scaling relation pWL =
(AWL, BWL, CWL, DWL). To represent the WL anchoring per-
formed in Sect. 4, we place independent Gaussian priors on
these. The parameters of the count rate–mass relation pX =
(AX, BX, FX, GX, σX), instead, are the true target of our anal-
ysis. These are sampled within wide flat priors, reported in
Table 4. Also, the correlation coefficient between the WL and
count rate intrinsic scatters is let free, but within the bounds
ρWL,X ∈ (−0.9, 0.9). We purposefully do not sample all the way
to ±1, as the covariance of intrinsic scatters becomes singular in
that limit.

We place priors on the random source fractions and AGN
( fRS, fAGN) from our optical follow-up observations. We do not
expect the WL to significantly inform these fractions, as the indi-
vidual shear profiles are hardly significantly different from zero
themselves. As such, on an individual object basis, WL just lacks
the statistical power to tell clusters apart from AGN or random
sources.

We fix all cosmological parameters to their Planck values,
except ΩM = 0.331 ± 0.038 from the first Dark Energy Survey
Supernovae Type Ia results (Dark Energy Survey Collaboration
2019). Several elements of our likelihood, like angular diameter
distances and the extraction model, depend on cosmology via the
background evolution. The exact cosmological dependence of
the WL-calibrated number counts is accounted for by re-running
the mass calibration presented here together with the number
counts. In this work, we wish to provide mass calibration results
marginalized over a reasonable range of cosmologies. Our ΩM-
prior allowed us to do this in a physically motivated way, while
remaining independent of CMB results, with which the cosmo-
logical number counts analysis might be in tension.
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Table 4. Priors on the parameters used in the fitting of the count rate–
mass relation.

Parameter Units Prior

Cosmology
ΩM – N(0.331, 0.038)
log10 AS – Fixed to −8.635

H0
km
s

Mpc Fixed to 68.06
Ωb,0 – Fixed to 0.048595
nS – Fixed to 0.9707
w0 – Fixed to −1
wa – Fixed to 0∑

mν eV Fixed to 0
Ωk,0 – Fixed to 0

X-ray scaling relation
AX – U(0.01, 3)
BX – U(0.1, 5)
CX – Fixed to 0
DX – Fixed to −2
EX – Fixed to 2
FX – U(−5, 5)
GX – U(−5, 5)
σX – U(0.05, 2)

WL mass calibration
AWL,DES – N(0, 1)
BWL,DES – N(0, 1)
CWL,DES – N(0, 1)
DWL,DES – N(0, 1)
ρWL,X – U(−0.9, 0.9)

Contamination modeling
fAGN – TN(0.0412, 0.0040, 0,∞)
fRS – TN(0.0064, 0.0024, 0,∞)

Notes. With U(min,max) we indicate a uniform distribution between
“min” and “max”. With N(µ, σ) we indicate a normal distribution cen-
tered on µ and with standard deviation σ. With TN(µ, σ,min,max) we
indicate a truncated normal distribution centered on µ and with standard
deviation σ bounded between “min” and “max”.

5.1.4. Scaling relation parameters constraints

We sample the total likelihood for the measured shear profiles
with the priors using ultranest (Buchner 2021) to create a
sample of the resulting posterior. We find that all parameters
of interest, the parameters of the count rate–mass relation, are
well constrained by our analysis (shown as blue contours in
Fig. 15), while all the calibration and other nuisance parameters
have posteriors consistent with their priors. The find a constraint
for the amplitude of the scaling relation AX = 0.88 ± 0.20, when
considering the mean and standard deviation computed on the
posterior sample. The mass slope of the relation is constrained
to BX = 1.62 ± 0.14, the redshift trend of the mass slope to
FX = −0.85±0.93. No significant deviation from the self-similar
redshift evolution is detected, as GX = −0.32 ± 0.69 is consis-
tent with 0. For the intrinsic scatter, we find σX = 0.61 ± 0.19.
Noticeably, the intrinsic scatter can be constrained, despite the
low precision of the individual lensing data, in line with the pre-
dictions by Grandis et al. (2019). While the intrinsic scatter val-
ues are somewhat large, they match the count rate mass scatter
we find in the digital twin simulations (Comparat et al. 2020;
Seppi et al. 2022). To better visualize our scaling relation results,
we create a posterior predictive distribution for the mean count

rate as a function of mass and redshift. The 1 sigma region of the
predicted relation at three redshifts is shown in Fig. 16 in filled
bands.

5.2. Goodness of fit

To assess the goodness of fit of our mass calibration, we resort
to binning the cluster sample in redshift, count rate bins, with
edges (0.10, 0.19, 0.27, 0.35, 0.48, 0.8), and (0.01 0.16, 0.25,
0.30, 0.64, 20), in redshift and count rate respectively. For all
clusters κ falling in each of the bins, we stack the tangential
reduced shear profiles by defining the stacking weights Wκ =∑

b=2,3,4 wb ∑
i∈bκ ws

iRi, computing

ĝstack
t =

∑
κWκĝt,κ∑
κWκ

, (50)

where i ∈ bκ symbolizes the sources i associated to the clus-
ter κ in the tomographic bin b. Combining this expression with
Eq. (22) shows that it is equivalent to the raw tangential reduced
shear estimator in Eq. (8). Using the same weighting, we also
derive the error on the stacked reduced shear(
δgstack

t

)2
=

∑
κW2

κδg
2
t,κ∑

κW2
κ

, (51)

and the mean angular separation of the source galaxies

θstack =

∑
κWκθκ∑
κWκ

· (52)

The resulting stacked tangential reduced shear profiles are shown
as black points with their error bars in Fig. 17 given by the square
root of the variance calculated above.

For the model prediction, we draw NMC = 1000 points pvSR
from the posterior sample. For each cluster κ, and for each pos-
terior point v, we compute its best-guess WL mass

Mv
WL,κ = argmax

MWL

P(MWL|ĈR,κ, zκ, Ĥκ, pvSR), (53)

as the maximum of the PDF of WL masses, given the count rate,
redshift, and sky position, evaluated for our specific posterior
draw pvSR. We report the median mass of the clusters in each
stacking bin in Fig. 17. For each WL mass Mv

WL,κ we evaluate
our extraction model gmod,v

t,κ , given in Eq. (33) using the source
redshift distribution computed on the real data, Eq. (25), and the
mean positions of the sources θα from Eq. (24). For each clus-
ter and posterior point, we thus construct the predicted reduced
shear profile as

g
pred,v
t,κ = (1 − f vRS,κ − f vAGN,κ)g

mod,v
t,κ + f vAGN,κg

AGN
t,κ , (54)

with f vRS,κ and f vAGN,κ the random source and AGN fractions at
the count rate, redshift and sky position of the cluster κ given the
model parameters pvSR.

The average reduced shear model in the bin is then given
by stacking the predicted reduced shear profile with the same
weights as the data and taking a mean over the posterior points,

g
pred
t =

1
NMC

∑
v

∑
κWκg

pred,v
t,κ∑

κWκ
, (55)

and variance

(
δg

pred
t

)2
=

1
NMC

∑
v

∑
κWκ

(
g

pred,v
t,κ − g

pred
t,κ

)2∑
κWκ

, (56)
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Fig. 15. One- and two-dimensional marginal
posterior on the parameters of the count rate–
mass scaling relations from this work in blue,
compared to the 1-d marginals of the analysis
of HSC WL around eFEDS clusters and groups
(Chiu et al. 2022) in black. We find good agree-
ment on the mass trend BX, and the deviation
from self-similar redshift scaling GX, while con-
straints on the amplitude AX, and the redshift
evolution of the mass slope FX are shifted by
1- to 2-sigmas, consistent with statistical fluctu-
ations. Contrary to the eFEDS-HSC analysis, we
do not place an informative prior of the intrinsic
scatter σX, and get only weak constraints.

propagating the uncertainty in the model parameters expressed
by their posterior to the reduced shear profile prediction. The
mean shear profile and its systematic uncertainty are shown as
green lines in Fig. 17. The visual impression of a good fit is cor-
roborated by considering that the chi-squared between stacked
data and predicted model is χ2 = 180.0+45.8

−30.4 for 150 data points
and 5 parameters that are effectively constrained. The upper and
lower errors for the χ2 result from the difference induced when
evaluating it with the model gpred

t ± δg
pred
t , instead of the mean

model. Within the errors propagated from the posterior, we attain
a very good chi-squared.

6. Discussion

6.1. Comparison to previous work

The only previous work that calibrated the eROSITA count rate
– halo mass relation was performed by Chiu et al. (2022), mea-
suring, calibrating, and analyzing the WL signal around 313
eFEDS selected clusters and groups with HSC data. Their results
are shown as black lines in Fig. 15. We agree on all parame-
ters within 2-sigma, with larger than 1-sigma deviations on the
amplitude, the redshift trend of the slope and the scatter. When
considering the predicted mean count rate as a function of mass
and redshift, their results predict higher count rates for low-mass
and high redshift objects (hatched bands in Fig. 16). The differ-
ence is, however, not statistically significant. The constraining
power of this work is only marginally better than the calibration
derived by Chiu et al. (2022).

The similar constraining power of eFEDS-HSC analysis to
this work, despite the significantly smaller number of objects
(313 compared to 2201), is explained by the higher source den-
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z=0.10 0.30 0.80
this work eFEDS HSC

Fig. 16. Posterior predictive distribution of the mean count rate–mass
relation (the band ranges from the 16th to the 84th percentile at each
mass), for three different redshifts (color coded). Filled bands represent
the analysis in this work, and hatched bands represent the eFEDS HSC
result from Chiu et al. (2022). The predictions diverge for low-mass,
high-redshift systems.

sity in HSC and the cleaner background selection. Indeed, the
signal-to-noise ratio of an individual cluster is proportional to

S/N ∝ β
√

neff

√
1 − fcl, with β =

〈
min(0,Dls)

Ds

〉
P(zs)

, (57)

where β is the lensing efficiency, which is 0 for sources at the
lens redshift and converges to 1 for infinitely distant sources.
neff is the effective source density, and fcl the cluster member
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Fig. 17. Stacked measured reduced tangential shear profiles with measurement uncertainty in black for different count rate (rows) and redshift
(columns) bins. As a green line, the best-fit shear profile model and with filled green regions, the propagation of the posterior uncertainty on the
mean model. The chosen model fits the data well at all count rates and redshifts. We also report the median WL mass of each bin in units of M�.

contamination. When considering these elements, each cluster
in the HSC analysis has a WL signal-to-noise approximately a
factor of 2.3 larger than the clusters considered in this work,
assuming they have the same mass and ignoring cluster mem-
ber contamination. Considering the overall signal-to-noise gain
stemming from the total number of clusters,

√
2201/313 = 2.6,

we find that it just about compensates the much lower individual
clusters signal-to-noise. Note also that in the eFEDS-HSC anal-
ysis, a tighter ΩM and an informative σX prior were used. Taken
together, this explains the similar constraining power of the two
works.

6.2. Cluster line of sight anomalies

We find several cluster line of sight anomalies that we shall dis-
cuss here cohesively. Firstly, it is somewhat anomalous that the
cluster member contamination estimates based on the effective
number density of sources display a larger contaminant frac-
tion than the estimate based on the decomposition of the source
redshift distribution. The latter should be impervious to mask-
ing and obstruction effects, as argued by Gruen et al. (2014),
Varga et al. (2019). Estimations of the cluster member contami-

nation via the effective number density of sources are biased low
because of masking and obstruction by foreground and bright
cluster sources, as shown by Kleinebreil et al. (2024). It is there-
fore surprising that we find the number density estimate to be
larger than the source redshift distribution estimate despite it
potentially being biased low. A possible source of error here is
our very lenient background selection and the possible perfor-
mance loss of the source redshift decomposition method if the
cluster redshift lies too close to the peak of the source redshift
distribution of the field. This might be hinted at by the imperfect
subtraction signatures discussed in Sect. 3.3.1 and seen in Fig. 6.

Also interesting are the decrement of the effective shape
noise and the increment of the smooth shear response toward
the cluster center. The effect is rather constant in lens redshift,
as opposed to the cluster member contamination. Indeed, we see
this anomaly also in the lowest source redshift bin, 0.1 < zl <
0.19, where we have practically no cluster member contamina-
tion. This makes it implausible that cluster member contami-
nants have significantly different responses or intrinsic shapes.
It is worthwhile noting in Eq. (10) that a larger shear response
leads to a smaller estimated effective shape noise. Also, the shear
response used in this work is a smooth function of the source’s
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signal-to-noise and its size with respect to the PSF. Noticeably,
both these quantities are magnified by the cluster’s potential – a
secondary effect of WL. Such magnification effects might thus
alter the inferred smooth shear response. In general, shape mea-
surement and photo-z calibration in cluster lines of sight might
be affected to second order not only by magnification but also by
increased blending (Hernández-Martín et al. 2020) and the intra-
cluster light (Zhang et al. 2019). Exploiting future-wide optical
and NIR surveys might necessitate dedicated assessments of the
performance of shape and photo-z measurement techniques in
cluster lines of sight.

6.3. Impact of the mixture model

Some elements of the mixture model used to account for the
residual contamination of our cluster sample (see Sect. 5.1.1)
merit further discussion. Around 4.6% of our sample are found
to be misclassified AGN, while another 0.6% are noise fluc-
tuations (Bulbul et al. 2024; Kluge et al. 2024; Ghirardini et al.
2024). In both cases, we find an optical richness λ̂ > 3 for these
objects, suggesting that they coincide with a small overdensity
of red galaxies along the line of sight. Focussing on the AGN
contaminants, we assume that their WL signal is sourced by an
NFW with halo mass MAGN

200c = 4.95+2.63
1.99 × 1012 M� as measured

by Comparat et al. (2023) in HSC data around eFEDS selected
AGNs.

This can be contrasted with the mean halo mass
log10 M5<λ̂<10

200 m ∼ 14.1 + log10 M� measured by McClintock et al.
(2019) for redmapper selected objects with richness 5 < λ̂ < 10
in the DES year 1 data. The latter measurement provides a weak
upper bound on the halo mass of the AGN contaminants if we
assume that their optical properties are equivalent to random
superposition with purely optically selected clusters of similar
richness. This is, however, an overestimation, as purely optically
selected clusters with richness 5 < λ̂ < 10 also comprise clusters
and groups that we would have selected through X-rays and thus
classified as “clusters” in our mixture model, especially at low
redshifts.

In the context of cosmological inference from WL calibrated
cluster number counts, Ghirardini et al. (2024) have studied the
impact of the mixture model in Appendix B.4. As a test, they
treated the entire sample as “clusters” by setting the fraction
of random source and misclassified AGN to zero. The result-
ing constraints on the cosmological parameters ΩM and σ8,
the present-day amplitude of matter fluctuations on a scale of
8 h−1 Mpc, are only marginally affected by this modeling choice.
Both these parameters are very sensitive to the mass calibration
and, thus, to the implementation of the mixture model in the con-
text of the WL signal, which we are discussing in this paper. We
therefore concluded that the modeling choices for the WL signal
from the contaminants do not impact the mass calibration at a
level that would be noticeable in cosmological inference.

6.4. Accounting for cluster selection biases

Much of the astrophysically driven conversation about the via-
bility of galaxy clusters as a cosmological probe and the limits of
our ability to effectively calibrate their masses focus on so-called
selection biases. When taking a forward modeling approach
using Bayesian population models, these concerns can be nat-
urally accounted for. We shall discuss in the following the most
(in)famous “selection bias” as an example: the “cool core bias”
(Rossetti et al. 2017). The cooling time in the center of mas-

sive galaxy clusters can fall below the Hubble time, especially
if they have been undisturbed for a long time. Effective cool-
ing boosts the central luminosity, resulting in very peaked X-ray
surface brightness profiles. Conversely, the SZe selection, which
is sensitive to pressure, is not affected by this. As discussed
already above, taking a population modeling approach immedi-
ately ensures that any sample selected on an observable that scat-
ters around the halo mass will preferentially contain up-scattered
objects compared to down-scattered objects on account of the
much higher frequency of the former. If a specific physical prop-
erty drives the scatter in some observable at fixed mass, a sam-
ple selected in that observable will show more objects with that
physical property compared to a sample selected on another
observable. X-ray-selected samples will preferentially contain
objects that are scattered up in X-rays for whatever astrophys-
ical reason.

For cosmological inference, the complication arises if the
scatter in the follow-up observable used for the mass cal-
ibration correlates with the scatter in the selection observ-
able. A glaring case being investigated is clusters selected
via the number of photometric member galaxies and the WL
signal of these objects. The scatter of both depends on the
concentration, orientation, and triaxiality of the halo, as well
as the neighboring environment, resulting in strong selec-
tion biases hampering cosmological analyses on those sam-
ples (Dark Energy Survey Collaboration 2020; Wu et al. 2022).
Our analysis is unaffected by optical selection effects. While
we do impose a cut of richness λ̂ > 3 (Kluge et al. 2024) in
our analysis, this cut only leads to the exclusion of 1.1% of
clusters at low redshift, low mass, and in high exposure time
regions (Ghirardini et al. 2024, Appendix D) . Our selection is
thus almost exclusively based on the X-ray signatures. X-ray-
selected clusters have been reported to live preferentially in
nodes of the cosmic web, as compared to filaments or sheets,
as found by Popesso et al. (2024) when comparing eFEDS-
selected halos with spectroscopically selected ones. This means
that at fixed halo mass, the cluster properties may depend on
secondary halo properties like environment or concentration –
an effect analogous to the assembly bias of galaxies (Wu et al.
2008; Wechsler & Tinker 2018). Our scale cuts on the tangen-
tial reduced shear are designed to ensure that we measure the
WL signal only in the 1-halo regime (Grandis et al. 2021a), that
is, scales dominated by the halo’s own density profile and not
by neighboring structures. This already limits significantly the
impact of assembly bias. Still, the eRASS1 selection might cor-
relate with some properties that also impact the WL mass, such
as concentration, triaxiality, or dynamical state. To account for
any such possible effect, we introduce the correlation coeffi-
cient ρWL,X among the scatters in count rate and WL mass.
Figure 18 shows the posterior on the correlation coefficient,
together with its degeneracies with the amplitude of the scal-
ing relation and intrinsic scatter at fixed halo mass and red-
shift. The prior range for the correlation coefficient is naturally
given by (−1, 1), though we sample (−0.9, 0.9) to avoid numer-
ical instabilities for a singular covariance matrix. Marginalizing
over the correlation coefficient makes our analysis impervious to
selection bias effects but deteriorates our ability to calibrate the
observable–mass relation. Given that the numerical value of the
amplitude of the scaling relation directly impacts our cosmolog-
ical results and, crucially, their agreement with external exper-
iments, foregoing the use of strong astrophysical priors on the
selection effects at the cost of a less stringent mass calibration is
undoubtedly the more prudent choice.
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Fig. 18. One- and two-dimensional marginal contours of the amplitude
of the count rate–mass scaling relation AX, the intrinsic scatter around
that relation σX, and the correlation coefficient between the WL and
count rate scatter ρMWL ,CR , labeled as ρWL,X for brevity in the plot. While
the correlation coefficient remains unconstrained, it leads to significant
degeneracies with the amplitude and scatter. Astrophysical processes
like cluster age, merger state, environment, orientation, triaxiality, etc.,
might impact both observables and lead to selection biases. We agnosti-
cally marginalize over the entire range of such effects, thereby weaken-
ing our amplitude and scatter measurements but making the mass cali-
bration impervious to such astrophysical effects.

7. Conclusions

In this work, we measured and calibrated the WL signal around
eRASS1 clusters and groups in the DES Y3 data. To this end,
we defined a background sample of DES galaxies by weighting
tomographic redshift bins defined and calibrated for the cosmic
shear experiment (Myles et al. 2021; Gatti et al. 2021) as a func-
tion of the photometric redshift of our clusters. After querying
sources around our lenses, out to an angular distance correspond-
ing to 15 h−1 Mpc, we validated and calibrated that measure-
ment. We fit the lens richness, redshift, and source-lens distance
dependence of the effective source density and the source red-
shift distribution to determine the contamination of our source
sample. The different methods employed agree with each other
within the systematic uncertainties of the source redshift and
shape measurement.

We fit a lens redshift trend to the effective shape noise, allow-
ing us to define a semi-analytical covariance metric for the shape
noise. The profiles of the B-mode-like cross-component are con-
sistent with zero, as expected for a well calibrated WL sig-
nal sourced by gravity. Investigation of the selection and shear
response of our tangential reduced shear estimators show that the
former can be ignored, as it induces a correction much smaller
than the systematic uncertainty induced by source redshift and
shape measurements. On small cluster-centric distances, we find
interesting anomalies in the shear response and effective shape
noise that might point at cluster line-of-sight-specific calibration
issues, which arguably are too small to impact our subsequent
analysis steps.

We derived cosmology-ready data products to be used as
inputs for the mass calibration of eRASS1 selected clusters, both
in this work and self-consistently as well as in the subsequent
cosmological analysis by Ghirardini et al. (2024). These prod-
ucts are:

– The tangential reduced shear profile in angular bins, cor-
rected for the shear response;

– A semi-analytical estimate of the shape noise on that profile;
and

– An estimate of the field source redshift distribution from the
local background

for each cluster with DES Y3 lensing data. This resulted in WL
data for 2201 eRASS1 selected clusters, with a raw signal-to-
noise ratio of 92, reduced to 65 after our radial scale cuts are
applied.

Exploitation of these data for mass calibration and num-
ber counts cosmology requires the anchoring of the mapping
between halo mass and WL signal via O(1000) realizations of
synthetic shear profile simulations, following the scheme pre-
sented by Grandis et al. (2021a). These simulations include:

– Realistic 2D-projected surface mass density maps around
massive halos, extracted from the cosmological hydro-
dynamical TNG300 simulations (Pillepich et al. 2018;
Marinacci et al. 2018; Springel et al. 2018; Nelson et al.
2018, 2019; Naiman et al. 2018);

– A distribution of the off-set between the observational cen-
ters used for the tangential reduced shear profile measure-
ments, constructed from X-ray images of the Magneticum
Pathfinder simulations (Dolag et al., in prep.), and the
“eROSITA digital sky twin” (Seppi et al. 2022);

– A painting of the richness using the richness–mass relation
calibrated by Chiu et al. (2022);

– Dilution of the tangential reduced shear signal based on the
degree of cluster member contamination we calibrated;

– A noise contribution from the uncorrelated large-scale struc-
ture; and

– Realistic DES Y3 source distributions reflecting our back-
ground selection based on weighted sums of the DES Y3
tomographic redshift bins (Myles et al. 2021), together with
a prescription for nonlinear shear bias.

These synthetic shear profiles were analyzed using the same
shear profile model that we used in the subsequent mass cali-
bration. It features a simplified mis-centered NFW with a fixed
concentration–mass relation and accounts for the mean cluster
member contamination, as advocated by Grandis et al. (2021a).
It thus has one free parameter, the WL mass. Extracting the WL
mass on our synthetic shear profile simulations allowed us to
establish the relation between WL and halo mass, summarized
in the WL bias and scatter. Monte Carlo realizations of the syn-
thetic shear profile simulation, obtained by varying all the inputs
within our expectation, resulted in an uncertainty estimate on
the WL bias and scatter that acts as a calibration prior to the
subsequent mass calibration. We find that at low redshift, our
mass extraction uncertainty is dominated by the effect of hydro-
dynamical modeling, leading to a systematics floor of 2%. At
higher redshifts, DES photo-z uncertainties become incremen-
tally more important.

We calibrated the count rate to halo mass relation by
using a Bayesian population model to forward model the
probability density function of each cluster’s shear profile
given its count rate and redshift. Improving on previous work
(Mantz et al. 2016; Dietrich et al. 2019; Bocquet et al. 2019;
Chiu et al. 2022), we took explicit account of contaminants via
a mixture model. We find that we can measure five parameters
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of the count rate–mass relation: the amplitude, the slope and
its redshift dependence, the deviation from a self-similar red-
shift evolution, and the intrinsic scatter around the relation. We
assessed the quality of this population model-based fit on stacked
signals in count rate and redshift bins and found excellent agree-
ment between the data and the model. Our analysis finds com-
parable and marginally tighter constraints than the calibration of
the eROSITA count rate–mass relation performed by Chiu et al.
(2022) with HSC data on eFEDS-selected clusters.

This analysis will serve, along with similar analyses on HSC
and KiDS, as the main mass calibration for the number counts
of eRASS1-selected clusters (Ghirardini et al. 2024), which con-
strain different cosmological parameters such as the present-
day matter density, the amplitude of matter fluctuations, the
equation of state of dark energy, and the sum of the neutrino
masses. Methodologically, we have demonstrated how photo-
metric data from wide surveys, calibrated specifically for cos-
mic shear experiments, can be effectively used to perform a WL
mass calibration of cluster number counts. These two exper-
iments are highly complementary. Cosmic shear probes the
large-scale structure’s linear and mildly nonlinear scale, while
WL-calibrated number counts probe the most nonlinear regions
and massive galaxy clusters. These probes have very different
sensitivities to astrophysical and observational systematics, only
sharing a joint dependence on the source photo-z and shape cal-
ibration. In light of upcoming deep and wide surveys, tailored
mainly for cosmic shear, including Euclid5, LSST6, or Roman7,
this work provides a demonstration of how to leverage these data
to inform cluster number counts, enabling independent and com-
petitive cosmological constraints.
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Appendix A: Effective shape noise and number
density in the presence of shear responses

The aim of this appendix is to present a derivation for the expres-
sion of the effective shape variance, Eq. 10 and the effective
number density, Eq. 9, in the presence of a shear response R.

Friedrich et al. (2021) demonstrate that the variance of a
reduced shear profile ĝt is given by

Var
[
ĝt
]

=
σ2

eff

Npair
with σ2

eff =
1

2Ns

∑
|e|2w2

n, (A.1)

where Npair is the number of source lens pairs, Ns the number of
sources, |e|2 = e2

t +e2
x the squared modulus of the ellipticity when

interpreted as a complex number, and wn normalized weights.
To generalize this expression to un-normalized weight w, just

consider that such un-normalized weights can always be rescaled
to normalized weights with the ansatz wn = Cw. The normaliza-
tion condition then readily leads to an expression for C, reading

1
Ns

∑
wn = 1 =

C
Ns

∑
w⇔ C−1 =

1
Ns

∑
w. (A.2)

Moving into the regime of individual cluster lensing, where
Npair = Ns, combining all the above equations, we find

Var
[
ĝt
]

=
1
2

1
(
∑

w)2

∑
|e|2w2, (A.3)

for generic, un-normalized weights.
When considering shear data with shear responses R,

Friedrich et al. (2021), Appendix D suggests transforming the
above equations by re-scaling both the ellipticities e, as well as
the weight w, as follows

ẽ =
e
R

and w̃ = Rw, (A.4)

thus correcting the ellipticity for the shear response and adjusting
the weights for the necessary re-scaling. Note that the summand
in the numerator of Eq. A.3 is invariant under this re-scaling,
|ẽ|2w̃2 = |e|2w2, and we thus only have to modify the summand
in the denominator. Given that the above expression is valid for
un-normalized weights, no further corrections are required.

Dropping the tildes, we can readily write the variance of a
tangential reduced shear profile in the presence of shear response
as

Var
[
ĝt
]

=
1
2

1
(
∑

wR)2

∑
|e|2w2. (A.5)

Similarly, this justifies also why the source redshift distribution
needs to be shear response weighted.

Interpreting this expression as the ratio between an effective
shape dispersion σeff,α for α ∈ (t, x), and an effective number of
source Neff we can recover the above expression by using

Neff =
(
∑

wR)2∑
w2R2 and σ2

eff,α =

∑
e2
αw2∑

w2R2 for α ∈ (t, x), (A.6)

which are the expressions that we also use for our shape noise
modeling.

Appendix B: Parametrisation of cluster member
contamination

We shall justify in the following the parameterization used for
the cluster member contamination in Section 3.3.1. As shown
by Hennig et al. (2017), cluster member galaxies follow an
NFW profile, with the total number of galaxies enclosed in
the virial region correlating tightly with mass, while the con-
centration varies depending on the galaxy type. Red-sequence
galaxies have a larger concentration, which is more similar to
the concentration of dark matter than non-red-sequence galax-
ies. We therefore assumed that the cluster member galaxies
that contaminated our background sample also follow an NFW
profile.

The fraction of red-sequence galaxies in the cluster member
contamination is unknown, though it stands to argue that their
more precise photometric redshifts make it easier to exclude
them with a background selection. We therefore let the concen-
tration c of the cluster member contaminants profile as a free
parameter.

Similarly, we choose an agnostic approach to the redshift
trend of the cluster member contamination. We simply assume
that the ratio between the number density of field galaxies
nfield(z) and cluster member contaminants is a smooth function of
redshift. We therefore employ a non-parametric fit of the ampli-
tudes Azi for pivot redshifts zi.

To account for possible mass trends, we use the richness λ
as a mass proxy, given that we have to fit for the cluster mem-
ber contamination prior to performing a mass calibration and
therefore do not have WL-calibrated mass estimates at our dis-
posal. For ICM-selected cluster samples, richness is known to
scale approximately linearly with halo mass, λ ∼ M (Saro et al.
2015; Bleem et al. 2020; Grandis et al. 2020, 2021b). We there-
fore used the richness to define an approximate virial radius
for the NFW profile of the cluster member contaminants as
Rvir ∝ (λ/20)1/3. We also allowed the amplitude of the cluster
member contamination to vary with richness.

Taken together, the above considerations lead to the ansatz

nfcl(λ, z,R) = A(λ, z,R) nfield(z) with

A(λ, z,R) = A j

(
λ

25

)Bλ
Σnorm

NFW

(
R
∣∣∣∣rS = c−1

(
λ

20

)1/3)
. (B.1)

The total number density results from the sum of the clus-
ter member contaminants’ number density and the field number
density as

ntot = nfcl(λ, z,R) + nfield(z) = [A(λ, z,R) + 1] nfield(z), (B.2)

while the fraction of cluster member contaminants is

fcl(λ, z,R) =
nfcl

ntot
=

A(λ, z,R)
A(λ, z,R) + 1

, (B.3)

thus justifying the parametrisation chosen in Eq. 12. This
parametrization has the benefit that for A(λ, z,R) > 0, 0 <
fcl(λ, z,R) < 1, as already noted by Grandis et al. (2021b) in the
context of the richness-dependent contamination of photometri-
cally selected cluster samples.

Finally, one can show that 1 + A = (1 − fcl)−1, thus also
motivating Eq. 14.
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