
Machine Learning Application in a Phase I 
Clinical Trial Allows for the Identification of 
Clinical-Biomolecular Markers Significantly 
Associated With Toxicity
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Machine learning (ML) algorithms have been used to forecast clinical outcomes or drug adverse effects by 
analyzing different data sets such as electronic health records, diagnostic data, and molecular data. However, 
ML implementation in phase I clinical trial is still an unexplored strategy that implies challenges such as the 
selection of the best development strategy when dealing with limited sample size. In the attempt to better define 
prechemotherapy baseline clinical and biomolecular predictors of drug toxicity, we trained and compared five ML 
algorithms starting from clinical, blood biochemistry, and genotype data derived from a previous phase Ib study 
aimed to define the maximum tolerated dose of irinotecan (FOLFIRI (folinic acid, fluorouracil, and irinotecan) plus 
bevacizumab regimen) in patients with metastatic colorectal cancer. During cross-validation the Random Forest 
algorithm achieved the best performance with a mean Matthews correlation coefficient of 0.549 and a mean 
accuracy of 80.4%; the best predictors of dose-limiting toxicity at baseline were hemoglobin, serum glutamic 
oxaloacetic transaminase (SGOT), and albumin. The feasibility of a prediction model prototype was in principle 
assessed using the two distinct dose escalation cohorts, where in the validation cohort the model scored a Matthews 
correlation coefficient of 0.59 and an accuracy of 82.0%. Moreover, we found a strong relationship between SGOT and 
irinotecan pharmacokinetics, suggesting its role as surrogates’ estimators of the irinotecan metabolism equilibrium. 
In conclusion, the potential application of ML techniques to phase I study could provide clinicians with early prediction 
tools useful both to ameliorate the management of clinical trials and to make more adequate treatment decisions.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Machine learning (ML) models have been employed to pre-
dict efficacy end points and drug toxicities in large phase II-III 
trials; however, their implementation in the early phase I clini-
cal trial development is still an unexplored strategy.
WHAT QUESTION DID THIS STUDY ADDRESS?
 We investigated the application of ML in a dose escalation 
phase I clinical trial to test its feasibility and to highlight clini-
cal and biomolecular predictors of irinotecan toxicity.
WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
 ML allowed us to identify and estimate the importance of 
variables for predicting the dose-limiting toxicity during an 

irinotecan-based chemotherapy regimen despite the small num-
ber of patients enrolled. Moreover, we evidenced variables that 
could represent surrogates’ estimators of the irinotecan metabo-
lism equilibrium.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
 The potential application of ML to phase I study enables the 
discovery and validation, with a reasonable degree of accuracy, 
of factors predicting an outcome of interest. Prediction models 
allow clinicians to anticipate toxicities and make decisions ac-
cordingly both to treat such toxicities and to adjust the dosing 
for subsequent cycles.
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Dose escalation phase I trials are designed to identify the maxi-
mum tolerated dose (MTD) of a new drug or a new drug combi-
nation. The core principle of dose escalation is keeping a relatively 
rapid dose increase to avoid treatment of patients at subtherapeu-
tic doses while preserving safety by limiting the frequency of toxic 
events (dose-limiting toxicities or DLTs). The most common dose 
escalation phase I strategy is based on 3 + 3 design and its vari-
ation.1 More recent approaches are represented by the continual 
reassessment method and its variation.2,3 However, regardless of 
dose escalation design adopted, there still are patients that experi-
ence DLTs, even in those treated at the MTD.2,4

Machine learning (ML) application to analyze electronic health 
records, diagnostic, and molecular data with the aim of reshaping 
key steps of clinical trial design toward increasing trial success rates 
is now raising interest.5–8 Despite ML models having been em-
ployed to predict efficacy end points and drug toxicity using data 
sets of large phase II-III trials,9–11 their application has not yet been 
considered for phase I clinical trials.

We previously conducted a phase Ib clinical trial in metastatic 
colorectal cancer (mCRC) guided by the UGT1A1*28 genotype 
to determine the MTD of irinotecan within the FOLFIRI (irino-
tecan plus infusional 5-fluorouracil/leucovorin) plus bevacizumab 
regimen.12 However, during the study several patients experienced 
DLTs despite the administered dose being the safe MTD or even 
lower. Since irinotecan exhibits a considerable interindividual 
pharmacokinetics variability,13 personalization of this treatment 
is necessary to guarantee a toxicity-free optimal pharmacotherapy.

In this study we apply an ML approach to highlight known and 
new predictors of DLT by simultaneously analyzing clinical, base-
line blood biochemistry (i.e., before starting the phase I), and ge-
netic data derived from our previous work.12 The pipeline we used 
includes a step selecting the best predictors based on importance 
rankings; the optimal subset was then used to train models. We 
compared the performance of five ML classification algorithms to 
select the most suitable classifier.

METHODS
Patients, treatment, and toxicity assessments
This study is based on the retrospective analysis of 45 patients with 
mCRC enrolled in a phase I clinical trial intended to determine the 
MTD of irinotecan during the first cycle in UGT1A1 *1/*1 and *1/*28 
patients treated with the FOLFIRI plus bevacizumab regimen.12

The analyzed patients were treated at two different institutions 
(University of Chicago, Chicago, IL; and Centro di Riferimento 
Oncologico, Aviano, Italy), where the study was conducted upon the ap-
proval of each Institutional Review Board and the collection of signed 
consent from the participants. The signed informed consent from patients 
included in the study was collected at both Institutions. The ClinicalTrials.
gov identifier is NCT01183494.

The study eligibility criteria were the following: confirmed diagno-
sis of mCRC, age ≥  18  years, UGT1A1 *1/*1 and *1/*28 genotypes, 
absolute neutrophil count ≥  1,500/mL, platelets ≥  100,000/mL, 
Eastern Cooperative Oncology Group (ECOG) performance status 
of 0 or 1, creatinine clearance < 1.5 times the upper limit of normal 
(ULN), serum glutamic oxaloacetic transaminase (SGOT) and serum 
glutamic-pyruvic transaminase (SGTP) < 2.5 times the ULN (< 5 times 
the ULN in the presence of liver metastases), and total serum bilirubin 
< 1.6 mg/dL.

The study followed the dose escalation of irinotecan under a 3 + 3 
design: Patients were enrolled at each irinotecan dose level (260, 310, 
and 370 mg/m2) in each genotype cohort and no intrapatient dose es-
calation was allowed. The irinotecan was given within the FOLFIRI 
(28  days each cycle) regimen that consisted in designated doses of 
irinotecan (90  min intravenous infusion on days 1 and 15), 200  mg/
m2 of leucovorin (administered concomitantly with irinotecan), and 
2,800 mg/m2 of 5-fluorouracil (400 mg/m2 bolus + 2,400 mg/m2 over 
a 46-hour intravenous infusion on days 1 and 15). Bevacizumab was 
given at 5 mg/kg over a 15-minute to 30-minute intravenous infusion 
on days 3 and 15.

Toxicity was classified and graded according to the National Cancer 
Institute’s (NCI’s) Common Terminology Criteria for Adverse Events 
(version 3.0). DLT was defined as recorded hematologic toxicity of grade 
≥ 4 or nonhematologic toxicity of grade ≥ 3 during the first cycle.

Further details of the study are reported in the previous study.12 Patient 
characteristics are shown in Table 1.

Feature definition and data organization
The predictive value of 37 features was assessed in 45 patients with 
mCRC treated with FOLFIRI plus bevacizumab regimen. The features 
collected for this study are represented in Figure 1.

These features were divided in three categories:

• Clinical patient data: age, sex, body surface area, and ethnicity.
• Blood baseline laboratory analysis performed prior to the begin-

ning of chemotherapy: hemoglobin, hematocrit, erythrocytes,
total leucocytes, neutrophils, lymphocytes, platelets, SGOT (also 
known as AST for aspartate transaminase), SGTP (also known as 
ALT for alanine transaminase), total protein, albumin, alkaline
phosphatase, bilirubin, glucose, sodium, potassium, calcium, and 
creatinine.

• Genotype of genes that affect irinotecan and fluorouracil disposi-
tion: 14 polymorphisms in UGT1 genes family, CYP3A family, and 
DPYD gene were included (Table S1).

The output was defined as patients’ DLT status recorded at the 
end of first cycle; patients were classified in DLT = Yes and DLT = No. 
Pharmacokinetic parameters of irinotecan and its metabolites during first 
cycle (irinotecan, SN-38, SN-38-G, APC) were also collected for further 
analysis. To perform the following steps, all categorical variables were con-
verted to dummies.

Machine learning approach
We used clinical, blood baseline, and genotype features of 45 patients 
with mCRC to predict the DLT event after the first cycle of FOLFIRI 
plus bevacizumab treatment.

Given the limited size of the cohort, and to avoid model overfitting, 
a fivefold cross-validation (CV) repeated five times coupled with an en-
capsulated Recursive Feature Elimination process (RFE), were employed 
to develop and tune the models.14 The detailed workflow is depicted in 
Figure 2.

The entire data set was randomly split in five folds and then, at each 
iteration of the outer CV loop, one fold was taken as test set and all the 
remaining folds were used as training set. The algorithm firstly fits the 
models to all features using the training set and calculates the model per-
formances using the holdout test set, then the features are ranked by im-
portance using the training set. We defined subsets of i features S = {S2, 
…, Si}, which are a set of values that define the number of most important 
variables to keep; at each iteration of the inner feature selection loop, the 
Si top ranked are used to refit and assess the model performances. The
performances over the Si subsets for each CV iteration are finally gathered 
to determine the appropriate number of Si features to keep in the final
models. The variable importance within the RFE process was computed 
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using Boruta15 as z-scaled mean decreased accuracy (MDA). The “caret” 
R package16 was used to implement and tune the classifiers within the CV 
and the RFE processes.

We implemented and compared five machine learning classification 
algorithms, namely Random Forest (RF),17 Generalized Linear Models 
(GLM),18 eXtreme Gradient Boosting (XGB),19 Support Vector Machine 
(SVM),20 and K-Nearest Neighbors (KNN).21

Due to the imbalance of the output DLT classes, to avoid overop-
timistic results the models’ performances were assessed in term of 
Matthews Correlation Coefficient22 (MCC) in addition to accuracy 
(ACC) and area under the curve (AUC) of the receiver operating 
characteristic (ROC). The metrics were computed as averages across 
fivefold CV repeated five times with 95% studentized CV confidence 
intervals (CIs). The importance of the predictive features was evaluated 
by the mean importance of features obtained from Boruta algorithm 
over all of the CV cycles.

The same workflow described in Figure 2 was used to train RF models 
intended to predict a DLT event using the *1/*28 study cohort as training 

set (model development and evaluation); the *1/*1 study cohort was kept 
apart as validation set to evaluate the ability of the models to predict a 
DLT event on unseen observations (Figure S1). The evaluation metrics 
were computed across a threefold CV repeated five times using the train-
ing set, whereas the validation metrics were computed by comparing the 
predicted and the real DLT class of the validation set.

Statistical analysis
All statistical analyses were performed in R environment (v3.6.3).23 
Statistical independence or association between categorical variables 
was tested using the Pearson’s χ2 test. Normality was inspected using 
the Shapiro-Wilk’s test. Comparisons of the means of independent 
groups were performed using the unpaired two samples Student’s t-
test (normally distributed data) and unpaired two samples Wilcoxon–
Mann–Whitney test (not normally distributed data). Box plots 
coupled with Student’s t-test results were used to graphically support 
the differences found in feature values between DLT and non-DLT 
patients. Correlation was assessed using Pearson’s correlation test, and 
correlation strength description was based on the correlation coeffi-
cient value.24 The threshold for statistical significance was set at P 
< 0.05.

RESULTS
Dose escalation results and toxicities
We started from the data reported in a previous study of ours,12 
in which the 310 mg/m2 irinotecan dose was declared the MTD 
in *1/*1 patients and the 260 mg/m2 irinotecan dose was declared 
the MTD in *1/*28. Fourteen DLTs were recorded during the 
study (Table S2), of which four DLTs (4/7; 57%) were observed 
at 370 mg/m2, seven DLTs (7/20; 35%) were observed at 310 mg/
m2, and three DLTs (3/18; 17%) were observed at 260 mg/m2. In 
the *1/*28 study cohort, eight patients experienced DLTs (8/23; 
35%), whereas in the *1/*1 study cohort the DLTs recorded were 
six (6/22; 27%). No dependency was found between UGT1A1 
genotype and irinotecan dosage (mg/m2) (Pearson’s χ2 test, 
P  =  0.8424), as well as between UGT1A1 genotype and DLT 
(Pearson’s χ2 test, P = 0.8244). A slightly more significant depen-
dency, but still not reaching the level of significance, was found be-
tween irinotecan dosage and DLT (Pearson’s χ2 test, P = 0.1283).

ML implementation predicts DLT events and highlights DLT-
related variables
The results of each ML algorithm to predict if a patient is going 
to manifest a DLT are reported in Table 2. In this approach the 
whole patients’ cohort of 45 cases was used during the model 
development and hence the evaluation metrics were computed 
through a fivefold CV repeated 5 times (Figure 2). The RF al-
gorithm showed superior performance compared with the other 
models in terms of both MCC score (MCC = 0.549, CI = 0.429–
0.670) and accuracy (ACC = 0.804, CI = 0.755–0.853). Linear 
SVM (AUC  =  0.859) and GLM (AUC  =  0.48) showed higher 
AUC values than the RF model; however, MCC was chosen as a 
reference metric due to its robustness in producing an informa-
tive and truthful score in evaluating binary classifications.22 The 
best subsets of predictors Si ranged from two to four variables 
(Table  2), and the best RF model reached the highest CV per-
formance with three variables, specifically hemoglobin, SGOT, 
and albumin.

Table 1  Characteristics of patients involved in the study

DLT No Yes

Observations 31 14

Center

Aviano, Italy 22 (71%) 6 (43%)

Chicago, IL 9 (29%) 8 (57%)

Age

Mean (SD) 55 (9.3) 56 (14)

Sex

F 12 (39%) 7 (50%)

M 19 (61%) 7 (50%)

Ethnicity

Asian 0 (0%) 1 (7%)

Black 4 (13%) 2 (14%)

White 27 (87%) 11 (79%)

BSA (m2)

Mean (SD) 1.8 (0.27) 1.9 (0.30)

ECOG

0 28 (90%) 12 (86%)

1 3 (10%) 2 (14%)

Primary site

Colon 22 (71%) 12 (86%)

Rectum 9 (29%) 2 (14%)

UGT1A1

*1/*1 16 (52%) 6 (43%)

*1/*28 15 (48%) 8 (57%)

Dose irinotecan (mg/m2)

260 15 (48%) 3 (21%)

310 13 (42%) 7 (50%)

370 3 (10%) 4 (29%)

Clinical demographic characteristics of patients that did not experience 
(No) and that did experience (Yes) DLT during the first cycle of treatment. 
Description of clinical characteristics of the cohort with their respective 
categorization and percentages.
BSA, body surface area; ECOG, Eastern Cooperative Oncology Group; SD, 
standard deviation.
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The features’ importance to predict the DLT was calculated 
using Boruta within the RFE process across all CV training folds 
(Figure  2). The most important features that scored a CV aver-
aged z-scaled MDA higher than 1 are represented in Figure  3a. 
Hemoglobin was the most important feature (MDA  =  6.83, N 
Folds = 322), followed by SGOT (MDA = 4.14, N Folds = 240), 
and albumin (MDA = 3.57, N Folds = 209).

Our approach selected mainly blood baseline laboratory vari-
ables as best predictors of DLT (Figure 3a), such as blood count 

variables (hemoglobin, hematocrit, erythrocytes), liver enzymes 
and blood proteins (SGOT, SGTP, bilirubin albumin, total pro-
tein), and basic metabolic electrolytes (calcium, potassium). To 
assess if these variables indeed were important to predict DLT 
events, we evaluated RF models with different variables categories 
(Table  S3). In this cohort Clinical and Genotype data seem to 
not contain relevant predictive information as opposed to blood 
baseline variables. In fact, when the latter were excluded the MCC 
dropped to 0.068. In this case adding more biology data (such as 

Figure 1  Heat map representation of the data used to develop the models. Patients in columns are ordered in accordance with the overall 
toxicity grade (increasing grade from left to right). The variables used are represented in rows. Continuous variables have been standardized 
and represented as z scores (color scale from blue to red). Discrete and categorical values are represented as colored annotations with their 
own legend. BSA, body surface area; DLT, dose-limiting toxicity; SGOT, serum glutamic oxaloacetic transaminase; SGTP, serum glutamic-
pyruvic transaminase; tox., toxicity.
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Figure 2  Development of the DLT prediction model using the whole patient cohort. ACC, accuracy; AUC, area under the curve of the receiver 
operating characteristic; CV, cross-validation; GLM, Generalized Linear Model; i, integer representing the number of variables considered; 
KNN, K-Nearest Neighbors; MCC, Matthews Correlation Coefficient; mCRC, metastatic colorectal cancer; S, subset of variables; SVM, Support 
Vector Machine; Xgbtree, eXtreme Gradient Boosting tree.
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Table 2  ML algorithms’ performance computed within the fivefold CV repeated five times

Algorithm Best Si MCC (CI) ACC (CI) AUC (CI)

RF Hemoglobin  
SGOT  

Albumin

0.549  
(0.429–0.670)

0.804  
(0.755–0.853)

0.822  
(0.745–0.898)

GLM Hemoglobin  
SGOT  

Albumin  
Calcium

0.461  
(0.345–0.577)

0.772  
(0.728–0.815)

0.848  
(0.797–0.899)

XGB Hemoglobin  
SGOT

0.401  
(0.264–0.539)

0.769  
(0.727–0.812)

0.819  
(0.758–0.880)

SVM Hemoglobin  
SGOT  

Albumin  
Calcium

0.446  
(0.341–0.551)

0.773  
(0.736–0.810)

0.859  
(0.809–0.908)

KNN Hemoglobin  
SGOT

0.315  
(0.182–0.448)

0.723  
(0.677–0.769)

0.635  
(0.542–0.728)

ML algorithms’ performance computed within the fivefold CV repeated five times (mean with confidence intervals) and relative best subset of variables.
ACC, accuracy; AUC, area under the curve of the ROC; CI, 95% studentized bootstrap confidence interval; CV, cross-validation; GLM, Generalized Linear Model; 
KNN, K-Nearest Neighbors; MCC, Matthews Correlation Coefficient; ML, machine learning; RF, Random Forest; ROC, receiver operating characteristic; SGOT, 
serum glutamic oxaloacetic transaminase; Si, subset of variables; SVM, Support Vector Machine; XGB, eXtreme Gradient Boosting.

Figure 3  Variable importance computed using Boruta within the RFE (Recursive Feature Elimination) process and across all CV training folds. 
Bars’ length represents the importance reported as scaled mean decreased accuracy (MDA). The features are ranked by importance from the 
most important (top) to the least important (bottom) and only features that scored a z-scaled MDA higher than 1 are represented. Color scale 
represents the number of iterations within the model development in which a variable was kept as most important variables. (a) Variables’ 
importance computed during CV using the whole patient cohort. (b) Variables’ importance computed during CV using the *1/*28 cohort. CV, 
cross-validation; SGOT, serum glutamic oxaloacetic transaminase; SGTP, serum glutamic-pyruvic transaminase.
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genotype) did not improve the performance probably due the con-
currence of small sample size and low-frequency genetic variants.

We also compared different CV techniques during the model 
evaluation step depicted in Figure  2 (Table  S4). The MCC 
score of RF algorithm was comparable between 5-fold CV re-
peated five times (MCC  =  0.549, CI  =  0.429–0.670), 10-fold 
CV (MCC = 0.597, CI = 0.300–0.894), and leave one out cross 
validation (LOOCV) (MCC = 0.564). Considering bias-variance 
trade-off we chose fivefold CV repeated five times, since with k = 5 
test error rate, estimates do not suffer either from high bias or from 
high variance.25

Principle validation using two distinct dose escalation 
cohorts
As the two UGT1A1 cohorts followed two distinct dose escala-
tion studies, we attempted to validate the principle of implement-
ing ML models to predict DLT events by using the *1/*28 cohort 
(23 out of 45 cases) to develop and train the models and the *1/*1 
cohort (22 out of 45 cases) to assess the prediction ability on a new 
upcoming dose escalation study (Figure S1).

During CV using the *1/*28 cohort, the best RF model achieved 
a mean MCC of 0.403 (CI = 0.221–0.586), a mean ACC of 0.748 
(CI  =  0.679–0.816), and a mean AUC of 0.744 (CI  =  0.633–
0.856). The best subset of variables Si was composed of eight fea-
tures: hemoglobin, SGOT, SGTP, total protein, albumin, alkaline 
phosphatase, bilirubin, and potassium (Figure 3b). Total protein 
was the most important feature (MDA = 2.90, N Folds = 204), 
followed by albumin (MDA = 2.56, N Folds = 220), and bilirubin 
(MDA = 1.63, N Folds = 217).

On the *1/*1 validation cohort, the model scored an MCC 
of 0.59, an ACC of 0.82, and an AUC of 0.81. As reported in 
Table S5, the model correctly classified 18 out of 22 patients, of 
which 5 out of 6 were DLT patients (DLT = Yes) and 13 out of 
16 were no DLT patients (DLT = No). Notably, the Patients 10, 
40, and 41 that were incorrectly classified as DLT patients with a 
DLT probability of 0.61, 0.74, and 0.61, respectively, consistently 
experienced a moderate overall toxicity after the first cycle of treat-
ment (grade 2, 3, and 2, respectively). Conversely, Patient 45 was 
incorrectly classified as no DLT patient despite the onset of a grade 
3 overall toxicity.

Statistical analysis of predictive DLT variables
The Boruta built-in variable importance measure allowed us to 
rank the features with respect to their relevance for DLT predic-
tion. Nevertheless, they only represent the strength of this depen-
dency. To capture the distribution pattern of the models’ relevant 
variables with respect to the DLT event, we performed additional 
statistical analysis.

In Figure  4a variables’ standardized values are depicted com-
pared with the DLT status; DLT patients are mainly characterized 
by negative z scores, which means that raw variables’ values are 
below the mean cohort average, especially for patients that suffered 
the most severe toxicities (rightmost columns).

DLT patients had significantly lower baseline hemoglobin 
(Student’s t-test, P  =  0.004), lower baseline albumin (Student’s  
t-test, P  =  0.025), and lower baseline total proteins (Student’s 

t-test, P  =  0.025) (Figure  4b). The hepatic parameters SGOT, 
SGTP, and alkaline phosphatase were also significantly lower in 
DLT patients (Student’s t-test, P  =  0.028; 0.030; 0.016, respec-
tively) (Figure 4b).

Relationships between DLT predictors and pharmacokinetic 
parameters
We investigated the relationship between the models’ relevant 
variables and the pharmacokinetic parameters of irinotecan 
and its metabolites by conducting Pearson correlation analysis 
(Figure  5a). We found mostly negligible correlations between 
potassium, total proteins, and any of the pharmacokinetic param-
eters (0.0 < | r | < 0.2). Albumin and hemoglobin showed a sim-
ilar correlation pattern; both were weakly negatively correlated 
(–0.2  ≥  r  >  –0.4) with the area under the concentration time 
curve extrapolated to infinity (AUCinf) of irinotecan and weakly 
positively correlated (0.2 < r < 0.4) with irinotecan clearance and 
distribution, suggesting that lower values of albumin and hemo-
globin are associated with higher irinotecan exposure.

A series of hepatic parameters (SGOT, SGTP, alkaline phos-
phatase, and bilirubin) were moderately positively correlated 
(0.4 ≤ r < 0.7) with AUCinf values of irinotecan and weakly neg-
atively correlated (–0.2 ≥ r > –0.4) with irinotecan clearance and 
distribution, this time suggesting that higher values of hepatic pa-
rameters are associated with a higher irinotecan exposure. These 
hepatic parameters were also moderately and strongly positively 
correlated (0.4 ≤ r < 0.9) with AUCinf values of SN-38G and APC, 
respectively. This behavior was also reflected by the AUCinf ratios, 
representing the relative amount of irinotecan converted into its 
metabolites (Figure 5a ). Indeed, hepatic parameters’ values were 
positively correlated with APC/irinotecan and SN-38G/SN-38 
AUCinf ratios and negatively correlated with SN-38/irinotecan 
AUCinf ratio, suggesting that patients characterized by higher 
hepatic parameters are more prone to convert irinotecan toward 
SN-38G and APC rather than production of the cytotoxic SN-
38 metabolite (Figure  5b). This pattern might explain the rea-
son underlying the unexpected distribution of hepatic parameters 
that were found higher in patients that did not experience DLTs 
(Figure 4b). In fact, DLT patients were characterized by a signifi-
cantly lower APC/irinotecan AUCinf ratio (Wilcoxon–Mann–
Whitney test, P  =  0.019) and also a significantly lower APC/
SN38, AUCinf ratio (Wilcoxon–Mann–Whitney test, P = 0.024) 
(Figure 5c).

DISCUSSION
We collected clinical, blood baseline, and genotype variables of 
45 patients with mCRC entered in a previous phase Ib dose es-
calation study12 that were used to train and compare the perfor-
mance of five ML classification algorithms and to identify the 
best DLT predictors. During CV the RF model achieved the best 
performance with a mean MCC of 0.549 (CI = 0.429–0.670) and 
a mean ACC of 0.804 (CI = 0.755–0.853); the best subset of vari-
ables Si was composed of three features, specifically hemoglobin, 
SGOT, and albumin.

The main criticality of ML application in phase I clinical trials 
derives from an intrinsic characteristic of these studies, that is they 
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typically involve about 20 to 60 subjects. The limited number of 
patients does not allow for the most common reliable way to val-
idate ML model’s performance, i.e., Train/Test Split, consisting 
of randomly splitting a portion of data before developing an ML 
model and to use only test data for validation. Recent studies fo-
cused on the importance of predicting error on small sample size 
and the definition of straightforward methods to prevent biased 
results.14,26–28 Our approach employs a nested CV, meaning that 
a portion of data was repetitively split at each CV iteration and 
the model was then developed inside the CV process on the re-
duced training set from scratch, including feature selection and 
parameter tuning (Figure 2), providing robust and unbiased per-
formance estimates regardless of sample size.14,26 The use of robust 
performance estimators and confidence intervals computed within 
the CV process is of particular importance in studies with limited 
sample size. In our two-class classification problem, the classifier 
performance was measured using the MCC; this metric overcomes 
the accuracy measure by preventing the overoptimistic inflated re-
sults on imbalanced data sets22 and by avoiding the probabilistic 
chance of resulting in 50% accuracy by random classification.28 In 

fact, obtaining high MCC values occurs only when prediction is 
good on all four confusion matrix categories (true positives, false 
negatives, true negatives, and false positives); conversely, obtain-
ing MCC values close to zero signals that classifier performance 
is no better than random guessing. Moreover, our model accuracy 
(ACC  =  80.4%) is greater than the minimal statistically signifi-
cant accuracy threshold (ACC = 62.5%) as function of sample size 
(n = 40), class number (c = 2), and significance levels (P < 0.05).28

The ML approach allowed us to estimate the importance of 
baseline variables for predicting the DLT, and taken together, 
hemoglobin, SGOT, and albumin were the most important 
(Table 2). Moreover, we found that their levels were significantly 
lower in patients that experienced DLT (Figure 4). These results 
are in keeping with previous studies reporting that the variables 
used by our model affect the irinotecan disposition and induced 
toxicity. Irinotecan is moderately bounded to albumin and eryth-
rocytes, whereas SN-38, the active metabolite, is highly associated 
with albumin and blood cells.29

Previous data identified low baseline hemoglobin as an in-
dependent predictor for grade 3-4 hematologic toxicity and 

Figure 4  Graphical representation of DLT relevant variables used by the models and their difference between patients DLT = Yes and patients 
DLT = No. (a) Heat map representation of the DLT relevant variables used by the models. Patients in columns are ordered in accordance with 
the overall toxicity grade (increasing grade from left to right). Variables in rows have been standardized and represented as z scores (color 
scale from blue to red). (b) Box plots of the DLT-relevant variables between DLT groups, P value of each comparison has been computed from 
a two-sample Student’s t-test. DLT, dose-limiting toxicity; N, no DLT; SGOT, serum glutamic oxaloacetic transaminase; SGTP, serum glutamic-
pyruvic transaminase; tox., toxicity; Y, yes DLT.
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nonhematologic toxicity in patients treated with irinotecan-based 
therapies;30–32 such suggestions agree with the results of our ML 
model that highlight the importance of baseline albumin and base-
line hemoglobin as DLT predictors. Our model integrates also the 
evaluation of the SGOT liver enzyme. High concentrations of liver 
enzymes in plasma are observed in liver injury and is a common reason 
for cautiously treating patients with cancer due to reduced liver met-
abolic functions.33 In our study we observed an opposite association 
in which DLT patients were characterized by lower values of SGOT. 
It must be considered that this trend was observed in patients with 
hepatic parameters within the normal range and not in extreme situ-
ations. In fact, in our patients the products of irinotecan metabolism 
SN-38G and APC, the irinotecan inactive metabolites, showed an 
increase in dose-normalized AUCinf with increasing hepatic param-
eters (Figure 5a), suggesting that in this range the hepatic function-
ality, represented by UGT1A1, UGT1A7, UGT1A9, and CYP3A4 
isoenzymes activity, appears to remain conserved. Moreover, the 
positive correlation between plasma liver enzymes and the AUCinf of 
APC was also noticed in a previous study.34 Presumably, our model 

selected the SGOT because within the normal range it does not rep-
resent a biomarker of liver injury, but rather a surrogate estimation of 
the irinotecan metabolism equilibrium in which higher SGOT val-
ues are associated with a higher irinotecan conversion toward the less 
cytotoxic SN-38G and APC metabolites (Figure 5b).

An ML approach like the one adopted in the present study has 
potential implications both for a better understanding of the study 
in which it is applied and in other similar contexts derived from 
phase I clinical trials. In fact, it could be translated to other phase I 
studies and surely represent a starting point for the next phases of 
the drug evaluation.

This possibility could be very interesting especially in the case 
of large sample size availability. Nevertheless, our approach is con-
sistent with the “small data paradigm”35 for precision medicine 
that suggests how ML application to small data sets could produce 
transportable knowledge useful for integration in the next phases 
of clinical trials.

The results obtained from an ML strategy, as those reported in 
this study, may have potential relevance for regulatory agencies by 

Figure 5  Relationship between the models’ relevant variables and the irinotecan’s pharmacokinetic. (a) Correlation plot of the models’ 
relevant variables and the pharmacokinetic parameters of irinotecan and its metabolites (SN-38, SN-38G, and APC). Values in circles 
represent the Pearson correlation coefficient (r) computed between each pair of variables, and circle’s color indicates the correlation direction 
(blue scale for negative correlation and red scale for positive correlation). (b) Metabolism of irinotecan. Trending arrows indicate the irinotecan 
metabolism direction associated with hepatic parameters’ values. (c) Box plots of APC/irinotecan AUCinf ratio and APC/SN-38 AUCinf ratio 
between DLT groups. Alk. phosphatase, alkaline phosphatase; AUCinf, area under the concentration-time curve extrapolated to infinity; Cl, 
clearance; Corr, correlation; DLT, dose-limiting toxicity; SGOT, serum glutamic oxaloacetic transaminase; SGTP, serum glutamic-pyruvic 
transaminase; Vd, distribution volume.
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improving the understanding of the phase I clinical trial results. 
It may provide, in the very early phase (phase I) of drug develop-
ment, predictive markers of toxicity that could become of manda-
tory consideration (i.e., companion diagnostics) in the later drug 
developmental phases. This could also have important regulatory 
implications based on the possibility to highlight during the phase 
I study that a treatment is not safe in specific groups of patients 
(according to the genotype, ethnicity, or other characteristics) 
and that the use should therefore be limited to specific groups of 
patients.

We are fully aware of the limitations of our ML study. First, the 
number of patients involved is relatively small, although the em-
ployed validation techniques are the best solution when dealing 
with limited sample size.14 Moreover, the small sample size could, 
at least in part, explain the lack of a significant correlation between 
biological parameters such as total proteins and any of the pharma-
cokinetic parameters. A second limitation is the lack of an external 
validation cohort, which is implicit due to the unrepeatability of 
the phase I studies. The limited panel of genetic variants that may 
be included in a phase I study with a limited number of patients 
and the unfeasibility to cover different ethnic populations could 
represent a potential source of bias. Moreover, additional aspects 
related to concomitant treatments or comorbidities could be 
missed.

However, implementing ML analysis to phase I clinical trial 
with a small number of patients is of critical importance for an early 
identification of biomarkers and pilot work, but bearing in mind 
that it could lead to biased ML performance estimates.26

Finally, we chose not to integrate pharmacokinetic parameters 
in our ML models because pharmacokinetic data can be obtained 
only once the dose is administered, preventing its usage as baseline 
prechemotherapy predictors.

In conclusion, this study provides a proof of concept of the po-
tential application of ML techniques to phase I studies. This imple-
mentation enables the discovery and validation, with a reasonable 
degree of accuracy, of factors predicting induced severe toxicities 
by simultaneously analyzing multiple heterogeneous patient-
related variables at baseline. This could be useful for subsequent 
phase II and III studies.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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