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Abstract: Vascular plugs are an evolving family of vessel occluders providing a single-device em-
bolization system for large, high-flow arteries. Nitinol mesh plugs and polytetrafluoroethylene
membrane plugs are available in different configurations and sizes to occlude arteries from 3 to
20 mm in diameter. Possible applications during complex endovascular aortic procedures are aortic
branch embolization to prevent endoleak or to gain an adequate landing zone, directional branch
occlusion, and false lumen embolization in aortic dissection. Plugs are delivered through catheters
or introducers, and their technical and clinical results are comparable to those of coil embolization.
Plugs are more accurate than coils as repositionable devices, less prone to migration, and have
fewer blooming artifacts on postoperative computed tomography imaging. Their main drawback
is the need for larger delivery systems. This narrative review describes up-to-date techniques and
technology for plug embolization in complex aortic repair.

Keywords: endovascular aortic repair; vascular plug; embolization; thoracoabdominal aortic aneurysm;
aortic dissection; coils

1. Introduction

Endovascular repair of complex aortic aneurysms has gained popularity over the
last decade due to comparable results with open surgery [1,2], the minor likelihood of
complications, their cost-effectiveness [3,4], and their high feasibility [3]. With the rise of
endovascular surgery, newer techniques of vessel embolization are being used by vascular
specialists to occlude target vessels while treating the main aortic pathology. Arterial
embolization can be a planned procedure (e.g., to prevent type 2 endoleak from the inferior
mesenteric artery) or a bailout procedure (closure of a directional branch when bridging to
the target vessel is not possible).

Historically, vessel embolization was achieved with coils, which are still widely used
by interventionists because of their easy applicability and minor cost [4]. Coils should be
densely packed in the target vessel to achieve occlusion, and this is often time-consuming
and may be less precise than plug use. Some disadvantages of coil embolization could be
vessel recanalization over time, non-target embolization, coil migration, and the creation of
radiopaque artifacts on follow-up computed tomography angiography (CTA) images [5].
For these reasons, vascular plugs seem to be a valid alternative to coils. The accuracy of the
delivery system and the promising results in clot formation corroborate the use of plugs to
occlude aortic side branches in many instances. Nevertheless, plugs usually require larger
delivery systems as compared to the microcatheter used in coil embolization.
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As several devices are present on the market, this narrative review aims to provide a
description of commercially available vascular plugs and their possible application in the
treatment of complex aortic aneurysms coupled with fenestrated–branched endografts.

2. Vascular Plugs: Overview of Available Devices

The description of all the available endovascular plugs on the global market is beyond
the scope of this paper. The most frequently employed devices and/or the ones with more
robust evidence supporting their use are briefly described below. Techniques and material
for plug delivery are standard interventionalist practice, both with 0.035′′ platforms and
microcatheter ones. In brief, for the larger plugs needing an introducer sheath to be
deployed, any guidewire can be advanced beyond the arterial segment, which will be
embolized; the introducer (usually 6–7F) is advanced over a regular or stiff guidewire.
The guidewire is removed and the plug is advanced towards the target destination, and
then the introducer is retracted to allow plug expansion. When angiography confirms the
appropriate position of the plug, the occluder is eventually released by unscrewing the
delivery wire by turning it counterclockwise. The procedure is the same when using plugs
that can be delivered through smaller systems (angiographic catheters or microcatheters),
but navigation is usually easier due to their smaller profile.

Their geometric characteristics are summarized in Table 1 and their visual aspect is
depicted in Figure 1. As a general principle, instructions for use and published papers
suggest a 30 to 50% oversizing to guarantee efficacious vessel occlusion [6]. All the reported
plugs are self-expandable devices equipped with proximal and distal markers to enable
their precise deployment. Most importantly, these devices can be fully retracted and
repositioned multiple times, which allows for safe use as the operator can adjust the
position of the device until satisfactory deployment is achieved. Notably, the plug length
reported is the unconstrained length, the in situ ultimate length will always exceed this
measure, and this drawback must be taken into account in order to prevent unintended
collateral occlusion.
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Figure 1. Graphical representation of the vascular plugs described in the present review. AVP I is a
single disc with a 4 to 16 mm diameter; it is designed to embolize a vessel with a short neck/landing
zone. AVP II is composed of three discs of multi-layered nitinol, available from 3 to 22 mm in diameter.
It is longer than the AVP I and designed to promote rapid occlusion where a long sealing zone is
available. For both AVP I and II, the delivery wire length is 135 cm. AVP IV is a double-disc plug
provided in 4 to 8 mm diameter. It is delivered via a 155 cm long nitinol wire and is designed for
embolization of small vessels in tortuous anatomies. The Cera, the Micro vascular plug, and the Azur
vascular plug combine a metallic frame with a membrane to promote faster vessel occlusion.
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Table 1. Sizing and delivery system compatibility for the vascular plugs mentioned in the present
review, according to the instructions for use of the single device.

Plug Name Plug Diameter (mm) Plug Length (mm) Delivery System Minimum Internal
Diameter (Inches)

AVP I * 4–6–8–10–12–14–16 7–8 0.056–0.088

AVP II * 3–4–6–8–10–12–14–16–18–20–22 6–18 0.056–0.098

AVP IV * 4–5–6–7–8 10–13.5 0.038 (diagnostic catheters)

Cera vascular plug 4–24 7–14 0.055–0.122

MVP ** 5.3–6.5–9.2–13 12–12–16–18 0.021 microcatheter–0.043

Azur vascular plug 5–8–10 13.5–18.5 0.027 PG pro peripheral microcatheter

* AVP: Amplatzer vascular plug, ** MVP Micro vascular plug.

2.1. Amplatzer Vascular Plugs

The Amplatzer vascular plugs (AVP; St. Jude Medical, St. Paul, MN, USA) I, II, and
IV are the most frequently employed AVPs in complex aortic repair. All are deployed by
unscrewing a micro-screw on the proximal aspect of the plug. The main differences are
configurations and measures, which drive the different applications during complex aortic
repair. Moreover, some authors reported shorter occlusion times with AVP II as compared
to AVP I [6].

2.2. Cera Vascular Plug

The Cera vascular plug (Lifetech Scientific Co., Nanshan District, Shenzhen, China) is
a self-expanding, cylindrical, single-disc nitinol plug coated with titanium nitride (TiN) and
features three layers of polytetrafluoroethylene (PTFE) membrane. This design is intended
to reduce total occlusion time (Figure 1). It is available in 4 to 24 mm diameters, with the
largest needing a 9F internal diameter introducer sheath for deployment.

2.3. Micro Vascular Plug

The Micro vascular plug (MVP, Medtronic, Minneapolis, MN, USA) is a cylindrical
nitinol frame with the proximal half covered by a PTFE membrane. The MVP metal design
resembles a small caval filter. Its mechanism of vessel occlusion is both mechanical (no
inflow distally to the plug) and clot-mediated (thrombosis proximal to the graft, extended
up to a patent collateral branch). The device is available in four configurations, the largest
one being suitable for the occlusion of vessels up to 9 mm in diameter. Notably, the two
smaller devices can be delivered through microcatheters, while the two larger plugs can be
delivered with 4F and 5F angiographic catheters, respectively.

2.4. Azur Vascular Plug

The Azur vascular plug (Terumo Medical Corporation, Somerset, NJ, USA) is available
in 5–8–10 mm diameters and its structure has a self-expanding nitinol braided wire frame
surrounding a flexible, occlusive membrane (Figure 1). It can be advanced through ProGreat
peripheral 2.8F microcatheters (Terumo, Somerset, NJ, USA), available in 140 or 165 cm
lengths, in arteries up to 8 mm in diameter.

3. Clinical Applications of Vascular Plugs during Endovascular Repair of Complex
Aortic Aneurysms
3.1. Left Subclavian Artery (LSA)

When thoracic endograft landing is planned to occur in Zone 2 or more proximally,
correct management of the LSA becomes crucial, particularly in the case of extensive aortic
coverage. Indeed, LSA coverage without revascularization can result in paraplegia, stroke,
or left arm ischemia together as a consequence of vertebrobasilar and upper limb arterial
insufficiency; on the contrary, a type II endoleak from LSA backflow can maintain perfusion
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to a thoracic aortic aneurysm or impede adequate false lumen remodeling in the case of
Stanford type B aortic dissection treated with thoracic endovascular aortic repair (TEVAR).

Revascularization procedures in patients with LSA coverage during TEVAR are asso-
ciated with a lower risk of left arm ischemia, stroke, and spinal cord ischemia [7,8]. Even in
acute aortic dissection, subclavian/vertebral artery revascularization has been proven to
reduce neurological complications [9].

LSA revascularization can be performed using different technical modalities [10]:

- in an open traditional fashion through carotid to subclavian bypass (CSB) or subclavian
to carotid transposition (SCT), with no clear difference between the two in terms of
stroke reduction or surgical morbidity [11,12];

- in a total endovascular fashion, with parallel graft technique [13], inclusion via
physician-modified endografts (PMEG) [14], an in situ laser [15], or needle fenes-
trations [16].

When surgical revascularization is planned, the LSA needs to be ligated or embolized
in its proximal pre-vertebral tract to avoid a Type 2 endoleak. Since it has been reported
that multiple coils are often required to successfully embolize the LSA [17,18], vascular
plugs are preferred by many operators because only a single device is needed in most cases.
On the other hand, plug embolization requires larger delivery systems.

Plug embolization is very much dependent on the diameter and length of the pre-
vertebral LSA. The authors previously suggested the use of a large plug, such as the AVP II
in lengths exceeding 40 mm. For shorter LSA, the first-generation AVP is suggested if the
LSA diameter measures less than 14 mm. In cases of short length and large diameter, the
AVP II should be deployed with one disc protruding in the aortic lumen [19]. It is important
to know that plugs protruding in the aortic lumen could interfere with TEVAR proximal
sealing and cause type IA endoleak, especially if the aneurysm involves the LSA origin.
Dissected LSA poses, in fact, some particular technical hurdles that should be addressed,
as depicted in Figure 2.
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catheterization of the true and false lumens through a distal re-entry tear located at the level of the 
internal mammary artery origin. 

Figure 2. False and true lumen left subclavian artery (LSA) embolization in the treatment of post-
dissection aortic arch and thoracoabdominal aneurysm: (a) preoperative CTA 3D volume rendering of
a post-dissection aortic arch aneurysm involving the LSA with a lens showing a parasagittal detail of
the dissected LSA; (b): postoperative imaging showing a frozen elephant trunk hybrid graft, a 16 mm
Amplatzer vascular plug (AVP) 2 in the true lumen (arrow) and a 12 mm AVP I in the false lumen
(arrowhead) with a patent carotid-subclavian bypass (*). Both plugs were deployed through a 6F
Cook Flexor introducer sheath via a percutaneous trans-radial approach and alternate catheterization
of the true and false lumens through a distal re-entry tear located at the level of the internal mammary
artery origin.
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Plug embolization is usually performed after subclavian revascularization and can
take place through percutaneous femoral access or upper extremity access. Larger catheters
or introducers should be used with caution in narrow upper limb vessels such as the radial
artery. On the other hand, plug embolization seems to be less accurate via femoral access
because of the longer working distance which compromises the system’s stability [19]. In
urgent cases such as aortic ruptures, blunt trauma, or complicated dissections, proximal
LSA embolization is performed after TEVAR; therefore, upper extremity access is the only
viable alternative [20].

3.2. Spinal Segmental Artery Embolization for the Prevention of Spinal Cord Ischemia

Paraplegia and endoleaks are two major issues of extensive aortic endovascular re-
pair in the treatment of complex aortic aneurysms. Paraplegia prevention features both
anesthesiologic and surgical skills, and among these, spinal cord preconditioning by the
embolization of segmental arteries seems to be a promising tool [21,22]. In minimally inva-
sive segmental artery coil embolization (MISACE), coils are preferably used to embolize
segmental arteries before treating patients for aortic conditions. Vascular plugs are used
to occlude large segmental arteries that would need a large number of coils, and their use
follows the same principles of coil embolization. Plugs are advanced through peripheral
percutaneous access, and deployed in the proximal portion of segmental arteries, thus
presenting a chance for spinal cord collateral circulation to develop [23].

3.3. Occlusion of Aortic Side Branches for Endoleak Prevention

Despite the advances in endovascular aortic repair, endoleaks still represent a chal-
lenge in the modern endovascular era. In complex aortic repair, type 2 endoleaks (T2EL)
are associated with hampered sac shrinkage over time, lower freedom from reintervention,
and complex endoleaks (type 2 + type 1 or 3) [24,25]. The source of persistent sac perfusion
is typically in the abdominal segment, often the inferior mesenteric artery (IMA) [26]. Since
treatment of T2EL is often suboptimal and reinterventions are frequent [27,28], prevention
with pre-emptive plug embolization of aortic side branches could be part of the solution [29].
The embolization of the IMA, as shown in Figure 3, has shown safety and replicability at
affordable costs.
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a 6 mm Amplatzer vascular plug (AVP) IV is advanced at the origin of the patent IMA via a 5F 
Berenstein diagnostic catheter (Tempo Aqua, Cordis, Santa Clara, CA, USA); angiography from the 
catheter confirms the position proximal to a patent collateral branch; (c) controlled release of the 
plug in the intended position. 

Figure 3. Pre-emptive inferior mesenteric artery (IMA) embolization to prevent Type 2 endoleak:
(a) intraoperative angiographic images showing selective catheterization from transfemoral access;
(b) a 6 mm Amplatzer vascular plug (AVP) IV is advanced at the origin of the patent IMA via a 5F
Berenstein diagnostic catheter (Tempo Aqua, Cordis, Santa Clara, CA, USA); angiography from the
catheter confirms the position proximal to a patent collateral branch; (c) controlled release of the plug
in the intended position.



J. Clin. Med. 2024, 13, 2084 6 of 14

While some physicians perform IMA embolization through a brachial access several
days before endovascular repair [30], the same procedure could be performed in the same
session via femoral access. Some of the same material used for the EVAR procedure
would be used in the embolization, thus limiting the cost of the intervention and limiting
complications related to access. Samura et al. [31] described their technique for IMA plug
embolization which is performed via femoral access at the same time as the endovascular
procedure with no additional endovascular equipment except for the AVP IV.

A recent systematic review and meta-analysis including a prospective randomized
controlled trial suggested a role of preemptive IMA and/or lumbar artery embolization
in standard infrarenal EVAR; sac growth, T2EL, and reintervention were all reduced
in the embolization cohort [29,32]. Although the evidence for IMA and lumbar artery
embolization in complex aortic repair is unclear, a recent meta-analysis of both prospective
and retrospective studies suggests the benefit of occluding any patent IMA and ≥2 mm
lumbar arteries to reduce the risk of endoleak in standard infrarenal repair [29], which
can lead to overall instability of the endovascular reconstruction. Nevertheless, recent
guidelines still do not endorse routine IMA and lumbar artery embolization for T2EL
prevention [2] and highlight the higher benefits of IMA rather than lumbar embolization.

When a thoracoabdominal repair is planned, accessory renal arteries can be incorpo-
rated with fenestration/branches, if technically feasible, to prevent renal infarction and late
renal function decline. When vessel preservation is not possible, accessory renal arteries
originating from the dilated segment of the aorta can be embolized to prevent persistent
type 2 endoleaks (Figure 4).
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thrombosis and remodeling [33]. The candy plug technique requires a custom-made de-
vice currently only available in Europe in its third generation (William Cook Europe, Bja-
everskov, Denmark). It is a custom-made thoracic stent–graft with three sealing stents 
with a 26–46 mm diameter range (requiring a 16 to 20F delivery system) and a total length 

Figure 4. Accessory renal artery embolization during a fenestrated thoracoabdominal aortic repair:
(a) CTA in a para-coronal plane showing three patent right renal arteries can be seen on preoperative
imaging. An asterisk (*) indicates the one arising from the aneurysm; (b) Intraoperative angiography
demonstrating the superior polar renal artery embolization with an Amplatzer vascular plug IV
(arrow). The middle one is bridged to the dedicated fenestration, and the inferior (arrowhead) is
covered by the aortic graft in a non-aneurysmal portion of the aorta.

3.4. Embolization in Aortic Dissection

In the presence of a chronic aortic dissection, some authors have experimented with
the use of nitinol plugs in the false lumen (alone or in combination with coils) to promote
thrombosis and remodeling [33]. The candy plug technique requires a custom-made
device currently only available in Europe in its third generation (William Cook Europe,
Bjaeverskov, Denmark). It is a custom-made thoracic stent–graft with three sealing stents
with a 26–46 mm diameter range (requiring a 16 to 20F delivery system) and a total length
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of 97–104 mm, including a distal sleeve segment with a 14 mm wide central fabric channel,
which is sutured outside the graft. This technique for false lumen embolization in the distal
thoracic segment is the only one with greater scientific evidence to support it (Figure 5).
In a multicentric retrospective study of 155 patients treated with a custom-made candy
plug device (Cook Medical, Bloomington, IN, USA), 77% achieved early complete false
lumen thrombosis, and only 4% experienced false lumen enlargement over time [34]. In the
past and still today in certain settings, physician-modified thoracic endografts have been
used to serve the same purpose [35,36]. The AVP II has been tried off-label as a false lumen
occluder which should be deployed either from the false or true lumen. Compared to the
AVP, AVP II has a longer profile and is tri-lobed, which facilitates plug stability at the site
of the entry tear. Authors have tried to position it with two disks protruding into the false
and one in the true lumen [37].

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 7 of 14 
 

 

of 97–104 mm, including a distal sleeve segment with a 14 mm wide central fabric channel, 
which is sutured outside the graft. This technique for false lumen embolization in the dis-
tal thoracic segment is the only one with greater scientific evidence to support it (Figure 
5). In a multicentric retrospective study of 155 patients treated with a custom-made candy 
plug device (Cook Medical, Bloomington, IN, USA), 77% achieved early complete false 
lumen thrombosis, and only 4% experienced false lumen enlargement over time [34]. In 
the past and still today in certain settings, physician-modified thoracic endografts have 
been used to serve the same purpose [35,36]. The AVP II has been tried off-label as a false 
lumen occluder which should be deployed either from the false or true lumen. Compared 
to the AVP, AVP II has a longer profile and is tri-lobed, which facilitates plug stability at 
the site of the entry tear. Authors have tried to position it with two disks protruding into 
the false and one in the true lumen [37]. 

In very selected cases of acute or chronic type B aortic dissection, entry tear plug 
embolization was suggested to promote false lumen thrombosis with minimal surgical 
invasiveness. Such an approach has been described in cases of proximal entry tears in the 
aortic arch or unfavorable anatomies for standard TEVAR. The AVP II plug was released 
with one disc in the true lumen and the remaining two in the false lumen, after true-to-
false lumen catheterization across the proximal entry tear. Procedural success, however, 
was scarce, with over 50% of patients requiring early reintervention for persistent entry 
tear patency [38,39]. 

  
(a) (b) 

Figure 5. Aortic false lumen embolization with a third-generation custom-made candy plug (Cook 
Medical, Bloomington, IN, USA) in a chronic dissection with aneurysmal evolution treated by frozen 
elephant trunk, true lumen thoracic EVAR (W.L. Gore, Flagstaff, AZ, USA), and false lumen embo-
lization: (a) 3D MPR image and (b) a parasagittal view of the CTA 3D volume rendering showing 
false lumen thrombosis achieved in the cranial portion of the descending thoracic aorta with persis-
tent retrograde perfusion below the occluder (*). 

3.5. Intentional Directional Branch Closure in Complex Aortic Repair 
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Figure 5. Aortic false lumen embolization with a third-generation custom-made candy plug (Cook
Medical, Bloomington, IN, USA) in a chronic dissection with aneurysmal evolution treated by
frozen elephant trunk, true lumen thoracic EVAR (W.L. Gore, Flagstaff, AZ, USA), and false lumen
embolization: (a) 3D MPR image and (b) a parasagittal view of the CTA 3D volume rendering
showing false lumen thrombosis achieved in the cranial portion of the descending thoracic aorta with
persistent retrograde perfusion below the occluder (*).

In very selected cases of acute or chronic type B aortic dissection, entry tear plug
embolization was suggested to promote false lumen thrombosis with minimal surgical
invasiveness. Such an approach has been described in cases of proximal entry tears in the
aortic arch or unfavorable anatomies for standard TEVAR. The AVP II plug was released
with one disc in the true lumen and the remaining two in the false lumen, after true-to-false
lumen catheterization across the proximal entry tear. Procedural success, however, was
scarce, with over 50% of patients requiring early reintervention for persistent entry tear
patency [38,39].

3.5. Intentional Directional Branch Closure in Complex Aortic Repair

Elective endovascular repair of complex aortic aneurysms and proper thoracoabdomi-
nal aneurysms repair with fenestrated–branched endografts (F-B/EVAR) can require tai-
lored treatment with custom-made devices. In case of symptomatic or very large aneurysms,
off-the-shelf devices such as the t-Branch (Cook Medical, Bloomington, IN, USA) can be
used [40,41]. As the overall feasibility of off-the-shelf endografts is less than 80% for the
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visceral vessel configuration [3,42], some branches can be intentionally left unused and
need to be closed. Other reasons for not bridging a directional branch are chronically
occluded vessels, failed catheterization or loss of patency of the target vessel during staged
repair, or temporary branch sac perfusion as a spinal cord ischemia prevention strategy [43].
In those scenarios, branches need to be occluded to prevent high-flow continuous type III
endoleaks and eventually aortic rupture.

From a technical perspective, alternative methods can be employed to perform plug
occlusion of directional branches, detailed as follows.

- As a modification of the original technique from Ferreira et al. [44], Tenorio et al. [45]
suggested that branch elongation with a balloon-expandable stent before plug release
should be the preferred choice in order to extend the sealing zone; the directional
branch should be extended at least 20 mm beyond the branch cuff, and the plug
should be released entirely within the stent, with no lobes protruding on the outside
(Figure 6a). This configuration would limit any plug migration caused by short
landing length inside the branch cuff.
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Figure 6. Branch embolization using vascular plugs: (a) postoperative CTA para-sagittal view
showing celiac trunk branch (CT) embolization with a 12 mm Amplatzer vascular plug II (the
silhouette is highlighted in the small box) in a patient treated with a t-Branch device and a chronic CT
occlusion. The plug is released after branch extension with a 9 × 37 balloon-expandable stent-graft;
(b) postoperative CTA para-coronal view embolization of directional branches for both renal arteries
with a Micro vascular plug without pre-emptive branch covered-stenting; the small box indicates
a cross-sectional view perpendicular to the coronal main image. Notably, no blooming artifacts
are visible because of the plug’s presence. The MVP-7Q is suggested for 6 mm branches and the
MVP-9Q for 8 mm branches. The occluder is advanced to the target location through 4F or 5F
diagnostic catheters.

- Alternatively, the “dog bone” technique [46] consists of deploying a balloon-expandable
stent-graft inside the branch, sizing it 2 mm larger than the branch itself. It should be
inflated to 8 mm, and the proximal and distal portions of the stent should be flared
with a larger balloon (4 mm more than the branch diameter). An AVP II should then
be released at the beginning of the narrowed part, thus creating a bottleneck effect.

- The MVP-7Q (MVP, Medtronic, Minneapolis, MN, USA) has also been used to occlude
branches, with promising results in terms of early success and avoiding the use of
a further bridging stent–graft, thus reducing overall procedural costs and possibly
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operating time [47] (Figure 6b). Aside from the economic and technical aspects, the
MVP PTFE membrane design guarantees immediate vessel occlusion, which is of
paramount importance in symptomatic/ruptured aneurysms, as opposed to the AVP
II design which needs time to achieve complete branch thrombosis.

3.6. Internal Iliac Artery (IIA)

When extending aortic repair into the iliac arteries, sometimes surgeons must cope
with a short distal landing zone on the common iliac artery (CIA) as a consequence of short
CIAs, chronic dissection, or aneurysmatic degeneration. This implies the distal sealing
zone is located on the external iliac artery (EIA), meaning IIA covering and overstenting
(Figure 7a) or inclusion with an iliac branch device (IBD) (Figure 7b) is necessary.
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Figure 7. Plug embolization in the internal iliac artery (IIA) territory as visible on postoperative CTA
imaging. (a): an Amplatzer vascular plug (AVP, *) I is employed to occlude the main trunk of the IIA
before overstenting it; (b): the IBD should be elongated with a self-expandable stent in the SGA and
pelvic branches should be occluded using small plugs such as the AVP IV, MVP, or even coils. In this
patient, an AVP IV occludes the anterior branch of the IIA (*) and the bridging stent is deployed into
the superior gluteal artery (arrow); (c): Sometimes, after IBD deployment, catheterization or bridging
failure of the SGA is encountered, with backflow from the hypogastric branch causing a type III
endoleak. In this case, the authors suggest distal branch embolization with coils or microplugs and
subsequent plug occlusion of the branch; here, an AVP II (*) is deployed in the hypogastric branch
after failed bridging with a bridging stent.

In standard infrarenal aortic repair, plain extension in the EIA without IIA revas-
cularization has shown satisfactory results in terms of endoleak prevention and rates
of complications (buttock claudication, erectile dysfunction, colon ischemia, and spinal
cord ischemia) with lower costs and complexity than the IBD; long-term results on pa-
tency and complications are still pending [48]. Embolization can be performed prior to
graft deployment or in the same procedure with no clear differences between the two
in terms of ischemic complications [49]. However, the most recent European Society for
Vascular Surgery guidelines advise preservation of at least one patent IIA with a Class I
recommendation [2].

In the case of non-aneurysmal IIA, the authors suggest performing occlusion with a
plug at its origin, thus preserving its distal branches and pelvic collateral circulation. In this
setting, plugs seem to be safer than coils in achieving complete occlusion with lower rates
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of complications as it has been reported that plugs have lower rates of buttock claudication
and erectile dysfunction [50,51]. When the sealing zone length is scarce, a short plug such
as the AVP should be preferred to a longer plug such as the AVPII, which is chosen in
cases of normal length [52]. Proximal positioning of the plug must be avoided in case of
aneurysmatic IIA, in which cases the backflow through terminal branches could promote
sac enlargement in the IIA. In those cases, a different approach has been described. Small
plugs such as the AVP IV or MVP should be released in each main trunk. Considering the
large diameter of the IIA and the different anatomies, sometimes, a combination of coils
and plugs is necessary to achieve embolization [53].

When IIA preservation is planned as in the case of planned extensive aortic coverage
and in young active patients [54], sometimes extending a stent in the distal IIA is not enough
to achieve complete sealing. Aneurismal IIA or early bifurcation of the IIA hampers the
complete preservation of its side branches [55]. In this case, the authors suggest the
preservation of the posterior division of the IIA (superior gluteal artery, SGA) over the
pelvic branches due to the higher mid-term patency of this strategy despite similar good
short-term results [56] (Figure 7b). Branch abandoning (Figure 7c) is a rare eventuality and
is used to avoid aneurysm sac enlargement in event of failure to stent the IIA or SGA after
IBD is deployed.

4. Discussion

The use of plugs in endovascular aortic surgery is an established alternative to coils
for achieving large vessel embolization. A vascular plug, such as those in the AVP family, is
a single device made of a nitinol net that is released inside a target vessel before, during, or
following the endovascular aortic procedure. Although they are both designed as occlusive
tools, coils, and plugs have different delivery systems and eventually different applications.

Plugs provide precise embolization with a single device and can be fully recaptured
before final release by readvancing the catheter/sheath over the occluder if their position is
unsatisfactory at the test contrast injection. As a disadvantage, they would usually require
a larger delivery system, which might be harder to navigate in tortuous anatomies. Coils
require microcatheters to be advanced in the target location, while the majority of plugs
require a 6 or 7-Fr introducer sheath on a guidewire. Some companies have addressed this
issue by producing diagnostic-catheter- or microcatheter-compatible vascular plugs that can
be deployed without the help of an introducer sheath. Although coils are preferred in some
situations, the use of this new generation of plugs, which have smaller profiles, is feasible
on many occasions. In the case of angulated and short arteries or ostial calcifications, plugs
might not reach the target location due to delivery system instability and the risk of plug
migration. In those scenarios, precision can be increased by inflating a balloon stent–graft
over the target vessel once it has been cannulated. This technique, originally proposed by
Morikage et al. [31], allows catheter stabilization between the balloon and an introducer
sheath while the plug is being released. An evolution of this technique is the so-called
“delivery system-F” [57], which consists of a 14 Fr sheath, a 12 Fr long sheath with a side
hole, a stiff guidewire as a shaft, and a parallel-inserted delivery catheter navigated through
the side hole into the aneurysm sac. The vertical motion and horizontal rotation of the side
hole are performed by moving the DrySeal and the 12 Fr sheath, thus securing precision
and stability.

The precision of plug delivery is also helped by the fact that plugs can be retracted
from a location and repositioned as many times as desired before the final detachment from
the delivery wire. When the target location is reached and confirmed at test angiography
(Figure 3), unscrewing the delivery system allows for plug release. This is not possible
with all available coils, meaning off-target embolization and migration from the original
location are rare. Coils that are not sufficiently packed can become occlusive bullets as the
blood flow forces their embolization in distal vessels. While the protrusion of coils inside
the aortic lumen should be avoided for the risk of peripheral embolization, the protrusion
of the first disk of the AVP II is described in stent-graft branches and for LSA embolization,
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as proposed by the authors. The latter technique was used to embolize the LSA in cases
of large and short landing zones but can cause type Ia endoleak by interfering with the
TEVAR proximal landing zone, especially if a short distance between the proximal edge of
the graft and the protruding plug is present.

Although both procedural and plug embolization times are shorter if compared to
coils [58], in high-flow vessels, pure nitinol plugs do not cause vessel thrombosis immedi-
ately. This feature of plugs can cause endoleak permanence at short-term follow-up, and
therefore it is not suggested by the authors in cases of ruptured or symptomatic aneurysms.
Some plugs feature a PTFE membrane inside the nitinol net, intending to immediately
cause thrombosis of the vessel. Further studies need to assess this technology together with
the durability of the new generation of plugs over time.

Eventually, both nitinol mesh plugs and PTFE-based occluders present significantly
fewer artifacts on computed tomography imaging when compared to coils, an effect that is
amplified when large vessels (requiring large amounts of coils) are embolized [5]. Given
the great importance of precise recognition of endoleaks in the follow-up of complex aortic
repair and the rate of reintervention after B/FEVAR [59], when technically feasible, plugs
could be used instead of coils to guarantee high-quality CT images to facilitate decision
making and proper preoperative planning.

5. Conclusions

Plug embolization is a valid adjunctive tool in the endovascular treatment of complex
aortic aneurysms. While embolization of side branches is usually achieved in a planned
fashion, it may be required under urgent circumstances (for instance, when using off-the-
shelf branched devices for treating symptomatic or ruptured complex aortic aneurysms
in patients with a solitary kidney); for this reason, these devices should be available and
in stock at centers that perform these procedures, and surgeons should be familiar with
their use. Plugs can adapt to different anatomies and have different uses while sharing
some common functioning principles. Despite shorter procedural and occlusion times and
fewer recanalization rates over time, they are not applicable in all situations, and therefore
coils are still used on some occasions. More evidence should be gathered on preemptive
embolization techniques, with a particular focus on indication (e.g., diameter thresholds)
and clinical impact, since evidence on plug embolization in aortic procedures is mostly
extrapolated from studies regarding infrarenal EVAR.
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