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Network science: Ising states of matter

Hanlin Sun ,1,2 Rajat Kumar Panda ,3,4,5,6 Roberto Verdel ,3 Alex Rodriguez ,3,7

Marcello Dalmonte ,3,4 and Ginestra Bianconi 1,8

1School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
2Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden

3The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
4SISSA—International School of Advanced Studies, via Bonomea 265, 34136 Trieste, Italy

5INFN Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
6Department of Physics, University of Trieste, 34127 Trieste, Italy

7Dipartimento di Matematica e Geoscienze, Universitá degli Studi di Trieste, via Alfonso Valerio 12/1, 34127 Trieste, Italy
8The Alan Turing Institute, 96 Euston Road, London NW1 2DB, United Kingdom

(Received 29 August 2023; accepted 26 February 2024; published 6 May 2024)

Network science provides very powerful tools for extracting information from interacting data. Although
recently the unsupervised detection of phases of matter using machine learning has raised significant interest,
the full prediction power of network science has not yet been systematically explored in this context. Here we fill
this gap by providing an in-depth statistical, combinatorial, geometrical, and topological characterization of 2D
Ising snapshot networks (IsingNets) extracted from Monte Carlo simulations of the 2D Ising model at different
temperatures, going across the phase transition. Our analysis reveals the complex organization properties of
IsingNets in both the ferromagnetic and paramagnetic phases and demonstrates the significant deviations of the
IsingNets with respect to randomized null models. In particular percolation properties of the IsingNets reflect the
existence of the symmetry between configurations with opposite magnetization below the critical temperature
and the very compact nature of the two emerging giant clusters revealed by our persistent homology analysis
of the IsingNets. Moreover, the IsingNets display a very broad degree distribution and significant degree-degree
correlations and weight-degree correlations demonstrating that they encode relevant information present in the
configuration space of the 2D Ising model. The geometrical organization of the critical IsingNets is reflected in
their spectral properties deviating from the one of the null model. This work reveals the important insights that
network science can bring to the characterization of phases of matter. The set of tools described hereby can be
applied as well to numerical and experimental data.

DOI: 10.1103/PhysRevE.109.054305

I. INTRODUCTION

Networks [1–5] encode the information present in a large
variety of natural and artificial interacting systems by repre-
senting them as graphs, i.e., a set of nodes (representing the
element of the system) connected by links or edges (represent-
ing typically the interactions). In particular, the underlying
architecture of complex systems is encoded in networks that
strongly deviate from random graphs whose information con-
tent can be mined by exploiting their statistical, combinatorial
as well as the geometrical and topological nature [6]. Net-
works are hence a simple yet very powerful framework that
has been able in the last 20 years to transform our under-
standing of complex systems. These complex networks obey
relevant organization principles while retaining a stochastic
nature.

Recently great attention has been addressed to formu-
lating unsupervised machine learning algorithms to detect
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different phases of matter [7–12]. In this research line,
important progress in characterizing phase transitions has re-
cently been made by using interpretable machine learning
tools such as graphical models and restricted Boltzmann ma-
chines [13–17]. The core of such approaches is that learning
methods—in particular, unsupervised—shall be capable of
revealing hidden structures in data sets, that correspond to
physical information (such as, e.g., the existence of order pa-
rameters). However, the very advanced, complementary tools
of network science to extract information from complex data
of interacting systems have not yet been systematically em-
ployed for this task.

Here we want to show how network science can enrich
and enhance our unsupervised characterization of phases of
matter. Indeed, we will show evidence that network science
provides a very transparent set of methods to investigate the
characteristics of different phases across critical phase transi-
tions and allows the determination of unsupervised indicators
of their critical points.

Historically networks have been used in condensed mat-
ter for describing physical interactions existing among the
elements of a system, as well as structured in configuration
and Hilbert space. In principle, they can be used as well to
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represent abstract data structures coming from numerical sim-
ulations or directly from experiments, giving access to a whole
new toolbox to define and interpret many-body correlations
(of arbitrary order, if expressed in terms of local observables).

Reflecting this twofold possible application of network
science, recently several works have explored the use of
networks to model or represent interactions in condensed
matter systems. For instance, networks can be considered to
define Hamiltonians whose interaction terms are determined
by a complex network rather than by a lattice. In particular
networks can be used to define different critical phenom-
ena including the Ising model [18–20] and the inverse Ising
model [21], as well as quantum critical phenomena including
the transverse Ising model [22–24], the Bose-Hubbard model
[25], the Jaynes-Cummings-Hubbard model [26], in addition
to others classical collective phenomena and inverse prob-
lems [27–30]. Alternatively, networks can define quantum
environments [31,32] or even multilayer couplings between
interdependent superconductor networks [33]. Networks also
can be used to represent correlations in complex and financial
networks [34,35] as well as in quantum systems. In partic-
ular recently network structures have been shown to encode
the quantum long-range mutual information (and other mea-
sures of quantum correlations) existing among the nodes of
quantum lattice models in one [36–38] and two dimensions
[39], providing in some cases indicators for quantum critical
points.

As we will see in this work, weighted networks [40] are
amenable to be analysed and treated with topological data
analysis (TDA) [41–44] which provides a very efficient way to
probe topological, large scale and global network properties.
TDA, although until now only applied to point clouds, is rais-
ing significant interest to do unsupervised inference of phase
transitions [45–51], and has wide applications, including the
characterization of universal dynamics in quantum gases [52]
and of confinement in lattice field theory [53–55].

Finally and most relevantly for our work, networks have
been proposed to capture the underlying structure of quantum
spin systems as revealed by wave function snapshots that can
be probed experimentally as well as sampled from Monte
Carlo simulations [56]. However, despite these very pioneer-
ing works [36,56], little attention has been so far addressed to
study phases of matter using network science.

Here we launch a large-scale systematic study of the phase
of matter based on network science. We leverage a multiplic-
ity of tools developed in network science, and we reveal the
combinatorial, statistical, geometrical, and topological net-
work representation of different phases of matter. We provide
an in-depth characterization of the networks generated from
single snapshots of spin system configurations.

In Ref. [56] it was shown that wave function networks
constructed starting from quantum wave function snapshots
are strongly deviating from random graphs and for a wide
range of values of the threshold distances they give rise to
networks with very broad degree distribution. An open ques-
tion is whether the complex properties of these networks are
inherently quantum effects or they can be observed in classical
systems as well.

To characterize phase transitions and critical behaviors, the
Ising model is arguably the most studied model in statistical

physics. Apart from the Ising model defined on lattices, the
model has also been generalized on networked structures such
as small-world networks [57,58], random scale-free networks
[18–20,59,60], and spatially embedded scale-free networks
[61]. The phase diagram of the model is shown to be highly
sensible on the value of the branching ratio of the network.
These results have been also extended to the transverse Ising
models [22,23]. Moreover some of the machine learning tools
to study the Ising model such as restricted Boltzmann ma-
chine and graphical models [13–17] strongly leverage on their
underlying network structure. However, to the best of our
knowledge, the tools from network science have not been used
to the analysis the simulation snapshots of the Ising model.

In this work we consider 2D Ising snapshot networks
(IsingNets) following a construction proposed in Ref. [56]
applied to classical 2D Ising model snapshots and we charac-
terize their structure using advanced statistical, combinatorial,
geometrical and topological tools of network theory. In order
to provide an in-depth analysis of the IsingNet, across dif-
ferent phases we focus our attention on IsingNets obtained
starting from Monte Carlo simulations of the 2D Ising model
performed across the phase transition. IsingNets are obtained
from a sample of state configurations of the 2D Ising model
which constitute the set of nodes of the IsingNets. Each pair
of nodes of an IsingNet is associated with a distance, here
taken to be the Euclidean distance between the configuration
snapshots. IsingNets are constructed starting from the fully
connected distance matrix between the nodes by connecting
only the nodes whose distance is smaller than a threshold
value of the distance.

Our in-depth network analysis of the IsingNets will allow
us to go well beyond the characterization of these networks
based solely on the degree distribution. Possibly in the future,
this in-depth analysis can be conducted also on networks built
from quantum wave function snapshots in order to assess
which are the properties inherently quantum in the latter
networks.

Our analysis is conducted following two main directions
whose goal is different but complementary. First, we will
perform an analysis of the IsingNets that is agnostic about the
choice of the distance threshold. In particular, we will study
network properties as a function of the distance threshold.
These include percolation properties, persistence homology,
network embedding and statistical characterization of the dis-
tance matrices. Second, we will consider specific choices of
the distance threshold and we will characterize the statistical,
combinatorial and geometrical and spectral properties of the
IsingNets, showing the important roles of degree-degree and
weight-degree correlations in these systems.

Anticipating our main results we have found that IsingNets
reflect the symmetry of the configuration space of the 2D Ising
model in a prominent way. In particular, the percolation prop-
erties of the IsingNets strongly deviate from the percolation
properties of networks in which the same distances among
the nodes are distributed randomly. In fact, below the critical
temperature of the 2D Ising model, the IsingNets are charac-
terized by two giant components whereas their randomized
counterpart displays only a single giant component. When
the threshold distance defining the IsingNets is raised signif-
icantly these two giant clusters merge, but interestingly they
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keep a rather compact structure as revealed by our persistent
homology results highlighting that the Betti number of their
clique complex are strongly suppressed with respect to their
random counterpart. The Weisserstein distance between the
persistence diagrams of the IsingNets and their randomized
counterpart is here shown to be an unsupervised indicator of
criticality as it displays a maximum in correspondence of the
critical temperature. Our statistical and combinatorial analysis
of the IsingNets strongly demonstrates the complex organi-
zation of these networks which display strong heterogeneity
in both their topological (degree, clustering coefficient, de-
gree correlations) and their weighted network properties. In
particular nodes of higher-degree are characterized by hav-
ing neighbors connected by stronger affinity weights (smaller
distances). Finally, the IsingNets possess a significant geo-
metrical organization at criticality as it is revealed by their
interesting spectral properties.

Among the most important benefits of our approach is
that the proposed analysis is fully interpretable. Moreover,
we emphasize the applicability of the approach. Indeed while
our analysis is here performed on data coming from Monte
Carlo simulations the approach can be readily applied also
to experimental data. However, a possible limitation of the
approach is due to the significant computational cost of our
proposed unsupervised TDA analysis.

II. THE 2D ISING MODEL MONTE CARLO SIMULATIONS

We consider a square 2D lattice of dimension L × L where
on each site n is located the spin Sn ∈ {−1, 1}. The nearest-
neighbor spins are interacting through the Hamiltonian

H = −
∑
〈n,m〉

SnSm. (1)

The 2D Ising model is characterized by Z2 spontaneous sym-
metry breaking and undergoes a second-order phase transition
at Tc = 2/ ln(1 + √

2) ≈ 2.269 [62]. Starting from Markov
chain Monte Carlo simulations of this model, for each tem-
perature single snapshots �xi = {S1, S2, . . . , SL2} of the spin
system are sampled at equilibrium [63]. More specifically, we
use the Wolff cluster algorithm [64,65], starting from the con-
figuration with either all up spins or all down spins, chosen at
random. Next, 30 000 to 50 000 “cluster flips” are performed
for the system to equilibrate. After this, we collect snapshots
every 1000 to 1500 cluster flips to ensure that the collected
state configurations are as uncorrelated as possible [63]. In
total, we gather 10 000 snapshots during a Monte Carlo run.

For each temperature, five independent Monte Carlo sim-
ulations are performed as prescribed. By combining the
sampled configuration snapshots of these runs, we thus obtain
a data set with Nr = 50 000 independent thermal configura-
tions {�xi}Nr

i=1. The starting point to construct the IsingNets is a
set of N configuration snapshots i ∈ {1, 2, . . . , N} randomly
selected from the data set described above, and the fully
connected distance matrix d of elements di j between these
states. Here the distance di j between two generic snapshots
�xi and �x j is taken to be their Euclidean distance. As dis-
cussed in previous works, such manifolds are typically living
in very high dimensional subspaces [12,63], so that simple

dimensional reductions are not applicable, and a full-fledged
network analysis is needed.

III. NETWORK CHARACTERIZATION ACROSS
THE DISTANCE FILTRATION

A. Weight filtration

As anticipated in the introduction, in this first section, our
analysis focuses on the properties of IsingNets observed as
a function of the distance filtration. We consider IsingNets
which are graphs G = (V, E ) formed by a set of N nodes
V and a set of links E with (i, j) ∈ E only if the nodes
(state configurations) i and j have distance di j < r. Here r
determines the distance filtration and indicates a tunable pa-
rameter that ranges from the minimum of the distances rmin =
mini, jdi j between the N nodes to their maximum distance
rmax = maxi, jdi j . We are thus here completely agnostic about
the best choice of r as we study the properties of IsingNets
across all possible choices of the distance threshold r.

In particular as a function of r we will explore the percola-
tion properties of the IsingNets which define an agglomeration
from N disconnected nodes to a single connected component
as r is raised from rmin to rmax and we will compare this
process with the corresponding null model obtained from
the same process applied to a randomized distance drand

matrix. The randomized distance matrix drand is constructed
by randomly reshuffling the upper triangular elements of d
and subsequently symmetrizing the matrix. Therefore the null
model networks display the same distribution of “distances”
as the true IsingNet while being completely randomized.
Note, however, that one of the main differences between the
distance matrix d and the randomized distance matrix drand is
that the entries of drand are not proper distances as they do not
obey the triangular inequality.

In this section, we will use a combination of tools com-
ing from network science to analyze the IsingNets described
above. In particular, anticipating the detailed description of
the methods used to perform this analysis in the follow-
ing paragraphs, we will use persistent homology [42–44] to
further characterize topologically the mentioned aggregation
process. In this way, we will show that persistent homology is
able to detect the position of the critical temperature of the
2D Ising model under study. This analysis will be accom-
panied by the visualization of the network using minimum
spanning trees [35,66], the results of the network embedding
conducted using the UMAP (uniform manifold approxima-
tion and projection for dimension reduction) algorithm [67],
and the statistical characterization of the distance matrix as
a function of the temperature conducted using the closeness
centrality [68] distribution.

B. Percolation process

We start our investigation exploring the percolation process
[2,3,69–71] monitoring the connected component of the net-
work as a function of the filtration parameter r. To contrast
the behavior of the percolation process of IsingNets with a
null-hypothesis percolation process, we consider the process
defined on the actual IsingNet distance matrix d with the
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FIG. 1. Percolation properties of the IsingNet (left panels) gener-
ated from 2D Ising model Monte Carlo simulations on spin systems
of linear size L = 40 at temperature T = 2.12 < Tc are shown as
a function of filtration parameter r. Nodes are connected if their
distance is less than r. Five quantities are measured: the fraction of
nodes in the largest connected component (the first row, blue line)
and the fraction of nodes in the second largest connected compo-
nent (the first row, orange line), the average size of components
that are smaller than the second largest component 〈s〉 (the second
row), the number of components ns (the third row), and the inverse
participation ratio Y (the fourth row). The results are compared with
these quantities obtained from corresponding percolation properties
obtained from a randomly permuted distance matrix (right panels).
The number of nodes of the IsingNets is N = 6000.

same process defined starting from a matrix drand obtained
by randomly permuting distances among pair of nodes.

The percolation process of IsingNets reveals a major differ-
ence with the percolation process on the randomized distance
matrix: mainly the IsingNets obtained for the 2D Ising model
below the phase transition, i.e., T < Tc display for a very
significant range of values of the filtration parameter r, two
giant components while the randomized process only displays
one giant component. This phenomenon is evident from the
plot in Figs. 1 and 2 showing the relative size of the largest
component R and the second largest component R2, which are
both giant, i.e., extensive for a wide range of r values. Indeed,
below the critical temperature Tc, the IsingNets display two
transitions as the value of the filtration parameter is raised (see
Figs. 1 and 2). The first transition is characterized by the emer-
gence of the two equal size giant components corresponding
to the symmetry of the configuration snapshots of the 2D
Ising model for T < Tc and the second one is characterized
by the merging of these two giant components for very large
values of r, characterized by the disappearance of a significant
second largest connected component [orange line in Fig. 1(a)
and Fig. 2(a)]. This phenomenology is dramatically different

FIG. 2. Same as Fig. 1 but with IsingNets obtained from 2D Ising
model simulations at T = 2.25.

from the percolation obtained in the randomized null model
where the giant component is unique for every value of r
(see Figs. 1 and 2). For temperatures above the critical one
(see Fig. 3), instead, only one giant component is observed
corresponding to the paramagnetic state of the 2D Ising
model. In order to further characterize the percolation process

FIG. 3. Same as Fig. 1 but with IsingNets obtained from 2D Ising
model simulations at T = 2.50.
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we also monitor as a function of r the average size of finite
components 〈s̄〉, the number of components ns̄ and the inverse
participation ratio Y whose inverse determines the number of
typical clusters. Specifically the inverse participation ratio Y is
defined as

Y =
∑

p

(
s̄p∑
q s̄q

)2

= 1

N2

∑
p

s̄2
p, (2)

where s̄p indicates the size of the pth largest component. The
abrupt increase of Y at large r further indicates the merging
of two giant components [Fig. 1(g) and Fig. 2(g)].

On an Erdős-Rényi random graph the average size of finite
component 〈s̄〉 plays the role of the percolation susceptibility
[69], diverging in correspondence with the emergence of the
(single) giant component. In the IsingNets (see Figs. 1–3) the
average size of finite component 〈s̄〉 has a very suppressed
maximum with respect to the same quantity measured on the
considered null model, indicating that the agglomeration of
the two giant clusters proceeds by subsequent agglomeration
of very small components and isolated nodes rather than by
the agglomeration of finite clusters of diverging average size
as in a random graph. This is also confirmed by the behavior
of the number of clusters ns̄ as a function of the filtration
parameter r which for the IsingNets decays less steeply than in
the randomized null model. Finally, the inverse participation
ratio Y for low temperatures reveals a significant plateau at
Y = 1/2 indicating the existence of two giant components
of approximately equal size (see Fig. 1). Above the critical
temperature, for T > Tc as the filtration parameter is raised
only one giant component emerges and the difference with
respect to the randomized null model is reduced (see Fig. 3).

C. Persistent homology

Topology is the study of shapes and their invariant prop-
erties under continuous deformations (see for an introduction
[6,41]). Major examples of topological invariants are the Betti
numbers. The Betti number β0 indicates the number of con-
nected components, the Betti number β1 indicates the number
of 1D holes, the number of β2 indicates the number of 2D
holes, etc. For instance, a point has Betti numbers β0 = 1 and
βn = 0 for any other value of n, a circle has nonzero Betti
numbers β0 = β1 = 1 and a sphere has nonzero Betti num-
bers β0 = β2 = 1. An important result of algebraic topology
[6,41–44] is that the n̄-dimensional Betti number βn̄ is the
rank of the n̄-dimensional homology group of the considered
topological space.

In the discrete setting, the Betti numbers are defined
in general for simplicial complexes. Simplicial complexes
are a type of higher-order network formed by a set of
simplices such as nodes, links, triangles, tetrahedra, etc.
They have the additional property of being closed under
the inclusion of faces of each simplex. This last property
implies that if a triangle belongs to the simplicial com-
plexes also all its links and nodes belong to the simplicial
complex.

Topological data analysis [40–44,72] and in particu-
lar persistent homology allows to characterize the topo-
logical properties of data as a function of a filtration

FIG. 4. Schematic illustration of the filtration process. The bar
codes are used to show the appearance and disappearance of topo-
logical features corresponding to different homology classes as the
filtration parameter r is increased. The filtration process ends at
r = rmax when all N nodes are fully connected and forms an N
simplex. Simplices of different dimensions are indicated by different
colors.

parameter and is becoming increasingly important in net-
work and data science with applications ranging from the
study of gene expression to the investigation of brain net-
works. As mentioned in the introduction TDA is recently
becoming a very popular computational tool to study phase
transitions as well [45–55]. However, in this context, most
of the TDA so far are performed on point clouds rather than
on networks. In our setting, when each pair of nodes (i, j)
is assigned a distance di j , persistent homology character-
izes the topology of data by forming a simplicial complex
representation of the data and characterizing its homology,
i.e., the connected components (H0 homology classes), the
independent cycles (one-dimensional holes; H1 homology
classes), the two-dimensional holes (H2 homology classes),
etc. The simplicial complexes [6,40,42,43] that we use
to perform the topological data analysis are the so-called
Vietoris-Rips complexes of the network generated by filling
all the simplices having all links at distance di j < r. Thus
as a function of r the set of simplicial complexes forms a
filtration.

As the filtration parameter r is raised, first each node
belongs to a different connected component, then connected
components merge progressively as described also by the
previous paragraph (see Fig. 4 for a schematic description
of the filtration). However, as r increases there is the po-
tential also for one-dimensional holes (or network cycles) to
emerge with each independent cycle represented by a dif-
ferent H1 homological class. Eventually, as r increases these
cycles will become filled and thus disappear. Moreover, also
higher-dimensional holes represented by higher-dimensional
homological classes Hn̄ might arise and eventually coalesce
as r is further increased giving rise to bar codes representing
the topology of the data.

By monitoring the homology classes as a function of r, the
results of persistent homology are typically summarized by
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FIG. 5. The persistent diagram corresponding to homology classes in H0, H1, H2, and H3 of the IsingNet clique complexes are plotted as a
function of the filtration parameter r. Panels (a), (b), and (c) show the persistent diagrams of IsingNets obtained from the spin system of linear
size L = 40 at T = 2.12 (a), T = 2.25 (b), and T = 2.50 (c). Panels (d), (e), and (f) show the persistent diagram of corresponding randomized
null models obtained at T = 2.12 (d), T = 2.25 (e), and T = 2.50 (f). The networks are formed by N = 100 nodes.

bar codes where each homology class is represented as a bar
that extends through the corresponding range of values of r
for which the homology class is observed (see Fig. 4). The
bar codes are then represented by persistent diagrams where
for each homology class the value of r where the homology
class is disappearing (death) is plotted versus the value of r
corresponding to the first appearance of the homology class
(birth); see, for instance, Fig. 5. Significant homology classes
are the ones represented by points far from the diagonal which
last for a large interval of values of the filtration parameter r.

The investigation of the persistent diagrams for the
IsingNets can further characterize these discrete structures by
revealing important properties about how the clusters merge
as a function of r. In particular, the persistent diagrams of
the IsingNets allow us to show that clusters remain compact
with a suppression of the Betti numbers with respect to the
corresponding persistent diagram of the randomized null
models. This result is evident from Figs. 5 and 6 where
we plot the persistent diagram (for homology Hn̄ with
n̄ ∈ {0, 1, 2, 3} and the Betti numbers βn̄ with n̄ ∈ {0, 1, 2, 3}
as a function of the filtration parameter r for IsingNets and
their randomized null models as a function of the temperature
T . Indeed, the persistent diagrams of IsingNets corresponding
to homology Hn̄ with n̄ ∈ {0, 1, 2, 3} (see Fig. 5) reveal
that homology classes for the IsingNets are less persistent
than the homology classes of the null model as they are
represented in the diagram by points closer to the diagonal

than in the null model. Moreover also the Betti numbers βn̄

with n̄ ∈ {0, 1, 2, 3} are strongly suppressed with respect
to their null model counterpart. The persistent diagrams of
IsingNets can be compared to the persistent diagrams of their
randomized null model as a function of the temperature.
This comparison can be performed by considering different
measures of distances between persistent diagrams.

Here we show both the Weisserstein distance and the Betti
distance among the persistent diagrams of the IsingNets and
their corresponding randomized null model. The Weisses-
tein distance captures the minimum distance over all perfect
matchings between points in two persistent diagrams,

dW =
[

inf
η:I→N

∑
x∈I

||x − η(x)||2∞
]1/2

, (3)

where x ∈ I indicates a point x = (b, d ) with birth b and dead
d in the persistent diagram of the IsingNet, while η(x) ∈ N
indicates the matched point in the persistent diagram of the
corresponding null model. The map η denotes any bijection
between I and N . The Betti distance computes the L2 distance
between Betti curves of two persistent diagrams,

dβ =
[∑

r

(β[I](r) − β[N](r))2

]1/2

(4)
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FIG. 6. Betti numbers β0, β1, β2, and β3 of the IsingNet clique complexes are plotted as a function of the filtration parameter r. Panels
(a), (b), and (c) show the persistent diagrams of IsingNets obtained from the spin system of linear size L = 40 at T = 2.12 (a), T = 2.25 (b),
and T = 2.50 (c). Panels (d), (e), and (f) show the persistent diagram of corresponding randomized null models obtained at T = 2.12 (d),
T = 2.25 (e), and T = 2.50 (f). The networks are formed by N = 100 nodes.

where β[I](r) and β[N](r) indicate the Betti number of the
IsingNet and the corresponding null model with filtration
parameter r.

These distance measures provide good indicators of the
critical points as they display a maximum approaching the
critical temperature of the 2D Ising model as the size L of
the 2D lattice increases (see Fig. 7). Note that here, due to
the computational cost of calculating the persistent diagrams
corresponding to higher-order homological classes, we focus
only on homology classes H0 and H1.

FIG. 7. Betti distance dβ (a, b) and the Wasserstein distance
dW (c, d) between the persistent diagrams of the IsingNets and its
randomized null models are plotted as a function of the temperature
T for homology H0 and H1. The plot shows the finite size scaling of
the distances on systems of size L = 32, L = 40, and L = 48. The
dashed line indicates the critical temperature Tc. The IsingNets on
which the persistent diagrams have been calculated have N = 300
nodes.

This is rather clear evidence that the IsingNets have a topol-
ogy that encodes fundamental properties of the underlying
spin system.

D. Minimum spanning tree visualization

Our unsupervised analysis of the IsingNets includes their
visualization which reveals their highly heterogeneous struc-
ture below the critical temperature Tc and at criticality. A
very efficient way to visualize the IsingNets is by plotting
their minimum spanning trees (MSTs) [35,66]. The MST
is the subtree of the network whose sum of the distances
between the connected nodes is minimal, and its topology
reveals important properties of the fully connected weighted
distance matrix of the IsingNets. In particular, as shown in
Fig. 8 for T deep in the ferromagnetic phase the topol-
ogy of the MST of the IsingNets is dominated by very
relevant hub nodes, and the network displays a clear par-
tition between the two clusters detected by the K-means
algorithm with K = 2 indicated in the figure by two dif-
ferent colors of the nodes. As the temperature is raised to
the critical region, T 
 Tc the hubs of MST become less
dominant. Above the phase transition, the MST becomes
clearly more random with a suppression of the hubs in
the MST.

E. Network embedding

Our analysis of the IsingNets is here enriched by con-
sidering the UMAP 2D embedding of the fully connected
network endowed with the distance matrix d. UMAP is
a widely used embedding algorithm exploiting dimension
reduction (for more details see, for instance, Ref. [73]).
The embedding is here performed as a function of the

054305-7



HANLIN SUN et al. PHYSICAL REVIEW E 109, 054305 (2024)

FIG. 8. Minimum spanning trees (MSTs) of the IsingNets obtained from the spin system of linear size L = 40 are plotted for different
temperatures T above and below the phase transition at Tc = 2.269 . . .. The nodes are colored using a K-means clustering algorithm with
K = 2. The number of nodes of the MSTs is N = 2000. The MSTs are generated at T = 2.12 (a), T = 2.20 (b), T = 2.26 (c), T = 2.28 (d),
T = 2.30 (e), T = 2.35 (f), T = 2.38 (g), T = 2.50 (h), T = 3.50 (i).

temperature T and the nodes are colored according to
their clustering in two groups performed using K means
(see Fig. 9).

FIG. 9. IsingNets obtained from the spin system of linear size
L = 40 at different temperatures T are embedded into a 2D space
using the Uniform Manifold Approximation and Projection (UMAP)
embedding algorithm. The nodes are colored using a K-means clus-
tering algorithm. The number of nodes of the IsingNets is N = 104.
The IsingNets are generated at T = 2.12 (a), T = 2.20 (b), T =
2.26 (c), T = 2.28 (d), T = 2.30 (e), T = 2.35 (f), T = 2.38 (g),
T = 2.50 (h), T = 3.50 (i).

The UMAP embedding provides a clear visualization
of the two main clusters of the nodes of the IsingNets
present for T < Tc and corresponding to the symmetry
among configuration snapshots and of their merging as the
temperature T is raised above the critical temperature.

F. Metric-based centrality measures

To conclude our characterization of the IsingNets without
imposing a fixed value of the filtration parameter, we present
here the statistical properties of some important geometrical
aspects of the IsingNet captured by the closeness centrality of
the nodes.

The closeness centrality Cli of a node i measures how close
is the node to the other nodes of the network, and is defined as
the inverse of the average distance of node i to the other nodes
of the network:

CLi = N − 1∑
j �=i di j

. (5)

We investigate the statistical properties (the mean 〈Cl〉, the
standard deviation σ (Cl ), the skewness Sk(Cl ) and the kur-
tosis Ku(Cl )) of the distribution of the closeness centrality
in IsingNets as a function of the temperature T . In Fig. 10
we show that the average closeness centrality decreases as a
function of the temperature, demonstrating that on average the
distances between the nodes are higher at higher temperatures.
The higher-order statistics of the closeness centrality distri-
bution are even more revealing of the IsingNets organization
and the skewness and kurtosis of the closeness distribution
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FIG. 10. The mean 〈Cl〉, standard deviation σ (Cl ), skewness
Sk(Cl ), and kurtosis Ku(Cl ) of closeness distribution at different
temperatures T and sizes L are plotted on the IsingNets where all
the distance between each pair of nodes is retained. The closeness
is calculated via Eq. (5). The corresponding random networks are
formed by randomly permuting the distances between node pairs.
The average closeness centrality of the IsingNets coincides by con-
struction with the average of the null model (not shown) however the
higher-order statistics strongly depart from the null model behavior.
The vertical green dashed lines indicate the critical temperature Tc the
horizontal black dashed lines indicate Sk(Cl ) = 0 in panel (c) and
Ku(Cl ) = 0 in panel (d).

provide a good unsupervised indicator of the critical point
(see Fig. 10). Indeed the standard deviation of the closeness
centrality displays a maximum for temperatures close to the
critical temperature; the skewness of the closeness centrality
is negative below the critical temperature and positive above
the critical temperature and the kurtosis becomes negative
above the critical temperature, while at very high temperature
is strongly affected by noise.

IV. NETWORK CHARACTERIZATION OF ISINGNETS
AT A GIVEN VALUE OF THE THRESHOLD DISTANCE R

A. IsingNets at given threshold distance r

In this section, we study the properties of IsingNets where
we fix a given choice of filtration parameter r. In particular we
will consider the IsingNets, whose N × N adjacency matrix A
has elements

Ai j = θ (r − di j ), (6)

with θ (x) = 1 for x > 0 and θ (x) = 0 otherwise. In the fol-
lowing, we will indicate with i ∼ j two neighbor nodes for
which Ai j = 1.

We adopt the same choice of the parameter r proposed in
Ref. [56] where it was shown that for a wide range of choices
of r the IsingNets are scale-free presenting often power-law
exponents less than two which are known to occur in a variety
of context [74–77]. In particular, here we take r equal to the
average distance of the fifth nearest neighbor.

Similarly, the randomized network forming our null model
in this section is performed by thresholding the randomized

distance matrix drand with the same threshold used for the
corresponding IsingNet.

We consider the statistical and combinatorial properties of
these networks where we assign to each link (i, j) a weight wi j

equal to the inverse of the distance di j , provided this distance
is smaller than r:

wi j = 1

di j
Ai j . (7)

We provide an in-depth network analysis of these networks
investigating their degree and strength distribution, and go-
ing beyond these statistical properties providing evidence of
the presence of degree correlations, of a nontrivial k-core
structure and of weight degree correlations. Moreover, the
investigation of the spectral properties of the IsingNets will
demonstrate nontrivial signatures of criticality. This analysis
provides clear evidence that not only the degree distribution
of IsingNets is strongly different from the one of an Erdős-
Rényi random graph, but the network also obeys important
higher-order correlations reflecting the correlations existing in
the spin system configuration snapshots.

B. Degree and strength distribution

One of the most simple yet fundamental property of a
network is its degree distribution P(k) which characterize
globally the network starting from the knowledge of the
node’s degrees where the degree ki of the node i indicates the
sum of the links incident to it:

ki =
N∑

j=1

Ai j . (8)

Thus while the degree is a local property of the nodes the
degree distribution P(k) is able to characterize the global
properties of the networks. In particular scale-free [78–80]
and in general degree distribution with second 〈k2〉 (and
eventually first 〈k〉) moment diverging with the network size
have been shown to have a significant role in determining the
response of the network to random damage and the critical
behavior of the dynamics defined on top of these networks,
such as epidemic spreading and the Ising model [1,79].

For weighted networks it is also possible to define
weighted degree also called strength si of the generic node
i [81] given by the sum of the weights of its incident links:

si =
N∑

j=1

wi j . (9)

From the sequence of the node’s strengths, it is possible
to extract also the strength distribution P(s/s0) where s0

is the minimal strength of the links. This distribution has
been shown to display broad distributions in a number of
real weighted networks, such as collaboration networks and
airport networks [82].

In Fig. 11 we plot the degree P(k) and strength P(s/s0)
distribution for temperatures below and above the phase tran-
sition demonstrating that these distributions are broad. We
note that below the critical temperature Tc, the networks are
not only broad but also dense, i.e., having an average degree
growing with the network size (for models of these networks
see [74–77]).
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FIG. 11. Degree distribution P(k) and strength distribution
P(s/s0) of IsingNets obtained from the spin system of linear size
L = 40 formed by N = 104 nodes at temperature T = 2.12 and
T = 2.50. Panel (a) shows the degree distribution of IsingNet at T =
2.12. Panel (b) shows the strength distribution of the same network
as panel (a). Panel (c) is the same as panel (a) but obtained at T =
2.50. Panel (d) is the same as panel (b) but obtained at T = 2.50.

To quantify the scale-free nature of these distributions we
plot the ratio between the second moment, the average degree
〈k〉 and the average strength 〈s〉 as a function of the temper-
ature, showing that that 〈k〉, and 〈k2〉/〈k〉 are good indicators
of the critical point displaying a maximum for T = Tc without
noticeable finite size effects for the sizes investigated in this
work (see Fig. 12). We note that origin of such power laws is
not necessarily related to the presence of a critical point, as
the data sets in Fig. 11 are representative of regimes where
the correlation length is not much larger than L (and, for
T = 2.5, is smaller). We attribute these features of P(k) to the
strong correlations present in the system (so: not critical be-
havior, but rather, just correlation length much larger than the
lattice spacing).

FIG. 12. The average degree 〈k〉 (a) and the average strength 〈s〉
(b) are plotted together with the ratio 〈k2〉/〈k〉 (c) and 〈s2〉/〈s〉 (d) as
a function of temperature T . The dashed line indicates the critical
temperature Tc. The IsingNets are formed by N = 104 nodes.

C. Degree correlations

In order to go beyond single node statistics and to explore
how far IsingNets are from random networks with a given
degree distribution, in this section we characterize the degree
correlations [2,3] of the IsingNets. Degree-degree correlations
measure to what extent the degree of two end nodes of the
same link are correlated. Degree correlations are typically
classified as either assortative or disassortative. Assortative
degree correlations imply that highly connected nodes are
more likely to be connected to highly connected nodes while
low-degree nodes are more likely to be connected to low-
degree nodes than in a maximally random network with the
same degree distribution. Conversely, disassortative networks
are networks in which highly connected nodes are more likely
to be connected to low-degree nodes than in the maximally
random network with the same degree distribution. Examples
of assortative networks are social networks while examples
of disassortative networks include the Internet and the protein
interaction networks. The degree-degree correlations can be
quantified by considering the average degree of the neighbor
of a node knn(i) defined as

knn(i) = 1

ki

∑
j∼i

k j . (10)

When knn(i) tends to be higher for nodes of higher degree ki

the network is classified as assortative. Instead when knn(i)
is typically lower for nodes of higher degree ki then the net-
work is classified as disassortative. The IsingNets are clearly
displaying a disassortative behavior for T < Tc that deviates
strongly from the behavior of the null model in which the
distance matrix d is reshuffled (see Fig. 13). On the contrary,
for T > Tc the trend of knn versus k does not appear to be fully
monotonic, while nodes of larger degrees remain more likely
to connect to low-degree nodes.

Interestingly the degree correlations are also affecting the
average clustering coefficient C(k) [3,83,84] of nodes of de-
gree k which display a decay as a function of k typical of
networks with disassortative degree correlations (see Fig. 13).

Degree-degree correlations can also be detected by the
Pearson correlation coefficient r̄ [2] between degrees of linked
nodes which is plotted as a function of the temperature in
Fig. 14(a) showing a clear negative (disassortative) correla-
tions for low temperatures which strongly deviates from the
null model. In Fig. 14(b) we also report the average clustering
coefficient C as a function of the temperature showing that
IsingNets display a much larger average clustering coefficient
than the null model counterpart and that this average clus-
tering coefficient is higher deep in the ferromagnetic phase
(lower temperatures).

D. K-core structure

Networks can be decomposed in nested K cores charac-
terizing their core-periphery structure [85–87]. A K core is
a subgraph of the network formed by a set of M(K ) nodes
each having at least K connections with the other nodes of the
set. Power-law networks with exponent γ ∈ (2, 3] display a
significant K-core structure with the maximum K diverging
with the network size and a power-law decay of M(K ) as
a function of K . On the other hand Erdős-Rényi networks
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FIG. 13. Average nearest-neighbor degree knn and clustering co-
efficient C(k) on IsingNets obtained from Monte Carlo simulations
of the spin system of linear size L = 40 and corresponding null
models with N = 2000 nodes. The threshold distance of connecting
two nodes is the fifth nearest-neighbor average distance. The random
network is obtained by randomly permuting distances between node
pairs and nodes are connected with the same threshold. The average
neighbor degree knn is shown as a function of degree k on IsingNets
and corresponding null models. Panel (a) and (b) show knn obtained
at T = 2.12 (a) and T = 2.35 (b). Panel (c) and (d) show knn of the
corresponding null model at T = 2.12 (c) and T = 2.35 (d). Panel
(e) and (f) show C(k) obtained at T = 2.12 (e) and T = 2.35 (f).
Panel (g) and (h) show C(k) of the corresponding null model at
T = 2.12 (g) and T = 2.35 (h).

have a finite number of K cores also when the average degree
diverges. Here we show that IsingNets have a very rich K-core
structure having statistical properties that change below and
above the critical temperature (see Fig. 15). Indeed above
the critical temperature, we observe a behavior similar to
the expected behavior for sparse scale-free networks with
power-law exponent between two and three presenting a broad
(seemingly power-law straight line on a log-log plot) decay
of M(K ) versus K . However, below the critical temperature
where the average degree diverges, the K cores include more
nodes while the decay of M(K ) versus K is better approx-
imated by an exponential (straight line in a log-linear plot)
rather than by a power law.

FIG. 14. Pearson correlation coefficient r̄ (a) and average clus-
tering coefficient C (b) on IsingNets and corresponding null models
formed at different temperatures. The Pearson correlation coefficient
r is calculated on networks with 104 nodes and the average clustering
coefficient C is calculated for IsingNet with N = 2000 nodes coming
from Monte Carlo simulation with linear size L = 40. The thresh-
old distance of connecting two nodes is the fifth nearest-neighbor
average distance. The random network is obtained by randomly
permuting distances between node pairs and nodes are connected
with the same threshold.

E. Weight-topology correlations

Interestingly in weighted networks not only the network
topology can reveal relevant degree correlations showing that
the networks deviate from maximally random networks, but
also the weights can be distributed in a nonrandom way.
In particular, there are two main network analyses that are
able to detect weight-topology correlations. The first analysis
[81] involves studying the normalized strength s/k versus
the degree k for each node of the network. If the weights
are distributed randomly and independently on the degree
of the two end nodes there should not be any significant
dependence of s/k with k. Conversely if s/k increases with
k it implies that nodes with higher degrees are incident in
average to links with larger weights. The second analysis
[88] investigates the weight-topology correlations aiming at
revealing the weight heterogeneity among links that connect
to the same node. This heterogeneity if any can be quantified
by calculating the inverse participation ratio Y for the weights
of the links ending to node i, defined as

Yi =
∑
j∼i

(
wi j

si

)2

. (11)

If the weights wi j of the links (i, j) incident to node i
are homogeneous, Yi ∼ 1/ki. If the weights are highly het-
erogeneous, Y −1

i indicates the effective number of links with

FIG. 15. Fraction of nodes in the K − core M(K ) as a function
of the core size K on IsingNet and null model with N = 104 nodes
at T = 2.12 (a) and T = 2.50 (b). The IsingNets are generated from
2D Ising model Monte Carlo simulations of the spin system of linear
size L = 40. Panel (a) is shown with a linear-log scale, and panel
(b) is shown with a log-log scale.
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FIG. 16. The ratio of strength and degree and the inverse partic-
ipation ratio on IsingNets obtained from Monte Carlo simulations of
the spin system of linear size L = 40 are shown versus degree on
networks formed at different temperatures. The networks are formed
by N = 5000 samples. The threshold distance of connecting two
nodes is the fifth nearest-neighbor average distance. The random net-
works are obtained by randomly permuting distances between node
pairs and nodes are connected with the same threshold. The first row
shows the strength degree ratio s/k versus degree k on IsingNets,
and the second row shows which on corresponding random net-
works. The third row shows the inverse participation ratio Y (k)
versus degree k. The networks are formed by simulation obtained
at temperature T = 2.12 (left column) and T = 2.35 (right column).

significant weight. Interestingly when we measure Yi for the
IsingNets we observe that this second type of weight hetero-
geneity is missing in the data and that Yi ∼ 1/ki indicating that
for each node i the weights of the links incident to it have all
weights of comparable order or magnitude (see Fig. 16).

F. Spectral properties of Ising networks

The IsingNets do not only have very interesting com-
binatorial and statistical properties encoded in their highly
correlated structure but display also relevant geometrical
properties reflected in their spectrum. In particular, the critical
IsingNets display nontrivial spectral properties characterized
by a power-law scaling close to criticality and a highly de-
generate spectral gap. The spectral properties of networks
are usually probed by considering the spectrum of the graph
Laplacian describing diffusion processes. The graph Lapla-
cian � is defined as � = D − A where D is the diagonal
matrix whose diagonal elements are the degrees of the nodes
(i.e., Dii = ki), and A is the adjacency matrix of the net-
work. The graph Laplacian � is semidefinite positive and the
spectrum always includes a zero eigenvalue with degeneracy
given by the number of connected components of the network,
i.e., given by the Betti number β0. The smallest nonzero

FIG. 17. Cumulative distribution ρc(λ) of the eigenvalues λ of
graph Laplacian � of IsingNets and corresponding null models at
different temperatures T . The distribution is shown at T = 2.12 (a),
T = 2.27 (b), T = 2.50 (c), and T = 3.50 (d). Data are shown for
IsingNets generated from Monte Carlo simulations of spin system of
linear size L = 40. In panel (b), the dashed lines indicate a power-law
growth shown in Eq. (13) with exponent d̂ = 0.78 ± 0.04.

eigenvalue of the graph Laplacian of a network is also called
the Fiedler eigenvalue and is typically indicated as λ2 (as it is
the second smallest eigenvalue in a connected network). In the
literature, often one distinguishes between network models
displaying a finite Fiedler eigenvalue λ2 → λ	

2 > 0 in the limit
N → ∞ and network models in which λ2 → 0 as N → ∞.
In the first case, we say that the networks display a spectral
gap whereas in the latter case, we say that the “spectral gap
closes.” Examples of networks with finite spectral dimension
are random graphs above the percolation threshold and exam-
ples of networks in which the spectral gap closes are finite
dimensional lattices.

In several networks in which the spectral gap closes, it
is possible to observe the spectral dimension dS [6,89]. The
spectral dimension dS is the dimension perceived by diffusion
processes on the networks encoded in the graph Laplacian.
On a lattice, the spectral dimension coincides with the Eu-
clidean dimension d of the lattice while on general network
topology, the spectral dimension can be distinct from the
Hausdorff dimension of the network. Interestingly also small
world networks with infinite Hausdorff dimension can have
a finite spectral dimension dS � 2 [6,90]. The spectral di-
mension determines the scaling of the cumulative density of
the eigenvalues ρc(λ) of the graph Laplacian for λ 
 1 in
networks where the spectral gap closes. In particular we have
that networks with a spectral dimension dS have a cumulative
distribution ρc(λ) that obeys for λ 
 1,

ρc(λ) 
 CλdS/2, (12)

where C is a constant. In Fig. 17 we show that the IsingNets
display nontrivial spectral properties that have very peculiar
characteristics strongly deviating from their corresponding
null model. Particularly noticeable are the spectral prop-
erties of IsingNets close to the critical point where one
observes the coexistence of a highly degenerate finite Fiedler
eigenvalue λ2 with a power-law scaling of the cumulative
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FIG. 18. The von Neumann entropy SV N of different system size
L is shown versus the temperature T . The IsingNets are formed by
N = 104 nodes. The dashed line indicates the critical temperature Tc.

distribution

ρc(λ) 
 Cλd̂/2, (13)

for λ > λ2 with a exponent given by d̂ 
 0.78 ± 0.04 for
L = 40. Above the critical temperature, the degeneracy of the
Fiedler eigenvalue is reduced and one observes a nontrivial
spectrum reminiscent of the scale-dependent spectral dimen-
sion discussed in Ref. [91] within the critical region that at
higher temperatures converges with the spectrum of the null
model. Below the critical dimension, the spectral gap remains
highly degenerate while the rest of the spectrum remains
broadly distributed.

The spectrum of the graph Laplacian is also key to char-
acterizing the network von Neumann entropy SV N [92–94]
defined as

SV N = −
∑

λ

λ

〈k〉N ln

(
λ

〈k〉N
)

. (14)

The von Neumann entropy strongly departs from the von
Neumann entropy of the null model for low temperatures
displaying a local maximum for T = Tc (see Fig. 18).

An interesting open question that will be addressed in
the following works is the relation between these spectral
properties of the IsingNets graph Laplacians and the intrinsic
dimension and the entropy measures that have been recently
proposed starting from the unsupervised PCA analysis of spin
systems [12,63].

V. CONCLUSIONS

In this work we have launched a systematic network
analysis of unsupervised learning of different states of mat-
ter. The analyzed IsingNets obtained from Monte Carlo
simulations of the 2D Ising model are shown to reveal
the statistical, combinatorial, geometrical, and topologi-
cal organization of these networks. Through the paper,
we have shown that true IsingNets are highly nonrandom
by comparing their structural properties with the struc-
tural properties of the randomized counterparts. Importantly,
we have also identified several indicators of the phase
transition.

We have addressed the characterization of IsingNets fol-
lowing two different approaches. In the first approach, we

have studied the structure of IsingNets as the filtration pa-
rameter r is increased, which enforces an effective percolation
process in which nodes are subsequently aggregated by con-
sidering connected pairs of nodes at increasing distances.
This percolation process reveals the presence of two giant
components in IsingNets in the ferromagnetic state, each one
corresponding to configurations with different magnetization.
The same filtration scheme has also been used here to study
the topology of the data by constructing the clique complexes
of the IsingNets and calculating their persistent diagram. In-
terestingly, the persistent diagrams reveal that real IsingNets
are formed by compact clusters as the Betti numbers of their
clique complex are strongly suppressed with respect to the
clique complex of the corresponding randomized null models.
This network analysis conducted across the filtration is also
enriched by effective visualization of the network embedding
conducted using MST and the UMAP embedding and by
the statistical characterization of the distribution of closeness
centralities.

Second, our investigation of IsingNets has been conducted
by considering only links at a distance less than a threshold
value r taken to be the average distance of the fifth nearest-
neighbor nodes according to the (fully connected) distance
matrix. These networks display a broad degree and strength
distribution but their complexity extends well beyond the de-
gree and strength distribution because IsingNets have strong
degree-degree correlations and weights-degree correlations,
and a rich core structure that changes significantly across the
phase transition reflecting the highly nontrivial structure of the
spin system that they describe.

This work opens new perspectives for the unsupervised
characterization of the study of phases of matter using the
tools of network science. This work can be extended in differ-
ent directions. The analysis performed here for the 2D Ising
model can be extended to the study of other classical criti-
cal phenomena with the goal of characterizing the possible
presence or the lack of universalities among the networks con-
structed from spin system configuration snapshots. Similarly,
the same toolbox can be utilized to attack out-of-equilibrium
critical behavior. Widening the class of models where our
analysis can lead to physical insight is fundamental to estab-
lish ground for possible analytical treatments. In particular,
before this is done, a key point to be understood is the relation
between correlation length and sampling in models in differ-
ent universality classes. The reason is that a naive connection
(number of samples is proportional to the correlation length
resolved, modulo dimensional factors) is likely not correct,
based on earlier manifold learning characterization of path
integrals [95] (which did not observe such relation, at least
in simple quantities such as the intrinsic dimension).

Another natural extension is to consider path integrals of
quantum systems [95]. While the data structures of such ob-
jects might feature anisotropies due to the different roles of
space and imaginary time correlations, they shall be equally
amenable to the analysis discussed here. Moreover, single-
sliced path integrals can also be represented as networks, as
discussed in Ref. [56]: this last route provides a very promis-
ing venue for future investigation is the application of the
proposed network science tools to study directly experimental
data of many-body wave function snapshots.
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