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1. Introduction

What is the probability that a random line in the (affine or projective) plane intersects
a curve of given degree in a given number of points? More precisely, what happens if we 
consider a finite field with q elements as base field, and then we ask the same question 
for a field with q2, q3, . . . , qN elements, analyzing how these probabilities behave as N
goes to infinity? In this work we investigate this problem by means of algebro-geometric 
techniques. Recently, the interplay between combinatorial problems and algebraic tech-
niques has become more and more common, and has been revealing to be extremely 
fruitful. Here we refer in particular to the area called combinatorial geometry, which is 
described in the abstract of [1] as the area dealing with “the possible range of behaviors
of arbitrary finite collections of geometric objects such as points, lines, or circles with 
respect to geometric operations such as incidence or distance”. As Tao points out in [1], 
in the last decade algebraic geometry and algebraic topology helped to unriddle several 
important questions and conjectures in this area. Amongst the most prominent of such 
problems, one can mention the distinct distance problem (see [2]), the Kakeya problem 
over finite fields (see [3] and later improvements in [4] and [5]) and the Dirac-Motzkin 
conjecture (see [6]). For a nice survey about these topics, see [1].

A motivation for the problem we investigate in our paper comes from the famous 
Sylvester-Gallai theorem. Sylvester posed it as a question in [7], which was raised again 
by Erdös in [8] and later solved by Melchior (see [9]) and Gallai (see [10]). Given a set 
of points in the affine plane, a line is called ordinary if it passes through exactly two of 
them.

Theorem 1.1 (Sylvester-Gallai). Suppose that P is a finite set of points in the real plane, 
not all on a line. Then P admits an ordinary line.

This theorem is clearly false if we work over finite fields, since in this case we can 
pick P to be the whole plane. Moreover, the theorem is false also on the complex plane: 
in fact, in [11] Serre observed that the 9 inflection points of a cubic curve do not satisfy 
the requirements of Silvester-Gallai theorem; also, the so-called 3-nets provide other 
counterexamples, see [12,13].

In the same circle of ideas, in [14], Solymosi considered the following situation. Given 
a set P of points in the plane, a line is called k-rich, if it contains precisely k points of P . 
For example, a 2-rich line is an ordinary line. Then, Solymosi’s theorem reads as:

Theorem 1.2 (Solymosi). For any k ≥ 4, there is a positive integer n0 such that for
n > n0 there exists P ⊆ R2 such that there are at least n2− c√

log n k-rich lines, but no
k + 1-rich lines. Here, c = 2 log(4k + 1).
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A recent outstanding result of Green and Tao (see [6]) gives an almost complete 
description of the structure of sets with few ordinary lines in the real plane. In the same 
paper, the authors also proved the Dirac-Motzkin conjecture and a less known problem, 
referred in the literature as the orchard problem.

Our work is inspired by these results. Here, we consider an algebraic plane curve C

of degree d over a finite field Fq with q elements, where q is a prime power, namely
the set of points in the projective plane P 2

Fq
that are zeros of a homogeneous trivariate 

polynomial of degree d. Given such a curve, we can define the probability for a line in P 2
Fq

to intersect it in exactly k points. Notice that here we consider the mere set-theoretic 
intersection: no multiplicities are taken into account. We can then consider the same kind 
of probability, keeping the same curve C — namely, the same trivariate polynomial — 
but changing the base field from Fq to Fq2 , Fq3 and so on. In this way, for every N ∈ N

we define the numbers pNk (C), namely the probability for a line in P 2
FqN

to intersect C in 

exactly k points. If the limit as N goes to infinity of the sequence 
(
pNk (C)

)
N∈N exists, we

denote this number by pk(C). The main tool we use to compute these numbers when the
curve C is absolutely irreducible and with simple tangency is an effective version of the 
Chebotarev theorem for function fields. Here, by absolutely irreducible we mean that the 
curve is irreducible over the algebraic closure of its field of definition. By asking that the 
curve has simple tangency we require that there exists a line whose intersection with C

consists of simple intersections except for one, which is a double intersection. These are 
the main results of our paper:

Theorem 1.3. Let C be an absolutely irreducible plane algebraic curve of degree d over Fq,
where q is a prime power. Then the numbers {pk(C)} are well-defined, namely the cor-
responding limits exist.

Theorem 1.4. Let C be an absolutely irreducible plane algebraic curve of degree d over Fq,
where q is a prime power. Suppose that C has simple tangency. Then for every k ∈
{0, . . . , d} we have

pk(C) =
d∑

s=k

(−1)k+s

s!

(
s

k

)
.

In particular, pd−1(C) = 0 and pd(C) = 1/d!.

We approached this problem using Galois theory techniques; during a revision of our 
work, we have been informed4 that some of the questions investigated in this paper 
(or similar ones) have already appeared in the literature, though expressed in a different 
language and with different purposes (see [15] and [16]). Both the two cited paper use the 
Chebotarev theorem for function field as a key ingredient. After studying the Chebotarev 

4 We thank two anonymous referees for pointing us to the relevant literature.
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theorem, we realized that we could use it to provide a much shorter proof for our result 
than the one we initially used, and that our initial approach, although we were not aware 
of that, did not differ too much from the techniques that lead to the Chebotarev theorem. 
However, we still think that our initial approach could be of interest for researchers in 
discrete and combinatorial geometry. In fact, although it provides less information than 
the Chebotarev theorem, it can serve as an introduction to this technique because of 
its self-containedness and of the avoidance of technical aspects that are present in other 
works. Because of this, in the initial part of this paper we report our initial approach 
to the problem, and then we explain how to use the Chebotarev theorem to obtain 
Theorem 1.4. After that, we show how the same technique provides a formula for the 
probabilities of intersection between a given plane curve of degree d and a random plane 
curve of degree e (Proposition 5.5). Claus Diem then pointed out to us that the material 
we present has essentially already appeared in SGA1 [17] by Grothendieck, but it is “a 
bit hidden”, as he said; he suggested another way of presenting the material, which we 
found better than the one we used, and we adopted this choice of exposition.5

We briefly summarize how the problem we investigate is discussed in the aforemen-
tioned literature. In [15], the focus is a variant of the so-called Bateman-Horn conjecture
for polynomial rings of finite fields. The original Bateman-Horn conjecture concerns the 
frequency of prime numbers among the values of a system of polynomials at integer num-
bers. One of its consequences is Schinzel conjecture, which asks whether, given polynomi-
als f1, . . . , fr ∈ Z[x], then for infinitely many n ∈ Z we have that f1(n), . . . , fr(n) are all
prime. Bary-Soroker and Jarden consider the situation in which Z is replaced by Fq[t] for
some prime power q. More precisely, given polynomials f1, . . . , fr ∈ Fq[t][x], they want
to compute the number of polynomials g ∈ Fq[t] such that f1

(
t, g(t)

)
, . . . , fr

(
t, g(t)

)
are

irreducible. In particular, they focus on the case when g is linear, namely on the compu-
tation of the pairs (a1, a2) ∈ F2

q such that f1(t, a1t +a2), . . . , fr(t, a1t +a2) are irreducible.
In our language, this is the number of lines in the plane such that the polynomial ob-
tained by restricting a plane curve on such a line is irreducible. The authors improve a 
result by Bender and Wittenberg (see [18, Theorem 1.1 and Proposition 4.1]) and show 
that this number goes as q2/d. To prove this, they make use of an effective version of
the Chebotarev density theorem (see the appendix of [19]). The number computed by 
Bary-Soroker and Jarden is similar to the quantity p0 that we define, though it is not
the same, since it can happen that a line does not intersect a curve at any point over Fq,
but the polynomial given by the restriction of the curve to the line can be reducible. 
Also the behavior as d → ∞ of these two quantities is different: the one by Bary-Soroker 
and Jarden goes to zero, while p0 tends to 1/e.

In [16], the author focuses on the complexity of computation of the so-called discrete 
logarithm in the group of divisors of degree 0 of a nonsingular curve. Given two elements 
a and b in a group G, the discrete logarithm logb a is an integer k such that bk = a. On
a smooth curve C, one can consider formal integer sums of points of C, and define an 

5 We thank Claus Diem for his careful description of the alternative way of presenting the material.
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equivalence relation on them in order to obtain the class group of C. One can therefore 
try to compute discrete logarithms in the class group of a curve, and in particular for 
those formal integer sums of points whose coefficients add up to zero, namely the ones 
of degree 0; this has important applications in cryptography. In [16, Theorem 2], Diem 
proves that computing the discrete logarithm has an expected time of Õ(q2− 2

d−2 ) for
those curves over Fq that admit a birational plane model D of degree d such that there
exists a line in the plane intersecting D in d distinct points over Fq. Then the author
computes the number of lines in the plane intersecting D in exactly d points over Fq

(see [16, Theorem 3]), namely the quantity pd(D) in our language. As in the previous
paper, this is done using an effective version of the Chebotarev density theorem (see 
[20]).

Recently, a new paper [21] appeared dealing with the same problem we investigate in 
our work, but allowing the given curve to be constituted of several irreducible compo-
nents. We have been informed by Kaloyan Slavov that also Birch and Swinnerton-Dyer 
investigated in [22] this topic, providing a formula for the quantity p1(C) + · · · + pd(C)
in our language. We thank him for pointing out to us this reference, and for useful 
suggestions.

The rest of the paper is structured as follows. Section 2 introduces some preliminary 
results, namely the Lang-Weil bound for the number of points of a variety over a fi-
nite field (Subsection 2.1) and some known facts about Galois groups of plane curves 
(Subsection 2.2). Sections 3 and 4 present our initial approach to the problem, which 
provides less information than the one obtained via the Chebotarev theorem, but uses 
more elementary tools (namely, some basic facts about étale maps). Section 5 shows 
how to use the Chebotarev density theorem in order to prove Theorems 1.3 and 1.4 and 
Proposition 5.5.

2. Preliminaries

2.1. Lang-Weil bound

One of the main tools we use in our work is the so-called Lang-Weil bound for the 
number of points of a variety over a finite field (see [23, Theorem 1]). For a nice ex-
position of this result, see Terence Tao’s blog.6 Let F be a field and consider an affine 
algebraic variety V over F . This means that we are given finitely many polynomials 
P1, . . . , Pr ∈ F [x1, . . . , xn], which generate the so-called ideal of V , denoted I(V ). For
any extension of fields F ⊆ K, we denote by V (K) the set of common zeros in Kn of 
the polynomials in the ideal I(V ), considered now as an ideal in K[x1, . . . , xn]. One says
that a variety V is irreducible if I(V ) is prime in F [x1, . . . , xn]. For our considerations
we will need a stronger notion of irreducibility, which we introduce in the following 
definition.

6 https://terrytao .wordpress .com /2012 /08 /31 /the -lang -weil -bound/.
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Definition 2.1. We say that an affine variety V over a field F is absolutely irreducible if 
the ideal I(V ) is prime in F [x1, . . . , xn], where F is an algebraic closure of F .

Definition 2.2. We say that an affine variety V ⊆ Fn defined by polynomials P1, . . . , Pr

has complexity M if n, r ≤ M and deg(Pi) ≤ M for all i ∈ {1, . . . r}.

Theorem 2.3 (Lang-Weil bound). Let V be an absolutely irreducible variety over a finite 
field F of complexity at most M . Then

|V (F)| =
(
1 + OM (|F |− 1

2 )
)
|F |dim(V ) .

By writing OM (|F |− 1
2 ) we mean that there exists a nonnegative constant δM depend-

ing on M , but not on V , such that

(
1 − δM |F |− 1

2 )
)
|F |dim(V ) ≤ |V (F)| ≤

(
1 + δM |F |− 1

2 )
)
|F |dim(V ) .

Using an inclusion-exclusion argument, one obtains by induction on the dimension:

Corollary 2.4. Let V be a variety over a finite field F of complexity at most M . Then

|V (F)| =
(
c + OM (|F |− 1

2 )
)
|F |dim(V ) ,

where c is the number of irreducible components of V that are absolutely irreducible.

All the considerations and results we stated so far hold also for projective varieties 
over finite fields. By a projective variety over a field F we mean a variety in the projective 
space Pn

F given by finitely many homogeneous polynomials P1, . . . , Pr ∈ F [x0, . . . , xn].
From now on, all the varieties we consider are projective, or are open subsets of projective 
varieties.

2.2. Galois group of a plane curve

The aim of this section is to recall a construction (see [24]) which associates a Galois 
group to a plane algebraic curve. We will see in the following sections that this group 
determines the irreducibility of certain surfaces; this will be the key to derive a formula 
for the probabilities we are interested in.

Let q be a prime power, namely q = pr for some prime number p. We denote by Fq

the finite field with q elements. Let C be an absolutely irreducible algebraic curve in P 2
Fq

. 
Define X1 to be the unique subvariety of C × P̌ 2

Fq
— here (̌·) denotes the dual projective

plane — such that, for every extension field K of Fq,

X1(K) =
{
(w, [�]) ∈ C(K) × P̌ 2(K) : w ∈ �

}
and X0 := P̌ 2

F .

q
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For a line � ⊆ P 2
K , we write [�] for the corresponding point in P̌ 2(K). The correspondence

is given by

P̌ 2(K) � (a : b : c) ←→
{
(x : y : z) ∈ P 2(K) : ax + by + cz = 0

}
.

Definition 2.5. Using the notation we have already introduced, we define the map 
π : X1 −→ X0 to be the projection onto the second component.

Since X0 is irreducible, we can define its function field, denoted K(X0). This is the
field of equivalence classes of morphisms ϕ : U −→ A1

Fq
, where U is any (Zariski) open

subset of X0; two morphisms are considered equivalent if they agree on a non-empty
open subset. Consider the projection ρ : X1 −→ C on the first component: its fibers are
lines in the dual projective space. Hence all these fibers are irreducible varieties of the 
same dimension. This implies that X1 is irreducible by [25, Exercise 11.4.C]; its function
field is denoted K(X1).

Lemma 2.6 (see [24, Definition 1.3]). The projection π : X1 −→ X0 is a quasi-finite
dominant separable morphism of degree d.

Because of Lemma 2.6, the induced map π∗ : K(X0) −→ K(X1) between fields of
rational functions realizes K(X1) as a finite separable extension of K(X0) of degree d.
By the primitive element theorem, the field K(X1) is generated over K(X0) by a single
rational function h ∈ K(X1) satisfying P (h) = 0 for an irreducible monic polynomial P
over K(X0) of degree d.

Definition 2.7 (Galois group, see [24, Definition 1.3]). Using the notation just introduced, 
we define the Galois group Gal(C) of C to be the Galois group of a splitting field of the 
polynomial P over K(X0). In other words, Gal(C) is the Galois group of a Galois closure
(see [26, Remark 4.77]) of the field extension K(X0) ↪→ K(X1). The group Gal(C) is
independent of the choice of h and it can be regarded as a subgroup of the permutation 
group Sd of the roots of P .

Definition 2.8 (Simple tangency). Let C be an absolutely irreducible curve of degree d

in P 2
Fq

. We say that C has simple tangency if there exists a line � ⊆ P 2
Fq

intersecting C

in d − 1 smooth points of C such that � intersects C transversely at d − 2 points and has 
intersection multiplicity 2 at the remaining point.

Remark 2.9. A general curve C ⊆ P 2
Fq

of degree d has simple tangency. In fact, notice
that having simple tangency is an open condition, therefore it is enough to exhibit a 
single example in order to obtain the claim. To do that, consider the curve of equation

x2 P (x, y) + z Q(x, y, z) = 0,
7



where P is a homogeneous polynomial with d − 2 distinct roots in Fq and Q is a homo-
geneous polynomial of degree d − 1.

Proposition 2.10 ([24, Proposition 2.1]). Let C ⊆ P 2
Fq

be an absolutely irreducible plane
curve of degree d with simple tangency. Then the Galois group Gal(C) of C is the whole 
symmetric group Sd.

Claus Diem pointed out to us that in the original proof of Proposition 2.10 it is written 
that “For k = 2 the variety U2 is a Pn−2-bundle over C and therefore irreducible”. He
explained us that this is impossible for dimension reasons. A first attempt for a fix would 
be to replace C by C ×C. It turns out that then the fibers are not (always) proper, and 
then one cannot conclude that U2 is irreducible. A correct argument has already been
given by Ballico and Hafez in [27].

3. Galois theory for étale maps

In this section we associate a Galois group to a morphism (satisfying certain con-
ditions) between two irreducible smooth varieties. We show that this concept admits 
a geometric counterpart, and we use this characterization in the next section. As we 
pointed out in the Introduction, the results of this and the following section are sub-
sumed by the ones of Section 5. Nevertheless, we believe that the approach presented 
in these sections can be useful to help understanding the setting that is used also in 
the Chebotarev theorem to solve this kind of problems. Claus Diem pointed out that 
the material in this section is essentially already present in SGA1 [17]; moreover, he 
suggested us a clearer and shorter way to present the material about Galois closures 
of étale maps. We follow his suggestions, and we thank him for sharing with us this 
material.

For technical reasons, we develop the theory for a special class of morphisms, namely 
the one of étale maps. They model, in the algebraic setting, the notion of “local isomor-
phism” for the analytic topology. Recall that, in differential geometry, a smooth map 
between two smooth manifolds is a local diffeomorphism if it induces an isomorphism at 
the level of tangent spaces. For an affine variety X cut out by polynomials P1, . . . , Pr,
one defines the tangent cone CO(X) of X at the origin as the variety defined by the
homogeneous parts of minimal degree of each of the polynomials P1, . . . , Pr; the tangent
cone at any other point is obtained by translating it to the origin and by applying the 
previous definition. The tangent cone plays for étale morphisms the role played by the 
tangent space for local diffeomorphisms. A morphism f : X −→ Y between varieties 
over an algebraically closed field is étale at a point x ∈ X if it induces an isomorphism 
between the tangent cones Cx(X) and Cf(x)(Y ). A map is called étale if it is étale at
every point (see [28, Chapter 2]). For more general varieties, one adopts the definition 
of an étale map as a morphism which is flat and unramified (see [29, Chapter 1]).

We are going to define a notion of Galois closure for étale maps.
8



Remark 3.1. Consider a separable extension of fields K ⊆ L. We can define the Galois 
closure of this extension as the minimal extension M of L which is Galois over K. In 
the language of schemes, the extension K ⊆ L corresponds to a connected étale map. 
The two varieties of this map have each a single point, but the structure of schemes still 
allows to encode the field extension. We can hence consider the classical notion of Galois 
closure for field extensions as the “toy” case of the notion of Galois closure of étale maps.

We mimic the classical notion of Galois closure for field extensions in the context 
of maps. The Galois closure of a map, then, is defined as a map satisfying a universal 
property similar to the one satisfied by the Galois closure of a field extension.

Definition 3.2. Let g : Z −→ X be a connected étale map, namely both Z and X are 
connected. We say that Z is Galois over X if the group of automorphisms of Z is 
transitive on the geometric fibers of g.

Definition 3.3. Let f : X −→ Y be a connected étale morphism. A Galois closure of f
is an étale morphism Z −→ X such that Z is Galois over Y and such that Z −→ X

is minimal under this condition. The latter sentence means that if Z −→ X factors as 
Z −→ Z ′ −→ X, where Z ′ is Galois and connected, then actually Z = Z ′.

We now provide a characterization of Galois closures of étale maps, showing that the 
Galois closure always exists.

Definition 3.4. Let f : X −→ Y be a finite étale map of degree d between two irreducible 
smooth varieties. We define the Galois scheme (see [30, Section 3]) of f as the scheme 
GS(f) such that for any extension K of the ground field of X and Y , we have

GS(f)(K) =
{
(x1, . . . , xd) ∈ Xd(K) : f(x1) = · · · = f(xd), xi 
= xj for all i 
= j

}
.

Notice that the Galois scheme is the fiber product of d copies of the map f minus 
(
d
2
)

small diagonals. Because of this, and since f is a finite map, we have

dim GS(f) = dimX = dimY. (1)

There is an induced map F : GS(f) −→ Y , sending (x1, . . . , xd) to f(x1), which is
dominant, and each point y ∈ Y has d! preimages. Notice that GS(f) is Galois over Y .

Proposition 3.5. Let f : X −→ Y be a finite connected étale map of degree d between 
two irreducible smooth varieties. Pick a point y0 ∈ Y and let (x1, . . . , xd) be a fixed
permutation of the (geometric) fiber of f over y0. Let Z be the connected component
of GS(f) containing (x1, . . . , xd). Then F |Z : Z −→ Y is a Galois closure of f : X −→ Y .

Proof. We have to prove that Z is Galois over Y and that Z is minimal with respect 
to this property. Since GS(f) is Galois over Y , also the restriction of F to any of its 
9



connected components is so, hence Z is Galois over Y . Suppose now that we have a 
factorization Z −→ Z ′ −→ X with Z ′ Galois over Y . This induces a factorization of the 
inclusion Z ↪→ GS(f) as Z −→ Z ′ ↪→ GS(f), and this implies that Z = Z ′. �
Remark 3.6. Note that the permutation group Sd of d elements is a group of auto-
morphisms of GS(f) over Y acting transitively on the fibers of F . Hence the stabilizer 
of Z under this group is a group of automorphisms of F |Z acting transitively on the
fibers (which shows that Z is Galois over Y ). It follows that the number of irreducible 
components of the Galois scheme GS(f) coincides with the number of cosets of this 
stabilizer.

We notice that, if we consider the étale map of varieties induced by a separable 
extension of fields K ⊆ L, then the spectrum of a Galois closure (in the field sense) of 
K ⊆ L satisfies the universal property of the Galois closure (in the map sense, namely 
as in Definition 3.3).

Definition 3.7. Let f : X −→ Y be a finite étale morphism between irreducible smooth 
varieties. Since f is dominant, it determines a field extension K(Y ) ↪→ K(X). We define 
the Galois group Gal(f) of f to be the Galois group of the extension K(Y ) ↪→ E, where 
E is a Galois closure (see [26, Remark 4.77]) of K(Y ) ↪→ K(X).

Proposition 3.8. For every finite étale morphism f : X −→ Y of smooth irreducible va-
rieties the Galois group of f is the stabilizer of the Galois closure Z of f in the Galois 
scheme GS(f).

Proof. The proof follows if we can show that the base change of a Galois closure is still 
a Galois closure if it is connected. In fact, if this is true, given a Galois closure Z −→ Y

of f , we can consider its base change at the generic point of Y . The base change of 
Z −→ X −→ Y under this map is SpecK(Z) −→ SpecK(X) −→ SpecK(Y ). We then
know that K(Z) is a Galois closure of K(Y ) ⊆ K(X), and so Gal

(
K(Z)/K(Y )

)
is Gal(f).

However, Gal
(
K(Z)/K(Y )

)
coincides with the stabilizer of Z in GS(f), because base

change preserves the group of automorphism lying over the base and permuting the fibers 
(which makes the corresponding map Galois over the base).

Hence, we need to show that the base change of a Galois closure is still a Galois 
closure if it is connected. Suppose that g : W −→ Y is a morphism. Then the map 
f ′ : X×Y W −→ W is étale by [31, Lemma 38.34.4]. Assume that X×Y W is connected;
then by base change Z ×Y W is a union of connected components of GS(f ′). Therefore
Z ×Y W is a Galois closure of f ′ when it is itself connected. �

Now we cast the notions defined so far into the framework of Galois schemes of 
morphisms (Corollary 3.12). After that, we recall the notion of simple tangency for a 
curve and highlight its consequences on Galois groups.
10



Definition 3.9. For an absolutely irreducible curve C ⊆ P 2
Fq

of degree d, define VC to be
the set of points in X0 = P̌ 2

Fq
such that the restriction of the map π : X1 −→ X0 from

Definition 2.5 to UC := π−1(VC

)
is étale.

Remark 3.10. Notice that the set VC is open and non-empty. In fact, since the map
π : X1 −→ X0 is separable, the general point of X0 belongs to VC . Moreover, by
Lemma 2.6 the map π is quasi-finite, and since both X0 and X1 are projective vari-
eties, it is finite, hence closed. The locus of point in X1 where π is ramified is closed
(since it is locally defined by the vanishing of the minors of a Jacobian matrix), so its 
image under π is closed, too. Therefore the locus in X0 over which π is unramified is
open and non-empty. It is then enough to ensure that π : UC −→ VC is flat. Now, the
locus in the domain where a map is flat is open (see [31, Tag 0398, Theorem 36.15.1,]), 
and flat maps are open morphisms (see [31, Tag 01U2, Lemma 28.24.9]), so this shows 
that VC is open. The fact that VC is non-empty is ensured by the generic flatness result
(see [31, Tag 0529, Proposition 28.26.1]).

Lemma 3.11. Let C be an absolutely irreducible curve of degree d over Fq. Then the
restriction to UC := π−1(VC

)
of the map π : X1 −→ X0 from Definition 2.5 is a

finite separable dominant étale morphism between smooth absolutely irreducible vari-
eties.

Proof. We know from Section 2.2 that both X0 and X1 are smooth and absolutely irre-
ducible. Since VC and UC are open and non-empty, the same is true for them. Moreover, π
is a quasi-finite separable dominant morphism between projective varieties (Lemma 2.6) 
and so it is finite. Hence, the same holds for its restriction π|UC

. By Remark 3.10, the 
map is étale, and this concludes the proof. �

By unravelling the definitions, in the light of Lemma 3.11 we obtain:

Corollary 3.12. For an absolutely irreducible projective plane curve C over Fq, we have
Gal(C) ∼= Gal

(
π|UC

)
.

The interpretation of the Galois group of a curve provided by Corollary 3.12 allows 
to use Proposition 3.8 and hence to deduce the irreducibility of the Galois scheme when 
the Galois group is the full symmetric group.

Corollary 3.13. Suppose that C is an absolutely irreducible curve in P 2
Fq

of degree d with
simple tangency. Then, the Galois group Gal

(
π|UC

)
is the full symmetric group, and so 

the Galois scheme GS
(
π|UC

)
is irreducible.

Proof. This follows from Corollary 3.12 and Proposition 3.8. �
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4. Probabilities of incidence

In this section we define probabilities of intersection between a random line and a
given curve in the projective plane over a finite field (Definition 4.1). We then prove the 
main result of our paper, namely Theorems 1.3 and 1.4, by showing that its counterpart 
for morphisms hold (Theorems 4.5 and 4.7). We will re-prove these results in Section 5
by using the Chebotarev density theorem.

Definition 4.1 (Probabilities of intersection). Let q be a prime power and let C be a plane 
projective absolutely irreducible curve of degree d over Fq. For every N ∈ N and for every
k ∈ {0, . . . , d}, the k-th probability of intersection pNk (C) of lines with C over FqN is

pNk (C) :=

∣∣∣{lines � ⊆ P 2
FqN

: |�(FqN ) ∩ C(FqN )| = k
}∣∣∣

q2N + qN + 1 .

Notice that q2N + qN + 1 is the number of lines in P 2
FqN

.

The aim of this paper is to prove that the limit as N goes to infinity of the quanti-
ties pNk (C) exists for every k, and to give a formula for these limits, provided that some
conditions on the curve C are fulfilled.

The following result is a direct consequence of Definitions 4.1 and 2.5.

Lemma 4.2. Let C be a plane projective absolutely irreducible curve of degree d over Fq.
For every k ∈ {0, . . . , d} we have

pNk (C) =

∣∣∣{[�] ∈ P̌ 2(FqN ) : |π−1([�])(FqN )| = k
}∣∣∣

q2N + qN + 1 .

Via Lemma 4.3 and Definition 4.4 we reduce the problem of computing intersection 
probabilities for curves to the analogous problem for morphisms.

Lemma 4.3. Let C be a plane projective absolutely irreducible curve of degree d over Fq.
Let VC ⊆ P̌ 2

Fq
be as in Definition 3.9. For every N ∈ N and for every k ∈ {0, . . . , d},

define

p̃Nk (C) :=

∣∣∣{[�] ∈ VC(FqN ) : |π−1([�])
(
FqN

)
| = k

}∣∣∣
|VC(FqN )| .

Then lim
N→∞

pNk (C) exists if and only if lim
N→∞

p̃Nk (C) exists, in which case the two numbers
coincide.
12



Proof. It is enough to show that the probability for a point to lie in P 2(FqN ) \ VC(FqN )
goes to zero as N goes to infinity. This is a consequence of the Lang-Weil bound (Theo-
rem 2.3). In fact, since the complement of VC has dimension at most 1:

∣∣P 2
FqN

(FqN ) \ VC(FqN )
∣∣

q2N + qN + 1 ∼
(
c + O(q−N/2)

)
qN

q2N → 0 ,

where the constant c is the number of irreducible components of the complement 
of VC . �
Definition 4.4. Let f : X −→ Y be a finite étale morphism of degree d, where q is a 
prime power, between smooth irreducible varieties over Fq. For every N ∈ N and for
every k ∈ {0, . . . , d}, we define the k-th preimage probability pNk (f) to be

pNk (f) :=

∣∣∣{y ∈ Y (FqN ) : |f−1(y)(FqN )| = k
}∣∣∣

|Y (FqN )| .

Notice that if C is an absolutely irreducible algebraic plane curve of degree d, then 
for every N ∈ N and for every k ∈ {0, . . . , d} we have p̃Nk (C) = pNk

(
π|UC

)
. Hence, 

by Lemma 4.3, in order to show the existence of the limits of k-th probabilities of 
intersections for a curve, it is enough to show the existence of k-th preimage probabilities 
for morphisms over Fq.

Theorem 4.5. Let f : X −→ Y be a finite étale morphism of degree d, where q is a prime 
power, between smooth irreducible varieties over Fq. Then for every k ∈ {0, . . . , d} the
limit as N goes to infinity of the sequence 

(
pNk (f)

)
N∈N exists.

Proof. We generalize the construction of the Galois scheme of the morphism f . For every 
k ∈ {0, . . . , d}, define Gk(f) to be the scheme such that for every extension K of Fq, we
have

Gk(f)(K) :=
{
(x1, . . . , xk) ∈ Xk(K) : f(x1) = . . . = f(xk),

xi 
= xj for all i 
= j
}
.

In particular Gd(f) = GS(f). As we showed for the Galois scheme, see Equation (1),
for every k the variety Gk(f) has the same dimension of X and Y . There is a natural
finite morphism Fk : Gk(f) −→ Y , the fiber product of f with itself k times. A general
Fq-valued point of Y has d(d − 1) · · · (d − k+ 1) preimages under the map Fk. The main
idea of the proof is to compute, in two different ways, the expected cardinality μN

k (f)
of the set of FqN -rational points of the fiber F−1

k (y), where y is a uniformly distributed
random element in Y (FqN ). On one hand,
13



μN
k (f) =

∣∣Gk(f)(FqN )
∣∣∣∣Y (FqN )

∣∣ .

On the other hand, we can express μN
k (f) in terms of the preimage probabilities:

μN
k (f) =

d∑
s=k

s(s− 1) · · · (s− k + 1) pNs (f) . (2)

In matrix form:

⎛
⎜⎝
μN

0 (f)
...

μN
d (f)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ∗ · · · · · · ∗
0 1 ∗

...
...

. . .
...

0 · · · 0 k! ∗ ∗
...

. . .
...

0 · · · · · · d!

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝
pN0 (f)

...
pNd (f)

⎞
⎟⎠ . (3)

Since the matrix in Equation (3) has non-zero determinant, we can write

pNk (f) =
d∑

s=0
αk,s μ

N
s (f) (4)

for some numbers (αk,s)k,s. Using the Lang-Weil bound on Equation (2), we have

μN
k (f) ∼ δk q

N ·dim Gk(f)

qN ·dim Y
as N → ∞ , (5)

where δk is the number of irreducible components of Gk(f) that are absolutely irre-
ducible. Since dimGk(f) = dimY , we conclude that the limit in Equation (5) exists,
and so by Equation (4) also lim

N→∞
pNk (f) exists. �

Remark 4.6. Theorem 1.3 holds. In fact, the map π|UC
satisfies the hypotheses of The-

orem 4.5, so the numbers pk
(
π|UC

)
exist, and we have already proved that this implies 

that the limits pk(C) exist.

Theorem 4.7. Let f : X −→ Y be a finite étale morphism of degree d, where q is a 
prime power, between smooth irreducible varieties over Fq. Suppose that Gal(f) is the
full symmetric group Sd. Then for every k ∈ {0, . . . , d} we have

pk(f) =
d∑

s=k

(−1)k+s

s!

(
s

k

)
.

In particular, pd−1(f) = 0 and pd(f) = 1/d!.
14



Proof. Since Gal(f) is the full symmetric group, the Galois scheme GS(f) is absolutely 
irreducible. Hence, using the notation of the proof of Theorem 4.5, for all k ∈ {0, . . . , d}
we have

lim
N→∞

μN
k (f) = lim

N→∞

qN ·dim Gk(f)

qN ·dim Y
= 1. (6)

In fact, every variety Gk(f) is an image (under a projection) of GS(f) = Gd(f), thus is
absolutely irreducible and so Equation (6) follows from Equation (5). Again using the 
notation as in Theorem 4.5, we get

lim
N→∞

pNk (f) =
d∑

s=0
αk,s. (7)

Therefore, the statement is proved once we are able to explicitly compute the coef-
ficients (αk,s)k,s. Recall that αk,s is the (k, s)-entry of the inverse of the matrix Md

appearing in Equation (3). A direct inspection of the matrices Md shows that they
admit the following structure:

Md =

⎛
⎜⎜⎜⎜⎝

Md−1

1
...

d!/1!
0 · · · 0 d!/0!

⎞
⎟⎟⎟⎟⎠ .

A direct computation shows that

M−1
d =

⎛
⎜⎜⎜⎜⎝

M−1
d−1

(−1)d
d! ·

(
d
0
)

...
(−1)
d! ·

(
d

d−1
)

0 · · · 0 1
d! ·

(
d
d

)

⎞
⎟⎟⎟⎟⎠ .

Hence

αk,s = (−1)k+s

s!

(
s

k

)
for all k, s ∈ {0, . . . , d}.

It follows from Equation (7) that for all k ∈ {0, . . . , d},

pk(f) =
d∑

s=0

(−1)k+s

s!

(
s

k

)
=

d∑
s=k

(−1)k+s

s!

(
s

k

)

and so the statement is proved. �
As a consequence of Proposition 2.10 and Theorem 4.7, Theorem 1.4 holds.
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5. Probabilities of intersection via the Chebotarev theorem

In this section, we show how to use an effective version of the Chebotarev density
theorem for function fields as exposed in [19, Appendix A]—and used in [15] and [16]
to prove the results reported in the Introduction—to show Theorems 1.3 and 1.4. We 
recall the setting and the results of the paper [19], and specialize the Chebotarev the-
orem to our case. We refer to the cited appendix for the proofs of the claims we make 
in this section regarding the objects introduced to state the Chebotarev theorem (The-
orem 5.1).

We start by considering an integrally closed finitely generated Fq-algebra R and a
monic polynomial F ∈ R[T ] such that the discriminant of F is invertible in R. In our 
case, we take R to be the Fq-algebra

R := Fq[a, b, u]
Discx

(
F (x, ax + b)

)
· u− 1

∼= Fq[a, b](f) with f := Discx
(
F (x, ax + b)

)
,

where the last ring is the localization of the polynomial ring Fq[a, b] at the element f . In
geometric terms, R is the coordinate ring of the open subset of the dual projective plane 
parameterizing lines in the plane that intersect the curve {F = 0} in d distinct points 
over the algebraic closure of Fq. We then take the polynomial F to be F (T, aT + b).
Then by construction, its discriminant is invertible in R.

Starting from R and F , we consider K, the quotient field of R, and we define L to be 
the splitting field of F over K. In other words, if {y1, . . . , yd} are the roots of F , we set
L := K(y1, . . . , yd). In our situation, we have

L = K[t1, . . . , td](
F (ti, ati + b) for i ∈ {1, . . . , d}

) .
Then we define S to be the integral closure of R in L, namely S = R[y1, . . . , yd]. Geomet-
rically, S is the coordinate ring of an open subset of the unique variety Xd ⊂ Cd × P̌ 2

Fq

such that for every extension M of Fq we have

Xd(M) =
{
(x1, . . . , xd, [�]) ∈ Cd(M) × P̌ 2(M) : xi ∈ �

}
.

The strategy we adopt to compute probabilities of intersections is the following: our 
goal is to count the number of lines � in P 2 such that the intersection �(FqN ) ∩ C(FqN )
is constituted of exactly k points, and we interpret this as the number of lines such that 
the univariate polynomial F|� has exactly k linear factors over FqN . Notice that every
univariate polynomial H of degree d over FN

q determines a partition πH of d, namely a
tuple πH = (α1, . . . , αs) such that α1 + · · · + αs = d and α1 ≤ · · · ≤ αs. Such partition
is obtained by factoring H over FqN into irreducible factors H1, . . . , Hs and then setting
αi = deg(Hi). Then, the number of lines we are interested in can be computed as the
16



sum, over the set of partitions π of d with exactly k ones, of the number of lines � such 
that the partition associated to F|� is π. The Chebotarev theorem provides a formula for
the probability for a line to determine a given partition.

We set G to be the Galois group of the field extension K ⊆ L. By definition, this 
coincides with the Galois group of the curve C as in Definition 2.7. Notice that, in our 
situation, the intersection L ∩F , where F is an algebraic closure of Fq, coincides with Fq.
This implies that the subgroup

G0 :=
{
g ∈ G : g|Fq

(x) = x for all x ∈ Fq

}
coincides with G. Similarly, if for every ν ≥ 1 we set

Gν :=
{
g ∈ G : g|Fq

(x) = xqν for all x ∈ Fq

}
,

then Gν , which in general is a coset of G0 in G, coincides with G.
As one can see from the definition of Xd, its points are intimately related to the

probabilities we are interested in. From an algebraic point of view (see [32, Section II.6]) 
these points correspond to Fq-homomorphisms from S to F . Moreover, a homomorphism
Φ ∈ HomFq

(S, F) such that Φ(R) = Fqν corresponds to a point (x1, . . . , xd, [�]) in Xd

such that the line � is defined over Fqν . Given such a homomorphism Φ there always
exists an element in G, called the Frobenius element and denoted 

[
S/R
Φ

]
such that the 

following diagram is commutative:

S

[
S/R
Φ

]

Φ

S

Φ

F
α�→αqν

F

(8)

In other words, we have the relation

Φ
([

S/R

Φ

]
x

)
= Φ(x)q

ν

.

One then can show that 
[
S/R
Φ

]
∈ Gν .

If we fix a line in P 2, namely, if we fix an Fq-homomorphism ϕ ∈ HomFq
(R, F), we

can consider all points in Xd “lying over” this line. In other terms, we can consider all
homomorphisms Φ ∈ HomFq

(S, F) prolonging ϕ. Their corresponding Frobenius elements
form one key object in the statement of the Chebotarev theorem. For ϕ ∈ HomFq

(R, F),
we set (

S/R
)

:=
{[

S/R
]

: Φ prolongs ϕ

}
.

ϕ Φ

17



In our setting, since G0 = G one can show that
(

S/R
ϕ

)
is a conjugacy class in G. Now 

we are ready to state the Chebotarev theorem (see [19, Theorem A.4]):

Theorem 5.1. Let Z ⊆ G be a conjugacy class and let ν ≥ 1; define

Pν,Z :=

∣∣∣{ϕ ∈ HomFq
(R,F) such that ϕ(R) = Fqν and

(
S/R
ϕ

)
= Z

}∣∣∣∣∣{ϕ ∈ HomFq
(R,F) such that ϕ(R) = Fqν

}∣∣ .

Then there exists a constant δ independent of q such that, as q → ∞,

Pν,Z ∼ |Z|
|G| + δ

√
q
.

In order to use the Chebotarev theorem for our purposes, we have to understand what
does the condition 

(
S/R
ϕ

)
= Z correspond to in our setting. Suppose that C has simple 

tangency. Then we know by Proposition 2.10 that G is the symmetric group Sd. Notice
that to every conjugacy class Z of Sd we can associate a partition πZ of d, obtained
from the cycle structure of permutations belonging to Z. On the other hand, given a line 
� = {y = ax + b}, we can consider the restriction of the equation F of C to �, namely 
the univariate polynomial F� = F (x, ax + b). This polynomial defines a partition π� of
d by considering its factorization over Fqν : the partition π� has as many 1 as the linear
factors of F�, as many 2 as the quadratic factors of F�, and so on.

Lemma 5.2. If Z ⊆ Sd is a conjugacy class of permutations, then the set

Iν,Z :=
{
ϕ ∈ HomFq

(R,F) such that ϕ(R) = Fqν and
(
S/R

ϕ

)
= Z

}

corresponds to the set of lines in P 2
Fqν

such that π� = πZ .

Proof. Let ϕ ∈ Iν,Z and let Φ ∈ Hom(S, F) be a homomorphism prolonging ϕ. Let
� = {y = āx + b̄} be the line in P 2

Fqν
corresponding to ϕ. Then from the explicit 

description of K and L we provided at the beginning of the section, it follows that 
M := Φ(S) is a splitting field of the polynomial F� = F (x, ̄ax + b̄). By definition of the
Frobenius element, we have the commutative diagram

L = K[t1,...,td](
F (ti,ati+b) for i∈{1,...,d}

)
[
S/R
Φ

]
L = K[t1,...,td](

F (ti,ati+b) for i∈{1,...,d}
)

M = K[u1,...,ud](
F (ui,āui+b̄) for i∈{1,...,d}

) α�→αqν

M = K[u1,...,ud](
F (ui,āui+b̄) for i∈{1,...,d}

)

18



which is just the extension to L of the diagram in Equation (8). From the commutativity 

of this diagram, we see that the permutation action of 
[
S/R
Φ

]
on the classes [t1], . . . , [td]

is the same as the action of the map α �→ αqν on the classes [u1], . . . , [ud]. Since the {[ui]}
are the roots of F (x, ̄ax + b̄), and the latter is a polynomial with coefficients in Fqν , which
are hence preserved by the map α �→ αqν , it follows that the structure of factors of F�

over Fqnu is the same as the cycle structure of
[
S/R
Φ

]
. This concludes the proof. �

As a corollary, we obtain that the set of lines in P 2
Fqν

intersecting C in exactly k points 
corresponds to the set

⋃
Z has exactly k fixed points

Iν,Z .

The number of permutations having exactly k fixed points is given by the so-called 
rencontres numbers, see [33]. We have hence:

∣∣∣∣∣∣
⋃

Z has exactly k fixed points

Z

∣∣∣∣∣∣ = d!
d∑

s=k

(−1)k+s

s!

(
s

k

)
.

Using the Chebotarev theorem we then conclude the proof of Theorem 1.4.
As the reader can see, there is nothing particularly special in considering the setting of 

plane curves. In fact, the concept of simple tangency (see Definition 2.8) is applicable to 
curves in arbitrary projective space: an absolutely irreducible curve C in Pn has simple 
tangency if there exists a hyperplane H ⊆ Pn

Fq
intersecting C in d −1 smooth points of C

such that H intersects C transversely at d − 2 points and has intersection multiplicity 2
at the remaining point. Also the concepts of Galois group of a curve and probabilities of 
intersections generalize similarly by considering hyperplanes instead of lines.

The generalized statement for the situation of irreducible curves is the following.

Proposition 5.3. Let C be an absolutely irreducible algebraic curve of degree d in Pn
Fq

, 
where q is a prime power. Suppose that C has simple tangency. Then for every k ∈
{0, . . . , d} we have

pk(C) =
d∑

s=k

(−1)k+s

s!

(
s

k

)
.

In particular, pd−1(C) = 0 and pd(C) = 1/d!.

Using Proposition 5.3, we can compute the probabilities of intersection of a given 
plane curve C with a random plane curve E of degree e. In fact, via the Veronese map
we can reduce this situation to the one of Proposition 5.3. Let us start by defining the 
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probabilities of intersection of a given curve C with a random curve E in the plane in 
exactly k points, for k ∈ {0, . . . , de}:

pNk (C, e) :=

∣∣∣{curves E ⊆ P 2
FqN

of degree e : |E(FqN ) ∩ C(FqN )| = k
}∣∣∣

q
(e+2

2
)
N + · · · + q2N + qN + 1

,

pk(C, e) := lim
N→∞

pNk (C, e) when the limit exists .

Recall now that for every r ∈ N, the Veronese map of degree e is an algebraic morphism 
embedding P r into a larger projective space, so that hypersurfaces of degree e get mapped 
to hyperplane sections of the image of the map. In this sense, the Veronese map operates 
a sort of “linearization” of the problem. In the case of P 2, which is the one that interests
us, it is given by

ve : P 2 −→ P
(e+2

2
)
−1

(x : y : z) �→
(
{xaybzc}a+b+c=e

) .

The following lemma ensures that if we start from a plane curve that has simple tangency 
and we apply the Veronese map, we obtain a curve that has simple tangency.

Lemma 5.4. Let C be a plane curve of degree d with simple tangency and let e ∈ N. Then 
the image C̃ = ve(C) of C under the Veronese map of degree e has also simple tangency.

Proof. Let �1 be a line witnessing simple tangency for C. Select lines �2, . . . , �e in P 2

such that each of them intersects C in d distinct points and �i ∩ �j ∩ C is empty for all
i 
= j. Define E as the zero set of the product �1 · · · �e. The Veronese map sends E to
a hyperplane section of the Veronese surface; let H̃ be the corresponding hyperplane. 
Then, by construction, H̃ witnesses simple tangency for C̃. �

Since the Veronese map of degree e defines a bijection between plane curves of degree e
and hyperplanes in P

(e+2
2

)
−1, determining the probabilities pk(C, e) of intersection of a

given plane absolutely irreducible curve C with a random curve of degree e in k points 
is equivalent to compute the corresponding probabilities of intersection of the image C̃

of C under the Veronese map with hyperplanes. We sum up what we obtained in the 
following:

Proposition 5.5. Let C be an absolutely irreducible algebraic curve of degree d in P 2
Fq

,
where q is a prime power. Suppose that C has simple tangency. Let e ∈ N be a natural 
number. Then for every k ∈ {0, . . . , de} we have

pk(C, e) =
de∑
s=k

(−1)k+s

s!

(
s

k

)
.
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