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Abstract
Objective.Differentiation of breast tissues is challenging inX-ray imaging because tissuesmight share
similar or even the same linear attenuation coefficientsμ. Spectral computed tomography (CT) allows
formore quantitative characterization in terms of tissue density (ρ) and effective atomic number (Zeff)
by exploiting the energy dependence ofμ. The objective of this studywas to examine the potential of
ρ/Zeff decomposition in spectral breast CT so as to explore the benefits of tissue characterization and
improve the diagnostic accuracy of this emerging 3D imaging technique.Approach. In this work, 5
mastectomy samples and a phantomwith insertsmimicking breast soft tissues were evaluated in a
retrospective study. The samples were imaged at threemonochromatic energy levels in the range of
24–38 keV at 5mGy per scan using a propagation-based phase-contrast setup at SYRMEPbeamline at
the Italian national synchrotron Elettra.Main results.Acustom-made algorithm incorporating CT
reconstructions of an arbitrary number of spectral energy channels was developed to extract the
density and effective atomic number of adipose, fibro-glandular, pure glandular, tumor, and skin
from regions selected by a radiologist. Significance.Preliminary results suggest that, via spectral CT, it
is possible to enhance tissue differentiation. It was found that adipose, fibro-glandular and tumorous
tissues have average effective atomic numbers (5.94± 0.09, 7.03± 0.012, and 7.40± 0.10) and
densities (0.90± 0.02, 0.96± 0.02, and 1.07± 0.03 g cm−3) and can be better distinguished if both
quantitative values are observed together.

1. Introduction

Tissue differentiation inmammography is challenging due to the overlap of tissues with similar linear
attenuation coefficientsμ in the diagnostic energy range. A comparison of the attenuation of glandular tissue
and close-bymalignant tumors found that the average attenuation values are almost identical even in the low-
energy range (Chen et al 2010, Fredenberg et al 2018). Computed tomography (CT) solves tissue overlapping
issues and provides additional diagnostic information based on tissuemorphology in 3D volumes. On the other
hand, breast-dedicated CTuses higher X-ray energies thanmammography due to the imaging of uncompressed
breasts, thus reducing attenuation contrast between similar tissues. Tissue separation can be significantly
improved by acquiring data atmultiple energy levels using spectral CT imaging (Alvarez andMacovski 1976).
New generations of whole-body spectral CT systems obtain source-generated spectral information from two (or
more) scans at different energy levels (dual-energy), or detector-generated spectral responsewith layered and
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photon-counting (PC) detectors. PC detectors are particularly interesting due to the availability ofmultiple
energy thresholds (up to 12 (Danielsson et al 2021)),flat spectral response, and low imaging noise. Thefirst
breast CT scanners with PCdetectors are being introduced in clinics (Kalender et al 2017, Berger et al 2019,
Schmidt et al 2022, Zellweger et al 2022) and synchrotron facilities (Longo et al 2016, 2019), where spectral
separation can be obtained usingmultiplemonochromatic x-ray beams. Despite the available technology for
spectral imaging in both systems, the benefits of such an approach in breast CT imaging have not been
explored yet.

Given two (ormore) scans at different energies, the content of each voxel can be described as a linear
combination of the attenuation of two basismaterials in the process known asmaterial decomposition (Alvarez
andMacovski 1976). Decomposition to two basismaterials is themost common approach because two physical
effects contribute to image formation in the diagnostic energy range: the photoelectric effect andCompton
scattering. The photoelectric-Compton basis itself is very convenient because of thewell-defined dependencies
of these effects on density and atomic number.However, such basis spans an infinite range of physicalmaterials,
given that a ‘purely Compton’material would be the element in the limitZ→ 0, while a ‘purely photoelectric’
onewould correspond toZ→∞ . Such a broad rangewould degenerate the separation of similarmaterials, such
as soft tissues. To address this issue, the use of a pair of physical (or even virtual)materials that span the range of
materials of interest has been shown to significantly reduce decomposition uncertainty (Champley et al 2019). A
popular choice of physicalmaterials for decomposing biological tissues are polymethyl-methacrylate (PMMA)
and aluminum (Al) basis pair (Lehmann et al 1981), also used in this study. Estimatedweights of the linear
combination of two basismaterials carry physical information but have no particular comprehensivemeaning
exceptwhen one of the basismaterials is the same as thematerial of interest (e.g. iodine quantification or calcium
scoring). However, using theweights and the known energy dependence of basis attenuation coefficients virtual
monochromatic images (VMIs) can be extrapolated at an arbitrary energy valuewithin the diagnostic energy
range (McCollough et al 2015). VMIs have simple interpretation and clinical case studies show that VMIs are
diagnostically valuable for certain tasks (Albrecht et al 2019), and they are a standard output in thefirst clinical
whole-body PC-CT (NaeotomAlpha, Siemens) (Rajendran et al 2021). Decomposition to ρ andZeff is a step
further toward extracting the physical information about tissue composition from spectralmeasurements.
Whilematerial decomposition describes the attenuation of onematerial as a linear combination of the
attenuations of other knownmaterials, ρ/Zeff decomposition exploits the underlying physics of x-rays
interactionwithmaterials to extract information about their physical and chemical properties. Several works
have been published exploring this approach (Heismann et al 2003, Torikoshi et al 2003, Szczykutowicz et al
2011, Azevedo et al 2016, Busi et al 2019, Champley et al 2019, Vrbaski et al 2022). Density andZeff are intuitive
units that can be easily interpreted and correspond to physical properties that can bemeasured by other
techniques, allowing for easy comparison. Previouswork showed the benefits of ρ/Zeff for tissue differentiation
(Pascart et al 2019), radiotherapy planning (Hudobivnik et al 2016), and interventional radiology (Liu et al 2023).

In the present paper, a spectral studywas specifically designed to characterize breast CT images in terms of
material density ρ and the effective atomic numberZeff.While ρ/Zeff decomposition has been implemented in
some clinical CT scanners (Rajiah et al 2020), no studies specifically focused on breast tissue characterization
were performed. In section 2.1, a theoretical approach to computing ρ andZeff values fromphysicalmaterial
decomposition instead of the photoelectric-Compton decompositionwas developed to improve the accuracy of
results. Using synchrotron x-ray beams at several energies and a high-resolution PCdetector described in
section 2.2, CT scans of a dedicated phantom and 5mastectomy samples were acquired. Due to the superior
imaging quality and spectral separation available with synchrotron setup, thework investigates the feasibility
and the potential diagnostic benefit of ρ/Zeff decomposition in breast CT imaging. This information is of
interest since PCdetectorsmatured enough to operate in clinical conditions with the ability to obtain better
spectral separation than other approachesmentioned earlier (Danielsson et al 2021). The introduced concept of
effective atomic number was further investigated in section 2.3 and several approaches to the computation ofZeff
were analyzed in appendix C. Section 2.4 describes tissue preparation and section 2.5 provides a detailed
explanation of the practical realization of the analysis with careful consideration of thewell-knownproblemof
the decomposition noise (Dong et al 2014,Niu et al 2014,Mechlem et al 2016). Finally, the data analysis
approach is given in section 2.6.We also showed that virtualmonochromaticμ values at desired energy can be
computed using the knowndependence of x-ray attenuation on density and atomic number.

2.Materials andmethods

2.1. Theoreticalmodel
In thematerial decomposition approach, the attenuation coefficientμ of a givenmaterial is expressed as a linear
combination of the (known) attenuation coefficients of a pair of basismaterials, here labeledμ1 andμ2
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where x1 and x2 are the coordinates of thematerial in the reference frame identified by the selected basis. In the
first step of ourmethod, we used equation (1) to determine the coefficients x1 and x2, which represent the
(energy-independent) relative concentrations of each basismaterial. Becausemore than two spectral scanswere
available for each sample (Piai et al 2019), instead of using traditionalmatrix inversion (Zhang et al 2019), x1 and
x2 coefficients were calculated by using a least-square fit of the form:

å m m m- +E x E x E . 2
i

i i i1 1 2 2
2( ( ) ( ( ) ( ))) ( )

Thefit procedure consists of a voxel-by-voxelminimization of the sumover the energies Ei of the squared
residuals. From such a point of view, includingmore images of different energies adds further points to the
plane, which is expected to increase the accuracy of the decomposition.

The attenuation of X-rays is influenced by several physical effects, which are dependent on the energy and
material properties of the attenuator. In the range of photon energies useful formedical CT imaging, the
attenuation coefficientμ of givenmaterial of density ρ, the atomic numberZ, and atomicmassA are
approximated as the sumof the two contributions

m r
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where the functions fP(E) and fC(E) encode the energy dependencies of the photoelectric andCompton effects,
respectively, andK1,K2 and n are constants. Using equation (3) to describe basismaterials in equation (1) and
assumingA= 2Z, as it is almost true for any chemical element withZ 20, the linear combination coefficients
of equation (1) read
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ρj andZj being the density and the atomic number of the jth basismaterial. It is straightforward to notice that
equations (4a) and (4b)depend on both the density and the atomic number of thematerial. In order to decouple
the two dependencies, it is necessary to rotate the reference frame (by an angle /f r r= arctan 2 1( )) and then
rescale the second coordinate dividing it by the first one. The resulting coordinates, which read
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(withℓ= n− 1) are labeled xρ and xZ because of their exclusive dependencies on the variablesmentioned in the
subscripts. Equations (5a) and (5b) represent the expected relationships between xρ and ρ, and between xZ andZ,
for a given choice of basismaterials. Such expressions are used in the calibration procedure described in
section 3.1, where the (known)densities and atomic numbers of referencematerials will befitted against the
corresponding (measured) values of xρ and xZ using the functional forms

r k r=rx a, 6( ) ( )

= +lx Z p Z q b6Z ( ) ( )

stemming directly from equations (5a) and (5b)with the (physicallymotivated) coefficients replaced by the
effective fit parametersκ,λ, p, and q. The resulting calibrated relationshipsmap themeasured xρ and xZ of any
imagedmaterial onto its actual values of density and effective atomic number.

2.2. Scan setup
The experimental image acquisitionwas carried out at the SYRMEPbeamline of Elettra, an Italian synchrotron
light source in Trieste, in the framework of SYRMA-3D (SYnchrotronRadiation forMAmmography)
collaboration (Longo et al 2019). The SYRMEPbeamline utilizes a laminar beamhaving a cross-section at the
detector equal to 148.5 mm (horizontal)× 3.25 mm (vertical), while the energy is selected through a Si double-
crystal (1, 1, 1)monochromator with a resolution around 0.1%. To perform tomographic acquisition the sample
was positioned on a rotation stage spinning at a constant speed of 4.5 degrees s−1 while 1200 projectionswere
acquired over 180 degrees. The imaging detector was a large area high-resolutionCdTe PCdevice (Pixirad8)
featuring a honeycombmatrix of 4096× 476 pixels with a 60 μmhorizontal and 52 μmvertical pitch (Bellazzini
et al 2013, Delogu et al 2016). It was positioned∼1.6 m from the sample to employ the propagation-based phase-

3

Phys.Med. Biol. 68 (2023) 145019 SVrbaški et al



contrast imaging technique. The source-to-sample distancewas 30 m, leading to amagnification factor of 1.05.
Acquired projections were pre-processedwith an ad-hoc procedure (Brombal et al 2018a) and then phase-
retrieved using an algorithmbased on the homogeneous transport of intensity equation (TIE-Hom) (Paganin
et al 2002). Finally, CT reconstructions were obtained via aGPU-based filtered-back-projection algorithmwith
Shepp-Logan filtering (Brun et al 2017). It is worth noting that, despite being a product of phase retrieval,
reconstructions aremaps of the attenuation coefficientsμ at a given energy, as thoroughly explained inGureyev
et al (2017), Brombal et al (2018b), Piai et al (2019).

2.3. Calibration phantom and effective atomic number
A custom-made cylindrical phantomwith a 10 cmdiameter dedicated to calibration and quality control of the
synchrotron breast CT systemwas used (Contillo et al 2018,Donato et al 2022). The phantomwas filledwith
water and contained five inserts of polyethylene (PE), nylon (PA), PMMA, polyoxymethylene (POM), and
polytetrafluoroethylene (PTFE)mimicking soft tissues of similar attenuation properties. The density of these
materials andmaterial composition used to compute effective atomic numbers were taken from the xraylib
database (Brunetti et al 2004). The atomic number is a physical property of an element, but the same concept
cannot be trivially defined in compounds. Across the literature (Spiers 1946, Tsai andCho 1976, Puumalainen
et al 1977, Un andCaner 2014, Azevedo et al 2016, Champley et al 2019) several definitions have been proposed,
suggesting that it depends not just onmaterial properties, but also experimental conditions (Bonnin et al 2014).
We includedmost of the published definitions in the open-sourceGUI software ‘ZcompARE’ (Vrbaski 2022).
Part of the software is built on top of the Python library (xraylib 4.1.0 package, Python 3.10) of the xraylib
database (Brunetti et al 2004, Schoonjans et al 2011) and can be used to compare approaches for computing
atomic numbers of compounds from this database or list of user-definedmaterials can be provided. A
comparison between themethods using this software is analyzed in appendix B, showing that depending on the
method chosen,Zeff number can take different values for the same compound.However, any choice of the
method led to a uniquematerial description in chosen basis. Quantity xZ derived in section 2.1, was simply
calibrated to the desired definition of effective atomic number for a compound by puttingZ= Zeff in
equation (6b). In this paper, we used the approach byChampley et al (2019)which definesZeff of a compound as
a linear combination of two consecutiveZ numbers such that the least square error between x-ray transmission
of the compound and the transmission of a combination of the two elements isminimized. Compounds’ brute
formula, density, andZeff are given in table 1. The phantom served two purposes: (i) to obtain the ρ andZeff
calibration curve from the decoupled set in equations (5a) and (5b) and (ii) to validate the theoreticalmodel
against the ground truth.

2.4. Breastmastectomy samples
In addition to phantom scanning, post-mastectomy breast tissue imageswere analyzed in a retrospective study.
The analyzed surgical samples (N= 5)were fixed in formalin, sealed in a vacuumbag, and conserved at 4 ◦C. The
preliminary analysis of the same datawas published (Piai et al 2019) as a feasibility study of the synchrotron
breast CT approach. All the procedures adopted in this work followedDirective 2004/23/ECof the European
Parliament and of theCouncil of 31March 2004 on setting standards of quality and safety for the donation,
procurement, testing, processing, preservation, storage, and distribution of human tissues. In the present work,
we further processed the data to extract ρ andZeff of breast tissues. Tomographic reconstructions of selected
samples are given infigure 1. They all contained adipose, fibro-glandular, and tumorous tissue, but only in
sample 4 existed a region of glandular tissue clearly separated from thefibrous. It also contained calcification
regions thatwere not evaluated in this study. All samples contained some type ofmalignant tissue: samples 1, 2,
and 3 contain infiltrating ductal carcinoma, sample 4 contains infiltrating ductal carcinomawith a core of
desmoplastic tissue, and sample 5 contains vastly differentiated infiltrating ductal carcinoma. Samples 1, 2, 4,
and 5 also contained portions of the skin.

Themean glandular dose of 5mGy delivered per scanwas computed according to a dedicatedGeant4Monte
Carlo simulation (Fedon et al 2015,Mettivier et al 2016). The phantom scanswere acquired at 25, 28, 32, and

Table 1. List ofmaterials composing the phantom together with chemical formulas, effective atomic
numbers, andmaterial density values (Schoonjans et al 2011).

Material Water PE PA PMMA POM PTFE

Brute formula H2O C2H4 C12H22N2O2 C5H8O2 CH2O C2F4
EffectiveZ 7.44 5.28 6.16 6.49 7.01 8.56

Density (g cm−3) 1.0 0.94 1.14 1.19 1.425 2.2
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35 keV, andmastectomy samples at severalmonochromatic beam energy levels in the range of 24–38 keV, from
which three scanswere selected for the spectral analysis.

2.5. Practical implementation
The theoreticalmodel described in section 2.1was implementedwith Python (Python 3.10.0) and an interactive
delineation tool was developed to select an arbitrary region of interest within a reconstructed spectral data set
(Matplotlib, Python 3.10.0) containing a single tissue type. In the first step of the process (framedwith a dashed
line infigure 2), the voxel-to-voxelmaterial decompositionmethod using the PMMA-Al basis is applied to the
selected regions (figure 2(a)), resulting in PMMAandAlmaps for eachROI (figure 2(b)). In the next step, the
materialmaps are combined into 2Dhistograms, one for each tissue type (figure 2(c)). In literature, this
approach tomaterial visualization is often referred to as CT fingerprinting (Rajiah et al 2020). Due to the
presence of noise, the obtained histograms are blurred and elongated.

The correct decomposition coefficients x1 and x2 are considered to be the centers of obtained distributions.
They are extracted using a 2DGaussian fitmethod of the form:

⎛
⎝

⎞
⎠=

- +
G x x A e, 71 2

u

Su

v

Sv

2

2 2
2

2 2( ) ( )

A is the intensity of the peak and Su, Sv the spreads (that is, the standard deviations of the associated distributions)
along themajor andminor axes, respectively. The peak coordinates x1̄ and x2̄ relative to (x1, x2)-plane of the
histogram are contained in the quantities u and v

q q= - + -u x x x x acos sin , 81 1 2 2( ¯ ) ( ¯ ) ( )

q q= - - -v x x x x bcos sin 82 2 1 1( ¯ ) ( ¯ ) ( )

θ is the tilt of themajor axis of the spot with respect to the horizontal direction. After the fitting, the peak
coordinates x1̄ and x2̄ found according to equations (8a) and (8b) are used in equations (4a) and (4b) to compute
thefinal output of the procedure: the single values for densities and effective atomic numbers of selected tissues
(figure 2(d)). Themeasurement uncertainty, estimated as the standard error on the center offitted 2DGaussian
distribution, is propagated through allmathematical transformation steps andmeasurement calibration. For the
sake of conciseness, the complete analysis is given in appendix A.

2.6.Data analysis
In addition to the experimental data obtained using the calibration phantom, the procedure described in the
theoreticalmodel (section 2.1)was also applied to publishedμ (‘true’) values (Schoonjans et al 2011) of phantom
material inserts at the energy levels used in the experiment. The true data points are used to evaluate the accuracy
of themodel by calculating the percentage error between the experimental and the ground truth data points, as

Figure 1.MastectomyCT reconstructions acquired at SYRMEPbeamline at Elettra Sincrotrone Trieste at the energy of 28 keV
(sample 1, 2, 3, and 5) and 26 keV (sample 4).
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given in equation (9)

=
-

´error%
ground truth measured

ground truth
100. 9

∣ ∣ ( )

The segmentation of the breast CT reconstructions was performed by an experienced radiologist, who
selected ROIs containing adipose, fibro-glandular, glandular, skin, and tumorous tissue already knowing the
mastectomy content from specimens sampled for the histological examination. Consideringmagnification,
slices were reconstructedwith 0.057× 0.057 mmpixel size and slice thickness of 0.049 mm. The segmentation
was done slice by slice to extract values from a 3D volume, using at least 3 pixel thick (0.17mm)margins to avoid
partial volume effects. For each sample and tissue type, density andZeff values and their uncertainties were
estimated respectively as themean and standard deviation evaluated over 10 consecutive CT slices. To estimate
the discrimination power of ρ/Zeff and xPMMA and xAl decomposition, hence diagnostic potential, amean
Silhouette score (MSS)using Euclidean distance as ametric was computed onmean values of all tissue types
collected from themastectomy samples (Rousseeuw 1987). TheMSS is a tool to quantify how similar are
samples within the same cluster and how separated they are fromother clusters, defined as:

å=
-

=n max
MSS

1 NC IC

NC , IC
, 10

k

n
k k

k k0 ( )
( )

where IC is themean intra-cluster distance andNC is themean nearest-cluster distance for each sample k, and n
equals the number of selected tissue types× number of selectedmastectomy samples. Negative values ofMSS
indicate cluster overlap, values around 0 signal that samples are on or close to the boundary between clusters,
and positive values up to 1 indicate increased cluster separation.

Finally, extracted density and effective atomic numbers from the calibration phantom and sample 4were fed
to themathematical relationship given in equation (3) to extrapolate linear attenuation coefficients of tissues for
arbitrary (virtual)monochromatic energy levels. The uncertainty was propagated from the standard deviation of
obtained ρ andZeff values.

Figure 2.The step-by-step scheme of quantitativematerial evaluation followed in this work. Inputs to the algorithm (dashed
rectangle) are delineated tissues. Section a shows thematerial decomposition taskwhich leads tomaterialmaps in section b. These
maps are represented in formof a 2Dhistogram and centers of clusters corresponding to each delineatedmaterial are extracted in
section c. These values are then transformed using equations (5a) and (5b) and an offline calibration usingmaterials from table 1 is
performed in section d to obtain the ρ andZeff values as afinal output.
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3. Results

3.1. Calibration phantom results
The accuracy ofmaterial decomposition in phantommaterials following theGaussian fitting in the histogram
space is shown infigure 3(a). Quantities x1 and x2 in equations (4a) and (4b) are replacedwith xPMMA and xAl
because of the particular basis choice. Figure 3(b) corresponds to the decoupling of density and effective atomic
number in equations (5a) and (5b). Thefitting parametersA, Su, Sv defined in equation (7), and angle θ for
phantommaterials are given and further discussed in appendix B.

The decoupled values from figure 3(b)were calibrated to absolute density and effective atomic numbers
(table 1) applying the least-squares fittingmethod to the functional forms given in equations (6a) and (6b). Both
calibration curves were based on the phantommaterial inserts in the range of interest for soft tissue imaging and
themapping to correct density and the effective atomic numberwas obtained atR2= 0.998 andR2= 0.997,
respectively. Calibration curves are given infigure 4 and corresponding density andZeff values are given in
table 2. Using equation (9), % errors in calibrationmaterials were estimated to be below 3%and 1.5%,
respectively, after the density and effective atomic number calibration.

3.2. Breastmastectomy results
Tissues inside themastectomies delineated by a radiologist were quantitatively analyzed in terms of their density
and effective atomic number and presented infigure 5, with average values given in table 3. For comparison,
decomposition to basismaterial coefficients xPMMA and xAl are also given infigure 5. Skin tissuewas not included
in the graph as it is anatomically well separated fromother tissues of the breast.

The level of separation between adipose, fibro-glandular, and tumor tissue in ρ andZeff spacewas found to
be 0.31 (on a scale of−1 to 1) usingMSS. Pairwise comparison of adipose andfibro-glandular (MSS= 0.59),

Figure 3.Experimentally obtained basismaterial concentrations (blue) against the true data values (red) in (a) the PMMA-Al basis and
(b)decoupled reference frame. The error bars show standard error (a) computed using equations (1.1a) and (1.1b) and (b) propagated
using equations (1.4) and (1.5) in appendix A.

Figure 4.Theoretical data pointsfitted to (a) a linear calibration curve for density ρ, and (b) a power-law curve forZeff of the same
form suggested by the equations (6a) and (6b).
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adipose and tumor (MSS= 0.74), and fibro-glandular and tumor (MSS= 0.17) showed that adipose tissue can
be distinguished from the other two, whilefibro-glandular and tumor are closer together in ρ/Zeff space. In
comparison,MSS in xPMMA and xAl space was−0.02. From figure 5 it can be seen that adipose tissue can be
distinguished fromfibro-glandular and tumorous purely based on effective atomic number values. On the other
hand,fibro-glandular and tumorous tissues are overlapping both in their effective atomic numbers and densities
and can be distinguished only if both quantitative values are observed together.

In addition to adipose, fibro-glandular, andmalignant tissue, themastectomy labeled as sample 4 contains
well-separated pure glandular tissue and skin. Thus, an extensive investigationwas conducted on this tissue.
Extracted density and effective atomic numberwere 0.98± 0.01 and 5.42± 0.06 for adipose, 1.07± 0.02 and
6.56± 0.20 forfibro-glandular, 1.18± 0.02 and 6.88± 0.09 for glandular, 1.19± 0.01 and 7.04± 0.07 for
tumorous, and 1.19± 0.02 and 6.87± 0.04 for skin tissue, respectively. In this particularmastectomy sample,
mean density andZeff are not distinguishable between the skin and glandular tissue. Glandular tissue has higher
Zeff and density thanfibro-glandular tissue, but almost the same density and slightly lowerZeff than tumorous
tissue.

Virtualμ values of phantommaterials and tissues in sample 4 are given infigure 6. The obtained ρ andZeff
values correctlymap to experimentallymeasuredμ values and provide information about tissue separation at
lower energies with respect to those used for tissue scanning.

Figure 5.Quantitative description of tissues in (a) xPMMA and xAl basis and (b) in terms of density (g cm−3) and atomic number
computed as in Champley et al (2019). Adipose, fibro-glandular, and tumorous tissues are distinguishedwith green, blue, and red
colors, respectively, whilemarker shapes correspond to differentmastectomy samples. Error bars represent the standard deviation of
10 ROIs.

Table 2.Zeff and ρwith the corresponding standard errorsσZ andσρ obtained
from the calibration phantom and%err computed using equation (9).

Material ρ ± σρ (g cm
−3) Zeff s Zeff %err ρ %err Zeff

PE 0.963 ± 0.004 5.36 ± 0.02 2.4 1.3

Water 0.971 ± 0.001 7.51 ± 0.02 2.9 0.9

PA 1.149 ± 0.004 6.10 ± 0.01 0.7 1.0

PMMA 1.198 ± 0.004 6.40 ± 0.01 0.7 1.4

POM 1.411 ± 0.004 7.04 ± 0.01 1.0 0.4

PTFE 2.204 ± 0.003 8.55 ± 0.01 0.2 0.2

Table 3.AverageZeff and ρ from5mastectomy samples.

Tissue type ρ ± SDρ (g cm
−3) Zeff SDZeff

Adipose 0.90 ± 0.02 5.94 ± 0.09

Fibro-glandular 0.96 ± 0.02 7.03 ± 0.12

Tumor 1.07 ± 0.03 7.40 ± 0.10

Skin 1.08 ± 0.02 7.31 ± 0.06
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4.Discussion

Conventional CT scans offer a relatively low specificity when distinguishing between soft tissues of slightly
different compositions. On the other hand, spectral imaging advances the ability to distinguish such tissues by
probing their attenuation properties at several energy levels. Spectral information is used for the decomposition
of data in basismaterials, such as PMMA-Al. The decomposedmaterialmaps can be used as an intermediate step
to estimating the uniquely defined physical quantities of imaged tissues. Utilizing these quantities, virtual
monochromaticμ values at arbitrary energy levels can be further extrapolated. In this work, a new approach to
material decomposition and ρ/Zeff estimationwas presented to characterize breast tissues.

A least-squarefitting approach to two-basismaterial decompositionwas adopted for an over-determined
systemwhenμ values can bemeasured at several energy levels. This was the case in our retrospective studywith
monochromatic beams, but the same approach can be applied tomulti-threshold photon counting detectors.
The procedure for decoupling density fromZeff depends on the quality of performedmaterial decomposition,
but is at the same time independent of themethod itself, and can be applied to othermethods published in the
literature. Experimentally computed concentrations xPMMA and xAl of basismaterials and related basis xρ and xZ
in the phantomwere found to be in good agreementwith the ground truth values.Moreover, small associated
standard errors infigure 3 show that plastic inserts can be separated in bothmaterial and xρ/xZ basis. The
theoretically derived functions in equations (6a) and (6b)were fitted to 6 data points corresponding to tissue-
equivalent plastics in the phantom. The high accuracy (R2> 0.99) of thefitting procedure justifies the
assumptionsmade in theoretical derivation. The systematic errors observed infigure 3 for somematerials (e.g.
PTFE and PE), which can probably be ascribed to slight differences between the composition of the phantom
materials and the ones published in Schoonjans et al (2011), do not impact the process of calibration, leading to
an agreement with the ground truth data at an average% error of 1.34% for ρ and 0.89% forZeff, as shown in
table 2. These results demonstrate that soft-tissue-equivalent plasticmaterials of similar composition can be
distinguished from spectral CTdata using estimated effective atomic number and density values.

The preliminary study on the breast cancermastectomy samples was an attempt to demonstrate the
feasibility of ourmethod to distinguish between fibro-glandular and tumorous tissues inside the breast. Based
on the available samples, it was shown that starting from spectral data it is possible to separate adipose, fibro-
glandular and tumorous tissues based on their physical characteristics. Thismight be useful in risk assessment,
cancer diagnosis, and the assessment of the status of the disease. Although pure glandular and tumorous tissue in
Sample 4 had almost the same density and slightly different effective atomic numbers, this could be due to the
desmoplastic core present inside the tumor and no conclusions could bemade based on a single piece of
evidence. The importance ofZeff to x-ray attenuation can be observedwhen comparing adipose and fibro-
glandular tissue clusters. It can be seen that lowerμ values for adipose tissue are driven by lowerZeff, rather than
significantly lower density. Distinguishing tumorous and pure glandular tissue is challenging because only slight
differences exist in both density andZeff. In our study, we observed that it is not possible to distinguish between
different tissues solely on density or effective atomic number orμ value alonewhile reasonable discrimination
(MSS= 0.31) can be obtained considering 2D clusters in ρ/Zeff space. Aworse separation (MSS=−0.02) can be
obtained using justmaterial coefficients xPMMA and xAl. Therefore, using density and effective atomic number
maps in the diagnostic workflow could be beneficial, potentially allowing the identification of the tissue type
based on quantitativemeasurements. Because of improved tissue separation, interpretability, as well as the
ability tomeasure these quantities with other experimental techniques, density andZeff should be preferred over
a simplematerial decomposition approach.

Figure 6.Virtual linear attenuation coefficients computed from extracted density and effective atomic numbers. Full lines represent
virtualμ values extracted from experimental data at an arbitrary energy level, while uncertainty was propagated from the standard
deviation of ρ andZeff.
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VMIs are usually computed directly fromdecomposed basis (e.g.μ1 andμ2) using x1 and x2 in equation (1).
Equivalently, physically relevant ρ/Zeff space can be used to compute other quantitativemaps established in
clinical practice. Linear attenuation values infigure 6were calculated using equation (3) at energies within and
outside the energy range used in the experiment. Virtualμ values calculated using theZeff defined byChampley
et al (2019)were in agreement (within themeasurement error)with experimentallymeasuredμ coefficients in
both the phantom and sample 4 and they enabled comparisonwith experimentally obtainedμ values in other
studies. For sample 4, which contained tissues examined by Fredenberg et al (2018),μ values were compared at
energies of 20, 30, and 40 keVwith an average% error of 3.3, 7.3, and 3.4%, for glandular, adipose, and tumor
tissue, respectively.

Our approach to tissue analysis could be directly applied to state-of-the-art synchrotron radiation breast CT
setups currently developed in Trieste at Elettra Sincrotrone SYRMEPbeamline (Longo et al 2019), and at
ANSTO Imaging andMedical beamline inAustralia (Tavakoli Taba et al 2021).With these experimental
settings, it should bementioned thatmultiple energy acquisitionswould be required, thus resulting in an
increased dose to the breast. On the other hand, due to the high contrast-to-noise ratio of phase-contrast images,
the dose per scan could be reduced thus bringing overall acceptable radiation exposures. Considering clinical
systems in hospitals, the advent of spectral CTpaves theway tomaterial decomposition following a single shot
acquisitionwithout a significant increment of the dose. Photon-counting breast CT systems are in clinical
practice (Berger et al 2019) and an extension to spectral applications is expected.

Studies estimating both ρ andZeff of human tissues using synchrotronCT systems are almost nonexistent.
The study byTorikoshi et al (2003) introduced amethod to compute these quantities avoiding thematerial
decomposition task. An average accuracy of 0.9% for ρe and 1% forZeff is comparable to ourmethod, but the
dose level usedwas not reported. The analysis was performed on low-Zeff plasticmaterials using a pair of
monochromatic acquisitions. Considerablymore papers using conventional systems have been published, but
not focusing on breast tissues or breast dedicated scanners. Szczykutowicz et al (2011)performed a
methodologically similar approach to the one presented in this paper using a clinical scanner and test object
without any noise remedying approach. They successfully decompose electron density andZeff but at the cost of
a significant reduction in signal-to-noise ratio. Lalonde andBouchard (2016) developed amodel inwhich
materials are decomposed in a compressed basis with principal component analysis, using the fact that human
tissues are composed of a very limited number of elements. Then, the first principal components are virtual
materials containing a certain fraction of those elements. From thereZeff valueswere computed. Azevedo et al
(2016) implemented their System-Independent-Rho-Z (SIRZ)method to obtain physical quantities of phantom
materials independent of the shape of the X-ray spectrum. The photoelectric-Compton decomposition is
performed in sinogram space and absolute ρe andZ values are obtained after the calibration procedure.While
physical characterizationwas successfully described formaterials of fairly distinguishable compositions, the
noise behavior was also not described in this work. Champley et al (2019) released a follow-up paper focusing on
the optimization and simplification of spectralmodeling as a newmethod called SIRZ-2.Most recently, Busi
et al (2019) developed a physical characterizationmethod using spectral detectors. They claimhigher robustness
and increased estimation accuracy (25%) compared to SIRZmethods. Extendedwork from the same groupwas
published in Jumanazarov et al (2021) to optimize the computation speed.Machine learning solutions to ρ/Zeff
extractionwere also tested by Su et al (2018) using dedicated phantomswith several tissue-equivalent inserts.
Good results in computingZeff were obtained using artificial neural networks and the random forestmethod
with a relative error between 1%and 2%at clinically relevant doses. However, a low-dose scanning and
evaluation of themodel onmaterials that were removed from the training set led to errors of up to 6%.
Nonetheless, the authors showed that themachine learning approach is robust and computationally efficient.

Considering specifically the estimation of ρ andZeff for breast tissues, only a few studies exist andmost have
beenmadewith experimental setups not used in diagnostic radiology. Berggren et al (2018) performed clinical
evaluation of breast skinZeff obtained from709 screening patients using planar spectralmammography. They
reported slightly higher values of 7.365 (95% confidence interval: 7.364, 7.366) comparable to ourfindings of
7.31± 0.06, with a difference of less than 1% thatmight be due to the fact that tissues in our experiment were
formalin-fixed. Gobo et al (2020) used a combination of transmission and scatteringmeasurements with 241Am
source and an x-ray tube, while Antoniassi et al (2011) performed scatteringmeasurements at 90 degrees by
using low-energy beams. Given diverse formulations ofZeff across the literature, wemade a comparison in
relative change usingZeff of nylon as a reference value in table 4.

Our study shows potential for quantitative breast imaging by translating spectral information into the
computation of physically relevant quantities, but it also has some limitations. The accuracy of the presented
method ismainly governed by the quality ofmaterial decomposition, which is highly dependent on the
denoising of decomposed data.We gave up the spatial information inside the ROI to obtain quantitatively
correctmaterial decomposition during the 2DGaussian denoising approach. Inaccurate tissue segmentation
would result in an erroneousGaussianfitting procedure as the number of peaks in 2Dhistogram space
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corresponds to the number of tissue types being evaluated at once. The appearance of a histogram containing
several plasticmaterials was published in our previous study (Vrbaski et al 2021). Thus, either correct tissue
segmentation or an algorithm capable of correctly fittingmultiple Gaussian functions in case no segmentation is
performed are critical aspects of the presentmodel. For the proof of concept, we relied on high-quality
synchrotron beam radiation, but tomake this approach broadly used, we plan to apply themethod tomore
accessible polychromatic sources. Finally, the conclusions drawn in this studywere based on the analysis of 5
mastectomy samplesfixed in formalinwhich could slightly bias themeasuredμ values (less than 0.5%
(Fredenberg et al 2018)).More samples will be evaluated to further confirm thesefindings. Despite the
mentioned limitations, given the general validity of the proposed decompositionmodel and the foreseeable use
of spectral detectors in breast CT scanners, the present feasibility study paves theway for its application to
clinical spectral breast CTdata.

5. Conclusions

Amodel incorporating CT reconstructions of an arbitrary number of spectral energy channels was developed to
computematerial density and effective atomic number. The density and effective atomic number of soft-tissue-
equivalent plasticmaterials were computedwith an average accuracy in the order of 1%, and the same approach
was applied to the set of 5mastectomy samples. The quantitative analysis presented here suggests that adipose,
fibro-glandular, and tumorous tissues can be distinguished, given theMSSs obtained for each tissue pair.
Density and effective atomic number can also be used for physics-based extrapolation of virtualmonochromatic
linear attenuation coefficients outside of the experimental energy range. Breast CT is an emerging technology
that is capable to provide three-dimensional imaging of the breast and its extension to spectral imaging is
certainly desirable for exploring the potential ofmaterial characterization in clinical trials.
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AppendixA.Noise analysis and uncertainties

As it was shown in section 2.5, regions of uniform composition result in scattered values of elongated shape (i.e.
clusters) in the (x1, x2)-plane histogram. Such behavior was ascribed to the unavoidable amount of noise carried
by the tomographic reconstructions onwhich thewhole decompositionmethod is based. Detailed analysis of
the propagation ofmeasurement uncertainties, related to the size of the cluster, was carried out. TheGaussian
fitting procedure introduced in section 2.5 individuates a preferred direction at angle θ aligned to themajor axis
u of elliptical Gaussian. The length in this direction and the orthogonal one (minor axis) are identified as the

Table 4. Literature review of experimentally obtained density andZeff numbers forfibro-glandular,
adipose and tumorous tissues.

Tissue type
Density ρ Zeff to nylon%diff

This work Gobo et al This work Gobo et al Antoniassi et al

Fibro-glandular 0.96 1.04 15.38 16.73 14.07

Adipose 0.90 0.95 2.68 4.40 5.60

Tumorous 1.07 1.05 21.31 18.87 14.79
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Gaussian spreads in a reference frame (xu, xv), which is parallel to themajor andminor axes of the spot. The
standard errors of the centroid coordinates can be approximated by the ratios between theGaussian spreads Su
and Sv and the square root of the volume under theGaussian surface
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that it is equal to the total number of voxels contributing to the corresponding two-dimensional Gaussian
function.Quantities b1 and b2 are bin sizes in both directions andA is the peak value. Calculated errors are then
translated into uncertainties of coordinates xξ and xζ in the reference frame rotated by the anglef defined in
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Appendix B.Noise behavior in 2Dhistogram space

In addition to the estimated centers of the distributions infigure 3(a), the 2DGaussianfitmethod outputs
several other parameters relevant for the accurate estimation of basismaterial concentrations summarized in

Table B1. List of output parameters in 2DGaussian fittingmethod for the
phantommaterials.

Material Amplitude (A)
Major axis

spread Su

Minor axis

spread Sv Angle θ

Water 38 0.40 0.0074 −0.121

PE 40 0.37 0.0065 −0.121

PA 38 0.32 0.0062 −0.120

PMMA 38 0.41 0.0073 −0.121

POM 38 0.32 0.0062 −0.120

PTFE 41 0.46 0.0078 −0.121
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table B1. The angle θ at which the cluster is extended remains constant (;−0.12) for allmaterials indicating that
blurring is not dependent on thematerial type. It is rather a result of combined contributions of image
acquisition, reconstruction, andmaterial decomposition noise. The amount of blurring in themajor direction
Su and the direction orthogonal to it Sv is of the same order ofmagnitude for allmaterials. The Su values are
around 2 orders ofmagnitude larger than Sv values. The amplitudeA of theGaussian function remains constant
for the same size of the ROI for all plastic inserts. These properties are important for theGaussianfitting
procedure because an initial guess forfitting parameters can be given, improving the robustness of themethod
and increasing the computational speed. Amore rigorous statistical description of these features will be the
subject of a forthcoming standalone communication.

AppendixC. Comparison ofmethods used to compute the atomic number of a compound
—ZcompARE

Effective atomic number as a property of amaterial depends on its chemical composition, but it is not uniquely
defined in the literature. Very often different definitions are adopted by researchers depending on the
experimental setup, energy range, and type of compounds. Several definitions that have been proposed to
compute this quantity can be divided into: (i)methods that computeZeff as aweighted average of composing
elements in the compound, (ii) andmethods that rely onmass attenuation coefficients of composing elements to
computeZeff (Bonnin et al 2014). The second group ofmethodswas developed to solve the fundamental
problem:Zeff as the quantity defined in thefirst category is not specifically tied to the absorption property of a
material. Thus, weighted sums of elements in a compound used in the first category are exclusively valid for
certain energy ranges and often to a certain set of elements contained in themixture, whilemethods in the
second category rely on tabulated attenuation properties ofmaterials to inherently defineZeff as a quantity tied to
attenuation property of thematerial.

In this section, we compared several availablemethods for thematerials in the calibration phantom.
ZcompARE (Vrbaski 2022) is user-friendly software with a graphical interface that can be used to compare
severalmethodsmost often used. The comparison of themethods for the calibration phantommaterials in the
energy range 20–40 keV is given in table C1.

It can be seen thatmethods by Spiers et al, Tsai andCho, Glasser et al, Gowda et al, andChampley et al
provide very similarZeff numbers for our experimental conditions.Methods byHine et al and Puumalainen et al
gave considerably lowerZeff numbers for allmaterials. Calibration functions of the formdefined in
equations (6a) and (6b)were applied to all definitions forZeff and results are given infigureC1. TheMSS defines
the level of separation in the range−1 to 1was found to be approx. 0.31 for allmethods used. Thus, the
distinguishment of tissues could be obtained irrespective of the proposed definition.

Themethod defined byChampley et al (2019) showed slightly better agreement of virtualmonochromaticμ
values computed using equation (3)with experimentallymeasured data. Constants n,K1, andK2 used in
equation (3)were estimated to be 4.44, 9.4, and 1.6 using the least-square fitmethod for elementalmaterials
found in the human body in theZ range of 1–20 across the diagnostic energy range (20–200 keV).

Table C1.Comparison of themost often used formulations of effective atomic numbers for phantom
materials in the energy range 20–40 keV.

Material Water PE PA PMMA POM PTFE

Brute formula H2O C2H4 C12H22N2O2 C5H8O2 CH2O C2F4

Spiers et al 7.42 5.44 6.12 6.47 6.95 8.43

Glasser et al 7.96 5.94 6.60 6.94 7.38 8.62

Hine et al 3.34 2.67 3.27 3.60 4.00 7.99

Puumalainen et al 3.33 2.67 3.27 3.61 4.00 8.00

Tsai andCho 7.44 5.47 6.15 6.50 6.98 8.45

Gowda et al 7.24 5.05 5.89 6.32 6.85 8.53

Champley et al 7.44 5.28 6.16 6.49 7.01 8.56
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