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Pan-cancer landscape of AID-related mutations, composite
mutations, and their potential role in the ICI response
Isaias Hernández-Verdin 1, Kadir C. Akdemir2, Daniele Ramazzotti3, Giulio Caravagna4, Karim Labreche1, Karima Mokhtari1,5,6,
Khê Hoang-Xuan1,7, Matthieu Peyre1,8, Franck Bielle1,5,6, Mehdi Touat1,7, Ahmed Idbaih1,7, Alex Duval9,10, Marc Sanson1,6,7 and
Agustí Alentorn 1,7✉

Activation-induced cytidine deaminase, AICDA or AID, is a driver of somatic hypermutation and class-switch recombination in
immunoglobulins. In addition, this deaminase belonging to the APOBEC family may have off-target effects genome-wide, but its
effects at pan-cancer level are not well elucidated. Here, we used different pan-cancer datasets, totaling more than 50,000 samples
analyzed by whole-genome, whole-exome, or targeted sequencing. AID mutations are present at pan-cancer level with higher
frequency in hematological cancers and higher presence at transcriptionally active TAD domains. AID synergizes initial hotspot
mutations by a second composite mutation. AID mutational load was found to be independently associated with a favorable
outcome in immune-checkpoint inhibitors (ICI) treated patients across cancers after analyzing 2000 samples. Finally, we found that
AID-related neoepitopes, resulting from mutations at more frequent hotspots if compared to other mutational signatures, enhance
CXCL13/CCR5 expression, immunogenicity, and T-cell exhaustion, which may increase ICI sensitivity.
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INTRODUCTION
Naive B cells enter the germinal centers (GC) of secondary
lymphoid organs after being activated by a cognate antigen,
where they induce the production of Activation-induced cytidine
deaminase (AICDA), especially during the G2-M phases of the cell
cycle (Fig. 1a, I).
AID (encoded by AICDA) is involved in the diversification of the

variable (V) or switch domains of immunoglobulin (IG) genes
during the G1-S phases of the cell cycle. It is responsible for
somatic hypermutation in the dark zone of the GC and class-
switch recombination in the light zone (Fig. 1a, II)1–3. AID
deamination of cytosine to uracil also occurs during IG gene
transcription and inside particular DNA patterns (Fig. 1a, III)4.
Mutations can arise as A- > C at WA motifs (W= A/T) when
resolved by the error-prone DNA polymerase-eta, which has been
defined as non-canonical AID (COSMIC signature 9), or as C- > T/G
at WRCY motifs (R= purine; Y= pyrimidine) when resolved by
base excision repair or mismatch repair pathways, which has
been defined as canonical-AID (c-AID, Fig. 1a, III)5. Although the
single-base substitution (SBS) COSMIC somatic signatures SBS84
and SBS85 (v3.2) have been recently associated to c-AID activity,
they were discovered in a trinucleotide context (specifically at
RCY motifs), which does not always correspond to the observed
tetranucleotide context in which c-AID acts (WRCY motifs)6–8.
Furthermore, AID belongs to the same enzyme family as
APOBEC3A and APOBEC3B, which are known to be a source of
somatic mutations in a variety of malignancies and are
designated by the SBS2 and SBS13 signatures according to
Alexandrov, but unlike c-AID, act in trinucleotide context (TCW

motifs)6,9,10. Off-target AID activity has also been reported in
lymphomas and other hematological cancers11,12, but only in a
few solid tumors11–16. Despite this, no detailed characterization of
the involvement of AID-related mutations at the pan-cancer level,
as well as their potential mutational and clinical implications, has
been performed. The c-AID mutations were then characterized
across 49 thousand tumoral samples (9 human cohorts and 3
non-human cohorts, see Supplementary methods), revealing
that: (i) they are found at a frequency of 5.2% (5.1–5.3%) in
virtually all cancers (human and non-human); (ii) they show
stronger activity at transcriptionally active domains; and (iii) they
synergize initial non-AID hotspot mutations by a second c-AID
composite mutation.
Additionally, since the APOBEC mutational signature (SBS2 and

SBS13) has been proposed as a biomarker for ICI response in some
cancers17,18, we used more than 2000 ICI-treated samples19–21,
finding AID-related fraction of mutations as an independent
prognostic value to ICI after adjusting by tumor mutational burden
(TMB) and APOBEC signature.
Overall, we used more than 50.000 samples covering more than

80 tumor types to thoroughly describe the landscape of AID-
related mutations (Supplementary Tables 1–2).

RESULTS
Landscape of AID-related mutations at pan-cancer level
We identified the mutations induced by c-AID activity by tracking
the C to G/T mutations within its specific WRCY motifs. We
discovered AID-related mutations in the great majority of
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malignancies investigated while evaluating the PCAWG data
(ICGC; 2775 cancer patients and 35 cancer types). Overall, AID-
related mutations were detected in 5.2% (5.1–5.3% at 95%
confidence interval [CI]), while APOBEC mutations (SBS2+ SBS13)
were found in 6.5% (6.4–6.7% at 95% CI; Fig. 1b) of all single-
nucleotide variants (SNV) mutations. Using the TCGA, MSKCC
cohorts, and various pediatric datasets, we observed similar
results at the pan-cancer level (Supplementary Fig. 1 and

Supplementary Fig. 2). Conversely, as expected, the frequency of
AID-related mutations was slightly higher in hematological
cancers at ~8%, specially for B-cell malignancies, like diffuse large
B-cell lymphoma (DLBCL), which showed a 10.9% frequency
(Supplementary Fig. 2). Intriguingly, the AID mutations were also
identified in canine melanoma, glioma, and osteosarcoma at a
frequency of 6.0%, 4.7%, and 2.9%, respectively (Supplementary
Fig. 2). However, c-AID signatures were less abundant than other

Fig. 1 Pan-cancer landscape of AID-related mutations. a Illustrative representation of AICDA expression and AID activity within normal B
cells. For AID motifs, W= A/T; R= Purine; Y= Pyrimidine; K= G/T; M= C/A. b Frequency of the fraction of SNV mutations attributed to AID
motifs or APOBEC motifs for each tumor type in the ICGC cohort; dotted lines indicate median values across all samples. Center line represents
the median values; error bars represent the upper and lower quartiles and whiskers define the minimal and maximum values. c AID mutations
produce higher selection intensity on driver genes on minor hotspot residues but there is a higher number of affected genes/residues than
the ones generated by the APOBEC related signatures.
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tumor-specific major signatures, for example the ultraviolet (UV)
exposure related signatures (SBS7a and SBS7b) in skin melanoma
had a frequency of 65.0% (26.0+ 39.0%) versus 7.9% of c-AID; the
tobacco smoking signature (SBS4) in Lung adenocarcinoma with a
50.0% frequency versus 4.2% of c-AID; and the temozolomide-
related signature (SBS11) in glioblastoma (GBM) with 25.2% versus
7.7% of c-AID (Supplementary Fig. 1). Moreover, to discard an
association of our tetranucleotide-based c-AID mutations (using
ICGC cohort) with other COSMIC somatic signatures (v3.2) we
computed the cosine similarity scores and observed SBS84, SBS9,
and SBS85 showing low cosine scores of 0.497, 0.157, and 0.039,
respectively. Cosine similarity is a measure of closeness between
two mutational profiles where a value of one represents identical
signatures while of zero completely different ones. Alexandrov
et al. and others have demonstrated two mutational signatures to
be different when having a cosine similarity score inferior to
0.756,8,22,23. Next, to discard that the observed c-AID mutations are
due to randomness, we generated a background mutational
model by simulating, for each sample from the ICGC cohort, its
mutations 1000 times. We preserved, within each chromosome,
the mutational burden and mutational patterns at pentanucleo-
tide resolution (mutated base-pair with ± 2 bp context) to
generate a distribution of mutations and a null hypothesis about
the number of c-AID-related mutations generated by chance
(globally, per tumor type, and per sample). Pentanucleotide
resolution, in which c-AID motifs fall, was chosen as it has been
previously demonstrated to more completely capture the patterns
of substitution mutational signatures in human cancer23. We
observed a 2.69 (2.67–2.71 at 95% CI) enrichment of observed
versus expected c-AID-related mutations globally, and only 3/
2727 samples having significantly more c-AID mutations by
chance (two-sided Fisher exact test; Supplementary Fig. 3). We
removed those three samples from further analyses. These
observations indicate that it is very unlikely that the majority of
the observed c-AID mutations are the result of chance or an
already reported mutational signature.
Concerning the genomic distribution of AID motifs in the

normal genome, the quantity is not different across chromo-
somes when adjusting the motifs’ number by chromosome
length (FDR corrected p-value Wilcoxon test; Supplementary Fig.
4). Regarding AID-related mutations, in DLBCL most commonly
affected chromosomes involved the presence of either immu-
noglobulin related genes: IGH (chr14), IGL (chr22), IGK (chr2), or
genes already related with off-target AID activity: PIM1, IRF4,
HIST1H1C (chr6; Supplementary Fig. 4)24. Globally speaking, for
the majority of tumor types the highest density of AID mutations
were located in chromosome 5, in which GPR98 and DNAH5 were
frequently affected, followed by chromosomes 17 and 2
(Supplementary Figs 5–8).
Interestingly, within the driver genes context, hematological

cancers (i.e., non-Hodgkin’s lymphoma (Lymph-BNHL), DLBCL)
and MB had the highest signature contribution of AID provoked
mutations. Furthermore, among the involved targets, TP53, in all
cohorts; IDH1, in hematological cancers, GBM and low-grade
glioma (LGG); and PIK3 genes (TCGA and ICGC cohorts), were
recurrently altered (Supplementary Fig. 9). These results were also
confirmed using a selection intensity approach, i.e., of every
somatic mutation within the ICGC dataset. Selection intensity,
introduced by Cannataro et al., is defined as a metric of
proliferative advantage of a specific mutation under a model
of somatic selection25. We found a higher selection intensity of
PIK3CA, NFE2L2 but also in “minor” IDH1 mutations (i.e., not
R132H) and PTEN (Fig. 1c).
AICDA expression and AID-related mutations were not corre-

lated, and only in thyroid cancer (THCA) were slightly positively
correlated (Rho= 0.18, padj= 0.01), suggesting that AICDA is not
constitutively activated in any cancer. The AID mutations were
more frequently negatively correlated with the TMB of cancers

from TCGA (i.e., in adenoid cystic carcinoma (ACC), kidney renal
papillary cell carcinoma (KIRP), kidney renal clear cell carcinoma
(KIRC), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), ovarian cancer (OV), and THCA; Supplementary Fig. 10). In
brief, we found AID activity leaves important DNA footprints
across human and not-human tumors, including driver genes.

Oncogenic AID activity is higher at transcriptionally active
domains and differs according to transcription direction
AID activity within the normal context takes place especially during
transcription elongation, when the polymerase becomes stalled, and
requires a licensing step to regulate over-activity which can be
bypassed when abnormal high nuclear levels of AID are present. On
the other hand, R-loops, a hybrid structure of B-form double-
stranded DNA and A-form dsRNA, are formed during transcription
which increases DNA exposure and has been linked to AID
activity26,27. By using genomic coordinates of R-loop associated
regions and the ICGC cohort (WGS data), we attempted to answer if,
within the tumoral context, AID mutations were more localized in or
out these regions compared to either APOBEC mutations (COSMIC
SBS2/SBS13), other mutational processes, or c-AID mutations
expected by chance (from the simulated data). The number of
expected c-AID mutations falling “in R-loops” from simulated data
was significantly lower than those c-AID mutations observed in
real data (0.13% vs 0.18%, p-value <0.001), which is probably the
consequence of having globally less c-AID mutations by chance
(Supplementary Fig. 3). However, within the real data the c-AID
falling “in R-loops” (1130/629,871) was not significantly different to
those caused by SBS2 (0.19%; 456/241,695; p-value= 0.37; two-sided
Fisher exact test) or SBS13 (0.19%; 400/204,922; p-value= 0.15)
(Supplementary Table 3). Overall, this suggests that within the
oncogenic context, AID promiscuous activity is not particularly
related to R-loop formation.
Next, we used topologically associated domains (TAD) informa-

tion of five different previously defined domains (i.e. hetero-
chromatine, inactive, repressed, low-active, and active), to see the
distribution of AID/APOBEC mutations across chromatin folding
domains28–30. We found AID mutations occurring more towards
active domains than inactive (FC= 3.63; p-val= 5.01 × 10−98),
especially at the TADs boundaries (Fig. 2a-left). As previously
described, we found that APOBEC signatures are also causing
mutations towards active domains but the active/inactive ratio is
notably higher for the SBS13 than the SBS2, indicating distinct
molecular underpinnings (Supplementary Fig. 11).
Since the R-loop forming regions do not cover all the

transcription start sites (TSS) and given the observed association
with active domains, we next analyzed the AID mutation’s
distribution around the TSS as previous studies showed recruitment
of AID to those sites27. By dividing mutated genes based on
strandness, we found a very particular pattern for the AID mutations
falling on the negative strand compared to the positive strand.
Mutations accumulate near the TSS and towards the gene body
while maintaining a more constant and significantly higher
mutational load compared to the opposite direction (Fig. 2b;
−50 kb vs TSS, p-value: 0.96; TSS vs +50 kb, p-value: 5.89 × 10−06).
This was not observed on the positive strand (−50 kb vs TSS, p-
value: 0.08; TSS vs +50 kb, p-value: 0.11) nor on the APOBEC
signatures at either strand (Supplementary Fig. 12).
Next, we wondered if the AID mutations of a specific gene were

produced during transcription of that same gene. To answer this
we used 1130 samples (comprising 24 tumor types) from which
the mutations and expression data were available (ICGC cohort)
and correlated the number of c-AID mutations occurring in gene i
(AID_Mutsgi) to the expression of the same gene i (Expgi) within
each tumor type since the expression and mutations vary greatly
in this context. Only 6.6% of the total different mutated genes
(21,341) were expressed from which 6.0% (81/1,403, not repeated
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genes) were correlated with its corresponding gene expression
per tumor type (p.adj <0.05, Spearman Rho > 0); additionally, more
than one-third of these genes were found in hematological
cancers (Lymph-BNHL and Lymph-CLL). Gene set enrichment
analysis revealed immunoglobulin V region-related genes
(adjusted p-value= 1.2 × 10−11) within hematological cancers
(Fig. 2c). Other interesting genes included, CRNN in biliary
adenocarcinoma, which loss of expression had been previously
associated with poor survival in esophageal squamous cell
carcinoma31, and the transporter-associated gene, SLC15A5 in
pancreatic adenocarcinoma. Altogether, our analysis suggests that
AID activity is coupled to the transcription process with
immunoglobulin genes in hematological cancers following the
line of “normal” context as the expression is more constitutive.
However, the mutations in other genes are probably produced
during short-term transcription of both the affected gene and
AICDA whose dynamics depend on the strand location of the gene
and hence the direction of transcription.

The impact of AID-related mutations with ICI response
Because several recent studies pinpointed a potential role of
APOBEC related mutations on the efficacy of ICI17,18, we sought to
use the fraction of AID as a surrogate marker of ICI response. We
used different open access datasets that had available genomic
and clinical data (see Methods). We performed a random-effects
meta-analysis comparing the overall survival (OS) of all these
studies and comparing the impact of AID, to the APOBEC
signature and the different SNV. The details of this analysis are
provided in the methods. Strikingly, the AID-related mutations
were associated with the best OS in all of the studies and the
random-effects model showed also a favorable prognosis (median
as the cutoff, Fig. 3a). Moreover, the effect was still significant
across almost all the studies independently of either decile chosen
as cutoff at univariate (Supplementary Fig. 13) or multivariate
adjusting for TMB (Supplementary Fig. 13). Accordingly, the
APOBEC signature was associated with a favorable prognosis,
but not in all datasets. However, the random-effects model also

Fig. 2 Oncogenic AID activity is higher at transcriptionally active domains and differs according to transcription direction. a Average
profile of AID somatic mutations accumulation in 2775 cancer samples and replication timing across 500 kb of TAD boundaries delineating
active to inactive domains (left); dot plots representing the distribution of the mutations divided by the domain length in different domain-
types (heterochromatine= purple, inactive= gray, repressed= blue, low-active= orange, active= red; right; Wilcoxon rank-sum test). Error
bar limits are the 25th and 75th percentiles; the center line is the median. b Average profiles of c-AID mutations accumulation in 2775 cancer
samples across 500 kb of TSS for negative-strand genes (top) or positive-strand genes (bottom). Boxplots on the right shows the mutational
load comparisons within the TSS and adjacent ∓50 bins on each strand where error bar limits are the 25th and 75th percentiles; the center
line is the median and whiskers define the minimal and maximum values. c Volcano plot (n= 1130) showing the genes whose expression and
mutations are correlated per tumor type (p-adj < 0.05, Spearman Rho > 0), where colors indicate genes enriched in a specific pathway by
DAVID database analysis and the pie chart (inset plot) indicates the distribution across tumor types of the associated genes. All panels were
produced using the ICGC cohort.
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indicated an overall favorable prognosis associated with APOBEC.
The rest of SNV showed much more heterogeneous results and
only T > A and T > G mutations were associated with favorable
prognosis in the random-effects model (Fig. 3a).
Interestingly, within the largest study of IMPACT-MSKCC, the

fraction of AID-related mutations (top 50% of all histologies as
the cutoff) was also independently associated with both
better OS (Hazard ratio [HR]= 0.715; 95% CI= 0.61–0.839;
p= 3.81 × 10−5) and predictive value compared to TMB or
APOBEC after adjusting by TMB (top 20% of each histology as
the cutoff), APOBEC signature (top 50% of all histologies as the
cutoff) age and sex (Fig. 3b). It should be noted, that when using
a univariate Cox proportional Hazards ratio model per every
cancer type or adjusting by TMB ≥ 10, the results were also similar
in the overall population of this study, but the clinical impact of
AID-related fraction of mutations was only found in metastatic
melanoma and cancer with unknown primary (Fig. 3c; Supple-
mentary Fig. 13). Additionally, there was practically no correlation
between the fraction of AID mutations with the APOBEC
signature neither globally nor by tumor type in this cohort
and in the ICGC and TCGA datasets (Supplementary Fig. 14).

Similarly, by using four additional studies across different tumor
types, we also found an association of high AID mutations with
improved OS after adjusting by age, gender, and TMB using the
multivariate Cox model19,20,32,33.
Overall, all the studies confirmed the independent prognostic

value of the high fraction of AID mutations according to the
median in the univariate and multivariate analyses.

Landscape of AID-related neoepitopes and its relation with ICI
response
Having found an association between AID activity and ICI benefit,
we hypothesized that AID mutations might generate highly
immunogenic neoepitopes. We addressed this by analyzing the
neoepitopes that were products of AID activity on the TCGA
cohort and on melanoma patients treated with Nivolumab (anti-
PD-1)34. A recent bioinformatic-experimental study using immu-
nogenic and non-immunogenic peptides, experimental testing,
and X-ray structures showed that TCR binding and recognition
improves with the presence of hydrophobic amino acids
(aromatic W, F, Y followed by V, L, and I) at specific “MIA”

Fig. 3 The impact of AID mutations on ICI response.Meta-analysis of the survival impact of the fraction of AID mutations in different studies.
a Effect of using AID/APOBEC (5th decile as cutoff ) or SNV substitutions where AID remains significant across all the studies. b Forest plot of a
Cox model of the global impact, after adjustment by TMB (top 20%), median APOBEC mutations, age, and gender. c Forest plot of the Cox
model of the impact of AID mutations per cancer subtype.
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positions (position P4-PΩ−1) due to increased structural avidity,
stacking interactions, hydrogen bond acceptance and limited
rotational freedom with the TCR35. Additionally, as a previous
study showed that APOBEC promiscuous activity increases
neopeptide hydrophobicity36, we wondered if AID-related muta-
tions led to the production of not only more hydrophobic
neoepitope but more “Immunogenic” in terms of amino acid
changes (W, F, Y, V, L, I over others) at MIA positions and if these
effects were different due to clonality, histology, or mutational
processes. We computed the PRIME %rank score and used it to
classify neoepitope as “Immunogenic” or “Non-Immunogenic”
(see Methods), on a list comprising 2143 patients (TCGA) from
which RNA-seq, HLA haplotyping, clonality, and mutational
process origin data were correctly assessed; we also restricted
the analysis to only patients with >1 FPKM expression on the
genes originating the neopeptide, microsatellite stability, and
intact antigen presentation related genes. We analyzed 286,909
neoepitopes from which only 17.75% were predicted to be
immunogenic but interestingly they occur more frequently within
clonal neoepitope than in subclonal (38% versus 30%,
P= 1 × 10−27; two-sided Fisher exact test; Fig. 4a). Because our
results suggested a higher presence of immunogenic neoepi-
topes, in terms of numbers, provoked by mutations occurring
earlier, we restricted the subsequent analyses to only immuno-
genic clonal neoepitopes (ICNs).
Strikingly, albeit a global higher number of APOBEC induced

ICNs was present, the proportion of samples having at least one
ICN produced by AID (classified as “Present”) was practically three
times higher than those provoked by APOBEC globally (32%
versus 11%, P= 1 × 10−65; two-sided Fisher exact test; Fig. 4a). We
next sought to compare the cumulative distribution of the AID/
APOBEC ICNs in terms of population hotspot mutations recur-
rency finding that AID produces ICNs at hotspots with greater
positive selection (FC= 1.59; P= 3e-41, two-sample Z-test for
equal proportion, Fig. 4a) which could give rise to higher
possibilities of immune recognition and improved tumor control.
By comparing tumors harboring at least one AID ICN (“Presence”)
to those which did not (“Absence”), we found an increased
fraction of CD8, CD4 memory activated and follicular helper T-cells
that were “exhausted” by higher expression of the inhibitory
immune-checkpoint molecules PD-1, PD-L1, PD-L2, CTLA-4, and
LAG3. Furthermore, these observations were seen in the majority
of tumor types but the increment was only significant when
accounting for all the samples (n= 2143) or for LUAD (Fig. 4b,
two-sided Wilcoxon test).
Since these findings suggested that AID mutations inducing ICN

as a possible explanation of ICI response, we next analyzed a
cohort of 68 melanoma patients treated with anti-PD-1 (Nivolu-
mab) from which WES, neoepitopes, and RNA-seq data were
available prior treatment (pre) or 4 weeks after initiation of Nivo
(on)34. Through all the analysis we separated patients as Ipi-Prog
(n= 35), which had previously progressed on anti-CTLA-4 treat-
ment (Ipilimumab), or as Ipi-Naive, which only received Nivo
(n= 33). First, we looked at the distribution and effect of AID
mutational load on survival compared to UV-related mutations.
We found that the responders (Complete-response/Partial-
Response) had a higher number of AID-related mutations
compared to the stable disease (SD) or progrssive disease (PD)
groups (Ipi-Prog median= 0.094; Ipi-Naive median= 0.108), but
was not significantly different and was also observed for UV
mutations (Ipi-Prog median= 0.354; Ipi-Naive median= 0.349).
Conversely, the effect on OS was markedly different, being
associated with prognosis only when using AID mutations within
Ipi-Naive patients (log-rank p= 0.026) but not with UV mutations
in neither naive nor progressive patients (log-rank p= 0.93 and
p= 0.34; Supplementary Fig. 15). The AID ICN load improved
survival prediction better (log-rank p= 0.0016) than if using global
clonal neoepitopes load (log-rank p= 0.0042), global ICN load

(log-rank p= 0.0025) or UV ICN load (log-rank p= 0.0071; Fig. 4c).
As the effect was tightly marked only in Ipi-Naive patients, we
focused the subsequent analysis on only this group.
When coupling RNA-seq data (n= 20), we found 64 upregu-

lated and 110 downregulated genes comparing patients with
high AID ICN load versus low within pre-therapy samples
(q < 0.20; Supplementary Table 4). Gene Ontology (GO) analysis
identified downregulation of antigen presentation and TNF
signaling pathways (q-value <0.05; Fig. 4d and Supplementary
Fig. 15). We also observed an increased expression of the
inhibitory immune-checkpoint molecules PD-1, PD-L1, PD-L2,
CTLA-4, ICOS, LAG3, and cytolytic activity (Supplementary Fig.
16). These results are consistent with both our previous analysis
on TCGA data and previous studies34,37,38.
Next, we endeavored to identify expression changes on

patients that responded (according to AID ICN load) after
4 weeks of Nivo treatment by comparing pre-therapy to on-
therapy data from the patients (npre= 20; non= 20). From the
811 genes found to be differentially expressed (q < 0.20;
Supplementary Table 5), 404 were upregulated and involved in
antigen processing and presentation, T-cell activation (e.g.,
PRKCQ, CD8B, CD38, CD151, MALT1), leukocyte cell–cell adhesion,
response to oxidative stress (STK24, GSS, GCLC, PDK1) and T-cell
reactivity to clonal neoepitopes (CXCL13 and CCR5) (q-value
<0.05), the last ones being recently described18. On the other
hand, downregulated pathways included mainly cell growth,
B-cell differentiation, and some chemokines (CXCL11, CCL4, and
CCL14) or chemokine receptors (CCR3 and CCR8) (Fig. 4d).
Furthermore, we also observed an increased expression of
CXCL13 and CCR5 on the TCGA samples with high AID ICN load
(Fig. 4b). Altogether, these results show possible explanations of
why AID mutations reflect a more straightforward approach to
predict response to Ipi-naive treatment.

AID synergizes initial hotspot mutations through late
mutations on weakly functional alleles
Since recent studies have unraveled that composite mutations,
pair of driver–driver, driver–passenger, or passenger–passenger
mutations on the same gene, can synergize the functional impact
compared to their single-mutated contra part, we analyzed the
contribution of c-AID mutations within this phenomenon by
analyzing 31,353 samples comprising 41 tumor types from the
MSKCC cohort (Fig. 5). As previously described, using a panel of
353 oncogenes (168 genes) or tumor suppressor genes (TSGs, 185
genes), we found that composite mutations occur more
frequently in TSGs than in oncogenes (12.2% versus 6.0% of all
mutations; P= 2e-278, two-sided two-sample Z-test)39,40 but
interestingly when separating by c-AID mutations compared to
those of other origins, we observed a global contribution to the
composite mutations of 6.9%; furthermore, within oncogenes, 9%
consisted of at least one c-AID mutation, compared to 5% within
TSGs (Supplementary Fig. 17). We further verified that biallelic
loss was also enriched for AID composite mutations, as it was
reported from global composite mutations, within TSGs since
there were more truncating variants compared to oncogenes
(64% versus 8%; P ~0; fisher exact test; Supplementary Fig. 17).
Next, we calculated gene enrichment for AID composite
mutations globally and per tumor type to discard that the
observations were due to randomness by modeling the AID
composite mutational burden as a function of genetic covariates
(see Methods). Surprisingly, we found enrichment for six genes
including FGFR3 especially among HNSCC with 20% correspond-
ing to AID composite mutations, and lower lineage-specific
proportions for EGFR (8.9% in Glioma), PIK3CA (~4% in Breast,
Endometrial, Cervical, and Skin cancers), FBXW7 (~7% in Color-
ectal and Esophagogastric cancers); PTEN (2.5 and 4% in
Endometrial and Cervical cancers) but not TP53 since it was
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present across different tumor types (Q < 0.01; Fig. 5a and
Supplementary Fig. 17, Supplementary Table 6). We used a
similar approach for residue’s enrichment to avoid missing
residues not enriched at the gene level and observed that
PIK3CA E726 was the most enriched (q= 2.59e−58, Fisher’s exact
test) followed by TP53 R213, EGFR A289, and PIK3CA R88 (Fig. 5b,
Supplementary Table 7-8). Since most found residues happened

to be of lesser positive selection, we next checked the cumulative
proportion moving from frequent hotspots (greatest positive
selection) to less frequent ones, finding that AID composite
mutations are five times more likely to happen than AID singleton
mutations (P= 2e-109, two-sample Z-test for equal proportion)
which has higher than the fold-change (FC) between composite
mutants (other than AID) to singleton mutants (FC= 2.3; P ~ 0).
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Furthermore, any AID mutation was absent from the highest
positive selective hotspots (i.e. KRAS G12, PIK3CA H1047, TP53
R273) suggesting that AID mutations have a preference towards
weakly functional alleles after the acquisition of high positive
hotspots (Fig. 5c, Supplementary Table 9). To further evaluate this
hypothesis, we added the allelic configuration and clonality to
subset to mutations arising from the same tumor cell population
and retain molecular timing information. We observed that both
globally (69% versus 31%, P= 7e-4, two-sided binomial test,
Supplementary Fig. 17) and within AID composites (73% versus
27%, P= 0.03, two-sided binomial test, Supplementary Fig. 17)
the most frequent hotspot mutation occurs first and is followed
by a synergizing second mutation but only within oncogenes,
which was the case of the minor mutation PIK3CA E726, between
the kinase and the PI3KA domains, that occurs significantly after
(p= 0.039, one-sided binomial test) than other stronger muta-
tions (i.e., PIK3CA E542, PIK3CA E545 at helical domain or PIK3CA
H1047 at the kinase domain) (Fig. 5d, Supplementary Table 10)
and is a product of AID promiscuous activity. When looking only
at phase-able mutations (without the molecular timing variable)
we observed that 88% of composite mutations on PIK3CA occur in
cis from which 26% were AID provoked; other genes with
a high percentage of cis AID composite mutations were EGFR,
KMT2D, and APC (Supplementary Fig. 17, Supplementary Table
11). Some PIK3CA composite mutations have already been
proved to increase cell proliferation, tumor growth but also
PI3K inhibitor sensitivity in human breast epithelial cell lines, but
to the best of our knowledge, it has not been linked to being the
product of AID activity40,41.
Additionally, we analyzed the contribution of other mutational

processes to the composite mutations. Besides the aging
signature, AID contributed more to the composite mutations
than other signatures (Supplementary Fig. 18), opening the
possibility of further research on the molecular implications of
these mutations.

DISCUSSION
By integrating more than 50,000 bulk level samples across 80
tumor types and different data levels, we present, to the best of
our knowledge, the first study shedding light on the oncogenic
and clinical implications of AID at pan-cancer scale. Our results
point to the idea that AID induces traceable mutations with
important functional and clinical implications that are mainly
produced during the transcriptional activity of the mutated gene.
Firstly, by using WGS data, we found that AID mutational load is
increased at transcriptionally active TAD domains (compared to
the background) and close to TSS. Moreover, regarding the
different AID mutational behavior depending on the strand
location of the gene, we propose a model where the negative
strand is more prone, than the positive strand, to AID attack at
naked transcribed breathing dsDNA (normally located near TSS)

and is followed by attack at DNA stem-loops and transcription
bubbles (but not at R-loops) being generated as the RNA
polymerase transcribes4.
Summing up the findings that globally AICDA expression and

c-AID mutations were not correlated in the TCGA nor in ICGC
datasets plus that mostly only the immunoglobulin genes’
expression was correlated with c-AID mutations in hematological
cancers, it is tempting to speculate that the genotoxic effect of
AID might be due to short-term activation of AICDA, which have
been seen in APOBEC42. Indeed, in a fate-mapping study, AICDA
expression was present in a fraction of non-lymphoid embryonic
cells43 and also in malignant melanoma cells from a single-cell
RNA-seq study comprising 33 melanoma tumors (Supplementary
Fig. 19)44. Furthermore, AICDA transcripts in lymphocytes have a
half-life of only 1 h45, supporting the lack of correlation between
AID-related mutations and AICDA expression.
Despite, ephemeral, AICDA expression mutational footprints are

widespread across cancers, and presumptively across mammals,
with similar mutational frequency compared to APOBEC but a
higher contribution to driver oncogenes, to composite mutations,
and to the production of higher quality neoepitopes. Already
reported AID off-target activity, outside lymphomas, is limited
especially to TP53, KRAS, and MYC in gastric, colorectal and skin
melanoma16,46,47. For example, Nonaka et al. demonstrated that
mice expressing AID in the skin spontaneously developed skin
squamous cell carcinoma with Hras and Trp53 mutations that
presented the characteristic AID motif47; this was also reported by
Sawai et al. in precancerous lesions in AID Tg mice15 and by Li et al.
in AID-induced mutations within the p53 gene in colorectal cancer46.
We thoroughly extended this data and found that AID activity has a
preference towards least positive selection hotspots that synergizes
with previous stronger hotspot mutations; this is the case for the
minor mutation PIK3CA E726, especially present in SKCM and BRCA,
that might confer higher PI3K inhibitor sensitivity40,41.
Finally, we found that the AID-related fraction of mutations is an

independent prognostic value to ICI response using >2000 samples
even after adjusting by TMB. AID-related neoepitopes exhibited
distribution towards clonal hotspots with a greater positive
selection which could result in improved immune recognition;
however, this is avoided by tumor-induced immune exhaustion. It
should be noted that the statistical power in individual histologies
is reduced, and as sample sizes increase, additional histology-
specific associations may appear in future larger prospective
studies that may lead to a formal validation of the predictive value
of AID-related signature on ICI response and the results regarding
the AID-related neoepitopes. It is also important to highlight that
there could be some analytical bias related to the combination of
different datasets using different mutation calling approaches.
However, the signal associated with the AID-related mutations was
similar throughout the studies and the pipelines, and results of the
different included studies are public and well standardized, limiting
in part this mutation call bias.

Fig. 4 Landscape of AID-related neoepitopes and its relation with ICI response. a Percentage of neoepitopes originating from clonal/
subclonal mutations in which the color indicates comparison for immunogenic or non-immunogenic calculated by Prime (top left; Two-sided
two-sample Z-test for equal proportions). Top right shows the comparison of the percentage of samples having at least one AID immunogenic
clonal neoepitopes (ICN) versus APOBEC ICN (“Presence”; Two-sided two-sample Z-test for equal proportions). Bottom plot shows the
cumulative distribution of hotspot mutation utilization among the AID/APOBEC ICNs as a function of decreasing population-level frequency
(Two-sided Mann–Whitney U test, FC of median AID to APOBEC values, error bars are 95% binomial confidence intervals). The number of
distinct mutations indicates the number of unique samples having a mutation at a specific residue (e.g., IDH1 R132). b Heatmap of gene
expression comparison between AID ICN “Presence” versus “Absence” groups across tumor types/all tumors (n= 2143; two-sided Wilcoxon
test) measured as log2 FC. c OS prediction within Ipi-Naive patients improves when using AID ICN load (top right), ICN UV load (bottom right),
ICN load (middle), or clonal neoepitopes load (left), lowest to highest log-rank p-values. d DEGs (p-adj < 0.20) between high ICN load patients
versus low ICN load for pre-therapy, where increasing negative values on the x-axis shows higher significance (+Log10[p-adj]), or on-therapy,
where increasing positive values on the x-axis means higher significance (−Log10[p-adj]). The y-axis shows upregulated (FC > 0) or
downregulated genes (FC < 0) and colors indicate genes enriched in a specific pathway by GO analysis. a and b correspond to the TCGA
cohort (n= 2143) meanwhile c and d to ICI-treated melanoma cohort (Riaz et al., n= 68).
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We propose a model in which AID ICN has higher probabilities
of being recognized by T-cells, triggering selective expression
CXCL13, previously found to be a marker of antigen reactive CD8
T-cells, for recruitment of CXCR5+ T and B cells18. These recruited
cells, subsequently exhausted by the continuous expression of

inhibitory immune-checkpoint molecules, can be reinvigorated
after ICI treatment.
c-AID mutations are present at pan-cancer level, with higher

frequency in B-cell malignancies and other hematological cancers,
and higher presence at transcriptionally active TAD domains. AID
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mutational load predicts response and is associated with favorable
outcome in ICI-treated patients, probably due to producing
immunogenic clonal neoepitopes at hotspots with greater positive
selection that might enhance CXCL13/CCR5 expression, immuno-
genicity, and T-cell exhaustion. Overall, we pieced together an
immense part of the oncogenic AID puzzle but many parts still
need to be found, especially filling gaps with biological validations
as the results, here presented, hold the promise of important
clinical applications.

METHODS
Subject details
The total cohort at bulk level consisted of 50,631 tumor samples
representing more than 80 cancer types. TCGA information
consisted of: mutational data in Mutation Annotation Format
(MAF) included 9264 cancer patients and 741 normal samples;
RNA-seq data; immune data, allele-specific integer copy numbers,
and previously predicted neoepitopes. The PCAWG data (ICGC)
included 2775 cancer patients along with 35 different cancer types
with whole-genome sequencing (WGS) information (SNV and
CNV) from which 1522 had the expression data available.
Composite mutations data included 31,353 cancer patients from
the MSKCC comprising 41 tumor types by the MSK-IMPACT assay
(sizes depending on the date of sequencing comprising 341, 410,
and 468 cancer-associated targeted genes) downloaded from
CBioPortal for the general maf or their github repository (https://
github.com/taylor-lab/composite-mutations/tree/master/data) for
the clinical, mutational burden classification, mutational signa-
tures, composite mutation annotation, phasing information, and
molecular timing39. Additionally, hematological cancers cohort
(AML, DLBCL, Myelodysplastic Syndromes, and other leukemias;
n= 3859)48–61 and pediatric cancers cohort (20 tumor types;
n= 1051)62 were obtained from CBioPortal some were part of the
Therapeutically Applicable Research to Generate Effective Treat-
ments (TARGET) initiative (phs000467, phs000471, and
phs000465). ICI cohort consisted of 2261 samples coming from:
MSKCC-IMPACT dataset (n= 1472), Pender et al. cohort (n= 98),
Miao et al. cohort (n= 249), Liu et al. (n= 144, melanoma), Hugo
et al. (n= 37, melanoma), and Braun et al. (n= 261)19–21,32,33,63.
Riaz et al. melanoma cohort consisted of 68 patients treated with
Nivolumab (anti-PD-1) from which 35 had previously progressed
on Ipilimumab (anti-CTLA-4) treatment from which data was
obtained prior treatment (pre) or 4 weeks after initiation of Nivo
(on). Data consisted of whole-exome sequencing (WES), neoepi-
topes (npre= 68; non= 41), and RNA-seq (npre= 45; non= 41)34.
The canine cohort consisted of a total of 187 samples representing
3 tumor types including glioma (n= 81), osteosarcoma (n= 35),
and melanoma (n= 1)64–66.

Tracking AID-related mutations
We developed a code to detect c-AID-related mutations over
*wrCy/rGyw* (±strand, where “W” stands to either adenine or

thymine, “R” to purine, and “Y” to pyrimidine) motifs, giving a total
of 8 motifs per strand (positive strand= AACC, AACT, AGCC, AGCT,
TACC, TACT, TGCC, TGCT; negative strand= TTGG, TTGA, TCGG,
TCGA, ATGG, ATGA, ACGG, ACGA).
The code was developed under R, takes a maf (mutation

annotation format) object as input and outputs an S3 class object
containing: (i) a matrix of the 768 possible tetranucleotide
substitutions across the samples; (ii) a data table with all the
needed values for enrichment calculation, the enrichment score,
Fisher exact test p-value and FDR for enrichment, the fraction of
AID mutations, among others; and (iii) a maf-like data table, with
the same format as the input, containing only the attributed AID
mutations. Finally, mutations were tagged as AID or not AID if
overlapping or not with the mutations found in the output maf
after applying the function.

Mutational landscape simulation
We simulated the mutations from each sample from the ICGC
cohort to generate a null hypothesis for testing if the c-AID-related
mutations happen significantly more by chance or not. Mutations
were simulated 1000 times per sample using the tool SigProfi-
lerSimulator23 to generate a distribution of mutations in which the
mutational processes were reconstructed using a ± 2 bp context
around the mutation (SBS-1536 resolution) and the mutational
burden was kept the same per sample. c-AID mutations from each
of the 1000 simulated lists of mutations were extracted per
sample (as explained in the “Tracking AID-related mutations”
section); then we evaluated if the observed c-AID mutations were
higher than those expected by chance (for each simulation) using
a two-sided Fisher exact test. This generated a distribution of
odds ratios (OR) per sample (or tumor type) from which
significance was considered for OR overlapping 1 in less than
5% of the bootstrap samples.

AID motifs distribution across the genome
The AID motifs, i.e. WRCY motifs W= adenine or thymine,
R= purine, C= cytosine, Y= pyrimidine, that is AACC, AGCC, AACT,
AGCT, TACC, TGCC, TACT, and TGCT. We used an R script to find
these patterns in the GRCh38 genome using the Biostrings package
v2.60.0. In addition, we also calculated the number of these AID
motifs in 20 kb binned windows throughout the genome using
bedtools, adjusting by the chromosome size.

c-AID mutations genomic distribution
The inter-mutational distance, i.e., the distance between each
somatic substitution and the substitution immediately prior, was
calculated per tumor type by combining the MAF data of all
samples within that tumor type using the R package “karyoplo-
teR”67. Mutation density was calculated within 1 megabase
window and added to rainfall plots in Supplementary Figs. 4–8.
Furthermore, within each tumor type, mutation density per

Fig. 5 Impact of AID mutations on composite mutations. a AID composite mutations in enriched genes by lineage (n= 31,353 samples).
Cases with global composite mutations and the expected value based on cohort size and mutational burden (top). Significant enrichment for
AID composite mutations in cancer genes per cancer type (FDR-adjusted P-values from a one-sided binomial test for enrichment; bottom,
n= 29,461). b Residue versus gene enrichment arising from AID composite mutations (FDR-adjusted from one-sided Fisher’s exact test for
residues or one-sided binomial test for genes). c Cumulative sum of the percentage of hotspot mutation utilization by decreasing frequency of
population-level hotspot mutations among composite or single mutations (AID or not AID provoked). Two-sided Mann–Whitney U test, fold-
change (FC) of max composite to singleton values. Top inset, percentage of hotspots attributable to composite/singleton mutations (Two-
sided two-sample Z-test for equal proportions, color indicates comparison for AID or not AID provoked). d Occurrence of PIK3CA AID
composite mutations where arcing lines indicate the composite pairs (≥2 tumors, red-bold color for AID enriched residues) and numbers
indicate the amino acid position. Residue PIK3CA E726, located between the kinase and PI3KA domains, is highly enriched as an AID
composite. Significance values for the composite mutants (FDR-adjusted P-value, one-sided binomial test) are shown at the bottom. Error bars
indicate 95% binomial confidence intervals.

I Hernández-Verdin et al.

10

npj Precision Oncology (2022)    89 Published in partnership with The Hormel Institute, University of Minnesota

https://github.com/taylor-lab/composite-mutations/tree/master/data
https://github.com/taylor-lab/composite-mutations/tree/master/data


chromosome was calculated for each sample to then compare
densities within chromosomes.

Attributing mutations to mutagenic processes
Mutations previously tagged as not AID were subjected to signature
attribution to 46 (we excluded signatures SBS: 27, 39, 43, 45–60 since
they are attributed to sequencing artifacts) of the 78 COSMIC
mutational signatures (v3.2) using Palimpsest package with default
parameters6,8,68. To avoid over-fitting, signatures not contributing
with at least one mutation within 50% of the samples per tumor
type (Median-SBSnTumorX < 1) were removed and mutations were re-
fitted using the remaining signatures. Furthermore, signatures
proportions per sample were re-calculated adding the number of
previously identified AID mutations to the signature data. Cosine
similarity scores of comparing our tetranucleotide-based c-AID
mutations to the 78 COSMIC signatures, were computed using the
‘compare_results’ and ‘deconvolution_compare’ functions from
the Palimpsest package. Signatures were not calculated from the
MSKCC-Composites and ICI cohorts because they were already
available or not used.

Clonality analysis
Clonal and subclonal categorization of mutations was done only on
the TCGA and PCAWG (only somatic chromosomes) cohorts from
which allele-specific integer copy numbers, ploidy, and purity
estimates were available (n= 7216 and n= 2707, respectively). As
previously described, for each mutation the cancer cell fraction
(CCF) along with the 95% CI (binomial distribution) was determined
through the variant allele fraction, tumor purity, and local copy
numbers, then we assigned a mutation (using Palimpsest package)
as subclonal if the upper boundary of the 95% CI CCF value was
inferior to 0.95, or clonal otherwise68.

Attributing mutations as driver genes
Positively-selected genes per tumor type within each cohort,
excluding MSKCC-Composites from which we used the already
curated list from the original article39, were obtained by
calculating dN/dS likelihood ratios (dNdScv package) through
negative binomial regression modeling of the background
mutation rate of each gene using distinct genomic covariates
including variation in mutation density across genes, context-
dependent substitutions (mutational signatures), transcriptional
strand bias, chromatin state, expression and replication time.
Additionally, we removed ultra-hypermutator samples and extre-
mely mutated genes per sample, to avoid loss of sensitivity.
Genes were considered as drivers if having q-values < 0.01
(Benjamini–Hochberg’s multiple testing correction of p-values)69.
In addition, in the ICGC cohort, we also used the selection intensity
of every particular mutation related to APOBEC or c-AID mutations
by deconvolution of prevalence by mutation rates for recurrent
amino acid mutations within three oncoproteins caused by single-
nucleotide changes using cancereffectsizeR v2.1.3 package. The
observed substitution rates were divided by the expected
substitution rates in the absence of selection. The expected
substitution rates in the absence of selection were calculated as
the average per-site synonymous mutation rate of the gene,
normalized for the average weight of trinucleotide mutational
signature burden for that signature. The quotient of observed to
expected numbers of substitutions was the selection intensity, as
previously described25.

Mutation distribution around TAD boundaries
To compare the mutational load distribution generated by
different mutational signatures, we calculated the ratio of
mutational burden in transcriptionally inactive domains versus
transcriptionally active domains. First, for each sample, we binned

the mutations in 25 kb nonoverlapping windows along the
genome. Next, we calculated the sum of mutations at inactive
and active domains and normalized this value by the length of
active and inactive domains. We calculated the total number of
mutations in each domain and divided by the domain length
(heterochromatin: 180; inactive: 1219; repressed: 969; active: 1086;
active-2: 593) for box plot representations (Fig. 2b right), as
previously described28.

Mutations distribution within R-loops and transcription
correlation
Genomic regions coordinates file with GC skew enrichment, which
is associated with R-loop formation, downloaded from a previous
study as GRCh38 assembly, was transformed to GRCh19 assembly
using USCS genome browser liftover function26,70. This gave rise
to 16,223 regions (median 626 bp) from which only G skewed
regions (8059; associated with R-loops formation during transcrip-
tion) were used to find overlaps with the genomic position of each
mutation and to label them as “in R-loops” or “out R-loops”.
Transcription correlations with c-AID-related mutations were

performed by the Spearman correlation method. For each tumor
type, we correlated the number of c-AID-related mutations
occurring in gene i (AID_Mutsgi) to the expression of the same
gene i (Expgi). The AID_Mutsgi were considered associated with
the transcription process in a specific tumor type if the adjusted
p-value was inferior to 0.05 and the Spearman Rho value superior
to 0. Functional enrichment analysis of the associated genes was
performed using the DAVID database71.

Replication timing
Replication timing measurements of 11 different cell lines (SK-N-
SH= neuroblastoma; MCF-7=mammary gland adenocarcinoma;
BJ= skin fibroblast; NHEK= epidermal keratinocytes; HepG2=
liver carcinoma; IMR90= fetal lung fibroblasts; K562= leukemia;
HeLa-S3= cervical carcinoma; GM12878= lymphoblastoid;
HUVEC= umbilical vein endothelial cells; BG02ES= embryonic
stem cell) were downloaded as wavelet-smoothed signal and then
used to compute the median Repliseq signal within 1 Mb or 25 Kb
(for TADS) windows which resulted in values from 0–100
indicating late to earlier replication times. We further proceeded
to divide the genome into 1 Mb regions (or 25 Kb) by first masking
out all regions in the genome that requires 36-mer to be unique in
the genome even after allowing for two differing nucleotides and
also the Duke and DAC blacklisted regions (highly possible
anomalous signals) using BEDTools72, this led to 3,053 1 Mb
windows. Then we calculated the mean number of mutations
attributed to c-AID or APOBEC (COSMIC SBS2 and SBS13), per
tumor type, as the mutation number within each bin divided by
the number of samples within the corresponding tumor type, then
we coupled the corresponding repliseq data (as decile distributed)
for each bin.

Neoepitope analysis
TCGA neoepitope list and HLA haplotypes were retrieved from
previous studies, briefly 4-digit HLA type for each sample was
inferred using POLYSOLVER, and neoepitopes were predicted
using NetMHCpan (v2.4) (only for MHC class I) as novel 9–10mers
that resulted from mutations in expressed genes (>10 TPM) and
affinity <500 nM73,74. We coupled this information with the data
resulting from our analysis to obtain neoepitopes data (n= 3370
patients) with clonality, signature origin, expression, PolyPhen/SIFT
effect on coding protein, among others. We furthered filtered for
>1 FPKM expression on the genes originating the neopeptide and
excluded patients with: I) incomplete HLA information; II)
microsatellite instability (retrieved from Ding et al.)75; III) altered
antigen presentation related genes HLA-A, HLA-B, HLA-C, CIITA,
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IRF1, PSME1, PSME2, PSME3, ERAP1, ERAP2, HSPA, HSPC, TAP1, TAP2,
TAPBP, CALR, CNX, PDIA3, and B2M (HLA enhanceosome, peptide
generation, chaperones, and the MHC complex) which was based if
presence of PolyPhen/SIFT damaging predictions (“probably_da-
maging”/“possibly_damaging” or “deleterious”/“deleterious_low_-
confidence”, respectively) or of copy number loss. These filters left
2143 patients that were considered for Fig. 4a and b and
Supplementary Fig. 15. To account for immunogenicity based on
the prediction of neopeptide TCR recognition and neopeptide HLA
binding, PRIME software was run with default parameters.
Neoepitopes were classified as “Immunogenic” if having a PRIME
%rank score (the fraction of random 700,000 8- to 14-mers that
would have a score higher than the peptide provided in input)
lower or equal to 0.5% for the corresponding HLA haplotype of the
patient where the neopeptide occurred, or as “Non-Immunogenic”
otherwise35. For simplicity some cosmic signatures were grouped
as: MMR (SBS6, SBS15, SBS20, SBS21, SBS26, and SBS44); Smoking-
associated (SBS4, SBS18, SBS24, and SBS29); POLE (SBS10a, SBS10b,
and SBS14), and APOBEC (SBS2 and SBS13). This data combined
with the clonality of the mutation giving rise to a specific
neopeptide was used to classify them as immunogenic clonal
neoepitope (ICN); samples were further classified as “Presence” if
having at least one ICN due to a specific mutational signature or
“Absence” otherwise. TCGA RNA counts were retrieved from GEO
GSE62944 and normalized using the variance-stabilizing transfor-
mation (VST) function from DESeq276.
For the advanced melanoma anti-PD-1 treated cohort34

mutational signatures, clonality, immunogenicity, and RNA counts
normalization was assessed as described above. Samples were
classified as having high ICN AID load if their load was superior to
the cohort’s median. Furthermore, differential gene expression
analysis (Ipi-Naive samples only) was executed with DESeq2
comparing high ICN AID load versus low within pre-therapy
samples only (Supplementary Fig. 16) or comparing pre-therapy
to on-therapy adjusting for AID ICN load groups (high or low) to
identify expression changes on-therapy (design= ~CIN_AID_bin-
ary+PreOn). For each comparison, DEGs (adjusted p-value <0.2)
were used as input for hierarchical clustering (Euclidean distance
followed by complete-linkage agglomeration algorithm) to obtain
gene clusters used for enrichment analysis (Fig. 4d). GSEA analysis
was performed using the GO database through R package
clusterProfiler77 or DAVID database71 applying Bonferroni correc-
tion (q-value <0.05).

Gene and residue-specific composite mutation enrichment
testing
The main code for analysis was obtained from the original article
and then subjected to minor modifications for identification of c-
AID-related mutation’s contribution39. In brief, the number of
samples harboring a composite mutation in permutation i (ni) was
obtained by permuting 100,00 times the z component of a matrix
of m x z (m= total number of nonsynonymous somatic mutations;
z=mutation id as a mutation in ‘x’ gene occurring in an ‘x’
sample). A p-value was calculated as the fraction of permutations
satisfying ni ≥ npos.
Enrichment of AID composites per gene was assessed using a

binomial test to evaluate, for each gene, that the proportion of
observed AID composite mutated samples differs from the
proportion of predicted AID composite mutated samples arising
by chance (nc). Negative binomial regression was used for
estimating nc per gene by modeling the observed number of
AID composite-mutant samples adjusted for multiple genomic
covariates like coding sequence length (l), GC content percentage
(g, Biomart GRCh37), replication time (r), chromatin state (h)78,
MSK-IMPACT targeted assay version (i) and the average total DNA
copy number of the gene across its mutated samples (t).
Additionally, an offset term was added to the model that

represents the log number of tumor samples harboring mutations
in the gene of interest. Enrichment at individual mutant residues
arising as AID composite mutations were assessed using a right-
sided Fisher’s exact test comparing if it arose significantly more
frequently than all other mutant residues within the same gene.
Residues and genes were considered significant if having an FDR
corrected p-value less than 0.01.

Analysis of single-cell RNA sequencing data
We downloaded the expression matrix of the raw count, transcript
per million (TPM), or Fragments Per Kilobase of transcript per
Million mapped reads (FPKM) from Jerby-Arnon et al. (2018)44. We
collected sample information such as the patient ID, tissue origin,
treatment condition, and response groups. For processing all the
collected datasets, including quality control, batch effect removal,
cell clustering, differential expression analysis, cell-type annota-
tion, malignant cell classification, and gene set enrichment
analysis that internally uses the Seurat package79. The raw count,
TPM or FPKM table was used as input for the standardized
workflow. The quality of cells was determined by two metrics:
the number of total counts (UMI) per cell (library size) and the
number of detected genes per cell. Low-quality cells were filtered
out if the library size was <1000, or the number of detected genes
was <300.

Statistical analyses and figures
All statistical analyses were performed using the R statistical
programming environment (version 4.0). Figures were generated
using either base R or the ggplot2 library. Differences in
proportions were calculated from Fisher’s exact test or two-
sample Z-tests. Error bars indicate the 95% binomial CIs calculated
using the Pearson-Klopper method. Kruskal–Wallis test was used
to test for a difference in distribution between three or more
independent groups, and Mann–Whitney U test was used for
differences in distributions between two population groups unless
otherwise noted. Spearman correlations were calculated by the
cor.test function in R. P-values were corrected for multiple
comparisons using the Benjamini–Hochberg method when
applicable. For heatmap representation (ComplexHeatmap R
package)80, VST gene expression values were first quantile
normalized and log2 transformed and then converted to
Z-scores. Overall survival analysis to ICI was assessed using log-
rank Kaplan–Meier curves and univariate/multivariate Cox propor-
tional hazards regression modeling. We have assessed several Cox
proportional models for every study (i.e., analyzing the deciles,
from 10th to 90th, of the fraction of c-AID mutations in every
included study, unadjusted, using the median of the fraction of
AID mutations, and also these models were adjusted by TMB ≥
10mut/Mb). To combine the different survival models, we used a
random-effects model with the meta v4.18-1 package81, using log
hazard ratio and standard errors of each model per study. The
inverse variance method was used for pooling. The random-
effects estimate was based on the DerSimonian-Laird method82.
The meta-analysis results were represented in a forestplot using
the forestplot function of the ggforestplot v0.1.0 package.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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