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Abstract
Investigating thermal energy demand is crucial for developing sustainable cities
and the efficient use of renewable sources. Despite the advances made in this
field, the analysis of energy data provided by smart grids is currently a demand-
ing challenge due to their complex multivariate structure and high dimension-
ality. In this article, we propose a novel copula-based dissimilarity measure
suitable for analyzing district heating demand and introduce a procedure to
apply it to high-temporal resolution panel data. Inspired by the characteristics
of the considered data, we explore the usefulness of the Ali-Mikhail-Haq copula
in defining a new dissimilarity measure to cluster variables in the hierarchical
framework. We show that our proposal is particularly sensitive to small dissimi-
larities based on tiny differences in the strength of the dependence between the
involved random variables. Therefore, the measure we introduce is able to dis-
tinguish between objects with low dissimilarity better than standard rank-based
dissimilarity measures. Moreover, our proposal considers a weighted version of
the copula-based dissimilarity that embeds the spatial location of the involved
objects. We investigate the proposed measure through Monte Carlo studies
and compare it with an analogous dissimilarity measure based on Kendall’s
correlation. Finally, the application to real data concerning the Italian city
Bozen-Bolzano makes it possible to find clusters of buildings homogeneous with
respect to their main characteristics, such as energy efficiency and heating sur-
face. In turn, our findings may support the design, expansion, and management
of district heating systems.

K E Y W O R D S

Ali-Mikhail-Haq copula, cluster analysis, dissimilarity measure, district heating demand,
panel data, spatial weight

1 INTRODUCTION

Understanding thermal consumption in urban areas is a crucial need to increase the sustainability and efficiency of
energy systems and reduce world climate change (Lund et al., 2014). Renewable energy systems require a full reshaping of
the traditional infrastructure and a rethink of the technologies involved (Lund et al., 2018). District heating (DH hereafter)
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is one of the key technologies involved in the ongoing process aimed at developing sustainable cities and improving the
efficiency of the heating sector. Indeed, DH is defined as an energy distribution system that provides heat through a
network of pipes to buildings in a neighborhood or a town by incorporating renewable sources and reducing waste of
energy in a flexible urban energy system (Frederiksen & Werner, 2013).

Developing stochastic methods to analyze high-frequency DH energy data provided by smart grids is currently
a demanding challenge (see, e.g., Ma et al., 2017; Sharma & Saini, 2015). In particular, there is a need for an
in-depth analysis of heating data to enhance the management and planning of the heating system and the effi-
cient use of renewable energy sources (see, e.g., Menapace et al., 2021). In this context, clustering methods enable
the investigation of the structure underlying the data generating process (DGP hereafter), serving as the basis for
further learning, such as forecasting and anomaly detection. Specifically, the identification of DH users that are sim-
ilar according to relevant characteristics contributes to efficiently plan the DH and manage heat production and
distribution.

In the hierarchical agglomerative clustering framework (Everitt et al., 2011), the core idea is to construct the hierar-
chical relationship among the objects to be grouped starting from a set of clusters each containing a single object to a
single cluster containing all the objects (Kaufman & Rousseeuw, 1990). Hierarchical clustering requires a pairwise dis-
similarity measure to compare singletons and a linkage rule to compare clusters. The literature on hierarchical clustering
methods is extensive and applications have been successfully performed in various contexts (see, e.g., Alvarez-Esteban
et al., 2016; Bengtsson & Cavanaugh, 2008; Di Lascio et al., 2018; Nguyen, 2016). In clustering random variables
(r.v.s hereafter), copula-based measures of association have been used to define dissimilarity indices in a variety of
applied contexts (see, e.g., De Luca & Zuccolotto, 2021; Di Lascio et al., 2017; Nazemi & Elshorbagy, 2012; Pappadà
et al., 2018), as they allow describing complex dependence structures and addressing specific features of the joint dis-
tribution of r.v.s, such as asymmetries and tail dependence (Durante & Sempi, 2015). Indeed, copula models allow us
to describe the dependence structure of the DGP separately from the marginal distributions, yielding a much greater
degree of flexibility in specifying and estimating the dependence relationship. For instance, the copula approach makes
it possible to define pairwise dissimilarities as well as multivariate dissimilarities in terms of concordance or tail depen-
dence measures (see, e.g., Bonanomi et al., 2019; De Luca & Zuccolotto 2017; Durante et al., 2015; Fuchs et al., 2021;
Kojadinovic, 2010).

While many contributions in the context of clustering r.v.s have focused on detecting a strong association between
extreme values (see, e.g., Côté & Genest, 2015; Durante et al., 2014), this article focuses on the ability to capture low
dependence and small dissimilarities between the involved r.v.s. As discussed by Kruskal (1977), cluster analysis is appro-
priate to extract information from small dissimilarities. To this aim, we explore the potential of the Ali-Mikhail-Haq
(AMH hereafter) copula (Ali et al., 1978) to cluster r.v.s in the agglomerative hierarchical clustering context. We then pro-
pose a new AMH copula-based dissimilarity measure and investigate its properties at both the theoretical and applied
level. Since the most used copula-based dissimilarity measures involve Kendall’s 𝜏 correlation coefficient, we compare
the performance of the proposed measure with the corresponding version based on Kendall’s 𝜏 through Monte Carlo
studies.

The theoretical contribution of this article is general, but it has been motivated by the features of the panel data
concerning the thermal energy demand of residential users in the Italian city of Bozen-Bolzano in 2016 that have been ana-
lyzed in this work. In the context of time series data analysis, hierarchical clustering algorithms exploiting copula-based
dissimilarity measures have been used to detect the co-movements of r.v.s (see, e.g., De Luca & Zuccolotto, 2011;
Disegna et al., 2017; Reddy & Ganguli, 2013). Extensions of these approaches, considering both temporal and
cross-sectional dependence via copulas, can be found in, for example, Yi and Liao (2010) and Rémillard et al. (2012), but
to the best of our knowledge, there is a lack of procedures dedicated to panel data analysis, which is our focus. Hence, the
proposed AMH copula-based dissimilarity measure is exploited to develop a clustering procedure for panel data. While
some studies use copulas in the field of DH demand (see, e.g., Di Lascio et al., 2020, 2021), copula-based clustering has
not yet been developed —or only marginally—in relation to energy or the more general environmental sciences field (see,
e.g., Just & Łuczak, 2020; Luo et al., 2019).

The remainder of the article is organized as follows. We define a new dissimilarity measure and present its theoretical
properties in Section 2, relating the more technical mathematical results to the Appendix A. In Section 3, we compare
our proposal with a standard dissimilarity measure through a Monte Carlo simulation study and discuss the advantages
and limitations of the new dissimilarity measure. In Section 4, we illustrate a clustering procedure based on the proposed
dissimilarity through an application to energy panel data. Section 5 highlights the advantages and limitations of our
proposal and summarizes the main findings.
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2 AMH COPULA-BASED DISSIMILARITY MEASURE

Copulas originated in the context of probabilistic metric spaces via Sklar’s theorem (Sklar, 1959) stating that a copula
C(⋅) is a joint distribution function with uniform margins. The advantages of the copula-based approach in contexts
where dependence is relevant are well known since copulas potentially enable describing any kind of complex multi-
variate dependence structure of the DGP, such as non-linear and non-Gaussian relations, heavy tails, and asymmetries
(Durante & Sempi, 2015). In the literature, a myriad of copula models have been proposed, each able to describe
a particular dependence pattern. Here we focus on the Ali-Mikhail-Haq copula function that has been introduced
by Ali et al. (1978) and whose statistical properties have been studied by Kumar (2010):

CAMH(u1,u2) =
u1u2

1 − 𝜃
AMH
u1u2

(1 − u1)(1 − u2)
, (1)

where 𝜃
AMH
u1,u2

∈ [−1, 1[ is its dependence parameter whose domain in terms of Kendall’s 𝜏 coefficient is [−0.1817, 0.3333[.
Thus, the AMH copula function can be used to describe both positive and negative correlations of r.v.s, even though
it is not suitable for very high positive or negative correlations. The dependence parameter of the AMH copula can be
estimated using the estimation methods available in the literature (see, e.g., Cherubini et al., 2004).

In the hierarchical clustering context, copula has been largely used to define dissimilarities in terms of measures of
association (see, e.g., Fuchs et al., 2021 and references therein). Here, the decision on which clusters should be merged
is based on the dissimilarity between two objects and a linkage rule specifying the dissimilarity between two clusters of
objects. Such linkage is usually a function of the pairwise dissimilarities of objects in the clusters. The most widely used
linkage rules are the average, the complete, and the single (Everitt et al., 2011). In light of the empirical data features
(see Section 4 for details), our purpose is twofold: on the one side, we need to take into account the spatial location of
objects to compare and, on the other side, define a dissimilarity measure able to distinguish objects, say r.v.s, with low
and very similar dependence. Given p objects (x1, … , xj, … , xp), where xj is a n-dimensional vector of values from a r.v.
Xj, we propose the following measure based on the AMH copula that also takes into account the spatial distance between
any pair of r.v.s:

dAMH
jj′ = cjj′

√
2
(

1 − 𝜃
AMH
jj′

)
, (2)

where cjj′ = exp(gjj′∕max(G)) − 𝛿jj′ , with 𝛿jj′ = 0 ∀j ≠ j′, and 1 otherwise, and G = (gjj′ ) is the spatial weights matrix that
can be calculated starting from the geographic distance (based on longitude and latitude information) of all the pairs
(j, j′) with j, j′ = 1, … , p. Hence, the weight is null if and only if j = j′, otherwise it is an increasing function of the geo-
graphic distance, taking values in ]1, exp(1)]. Such a weighting scheme emphasizes the dissimilarity of objects that are
further apart. Moreover, the measure in Equation (2) is a dissimilarity measure, since it satisfies the three properties of a
dissimilarity measure (see Kaufman & Rousseeuw, 1990, Chap. 1) whose proof is trivial:

P1. dAMH
jj′ ≥ 0 ∀ j, j′

P2. dAMH
jj′ = 0 if and only if j = j′

P3. dAMH
jj′ = dAMH

j′j ∀ j, j′.

As noted by a referee, the above-mentioned properties are satisfied only under some conditions on the spatial weights.
Specifically, multiplicative spatial weights have to satisfy all the three above properties, that is, cjj′ ≥ 0 and cjj′ = cj′j, ∀ j, j′,
and cjj′ = 0 if and only if j = j′, to ensure dAMH

jj′ is a proper dissimilarity measure. In our proposal, where a geographic
distance is used to define cjj′ , all the required properties are satisfied by definition.

The proposed dissimilarity measure only takes into account the comonotone (positive) dependence, and dAMH is
decreasingly monotone with respect to 𝜃AMH, meaning that the dissimilarity degree tends to vanish as soon as approaching
the comonotonic (positive) case.

It is worth stressing that: (i)when spatial weights are omitted, that is, the spatial information is ignored, the proposed
dissimilarity only depends on the association of the considered pair (j, j′) and, assuming the AMH copula as the true
model, Equation (2) maps dissimilarity values from ]1.1547, 1.5373] to ]0, 2] in light of the relationship between 𝜃

AMH and
Kendall’s 𝜏 (see Equation (A1) in the Appendix A); (ii) Equation (2) is not intended to measure spatial dependence and,
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F I G U R E 1 Comparison between dAMH and df (𝜃AMH): Difference between df (𝜃AMH) and dAMH in Equation (A2) (left), and between first
partial derivative in Equation (A3) (middle), and second partial derivatives in Equation (A4) (right) of dAMH and df (𝜃AMH) (z-axes) versus
𝜃

AMH ∈ [−1, 1[ (y-axes), and cjj′ ∈ ]1, exp(1)], ∀ j ≠ j′ (x-axes).

thus, it is not related to dissimilarities based on spatial association or heterogeneity (see, e.g., Anselin, 1995; Anselin &
Rey, 2010), but it only takes into account the spatial location of the r.v.s to cluster; (iii) the use of spatial information cjj′

has an important effect on the dissimilarity between two objects and differentiates the AMH copula-based dissimilarity
measure from the corresponding dissimilarity based on Kendall’s 𝜏 correlation coefficient d𝜏 = cjj′

√
2(1 − 𝜏jj′ ) as explained

in detail below.
To stress the effect of the spatial weight and the different behavior of dAMH and d𝜏 , we assume that the AMH copula

model is the true model and express d𝜏 as df (𝜃AMH) = cjj′
√

2
(
1 − f

(
𝜃

AMH
))

, where f
(
𝜃

AMH) is given in Equation (A1),
Appendix A. We then mathematically analyze the two measures and show the different behavior of the two. In particular,
we compute the difference between the two measures, and between the partial derivatives of order 1 and 2 of the two
measures with respect to 𝜃

AMH. The resulting mathematical expressions are in Equations (A2)–(A4) in Appendix A, while
the shape of the three equations by varying 𝜃

AMH ∈ [−1, 1[ and cjj′ ∈ ]1, exp(1)], ∀ j ≠ j′ is shown in Figure 1.
The difference between the two dissimilarities (Figure 1, left) shows a monotonically decreasing (increasing) behavior

for negative (positive) values of dependence by varying cjj′ . The slope as well as the curvature of the plane changes with
the dependence and the spatial weight. Both partial derivatives differences are monotonically increasing in 𝜃

AMH and
cjj′ . Especially in the difference of slopes (Figure 1, middle), the impact of the spatial weight is different for the two
dissimilarity measures; indeed, as the spatial weight increases, the difference in the slope of the two dissimilarity measures
increases too. The differential increments of the two dissimilarity measures are greater than zero for all cjj′ ∈ ]1, exp(1)],
∀ j ≠ j′. Hence the difference between the two considered measures is monotonically increasing and convex in cjj′ .

Finally, since the parametric space of the dependence parameter 𝜃
AMH tends to amplify the difference between

low-rank correlations, allowing us to distinguish objects with tiny differences in dissimilarity values, the proposed mea-
sure is particularly useful when variables exhibit low dependence and the dissimilarity values show homogeneity. As will
be clear in the empirical application in Section 4, this also results in a dendrogram that is less flattened and dense, imply-
ing that jumps between subsequent fusions are better spotted from the dendrogram. Hence, the hierarchy of clusters is
better highlighted, improving the cutting of the dendrogram and the interpretation of the resulting partition.

3 MONTE CARLO STUDY

Here, we provide a simulation study to assess the goodness of the proposed dissimilarity measure in Equation (2) with
respect to the weighted Kendall-based dissimilarity measure d𝜏 . In particular, we want to investigate the ability of dAMH

to discriminate objects with small and close correlation values, also taking into account spatial information. To this end,
we consider a p-dimensional DGP consisting of K copula models differing from the AMH and independent of each other.
The dimension pk of each copula is randomly chosen from 2 to (p − (K + 1)) to ensure that pk ≥ 2 with k = 1, … ,K, and∑K

k=1pk = p. We consider five different scenarios of the described DGP that are summarized in Table 1. Inspired by the case
study analyzed in Section 4 we set all the copula dependence parameters to small values (see Table 1), p = 41, K = 3, and
we generate an independent sample of size n = 150 from each of the three copulas involved in the considered scenario.
Since each copula model in the DGP represents the dependence structure underlying a cluster, we are thus simulating a
partition consisting of K = 3 clusters containing at least two elements, that is, r.v.s to be clustered, and such that the size
of the whole clustering is p = 41.

4



T A B L E 1 Simulated scenarios used in the Monte Carlo study.

Scenario Cluster 1 Cluster 2 Cluster 3

1 Clayton, 𝜏 = 0.05 Clayton, 𝜏 = 0.15 Clayton, 𝜏 = 0.25

2 Gumbel, 𝜏 = 0.25 Frank, 𝜏 = 0.1 Clayton, 𝜏 = 0.2

3 Gumbel, 𝜏 = 0.2 Frank, 𝜏 = 0.2 Clayton, 𝜏 = 0.2

4 Clayton, 𝜏 = 0.2 Clayton, 𝜏 = 0.2 Clayton, 𝜏 = 0.2

5 Gumbel, 𝜏 = 0.2 Gumbel, 𝜏 = 0.2 Gumbel, 𝜏 = 0.2

F I G U R E 2 Boxplots of ARI (y-axis) comparing the partitions obtained through dAMH and d𝜏 with K = 3 by varying (i) the linkage
method between the average (AL), the complete (CL), and the single (SL) (x-axis), (ii) the scenario among the five given in Table 1 (panels by
columns), and (iii) the spatial settings among (a) random weights and (b) empirical weights plus a random noise — see text for details. The
sample size is n = 150 and the number of r.v.s is p = 41. The number of Monte Carlo replications is 500.

The five considered scenarios are simulated by using different settings for spatial information. In particular, the
weights are computed by using the exponential form described in Section 2, where gjj′ is the distance between the two
points j and j′ computed according to their coordinates. We consider two different settings for the geographic position of
points. In one case, we generate points in the plane in such a way that one cluster of points is clearly distant from the
other two that conversely show some overlap: we use the following cluster centers (100,100), (500,300), and (600,200) to
randomly generate points by adding a Gaussian random noise distributed as N(0,100) and each cluster size is chosen ran-
domly as described above. Here, gjj′ is the Euclidean distance between the simulated plane coordinates. In the other case,

5



we compute the weights starting from the geographic positions on the WGS ellipsoid of the points observed in the panel
data set described in the Section 4 adding a uniform random noise. We therefore simulate 10 different scenarios, and for
each, perform 500 Monte Carlo replications.

To measure the performance of dAMH and d𝜏 , we compute (i) the Adjusted Rand Index (Hubert & Arabie, 1985) (ARI
hereafter) to assess the agreement between the partitions obtained using the two compared measures given the true
number of clusters, that is, K = 3, and (ii) the agglomerative coefficient (Kaufman & Rousseeuw, 1990) (AC hereafter)
as the average width of the banner (Rousseeuw, 1986) describing the strength of the clustering structure to assess the
overall quality of the dendrogram. The distribution of ARI for each simulated scenario is shown in Figure 2. Here,
the partition is obtained by cutting the dendrogram so that three clusters are selected. It is evident that the proposed
spatially-weighted AMH copula-based dissimilarity measure provides partitions very different from those obtained using
the spatially-weighted Kendall-based dissimilarity, irrespective of the scenario, the linkage rule, and the spatial weights.
It is interesting to note that the role of the spatial weights is crucial and negatively affects the agreement between the two
measures when the weights are empirically computed, and therefore not related to the simulated within-cluster depen-
dence. The resulting ARI values support the already theoretically discussed differences between dAMH and d𝜏 justifying
the use of the AMH copula dependence parameter as an alternative to Kendall’s coefficient. The AC distribution for each
simulated scenario is shown in Figure 3. According to Kaufman and Rousseeuw (1990) an AC close to 1 indicates that

F I G U R E 3 Boxplots of AC (y-axis) by varying (i) the pairwise dissimilarity measure between dAMH and d𝜏 , (ii) the linkage method
between the average (AL), the complete (CL), and the single (SL) (x-axis), (iii) the scenario among the five provided in Table 1 (panels by
columns), and (iv) the spatial settings among (a) random weights, and (b) empirical weights plus a random noise — see text for details.
The sample size is n = 150 and the number of r.v.s is p = 41. The number of Monte Carlo replications is 500.
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tight clusters that are far away from each other, that is, a very clear clustering structure, have been identified. Instead,
when the AC is close to zero, “the data set does not contain very natural clusters which would have been formed sooner
[… ] as all dissimilarities between objects are of the same order of magnitude” (Kaufman & Rousseeuw, 1990). Here, it is
evident that the proposed dissimilarity measure outperforms the measure based on Kendall’s 𝜏 regardless of the scenario,
the linkage rule, and the setting of spatial weights. The complete linkage turns out to be better than the average and the
single linkage, and the use of spatial information appears to have a positive but mild effect on the performance of the
proposed measure.

4 APPLICATION TO PANEL DATA

4.1 District heating system and thermal energy demand

In this section, we describe the data concerning the thermal consumption of the residential users connected to the DH
of the Italian city Bozen-Bolzano. The heating demand of Bozen-Bolzano is partially supplied by a DH system that is in
constant expansion to sustain the municipality’s climate actions (Menapace et al., 2020). The Bozen-Bolzano DH concerns
a network of about 20 km pipes, a centralized production center mainly based on a waste-to-energy plant, 220 MWh
thermal storage, and more than 200 heat exchanger substitutions (Menapace et al., 2019). Each substation is endowed with
a smart heat meter that provides high-frequency and accurate resolution data used by operators to monitor the system.

Here we use the time series of thermal energy demand (TED hereafter, in kWh) of 41 residential users (i.e., one or more
buildings with homogeneous characteristics fed by one or more DH substations) connected to the Bozen-Bolzano DH dur-
ing the winter week from January 8, 2016 to January 14, 2016 (see Figure 4). We also use the time series of meteorological
data, such as outdoor temperature (TEMP hereafter, in ◦C) and solar radiation (RAD hereafter, in W/m2) provided by the
S. Maurizio weather station. The meteorological data, indeed, present significant dependence on heating demand and can
help the proper modeling of the TED panel data (Soutullo et al., 2016). The observed time series have been preprocessed
to remove outliers due to meter or transmission system failures and then aggregated to obtain hourly observations.

The final aim of this application is to identify and characterize clusters of homogeneous buildings with respect to the
behavior of TED. Therefore, the aim of the cluster analysis is to provide useful information for improving the efficiency
and sustainability of the DH of Bozen-Bolzano through a proper schedule of the heat production and management of

F I G U R E 4 Map of the sample of users in the different districts fed by the Bozen-Bolzano DH.
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F I G U R E 5 Time series of TED in kW h (y-axis) of two typical users.

the network and the thermal reservoir. For instance, consider two users with clearly different behaviors: the top panel
of Figure 5 represents the typical heating profile of a new or renovated building with continuous operation control that
maintains the indoor temperature constant throughout the entire day with morning and evening peaks; the bottom panel
of Figure 5 corresponds to a typical non-renovated building with a night setback control that leads to null demand during
the night and a sharp peak in the early morning. To verify and assess the quality of the clustering results, the following
additional information about the buildings is used: heating surface (in dam2), energy consumption (in kWh/m2/year),
age class (re-coded with 9 levels, where level 1 refers to buildings aged before 1918 and level 9 to buildings aged after
2005), and mean yearly heat consumption (in MWh/year).

4.2 Clustering methodology

In this section, we develop the panel data clustering procedure with the aim of finding clusters of DH residential users.
The clustering methodology is based on the dependence between TED time series of each user. To consider both temporal
and cross-sectional dependence, we extend the copula-based approach that has been already used for time series modeling
(see, e.g., Patton, 2012) to the panel data case. To do that, we first tackle serial dependence through a suitable panel
regression model (see, e.g., Baltagi, 1995; Wooldridge, 2002) and, next, model cross-sectional dependence between the
residuals time series by applying the proposed measure in Equation (2) in the hierarchical clustering framework. Hence,
we estimate a dynamic panel regression model to the whole data set of p = 41 variables and n = 150 observations that take
into account the effect of (lagged and not) meteorological variables on TED, as well as the serial dependence of TED and
individual effects 𝜇j, with j = 1, … , p. The following specified model derives from the preliminary analysis of the TED,
TEMP, and RAD time series (together with their autocorrelation and partial autocorrelation functions) and a forward
variable selection based on significant covariates:

TEDjt = 𝜌1TEDj(t−1) + 𝜌2TEDj(t−24) + 𝛽1RADjt + 𝛽2RADj(t−1) + 𝛽3TEMPjt

+ 𝛽4TEMPj(t−3) + 𝜖jt

= 𝜌1TEDj(t−1) + 𝜌2TEDj(t−24) + 𝛽1RADjt + 𝛽2RADj(t−1)

+ 𝛽3TEMPjt + 𝛽4TEMPj(t−3) + 𝜇j + 𝜀jt, (3)

where j = 1, … , p, t = 1, … ,n, and 𝜌1, 𝜌2, 𝛽1, 𝛽2, 𝛽3, 𝛽4 are scalar; the error term 𝜖jt = 𝜇j + 𝜀jt is assumed to follow a
one-way error component regression model with 𝜇j ∼ N(0, 𝜎2

𝜇
) and 𝜀jt ∼ N(0, 𝜎2

𝜀
), ∀ j and ∀ t, which are independent of

each other and among themselves. Since TEDjt is a function of𝜇j, it follows that TEDj(t−1) is also a function of𝜇j. Therefore,
TEDj(t−1) is correlated with the error term, and we use a set of instrumental variables, that is, TED lagged from (t − 3)
to (t − 24), to account for it and compute the estimation through the Arellano and Bond one-step generalized method of
moments (Arellano & Bond, 1991).
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Once the model in Equation (3) has been estimated, the residuals of the 41 time series are extracted, and the weighted
AMH copula-based dissimilarity is computed as in Equation (2) where the 41 × 41 matrix of spatial weights is constructed
by adopting the exponential form and the distance on the WGS ellipsoid as illustrated in Section 3. We note that the
residuals show low and very similar Kendall’s correlations ranging in [−0.207, 0.393]. Only two values lie outside Kendall’s
𝜏 range for the AMH copula and have been replaced with the (maximum or minimum) extreme of the range. Hence,
the AMH copula is a suitable model for describing the relationships between the considered data. The dendrograms
obtained by varying the linkage rule between average, complete, and single are shown in Figure 6. The average and
complete linkages seem to produce more balanced clusters, while the single rule exhibits the well-known chaining effect.
To decide which linkage to use, we adopt the previously discussed AC where values for the average, complete, and single
linkages are 0.66, 0.79, and 0.41, respectively. The complete linkage is then selected, yielding the highest agglomerative
coefficient that may suggest a better overall clustering structure. For completeness, we also compute the AC value for the
hierarchical clustering using the weighted Kendall-based dissimilarity measure d𝜏 and the three linkages: AC is lower
than that computed using the proposed measure dAMH regardless of the linkage, with the highest value of 0.64 for the
complete linkage. In addition, the ARI between the partitions obtained using the complete linkage and dAMH or d𝜏 is
equal to 0.30 confirming that the use of AMH copula leads to finding a partition highly different from the one obtained
using the weighted version of the Kendall’s based dissimilarity measure.

As for the selection of the number of clusters to cut the dendrogram and obtain the final partition, we adopt an
index useful to find a compromise between within-cluster homogeneity and between-cluster separation. Specifically, we
use a version of the Dunn index computed as the ratio of the minimum average dissimilarity between two clusters to
the maximum average within cluster dissimilarity, which is implemented in the R package fpc (Hennig, 2020) (many
other choices could have been made, see, for instance, Halkidi et al. (2001)). A large value of the computed index can be
interpreted as an indication of the presence of compact and well-separated clusters. Figure 7 (left) shows the values of the
considered index for K varying between 2 and 8. Both K = 2 and K = 4 can be justified, however, we select K = 4 since
the partition into two clusters can be poorly informative. To confirm the selection, we also took into account the ratio
between the average distance within clusters to the average distance between clusters, leading to similar conclusions.
The final partition is shown on the map in Figure 7 (right). As can be noted, the spatially-weighted measure allows us to
identify clusters that reflect the urban planning history of each city district without forcing in the same cluster buildings
belonging to the same neighborhood.

F I G U R E 6 Dendrograms of hierarchical clustering applied to the 41 TED residual time series using the dAMH dissimilarity measure
and average, complete, and single linkage method (from left to right).
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F I G U R E 7 The Dunn-like index (y-axis) for clustering the partition into K clusters (x-axis) (left), and maps of the clusters (right)
obtained applying hierarchical clustering with the dAMH dissimilarity measure and the complete linkage to the 41 TED residual time series.

To conclude, it is worth mentioning that, following the suggestion of a referee, we further explored the compari-
son between the clusterings based on dAMH and d𝜏 . We found that the former outperforms the latter in terms of cluster
homogeneity and separation.

4.3 Clustering validation and characterization of clusters

Here we discuss the final partition obtained in the cluster analysis presented in the previous section. Figure 8 shows the
clusters obtained with four time-invariant characteristics of DH users, that is, heating surface, age class, energy consump-
tion, and yearly mean of heat consumption. The results show proper features in terms of within-cluster homogeneity and
between-cluster dissimilarity. Indeed, the boxplots in Figure 8 show low spread and low overlapping ranges. This analysis
is useful to assess the quality of the final clustering obtained by analyzing the TED time series. The time-invariant char-
acteristics highlight that the clustering methodology based on dAMH groups the users well with respect to their energy
performance. Indeed, worth pointing out is that the distribution of the energy consumption of each identified cluster
differs appreciably. Specifically, clusters 1 and 2 include renovated buildings, while clusters 3 and 4 old non-renovated
buildings. Cluster 2 comprises buildings that are slightly less efficient and smaller than cluster 1. Instead, cluster 3 is
composed of buildings that are more efficient than those in cluster 4. The performed clustering also shows good par-
tition in terms of age class, with a quite pronounced between-cluster dissimilarity, except for cluster 2, which includes
buildings with very different ages. This is due to the inclusion in cluster 2 of quite efficient users consisting of both
new and renovated buildings. Regarding the heating surface in Figure 8, clusters 3 and 4 have medium-small sized
users, while the energy-efficient buildings of clusters 1 and 2 are divided into large- and medium-sized users, respec-
tively. The yearly mean of heat consumption follows a behavior analogous to heating surface. The non-efficient buildings
of clusters 3 and 4 have similar yearly consumption, while the buildings with high energy performance in clusters 1
and 2 are high and medium yearly consumption groups, respectively. In general, all the clusters can easily be inter-
preted, especially in terms of energy consumption and building age, by separating new and efficient users from old and
inefficient ones.

In summary, the proposed dissimilarity measure allows us accurately group buildings according to their energy per-
formance regardless of size using only historical heat demand information. Energy consumption is crucial for any energy
analysis. Indeed, the ability of dAMH to identify clusters that are homogeneous in terms of energy consumption has several
practical implications in DH, for instance, in building renovation planning, anomaly detection, forecasting heat demand,
and management control.
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F I G U R E 8 Time invariant characteristics of DH users (from left to right): Heating surface, age class, energy consumption, and yearly
mean of heat consumption for each cluster (from Cl 1 to Cl 4) obtained applying the hierarchical clustering with the dAMH dissimilarity
measure and the complete linkage to the 41 TED residual time series.

5 FINAL REMARKS

5.1 Discussion

The spatially-weighted AMH copula-based dissimilarity measure can be useful in any context where the dependence
structure of the variables is suitably described by the AMH copula. From the applied viewpoint, this means that
the data share characteristics of the energy data considered in this work. Despite the fact that the methodological
contribution of this work is motivated by an empirical issue concerning heating demand, the dAMH measure can
be exploited whenever the interest is in the clustering of low correlated r.v.s observed at different geographic loca-
tions, and the relationship between variables resembles that of the AMH copula. By contrast, a clear limitation of
the proposed measure is given by the underlying assumption that the data do not exhibit high-rank correlations in
absolute value.

A relevant aspect to discuss concerns the spatial information introduced in the dissimilarity measure. In our pro-
posal, we followed a standard approach to define spatial weights by exploiting exponentially transformed geographic
distances (Getis & Aldstadt, 2002; Mateau & Müller, 2013). As noted by a referee, a dissimilarity measure that considers
spatial information would benefit from a spatial contiguity term, which accounts for both the strength of spatial depen-
dence and the way it is distributed in space. It is worth stressing that our proposal is not a spatial dissimilarity measure
and does not intend to model nor impose a spatial dependence structure among variables, such as spatial autocorrelation,
heterogeneity and so forth (see, e.g., Anselin, 1995; Anselin & Rey, 2010). However, even though dAMH is not designed to
model spatial dependence, it embeds the interaction between the dependence structure of the compared objects and their
geographic distance. As a result, the geographic location of users is to help our AMH-based dissimilarity measure to bet-
ter distinguish between different energy demand profiles. As a final remark, we emphasize that the case study presented
concerns a phenomenon, that is, the energy demand, for which modeling spatial dependence is not fully appropriate;
indeed, the user energy profile is not affected by spatial dynamics but only by the location of the buildings connected to
the DH and their static characteristics.

5.2 Conclusions

In this study, we propose a new dissimilarity measure based on the Ali-Mikhail-Haq copula and able to keep into account
the geographic information of the objects to be compared. Our proposal has been directly motivated by an application to
energy data and responds to the current interest in the analysis of big data concerning energy demand for the development
of modern DH systems.

To capture the interconnection between the users’ energy demand, there is a need for non-standard association mea-
sures that can cope with complex dependence structures and spatial information. Such measures can be exploited to
cluster buildings in urban area based on their heat consumption with the final aim of providing crucial information
supporting efficient and sustainable management of DH systems.
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The proposed AMH copula-based measure has been thought to be used in the hierarchical clustering framework. After
describing the theoretical aspects of the measure, we assess its performance on artificial data. In addition, we compare
our proposal with the most used Kendall’s 𝜏-based dissimilarity measure (in a spatially-weighted version), both from the
theoretical point of view and via Monte Carlo studies. Next, we apply the clustering methodology to high-frequency data
from the DH of Bozen-Bolzano that exhibits low dependence with tiny differences in rank correlations. After removing
both temporal and cross-sectional dependence through a dynamic panel regression model, we employ hierarchical clus-
tering algorithms to the residuals time series by using the AMH copula-based dissimilarity measure. We thus empirically
prove the usefulness of our procedure in identifying clusters of buildings that are well interpretable in terms of energy
performance.

Our findings can provide useful insights for the optimal management of energy production and distribution sys-
tems. Indeed, efficient and sustainable DH planning would benefit from the energy characterization of users’ profiles in
performing relevant tasks, such as demand forecasting and anomaly detection.
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APPENDIX A.

Referring to the mathematical analysis presented in Section 2, we here provide more technical results. First, we provide
the mathematical expression of the functional relationship between Kendall’s 𝜏 and 𝜃

AMH (Kumar, 2010):

𝜏 = f
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Next, we report the expressions of the difference between d𝜏 and dAMH in Equation (A2), the difference between the partial
derivatives of order 1 in Equation (A3) and of order 2 in Equation (A4) of the two dissimilarity measures with respect to
𝜃

AMH. Note that for simplicity we set 𝜃AMH = 𝜃.
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