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A B S T R A C T

Despite the observation of cyclic and chaotic dynamics in nature, it is still not clear whether this behaviour is
inherent to ecological systems or caused by external forcings. Here we explored a set of approximately 210,000
simulations to assess how often a model of realistic complexity exhibits non-stationary dynamics when external
perturbations are excluded. Remarkably, less than one third of the population shown non-stationary dynamics
and, even when present, fluctuations were rather small. The inherent stability of plankton communities showed
to be related to the presence of multiple feedbacks in the food web structure, omnivory, low centre of gravity,
and supports the conclusion that food webs of realistic complexity rarely exhibit significant endogenous non-
stationary dynamics. Finally, we computed Lyapunov exponents for the non-stationary trajectories, in order
to assess in which proportion they were periodic or chaotic, and we concluded that less than 10% of the
non-stationary trajectories (3% of the total) showed sensitivities to initial conditions. This further supports the
conclusion that complex topology mainly damps endogenous fluctuations in the food web.
1. Introduction

Ecosystem models can exhibit stationary, cyclic, aperiodic and
chaotic behaviour. Non-stationary dynamics are rather common, with
examples in chemostats [1], mesocosms [2,3], and also in the acquatic
ecosystems [4]. A recent meta-analysis [5] found evidence for chaos
in more than 30% of time series over all organisms, and more than
50% in the plankton. Cyclic behaviour are even more common, and
are discussed in any ecological textbook. However, it is still not clear
whether the fluctuations observed in the field stem from a dynamics
internal to the ecological system (endogenous) or are simply induced by
external forcings (exogenous). Many theoretical studies highlights that
simple ecological models can exhibit periodic cycles and also chaotic
behaviour [6–8]. Other investigations suggest that real ecosystems are
unlikely to behave chaotically unless forced by an external factor, even
if their structure has the properties required (minimal complexity and
presence of feedback) for doing so [9], possibly because of the presence
of stabilizing regulatory processes (negative feedbacks), ubiquitous in
nature, strong enough to overcompensate positive feedbacks [9].
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Several studies such as [10–12] showed that long food chains are
associated with greater frequency of chaos, whereas peculiar topologies
of the trophic food web and the presence of certain traits, such as
omnivory, can suppress chaotic behaviour. In particular, a low centre
of gravity, (i.e. a high number of species near the base of the food
web) inhibits chaos [10], possibly because the presence of alternative
prey species for a given predator is effective in reducing unstable
dynamics [10]. Similarly, the stabilizing role of omnivory, a trait often
present in complex food webs in nature, has also been confirmed by
field observations (see for instance [13]).

Further, analysis on simplified ecosystem models show that noise
induces resonance phenomena [14]. In [15], a microcosm study was
used to experimentally demonstrate that noises with characteristic
time correlation properties resonate with the endogenous oscillation
modes and can affect both the population dynamics and physiological
behaviour. However, there is a lack of systematic studies performed
with models of realistic complexity. Features such as the presence of
multiple nutrients, the presence of at least several plankton populations
interacting in a food web, the integration of the microbial loop, all very
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common in nature and normally regarded as mandatory for realistic
simulations, have not be considered yet.

The main goal of this study is to assess how frequently endoge-
nous oscillations, or more generally non-stationary dynamics, occur
in a biogeochemical model of realistic complexity, or – from another
perspectives – how frequent is the stationarity in absence of external
forcing.

To this aim we chose a reasonably complex state-of-the art model
(BFM [16]) currently used in the European Copernicus Marine Envi-
ronment Monitoring Service (CMEMS), set to constant all of its periodic
external forcing and run 35000 simulations, differing for the initial con-
ditions and the values of the model parameters (randomly perturbed),
and numerically assessed the long term behaviour of each model config-
uration. The whole analysis was then repeated 6 times, starting from 5
different biogeochemical models, obtained by modifying the structure
of BFM plankton food web. In this way we obtained 6 ensembles of
35000 simulation each, and a more general conclusion.

2. Methods

2.1. Biogeochemical processes

State of the art biogeochemical models used for ecosystem forecast-
ing [17,18] or climate studies [19,20] are characterized by increasing
complexity both in terms of number of elements fluxes across the
trophic web and in terms of grazing dynamics at different trophic levels.
The Biogeochemical Flux Model (BFM) [16] is a model of reasonable
complexity, about 50 state variables, used for operational [21], pro-
cess [22,23] and climate studies [19,24] both at the basin [22] or
local [25] scales. BFM is used to model the biogeochemical component
‘‘Med-BIO’’ of the system ‘‘The Mediterranean Sea Monitoring and
Forecasting Centre (Med-MFC)’’. CMEMS regularly and systematically
provides key reference information on the state, variability and dy-
namics of the ocean, marine ecosystems and sea ice for the global
ocean and the European regional seas. It was also validated against
various observational reference data (satellites, literature, climatology,
BGC-Argo floats) to quantify its consistency in simulating the main
features of Mediterranean biogeochemistry and its accuracy in rou-
tinely reproducing the observations at specific times and locations [21].
Therefore, the BFM can be considered a state of the art model for
marine biogeochemistry. BFM is formulated in terms of deterministic
ordinary differential equations and accounts for the major biogeo-
chemical processes occurring in the pelagic marine ecosystems. In its
standard configuration, the BFM simulates the flow of elements (car-
bon, nitrogen, phosphorus, oxygen, and silica) mediated by chemical
and biological processes. The microbial populations responsible for
these processes are classified according to predetermined functional
characteristics (traits), such as light and nutrient affinities, or diet
matrix. The set of functional traits characterizing each class of or-
ganisms defines a plankton functional type (PFT). In BFM the PFTs
are: (i) phytoplankton (cyanobacteria and photosynthetic protists), (ii)
predators (zooplankton), (iii) decomposers (bacteria). These classes are
further subdivided into functional subgroups which togheter define the
planktonic food web. In particular, phytoplankton is divided into four
different classes, each broadly associated also to cell size (equivalent
spherical diameter — ESD): diatoms (P1, ESD = 20 to 200 μm), flagel-
ates (P2, ESD = 2–20 μm), picophytoplankton (P3, ESD = 0.2–2 μm)

and dinoflagellates (P4, ESD > 100 μm). Heterotrophic nanoflagellates
(Z6, ESD = 2 to 20 μm), microzooplankton (Z5, ESD = 20 to 200 μm)
and mesoozooplankton form the predator group. Mesozooplankton is
composed by omnivorous mesozooplankton (Z4, ESD = 200 μm to 3–
4 cm) and carnivorous mesozooplankton (Z3, ESD = 200 μm to 3–4 cm).
Aerobic and anaerobic heterotrophic bacteria (B1) transform organic
matter in inorganic macro-constituents such as phosphate (PO4) and
2

nitrate (NO3), and contribute to the microbial food web [26].
The numerous variables considered, i.e. chemicals and physical vari-
ables, and biological species, together with their mutual interactions,
make the BFM a refined and much more realistic extension of the
remarkably simpler toy models used in previous studies [14,27]. The
resulting trophic web and the corresponding predator–prey links are
schematized in Fig. 1.

The BFM includes physiological and morphological functional traits.
In general, the morphological traits include cell size, cell shape, and
coloniality [28]. In BFM, only the cell size (ESD) of each PFTs is consid-
ered and it determines the dynamics of the prey–predator interactions
and grazing preferences. Phytoplankton classes are further differen-
tiated by physiological traits related to photosynthesis and nutrient
uptake. Each functional group of plankton is defined by a vector of
components, one for each element or constituent relevant to physiolog-
ical functions. In the case of phytoplankton, the elements are carbon,
nitrogen, phosphorus, silicon, and related chlorophyll molecules con-
taining photosynthetic pigments. The grazing dynamics are expressed
as biogeochemical fluxes between preys and predators. In this work we
consider a spatially homogeneous system, which is therefore described
by a zero-dimensional (0-D) BFM configuration, formulated as a system
of 54 ordinary nonlinear differential equations and represented by a
54-dimensional state vector (𝑉𝑏𝑓𝑚). The time derivatives of a generic
phytoplankton carbon component (e.g., carbon in diatom, 𝑃 1𝑐) or
nutrient component (e.g. nitrogen in diatom, 𝑃 1𝑛) are given by:
𝜕𝑃1𝑐
𝜕𝑡

= 𝑓 𝑔𝑝𝑝
𝑐 (𝑉𝑏𝑓𝑚) − 𝑓 𝑟𝑠𝑝

𝑐 (𝑉𝑏𝑓𝑚) − 𝑓 𝑒𝑥𝑐
𝑐 (𝑉𝑏𝑓𝑚) (1)

−𝑓 𝑝𝑟𝑑
𝑐 (𝑉𝑏𝑓𝑚),

𝜕𝑃1𝑛
𝜕𝑡

= 𝑓 𝑢𝑝𝑡
𝑛 (𝑉𝑏𝑓𝑚) − 𝑓 𝑟𝑒𝑙

𝑛 (𝑉𝑏𝑓𝑚) − 𝑓 𝑝𝑟𝑑
𝑛 (𝑉𝑏𝑓𝑚). (2)

The 𝑓 -s are continuous functions representing the biogeochemical
fluxes associated to the most important physiological processes. 𝑔𝑝𝑝 is
he gross primary production (expressed in mgC m−3 day−1), and repre-

sents photosynthesis (i.e., flux of inorganic CO2 to organic compounds).
Respiration (𝑟𝑠𝑝) is related to the release of carbon (production of CO2).
Excretion (𝑒𝑥𝑐) processes are related to the cell metabolic activities and
the need of balancing internal quota of carbon versus other elements.
In fact, in case of phosphate and nitrate shortage 𝑔𝑝𝑝 might produce a
too high carbon to phosphorus (or carbon to nitrogen) ratio inside the
organism, and in this case a proper amount of organic carbon have to
be released to the environment as dissolved organic carbon (DOC). The
𝑓 -s are factorized in a number of regulating functions

𝑓 𝑔𝑝𝑝
𝑐 (𝑉𝑏𝑓𝑚) = 𝑟𝑚𝑎𝑥𝑓𝑇 (𝑇 )𝑓𝐼 (𝐼)𝑓𝑛𝑢𝑡(𝑉𝑏𝑓𝑚)𝑃 1𝑐 , (3)

where 𝑟𝑚𝑎𝑥 is the (species specific) maximum growth rate, 𝑓𝐼 (𝐼) is an
irradiance (I) harvest factor, and 𝑓𝑇 (𝑇 ) is the dependence of metabolic
rates on temperature (T ). 𝑓𝑛𝑢𝑡 defines the limitation to growth caused
by nutrient depleted conditions. In the present study, solar irradiance
and temperature are considered constant. The effects of variability of I
and T on the same system is describe in more detail in [29,30] which
are devoted to investigate the effects of temperature and light stochastic
fluctuation, respectively, on plankton dynamics.

The equations for zooplankton are similar to those for phytoplank-
ton. In this case, the photosynthetic growth term is replaced by the
grazing term (𝑓𝑔𝑟𝑎). As an example, in the case of carnivorous meso-
zooplankton we obtain
𝜕𝑍3𝑐
𝜕𝑡

= 𝑓𝑔𝑟𝑎(𝑉𝑏𝑓𝑚) − 𝑓𝑟𝑠𝑝(𝑉𝑏𝑓𝑚) − 𝑓𝑟𝑒𝑙(𝑉𝑏𝑓𝑚) (4)

− 𝑓𝑝𝑟𝑑 (𝑉𝑏𝑓𝑚).

The total amount of food available to zooplankton is calculated by
adding the possible prey items (see Fig. 1) weighted by the predator’s
food preferences. Grazing analytic form (type 2) reads [31]

𝑓𝑔𝑟𝑎(𝑉𝑏𝑓𝑚) = 𝑓𝑇 (𝑇 )𝑟𝑚𝑎𝑥
𝐹𝑐 𝑍3𝑐 , (5)
𝐹𝑐 + ℎ𝑧
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Fig. 1. Trophic web of BFM model. An arrow directed from one box to another indicates a predation flux. Solid arrows denote a higher preference for a specific prey, while
dashed ones indicate a lower preference. A looping arrow on the box denotes cannibalism.
𝐹𝑐 =
∑

𝑝𝑟𝑒𝑦
𝛿𝑥𝑒𝑝𝑟𝑒𝑦𝑋𝑖 , (6)

𝑒𝑝𝑟𝑒𝑦 =
𝑋𝑖

𝑋𝑖 + 𝜇𝑍
, (7)

where ℎ𝑧 is a parameter inversely related to the mobility and
searching volume of the organism, 𝑋𝑖 is the carbon content in the preys,
𝛿𝑖 is the preference for a specific prey.

The full list of equations and processes included in the BFM can be
found in [22] and the BFM code manual in [16].

The deterministic configuration of the BFM model has been used
in a number of studies and applications [32,21,33–39,23,40], to cite a
few.

The simulations are performed solving a system of ordinary differ-
ential equations via an explicit fifth order Runge–Kutta method with
adaptive time step (Python algorithm ‘scipy.integrate.solve_ivp’). The
results of the simulations are saved with a frequency of 1000 frames
per year.

2.2. Stationarity, cycling and chaos indicators

In order to characterize the dynamic of a model trajectory we define
3 indicators. The first indicator, 𝐼1 is the coefficient of variation (CV),
to be compared to the threshold 𝜖1

𝐼1 = 𝐶𝑉 = 𝜎
𝜇

(8)

where 𝜎 is the standard deviation and 𝜇 is the mean, both computed
over the time 𝑡, for 𝑥(𝑡) with 𝑡 larger than 𝑡1, and it is used to dis-
criminate between stationary and non-stationary solutions: a trajectory
is considered to be stationary if for 𝑡 larger than 𝑡1, 𝐼1 < 𝜖1, that
is it fluctuates within a narrow band around 𝜇. The second and the
third indicators distinguish among the three possible non-stationary be-
haviours, namely a monotonic trend, a cycle, and a chaotic dynamic. In
particular, the second indicator is based on the analysis of the frequency
Fourier spectrum and the monotonic trajectories. Since there is always
a peak at zero frequency in a Fourier spectrum due to the mean of the
signal, we defined our second indicator as the ratio between the height
of the second highest peak ℎ (due to the non-stationary behaviour) and
the first peak 𝐻 (due to the mean),

𝐼2 =
ℎ
𝐻

(9)

and defined as ‘monotonic trend’ the non-stationary trajectories with 𝐼2
smaller than 𝜖 and cyclic or chaotic the non-stationary trajectories for
3

2

Fig. 2. Fourier transform of the zooplankton trajectory in the Rosenzweig–MacArthur
model for carrying capacity 𝐾 = 2.65. 𝐻 indicates the height of the largest peak and
ℎ the height of the second largest peak. When 𝐻 > 0.001 and ℎ∕𝐻 > 𝜖2, the Fourier
indicator gives a positive result.

which 𝐼2 > 𝜖2. To avoid biased results due to the use of an automatic
Python peak finder, we added the constraint that the height of the
largest peak must be larger than 0.001. Also in this case the analysis is
performed after a transient 𝑡 larger than 𝑡1. An example of the Fourier
spectrum with peaks detected by the automatic procedure is shown in
Fig. 2.

In order to explore the robustness of our conclusion we repeated the
computation of these 2 indicators using as threshold both 𝜖1 = 𝜖2 = 10−3

(low threshold LT) and 𝜖1 = 𝜖2 = 10−2 (high threshold HT). In all case
the analysis spanned over the last 1∕10 of the whole simulation (𝑡1 = 9
years)

The third indicator is related to the sensitivity to initial condition,
i.e. to the presence of chaos. To determine whether a trajectory exhibits
periodic or chaotic behaviour, we used the Lyapunov exponent 𝜆 (our
third indicator), calculated for the last 9 years of each trajectory as
in [41].

𝐼 = 𝜆 (10)
3
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Fig. 3. A chaotic trajectory of Picophytoplankton concentration over a 9 year period,
after a transient time of one year. Computed from the 0D BFM. The Lyapunov exponent
is 𝜆 = 0.03[𝑑−1], corresponding to a chaotic behaviour according to the threshold on
𝜆 = 10−3[𝑑−1].

Following the work [10], we defined as chaotic the non-stationary
trajectories having 𝐼3 greater than 𝜖3 = 10−3[𝑑−1] (we consider the
day length [𝑑] to be representative of the characteristic time scale of
phytoplankton growth). Conversely, the periodic trajectories are those
satisfying the conditions on the indicators 1 and 2 and for which 𝐼3 <
𝜖3[𝑑−1]. In Fig. 3 we show, as an example, a chaotic trajectory for the
picophytoplankton group calculated with the 0D BFM and having a
Lyapunov exponent 𝜆 = 0.03[𝑑−1].

For a more comprehensive study of the biogeochemical model,
we repeated the analysis with 35000 different model configurations,
obtained by changing the initial conditions and the parameters of the
model. The Parsac tool1 was used to randomly perturb the model
parameters (±30% with respect to their reference values [42], except for
the initial conditions of nutrients, whose values were randomly sampled
in the intervals [0.01, 2.0] for PO4, [0.01, 32.0] for NO3, NH4, SiO3, and
[5.0, 390.0] for dissolved oxygen). In this way we generated an ensemble
of 35000 numerical realizations. Each numerical realization is run over
a 10 year period, and its results are saved at a frequency of 1000 frames
per year.

Due to the large number of simulations the results were analysed
by aggregating the trajectories, by focusing on one parameter (𝑝𝑖) at a
time:

1. We subdivided the range of variation of the parameter (normally
from −30% to +30% with respect to the 𝑝∗𝑖 ) in a predefined
number of bins, named perturbation intervals.

2. For each perturbation interval, we classified in a set (𝑆∗
𝐼𝑛

) all the
simulations for which the parameter 𝑝𝑖 belongs to the interval 𝐼𝑛,
independently of the values of the other perturbed parameters.

3. For each 𝑆∗ we counted the fraction 𝐹 of stationary and non-
stationary trajectories versus the total number of solutions.

4. We plotted the frequency plot of 𝐹 for each perturbation inter-
val, see Fig. 4 for an example with 4 intervals.

5. We repeated the procedure for each parameters and initial con-
ditions.

Using the frequency plot, we can easily see if a parameter affects the
stability of the ecosystem. If all the y-values of a parameter plot have
the same height, the parameter has no effect, since non-stationarity

1 https://github.com/BoldingBruggeman/seamless-notebooks
4

occurs with the same frequency for each of its possible values (as shown
in the example in panels a and c in Fig. 4); if the y-values changes,
the parameter is relevant, especially for the interval of values under
the highest y-values, i.e., where non-stationary solutions occur more
frequently. In the example in panels b and d in Fig. 4, a non-stationary
solution is more likely for higher values of the parameter 𝑝1.

After running this extensive set of simulations derived from the
nominal configuration of the BFM in the Mediterranean Sea applica-
tion [21,22], we repeated the entire procedure (i.e. additional 35000
simulations and related analysis) 4 times, starting from 4 different
biogeochemical models with different trophic web topologies, obtained
by changing the structure of BFM plankton food-web. In particular,
in addition to the full BFM, we investigated the Long chain, Omn.
chain, Omnivory, and Low gravity (see Fig. 10). Bacteria were present
in each configuration to preserve nutrient cycling in order to prevent
the system from undergoing unrealistic temporal evolution. In each
analysis we discarded the trajectories deviating from their initial food
web topology due to an additional extinction occurring during the
simulation.

In addition to the global variables exploration, post-processing fo-
cused on a subset of the trajectories related to the carbon concentration
of the nine biological species.

2.3. Complexity and diversity

To assess the possibility of a relationship between diversity and
non-stationarity, we tested the diversity index, which is a quantitative
measure of how many different types (such as species) are present in a
data set (community). Specifically, we used the Shannon index:

𝐻 = −
∑𝑁𝑠

𝑖=1 𝑓𝑖 log[𝑓𝑖]
log(𝑁𝑠)

, (11)

where 𝑁𝑠 is the total number of species, 𝑓𝑖 = 𝑐𝑖∕𝐶𝑇𝑂𝑇 is the propor-
tion of biomass observed of a given species (𝑐𝑖) divided by the total
biomass concentration (𝐶𝑇𝑂𝑇 ), log is the natural logarithm and log(𝑁𝑠)
a normalization factor. For example, in the BFM context, 𝑓𝑖 is equal to
the C-concentration of one of the biological species over the sum of the
C-concentration of all biological species (𝐶𝑇𝑂𝑇 ).

3. Results

The presence of periodic behaviour in ecosystems has already
been explained in some situations. As an example, the widely used
Rosenzweig–MacArthur model (RMA) predicts that predator–prey dy-
namics shift from stationarity in nutrient-poor environments to
predator–prey oscillations in nutrient-rich ecosystems, and similar be-
haviour can be observed also in other models when the total mass
of the system is increased, by increasing either the initial conditions
or the nutrient input flux in a chemostat, or the carrying capacity
of a system [14,43] (a two-year simulation of the RMA model is
shown in Fig. 5(a)). To investigate whether a similar phenomenon can
be observed in a complex biogeochemical model, we made several
10 years long BFM simulations, differing for the total mass within the
system, changed by increasing the initial values of phosphate (PO4) and
nitrate (NO3) (see Fig. 5(b) where the last two years abundances of
predators and preys over the effective carrying capacity are shown).
From this study it is clear that varying initial levels of nitrate and
phosphate, over observable values in nature, do not lead to large
fluctuations in the BFM model.

We used the set of simulations described in the previous section
to examine whether the observed stationarity, Fig. 5(b), is related to
the specific set of reference parameters used in BFM. In particular,
we applied the aggregation procedure shown in Fig. 4 over all the
parameters, and we examined further the parameter subset showing a
large impact on the model stability (Fig. 6).

https://github.com/BoldingBruggeman/seamless-notebooks
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Fig. 4. Scheme illustrating the approach to analyse the occurrence of non-stationary solutions as a function of the selected parameter. We have given two example distributions,
one in which the non-stationarity is distributed equally over all parameters values, the other in which the occurrence of non-stationarity is more likely for certain parameter values.
In the examples shown, the system is controlled by two parameters 𝑝1,2 with reference values 𝑝∗1,2. The two-dimensional parameter space is divided into perturbation intervals
𝐼0 , 𝐼1 , 𝐼2 , 𝐼3 over the axis of the selected parameter 𝑝1 (panels a and b). Simulations with parameters 𝑝1, 𝑝2 leading to non-stationary solutions (green circles) and stationary solutions
(grey crosses) are shown as division into slices (panels a and b). In the frequency plots of panels c and d, the corresponding fraction 𝐹 of the non-stationary solutions in the total
ones, as a function of the variability of 𝑝1, is shown as a solid black line (y-values referred in the text).
Fig. 5. (a) Rosenzweig–MacArthur model: abundances of zooplankton and phytoplankton for a 2-years period. The plot has been obtained by varying the carrying capacity K. The
system displays a periodic dynamics for K greater than a certain value. (b) BFM, abundances of predators and preys for a 2-years period over the effective carrying capacity. The
regime is always stationary.
We initially classified a trajectory as non-stationary using the indi-
cators defined in the Methods section and the lower threshold (LT) of
𝜖1 = 𝜖2 = 10−3 (black dashed line in Fig. 6). We adopted a biomass-
based classification approach and identified a sample as non-stationary
if at least one among the 9 plankton biomasses (expressed in carbon
concentration) show fluctuations larger than LT, (shown in Fig. 6), as
in [10]. In addition, we repeated the entire post-processing using a
higher threshold (HT) for the stationarity indicators 𝜖1 = 𝜖2 = 10−2
(black solid line in Fig. 6). As summarized in Table 1, the fraction of
stationary trajectories increases up to 90% of the total when a less
stringent threshold is adopted, i.e., when a trajectory is classified as
stationary even if (slightly) larger microfluctuations are present.

An analysis of the most common model configurations leading to
non-stationarity revealed that the most important parameter is the
initial value of phosphate concentration (PO4). Low initial values of this
biogeochemical variable are more likely to result in non-stationarity.
However the variation of the initial PO4 concentration alone is not suf-
ficient to induce instabilities in the BFM. Over 2500 samples where only
the initial phosphate concentration was perturbed, no one exhibited
cycling or chaos, consistently with the preliminary analysis shown in
Fig. 5(b).
5

Table 1
Probability of the model to be non-stationary for
two different values of threshold 𝜖 of the stationarity
indicators.
𝜖 Non-stationary

10−2 10.5%
10−3 31.8%

The other nutrients, nitrate (NO3) and ammonium (NH4) are sub-
stitutable resources sensu Tilman [44] and an eventual unavailability
of one of them is compensated by the presence of the other. Thus, to
reproduce a behaviour similar to that of phosphate, we held the sum
of the two nutrients ‘‘constant’’, obtaining the frequency plot shown in
the last box of Fig. 6 (NO3 + NH4 panel).

We observe that a low initial concentration of combined nitrate
and ammonium has an opposite effect to that of phosphate in the
unstable behaviour when using the general condition on classification
(Fig. 6), i.e., a low initial level of nutrients tends to suppress the non-
stationary behaviour. Anyway for the HT the level of initial nitrate
and ammonium is no longer relevant in both the cases, hence we
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Fig. 6. Frequency plots, showing the occurrence of non-stationarities, obtained by using the biomass-based classification approach. The procedure is explained in the Methods
section. For all plots, the 𝑦-axis scale is set to the interval [0%, 100%]. For the upper line of plots the 𝑥-axis limits are set to ±30% with respect to the reference value of the
respective parameter. The 𝑥-axis is set to [0.01, 2.0] for PO4, to [0.01, 32.0] for NO3 and NH4, to [0.02, 64.0] for NO3 + NH4. The black dashed line represents the SA obtained
for the threshold value 𝜖 = 10−3 (LT), the black solid line for 𝜖 = 10−2 (HT). The red dotted line indicates an abundance of 50% of non-stationary solutions. Each frequency plot
is constructed over 10 equal-width bins.
can discard it as an important condition for the occurrence of non-
stationarities. Also the parameters 𝑛𝑚𝑖𝑛𝑝 and 𝑛𝑜𝑝𝑡𝑝 are less relevant with
this threshold (HT).

We investigated the role of the parameter related to the initializa-
tion of PO4 and of two parameters (𝑛𝑧 and 𝛽𝑧) regulating the balancing
flux of elements in zooplankton [eq.(2.4.4) to eq.(2.4.7) in 16]. We
found that separately perturbing these parameters does not affect the
stability of the model. Indeed, low values of initial PO4 and high values
of 𝑛𝑧 and 𝛽𝑧 lead to a remarkable change in the structure of the trophic
network. In fact, under these conditions we observed an extinction of
bacteria, cyanobacteria, dinoflagellates, heterotrophic nanoflagellates
and carnivorous mesozooplankton, making the network more like a
chain. This suggests that the topology of the network plays a role in
the stability of the model, as evident in the average species distribution
for stationary and non-stationary regimes, the latter characterized by a
relative dominance of microzooplankton (Z5), Fig. 7.

After this preliminary SA, we focused on studying trajectories of
the biomass of the nine planktonic species present in the BFM. We
divided the samples into two sets: one with all non-stationary solutions,
the other with stationary solutions. For these two sets of solutions,
we computed the mean concentration trajectories and plotted them in
Fig. 8. We can observe that also the mean non-stationary trajectories
look like stationary, hence we should expect very small fluctuations
around a stationary state in most of the samples.

We have already anticipated that the literature reports that complex
ecological models are unlikely to exhibit non-stationary behaviour.
We observed a considerable fraction of non-stationary solutions (see
Table 1), but it is important to stress that such non-stationary pat-
terns exhibit rather small perturbations (see Fig. 8). To analyse the
amplitude of perturbations in the set of non-stationary solutions, we
examined the coefficient of variation (CV) calculated for the last two
years of each trajectory. It was found that almost all the samples
are characterized by a very small CV, suggesting that the majority of
the identified non-stationarities presents only very small fluctuations
around an equilibrium and, from an empirical point of view, can still
be assigned to stationary or quasi-stationary regime. Conversely, from
an analytical/theoretical perspective, the perturbation exists, but they
are present only in the very peculiar form of microfluctuations. In
particular, the samples, for which the biomass CV of at least one (over
6

Fig. 7. Relative concentration of biological species for different values of PO4,
obtained by using the same binning as in Fig. 6, averaged over the whole
stationary/non-stationary set of samples.

nine) biological species exceeds 0.05, are 10.0% of the total samples
when LT is considered and 8.9% with HT. The Lyapunov exponent
analysis indicates that for LT only 3.5% of the total 35000 samples
contains at least one chaotic trajectory for one species biomass; for
HT this resulted instead in 1.6% of the total. Therefore the relative
abundance of chaotic solutions in LT and HT is approximately 10% of
non-stationary ones.

To understand whether the instability, albeit small, of a complex
model such as the BFM is related to the level of internal diversity
of the ecosystem, we calculated the Shannon index for each sample
in the stationary and non-stationary subsets and then averaged them
over each subset. The non-stationary subset was identified using the
HT for the indicators. The stationary and non-stationary subsets yielded
mean stationary and non-stationary Shannon index equal to 0.81 and
0.56 respectively, which implies that the non-stationary behaviour is
correlated to a low diversity ecosystem. Even though the diversity
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Fig. 8. Mean trajectories of the stationary samples (dashed line) and non-stationary
samples (solid line) for the nine biological species of the BFM over a 10 year period.
Here the threshold value 𝜖 = 10−2 (HT) is used.

index mean is lower in the non-stationary set, the distribution of the
Shannon index exhibited a large spread (not shown). Therefore, we
considered the Shannon index of some trajectories chosen among those
which present the largest values of CV (see Fig. 10). We note that
very different dynamics are characterized by similar Shannon index
(0.92 and 0.90). In particular, a realization with Shannon index equal
to 0.92 is characterized by fluctuations with a small amplitude (the
maximum 𝐶𝑉 is 0.16; Fig. 9(a)). On the contrary, another realization
with Shannon index equal to 0.90 is characterized by fluctuations with
a very large amplitude (the maximum 𝐶𝑉 is 1.04; Fig. 9(b)). Further,
a configuration with a small Shannon index (see Fig. 9(c)), where
6 over 9 species are close to extinction, shows fluctuations that are
smaller compared to those of Fig. 9(b) (the fluctuations may even
disappear with a longer simulation time), where all species are far from
extinction. Finally, a configuration with an intermediate Shannon index
(see Fig. 9(d)) exhibits again a dynamics different from the other cases.

It appears that non-stationary dynamics in food webs cannot be
explained solely in terms of the value of the Shannon index.

Given these results, and to investigate the effects of food web
topology on stationarity, we tested other four trophic web topologies
in addition to the full BFM: the Long chain, Omn. chain, Omnivory, and
Low gravity (see Fig. 10). Bacteria were present in each configuration to
preserve nutrient cycling in order to avoid that the system can undergo
an unrealistic time evolution. Analogously to what we did for the full
BFM, we performed an analysis with 35000 simulations for each trophic
web by perturbing the parameters and initial conditions. We used the
biomass-based condition to identify a whole sample as non-stationary,
with HT. In each analysis we discarded the samples deviating from
their initial food web topology due to an additional extinction occurring
during the simulation.

Repeating the analysis in the full BFM configuration with the above
introduced constraint of preserving the trophic web topology (i.e. con-
sidering only samples without any extinction), we observed that the
non-stationary sample occurrence decreases from 10.5% (see Table 1)
to 2.3%

In the Long chain configuration, which represents a long food chain
and it is analogous to the model 5A of Ref. [10], we observed an
increase in the abundance (17.0%) of non-stationary samples compared
to the full BFM. The configuration Omn. chain resulted to be similar
to Long chain but with omnivorous species, proving to be more stable
(15.9%). In the Omnivory configuration, with one omnivorous species
(Z4) and two preys at the lower trophic level (plus bacteria), corre-
sponding to the model 3C of Ref. [10], there is a further decrease in
7

Table 2
Probability that food webs exhibit non-stationary, periodic and chaotic
dynamics. The rates were obtained over the samples that do not contain
extinct species in the food web.

Food web Non-stationary [%] Periodic [%] Chaotic [%]

Long chain 17.0 2.3 14.7
Omn. chain 15.9 0.0 15.9
Omnivory 4.8 1.4 3.4
Low gravity 3.6 2.5 1.1
BFM 2.3 1.6 0.7

the occurrence (4.8%) of the non-stationary behaviour with respect to a
chain structure. Finally, in the Low gravity configuration, characterized
by a low centre of gravity (defined in Eq. (12)), i.e., a high concentra-
tion of species at the lower trophic level, and by omnivory, there are
even fewer cases (3.6%) of non-stationarity.
To quantify the differences among the alternative configurations shown
in Fig. 10 we considered the concept of centre of gravity of a trophic
web [10] which is defined as:

𝐶𝐺 ∶=
∑𝑁𝑠𝑝𝑒𝑐

𝑖=1 𝑙𝑖
𝑁𝑠𝑝𝑒𝑐 max𝑖[𝑙𝑖]

, 0 < 𝐶𝐺 < 1 (12)

where 𝑙𝑖 is the maximum chain length linking species 𝑖 to basal species
and 𝑁𝑠𝑝𝑒𝑐 is the number of species present in the trophic web. 𝐶𝐺 = 0.5
marks an unbiased distribution of species (as in all food chains), a CG
greater (smaller) than 0.5 marks a concentration of species at the upper
(lower) trophic levels of the web. The values of the centre of gravity of
the food webs here studied are: 0.5 for Long chain and Omn. chain; 0.38
for Omnivory ; 0.25 for Low gravity and BFM. In the computation of CG
the bacteria were neglected. They are indeed needed for the microbial
loop, but are neglected in a more idealistic representation of the food
web [10].

Another indicator proposed by [10] is connectance, assuming higher
connectance is related to higher stability. We computed the directed
connectance [45], which also accounts for cannibalism, but it proved
not to be useful. In fact the full BFM and Low gravity configurations
had the lowest connectance, while Omn. chain and Omnivory had the
highest connectance, with no clear correlation with the occurrence of
non-stationarity.

Lastly, we characterized the non-stationarity as periodic or chaotic
through the use of the Lyapunov exponents for each food web. The
results are shown in Table 2.

4. Discussion

We have investigated the probability of obtaining non-stationary
solutions in a complex ecosystem model exploring a suitably defined
region of the parameter space. Several studies (e.g. [9,10]) showed that
instabilities are suppressed in complex ecosystems. Therefore, we might
hypothesize that the set of ensemble realizations with non-stationary
behaviour are related to a reduced complexity.

To evaluate this possibility, we reduced the complexity of the BFM,
by imposing extinction of some species. Specifically, we examined four
configurations as well as the full BFM shown in Fig. 10 and denoted
as Long chain, Omn. chain, Omnivory, and Low gravity. Two of these
food web configurations, Long chain and Low gravity, were also studied
in Ref. [10]. The configuration Long chain exhibits a larger abundance
of non-stationary samples with respect to the full BFM, confirming the
link between instability and a chain-like food web structure [8,10]. We
found a decrease in the non-stationary behaviour in the Omnivory and
Low gravity configurations. In particular, the latter configuration shows
few non-stationary samples. This very stable model is characterized by
a low centre of gravity and omnivory, confirming the idea that these
traits are fundamental to the stability of an ecological system [10]
and suggesting that the presence of alternative preys may reduce the
probability of observing a non-stationary regime in ecosystems.
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Fig. 9. Plot of non-stationary trajectories for a 10-years period, at least one trajectory for each subfigure satisfies 𝐶𝑉 > 0.05. The highest CV is found in: (a) Diatoms P1 with
0.16, Shannon Index 0.92; (b) Dinoflagellates P4 with 𝐶𝑉 = 1.04, Shannon Index 0.90; (c) Diatoms P1 with 𝐶𝑉 = 0.27, Shannon Index 0.15; (d) Nanoflagellates P2 with 𝐶𝑉 = 2.75,
Shannon Index 0.62.
Fig. 10. Schematic representation of biological species interaction in BFM and four
simplified models.

The BFM proved to be the most stable configuration, even though it
has the same value of the centre of gravity as the Low gravity configura-
tion. Non-stationary dynamics were observed to be less frequent in food
webs with an increasing number of omnivorous links [10]. There are
three omnivorous species in the BFM, but only one in the Low gravity
configuration. This could explain the higher stability of the BFM.

The role of omnivory in food chains is still debated. It has been
observed that omnivory plays a major role in stability, positive for
short chains (up to three or four trophic levels), negative for longer
chains [46]. In our study we found that for a four-levels omnivorous
chain (with the addition of bacteria to complete the microbial loop)
there was a minor decrease in the non-stationary occurrence compared
to a chain of the same length without omnivores. We found only a
8

1% difference in the non-stationary occurrence between the Long chain
and Omn. chain configurations. But we also found an increase in the
occurrence of chaotic dynamics in the omnivorous chain compared to
the non-omnivorous chain, so that the role of omnivory in the stability
of a four-levels chain is not clear.

The frequency of chaos occurrence extends the findings of [10] and
supports the conclusion that food chains are more likely to exhibit
chaotic dynamics, while structural features such as a low centre of
gravity may limit the occurrence of chaos.

The result that up to one third (see Table 1) of the possible pa-
rameter choices leads to microfluctuations and therefore non-stationary
dynamics is consistent with the notion that complex ecological systems
are in a stationary, or almost stationary, state when not subject to
external forcing [9]. Thanks to the large number of different combi-
nations of simulations (35000), we can assume that the ensemble is
large enough to properly sample the sets of realistic parameter values.
Moreover, the non-stationary solutions occur more frequently when the
initial phosphate concentration and the two parameters (𝑛𝑧 and 𝛽𝑧),
which regulate the balancing flux of elements in microzooplankton are
sampled at the edges of their range of validity. Therefore, neglecting
the unrealistic parametrizations, which are associated with a greater
frequency of non-stationary occurrence, would increase the reliability
of our conclusion: in the absence of external forcings a realistic model
rarely exhibits endogenous fluctuations of significant intensity. In fact
it should be noted that the threshold value 𝜖 = 10−3 (LT), and even
𝜖 = 10−2 (HT) for some variables, is below the experimental error of
the biogeochemical properties taken into account. For practical reasons
the HT should be considered, which significantly reduces the number
of non-stationary configurations.

Ecological systems manifest positive feedback processes and over-
compensatory negative feedbacks that enable the system to spend most
of its time out of equilibrium [47]. Such properties are called seeds of
chaos because, if the feedbacks are strong enough (or forced by external
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factors), the system will never reach a stationary state and could behave
chaotically [9].

The small perturbations we have identified as characteristic of the
BFM may indeed represent the effects of feedbacks, but apparently
their interactions keep the fluctuations small and the trajectory close
to a stationary state. It is clear that the addition of external periodic
forcing, or perhaps even just environmental noise, could modify these
dynamics, and drive cyclic and chaotic behaviour in some of the
trajectories currently classified as stationary [48]. However, this would
be, indeed, the results of an exogenous forcing, and its interaction on
exogenous dynamics, and therefore out of the scope of the present
study. Surely, our study, which demonstrated the rarity of endogenous
significant non-stationary behaviours in a model of realistic complexity,
could evolve in future work in which a similar analysis is conducted in
the presence of periodic and random environmental perturbations in
the ecosystem.

5. Conclusion

The analysis of a very large number of numerical simulations per-
formed with a marine biogeochemical model of realistic complexity
highlights how in the vast majority of cases in absence of exogenous
periodic forcing the system shows a stationary behaviour, therefore
supporting the conclusion that the non-stationary behaviour frequently
observed in nature is driven mainly by environmental forcing, such
as light or temperature. The ensemble includes most – if not all –
realistic model configurations. The analysis suggests that only 10%
of the possible configuration exhibited – after an initial transient –
fluctuations larger than 1% of a mean value, and about 1% of the total
samples have chaotic trajectories.

We identified the causes of food web stability (stationarity) in
topological properties of the food web, such as omnivory and a low
centre of gravity, i.e., a high concentration of species in the lower
trophic levels. Omnivory alone is not always sufficient to stabilize a
food web: on the contrary, in long chains it plays a destabilizing role.

Our results also offer further evidence to support the conclusion that
ecosystem stability is related to complex trophic food web topology, in
which predators can feed on multiple preys, potentially also over mul-
tiple trophic levels, and the presence of multiple interacting feedbacks
dampen fluctuations to low levels.
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