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S U M M A R Y 

Image logs are crucial for petrophysical and structural characterization of drilled formations. 
Logging while drilling (LWD) image logs allow near real-time characterization of formations 
during drilling. Interpretation time required by humans can become critical, as structural 
interpretation provides the most crucial information for decision-making steps with respect to 

drilling operations. An example of this occurred in a deepwater system of reservoirs in East 
Africa. During the drilling of some wells, drilling was interrupted by unexpected borehole 
stability issues observed in a mass transport deposit. Those problems can detrimentally affect 
operations by impacting the efficiency of drilling. Therefore, a procedure for the automation 

of LWD data analysis was developed aimed at reducing drilling risk associated with borehole 
stability. A w orkflo w is proposed based on an innov ati ve assortment of AI methodologies 
for automatic real-time interpretation of LWD image log, applied to density image logs. The 
goal is to mimic manual human dip picking, combining computer vision, numerical series 
analysis and machine learning. Computer vision techniques are applied to detect the main 

density contrasts, representing the most likely surfaces. Sharp contrasts in the image are 
then investigated by dynamic time warping for similarity analysis. Finally, the geological 
plane is defined as a regression plane passing through the most similar contrasts, and a 
surface confidence criterion is defined based on the homogeneity of contrast along the curve 
suggested by the regression. Feature identification by a geologist was used as benchmark for 
comparison and metrics. Accuracy is referred to the difference between apparent dip and 

azimuth of geological surfaces coming from human and automated w orkflo ws, follo wing the 
idea that two similar geometric results would e ventuall y lead to equally similar geological 
considerations, and thus to similar operational measures. In general, a prediction accuracy of 
60 per cent for the tested wells is observed, considering the total set of surfaces coming from 

the model. Nevertheless, the results suggest a positive correlation between the apparent dip 

of the discontinuities and the model error and a general less confidence for the surfaces with 

greater dip. By isolating the subset of low dipping features generated by the model, that is up to 

35 

◦, the accuracy appears to increase up to more than 70 per cent, suggesting that correlation 

is more difficult for high dipping geological planes. This class of curves also shows a general 
lower confidence and much of this latter class of surfaces are more likely to be found in the 
depth interval in which borehole stability issues occurred. 

Key words: Composition and structure of the continental crust; Composition and structure 
of the planets; Fracture and flow; Microstructure; Machine learning; Downhole methods. 
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1  I N T RO D U C T I O N  

Images of the borehole are obtained by logging and data processing 
methods, resulting in a centimetre-scale image of the borehole wall 
(Sun et al. 2021 ). The wireline tools, which can produce resistivity 
images, ultrasonic images or a combination of the two, are lowered 
into the well and the measurements are made either while running in 
942 
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the hole (ultrasonic images only) or up-hole (resistivity, combined 
ultrasonic and resisti vity images). Lo gging while drilling (LWD) 
tools are part of the rotating borehole assembly and can generate 
resistivity, ultrasonic, density and gamma ray images. LWD and 
wireline data differ in terms of image quality and resolution. 

Higher resolution wireline images can be interpreted at the 
centimetre-scale whereas lower resolution LWD images (Fig. 2 ) 
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Figure 1. The gas fields in Nor ther n Mozambique were found in deepwater clean sands reservoirs, comprising turbiditic deposits interacting with bottom 

currents. Area 4 was discovered by Eni in 2011 and 2012 (from Fonnesu et al. 2020 ). 
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an only be resolved at the decimetre to metre-scale. Density image
ogs like those that were used in the development of this method are
roduced by azimuthal LWD tools. In our case, the tool technol-
 gy di vides the 360 ◦ of the borehole into 16 sectors, one for each
2.5 ◦. The tool measures the formation bulk density in each sector
y introducing gamma rays into the formation with a radioactive
ource and counting the rate of gamma rays scattered back to a
ear and a far detector (Shahinpour 2013 ). This data is used to de-
ive structural and lithological information in real-time, during the
rilling of a borehole. Modern LWD imaging tools are now mature
nough to be used for a variety of applications, including real-time
eservoir characterization and field optimization. Such applications
ndicate the importance of this type of data for a variety of pur-
oses. Information from image logs can be integrated, for example,
nto crucial decision-making phases such as geosteering (Mathis
t al. 2003 ; Poppelreiter et al. 2010 ; Mukherjee 2018 ). Before be-
ng processed for interpretation purposes, LWD image logs must
ass through a quality check. LWD instruments acquire data at reg-
lar time intervals during drilling and are equipped with an internal
lock. Ho wever , the drilling speed is subject to variations related, for
xample, to variable resistance of formations, so LWD images can
e af fected b y artefacts (such as flattening or stretching of features
n the image). At the surface a depth tracking system, also equipped
ith a clock, monitors the time and depth of drilling, based on the

ength of the drill string and the position of the top drive in the
errick. The synchronization of the downhole and uphole clocks
llows the corrections of the artefacts, by merging the time-depth
ata from the surface system with time-measurement data from the
ool, to get the best depth-measurement data. The next processing
tep is to set a maximum and minimum value for the petrophysical
arameter measured by the tool, to represent the data in a colour
cale (e.g. light is high value and dark is low value as in Fig. 2 ). The
olour scale used to represent the data is defined between these two
xtremes. The colour scale is normalized over the entire acquisi-
ion interval to produce statically normalized images and then again
ver arbitrarily sized windows, to produce dynamically normalized
mages. The statically normalized shows the overall variations of
roperties measured by the LWD tool, whereas the dynamic nor-
alization highlights the details. 
The interpretation of such image data aims to identify geological

eatures such as layers, fractures and faults as planar features inter-
ecting the borehole, that will appear as sinusoids on an unwrapped
mage. 

Apparent dip azimuth and dip magnitude of all picked features
an be determined using eq. ( 1 ) (Luthi 2001 ; Mukherjee 2018 ) 

Dip = arctg 
H 

D 

, (1) 

here H is the height of the sinusoid (amplitude) and D the diameter
f the borehole. Due to well deviation, those are apparent parameters
nd need a conversion to real values (Bergt 1995 ). For the purposes
f this work LWD azimuthal density image logs were interpreted
anually and by an automated interpretation system that will be

escribed later in Section 2 . LWD azimuthal density images were
hosen for the implementation of an automatic system because their
nterpretation allows direct detection of geological discontinuities
uring drilling, which can support drilling risk reduction helping
n the early detection of dangerous conditions that can undermine
orehole stability. 

The automated interpretation system discussed in this work has
een considered as a solution for real-time image log processing and
 support to human interpreters for fast structural and geological
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Figure 2. Example of a LWD density image log comprising a 5 m interval 
displaying geological features that will be manually interpreted. Note low 

feature resolution. The dark colour corresponds to low density and vice 
versa. 
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characterization, thus providing helpful insights for field optimiza- 
tion purposes. Specifically, this work was inspired by borehole sta- 
bility problems that occurred in a mass transport complex (MTC), 
henceforth referred to as MTC370, during the drilling of an offshore 
well in East Africa (Fig. 1 ). The borehole instability occurred within 
an interval of sand channel complexes containing convolute, chaotic 
and weak seismic reflections (Fonnesu et al. 2020 ). According to 
the depth where the borehole stability issues occurred, they resulted 
associated with the MTC370. The objective of the method is there- 
fore to provide a real-time image log analysis system, that can aid 
the interpreter with early detection of these types of deposits that 
are risky for drilling due to their general heterogeneity and intense 
fracturing. The methodology is an integration of edge detection and 
similarity anal ysis. It w as tested on two wells, hereinafter referred 
to as well 7 and 8, that are approximately 2 km apart, where the 
MTC370 limits were manually pre-interpreted on the associated 
LWD density image logs. 

Edge detection encompasses numerous useful methods for sim- 
plified image analysis, for the recognition of contours or edge points 
in an image, aimed at many applications (Canny 1986 ), including 
the use of the results of an edge detector as input for pixel or edge 
matching for object recognition in digital images (Marr 1978 ). 

In Itakura ( 1975 ) the ef fecti veness of a minimum cumulative 
distance measure between two patterns for speech recognition pur- 
poses is demonstrated. In Sakoe & Chiba ( 1978 ) the success of 
dynamic programming (DP) in the pattern-matching algorithm for 
speech recognition purposes is also demonstrated. Dynamic time 
warping (DTW) is a method to obtain alignment of two time series, 
following DP principles, by means of non-linear deformation of the 
two sequences (Muller 2007 ). The discussed system is based on the 
combined application of edge detection and DTW. Details of this 
procedure are explained in Section 2 . 

2  DATA  A N D  M E T H O D S  

The dataset on which our w orkflo w w as de veloped consists of LWD 

image logs coming from well 7 and well 8 (see Section 1 ). For each 
borehole a manual interpretation was first performed focusing on 
the most obvious features, that is the sharpest density contrasts. 

The results of the manual approach were used as a baseline for 
comparison with the model results in terms of apparent dip mag- 
nitude and dip azimuth. The apparent parameters were considered 
because they can be deri ved directl y from amplitude and phase 
of the sinusoids that represent the planar approximation of the 
identified geologic features. To derive the true values, well posi- 
tion and inclination must be determined from measurements while 
drilling (MWD) data, which generally include magnetometer and 
inclinometer data acquired during drilling. 

Manual interpretation was done using Geolog (E&P). This soft- 
ware allows the interpreter to pick the points on the interpreted 
surface and automatically performs the fitting of sinusoids. It also 
computes both the apparent and the true dip magnitude and dip 
azimuth of the interpreted surface and allows for its geological 
classification (e.g. bedding, fracture and fault). The automated sys- 
tem processes the image logs and correlates the geological features 
detected around the wellbore but does not classify them according 
to their geological significance. The automated correlation of sinu- 
soids is based on an idea of similarity between pairs of numerical 
series among the 16 sectors covering the 360 ◦ of the borehole. This 
method is a combination of edge detection and DTW for the de- 
termination of similarity between portions of numerical series. The 
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Figure 3. Summary of the main steps used by the algorithm to identify planar geological features in the LWD image log. (a) Centre a 50 cm window in a point 
of interest, (b) calculate the similarity with sliding windows in the next sector and, (c) keep the coordinates of the window with maximum similarity, (d) repeat 
for all the sectors in the image to get the scatter of similar points and (e) correlate the planar feature by fitting a sinusoidal curve. 

Figure 4. Example of application of a Sobel operator to the LWD data of Fig. 2 : red points represent the point of interest set, to start the feature correlation. 
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utomated flow, described in Fig. 3 , starts from edge detection with
he Sobel operator. This is an efficient differential gradient edge
etector that estimates local intensity gradients in the image with
he help of appropriate convolution masks. To obtain the sinusoids
t density contrasts, the edges found by the Sobel operator are used
s input for the calculation of similarity between portions of the
mage and automatic surface detection. In this wa y w e extrapolated
rom the image what we called the points of interest (see Fig. 4 ). 

These points of interest identified by the Sobel operator are used
s starting points for the calculation of similarity using the DTW
echnique (as described in Fig. 3 ). This technique warps two generic
equences to reach their match by finding the optimal warping

art/ggad286_f3.eps
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Figure 5. Example interval from MTC370, well 8. The algorithm results are plotted, together with specific ID and confidence values for each surface. 
Transparency of the curves is proportional to confidence, with the more transparent indicating lower confidence. Blue curves result from edge detection, green 
curves come from regressions and red curves come from basic human interpretation. 
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function of the independent axis, which also corresponds to the 
minimum cumulative distance between the sequences. The simi- 
larity is repeatedly calculated between a so-called target sequence, 
centred at one point of interest, and a set of input sequences in the 
next sector. The general procedure is as follows: first, a target se- 
quence block is centred at one point of interest (this will be repeated 
for each point of interest). The target block has the point of inter- 
est in the centre and includes 5 samples (25 cm) above and below 

the centre in the same sector. Ten samples in the target sequence 
correspond therefore to 50 cm on the corresponding density series, 
centred in a point of interest. The algorithm then defines an input se- 
quence block on the adjacent sector, having the same extension and 
slides it sample-wise from 1 to 5 samples above and below the depth 
of the target sequence block. For each of these input blocks, the sim- 
ilarity with the target block is calculated. The aim is to identify in 
the adjacent sectors the portion that has the maximum similarity 
with the target block within a 1-m window. The most similar in- 
put block is determined by means of the similarity measure based 
on DTW and, specifically, it corresponds to the input block show- 
ing the minimum DTW distance with respect to the target block. 
Once identified, the input sequence block with maximum similar- 
ity is used as the new target block, and the procedure is repeated 
with respect to the next sector, iterati vel y, until all 16 sectors are 
covered. 

At the end of all the iterations, we have a set of centroids 
corresponding to the most similar blocks for each point of 
interest. A least square regression method is applied after coordinate 
transformations from 2-D to 3-D to find the best-fitting sinusoid, 
that is the best approximation of a planar feature. Finally, the dis- 
tribution of the Sobel values along the correlated surfaces was used 
as a criterion to assess the confidence. Ideally, in fact, the Sobel 
value is assumed constant for each density contrast in the image. In 
practice, this may not be true especially because of the low LWD 

image log resolution. Therefore, the confidence for each surface 
was calculated as the percentage of points along the surface with 
the same sign of the Sobel value. The confidence of the surfaces 
ranges from 0 to 100 and is generated by the algorithm together 
with the ID of the curves and their apparent dip magnitude and 
dip azimuth (see Fig. 5 ). Those quantities were used as parameters 
for the model e v aluation. The mismatch between the apparent dip 
azimuth and dip magnitude of manual and model surfaces was used 
to define an error for the orientation of features generated by the 
model. Manual interpretation showed different grades of hetero- 
geneity in the drilled interval and we can clearly distinguish the 
reservoir, comprising homogeneous and clean sandy layers with a 
thick, heterogeneous and chaotic unit at the top. This heterogeneous 
unit was interpreted as the mass transport deposit described at the 
end of Section 1 , referred to as MTC370. In this deposit, manual 
interpretation showed a higher mean dip magnitude and greater dip 
azimuth dispersion of the correlated geologic features. To support 
early detection of heterogeneous and chaotic formations, that are 
risky for drilling operations, the algorithm also includes a function 
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Figure 6. Accuracy as a function of dip magnitude of the retrieved surfaces shows a positive correlation between model error and dip, for both wells. Metrics 
show general robustness from well to well. 
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hat calculates the percentage of features with dip magnitude greater
han 45 ◦ and the percentage of features with confidence less than
5 per cent. The algorithm checks if the percentages of fea-
ures meeting the conditions are greater than 50 per cent in 10-m
indows and an alerting system highlights which of these condi-
ions is verified in each window as in Fig. 7 . 

The density contour stereonets of the apparent dip mag-
itude and dip azimuth resulting from manual interpretation
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Figure 7. Mass transport deposit detection system shows good performance in detecting the MTDs and in particular the interval that gave unforeseen borehole 
stability issues. 
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Figure 8. Stereonet plot (upper hemisphere) showing the dip angles and dip azimuths of the features picked on the borehole LWD density image. (a) Manually 
picked dip data set showing a dominant dip azimuth towards north. (b) Model processed dip more dispersed azimuths that broadly agree with manually picked 
dips. 
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ere compared with those resulting from the model for the
 v aluation. 

 R E S U LT S  

he performance of the model was assessed with the calculation
f metrics, based on the comparison between the basic manual and
odel results. The model identified a greater number of features in

he image than the basic manual interpretation (see Fig. 5 ). Values
f apparent dip magnitude and dip azimuth of the sinusoids were
sed to define errors. We tested the algorithm on the two wells
nd observed an average prediction accuracy of 61 per cent for dip
agnitude and an average error of predicted azimuth of 40 ◦, for

he whole set of identified geological features (Fig. 6 ). Accuracy
ssessed for features with an apparent dip magnitude lower than
5 ◦, which represent the 70 per cent of the total number of curves,
ent from 61 to 70 per cent. For the apparent dip azimuth parameter,

he average error decreased from 40 ◦ to 19 ◦ (Fig. 6 ). Note that this
eans that the error is less than one sector (22.5 ◦). 
Fig. 7 shows that in the interval where borehole instability oc-
urred the algorithm detects the MTC in four out of a total of five
0-m-long windo ws, sho wing that the MTC identification criteria
ased on the apparent dip magnitude and the confidence of the ge-
logical features can be efficient (see Section 2 ). Stereonets from
anually picked and automated analysis (with 100 per cent confi-

ence) showed a general higher dispersion observed in the AI data
Fig. 8 ). This may be due to the greater number of features identified
 y the AI method, howe ver the two dip picking techniques display
 general agreement. 

This result illustrates the potential of this system to predict a
ealistic structural and geometrical scenario from noisy and low-
uality LWD image log, hence highlighting its applicability to risk
eduction during drilling. 

 C O N C LU S I O N S  

n conclusion, an innov ati ve methodolo gy w as implemented on
WD density image logs for real-time automated data-analysis
imed at reducing risks of borehole instability. The methodology
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w as de veloped to simulate the interpretation process using a com- 
bination of computer vision and similarity analysis. 

The combination of edge detection (Sobel operator) and DTW 

methods was able to emulate the process of geological feature iden- 
tification in LWD images. At the current stage of development, the 
system can detect more surfaces than a basic manual interpretation. 
In addition, the system includes an efficient function to report dis- 
order and heterogeneity of drilled intervals, based on confidence 
and average dip magnitude of surfaces within 10-m windows. As a 
result, the system correctly reports intervals where borehole stabil- 
ity problems had occurred and therefore, we can say that it would 
have helped the interpreter to promptly recognize risky units for 
operations. 

Ho wever , further improvement is still required to increase model 
accuracy in predicting apparent dip of surfaces, which is crucial 
to support real-time discrimination of bedding and fracture/fault 
surfaces. Fault and fracture classification is important for risk for 
drilling operations and borehole stability. Fur ther more, this algo- 
rithm has so far been tested only on azimuthal density LWD image 
logs but should also be tested on other types of LWD images (such 
as GR or resistivity) on which we expect it to be applicable. 
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