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Abstract

Objective. To introduce the optimization of a customized GPU-based simultaneous algebraic reconstruc-
tion technique (cSART) in the field of phase-contrast breast computed tomography (bCT). The presented
algorithm features a 3D bilateral regularization filter that can be tuned to yield optimal performance for
clinical image visualization and tissues segmentation. Approach. Acquisitions of a dedicated test objectand
abreast specimen were performed at Elettra, the Italian synchrotron radiation (SR) facility (Trieste, Italy)
using a large area CdTe single-photon counting detector. Tomographic images were obtained at 5 mGy of
mean glandular dose, with a 32 keV monochromatic x-ray beam in the free-space propagation mode.
Three independent algorithms parameters were optimized by using contrast-to-noise ratio (CNR), spatial
resolution, and noise texture metrics. The results obtained with the cSART algorithm were compared with
conventional SART and filtered back projection (FBP) reconstructions. Image segmentation was
performed both with gray scale-based and supervised machine-learning approaches. Main results.
Compared to conventional FBP reconstructions, results indicate that the proposed algorithm can yield
images with a higher CNR (by 35% or more), retaining a high spatial resolution while preserving their
textural properties. Alternatively, at the cost of an increased image ‘patchiness’, the cSART can be tuned to
achieve a high-quality tissue segmentation, suggesting the possibility of performing an accurate
glandularity estimation potentially of use in the realization of realistic 3D breast models starting from low
radiation dose images. Significance. The study indicates that dedicated iterative reconstruction techniques
could provide significant advantages in phase-contrast bCT imaging. The proposed algorithm offers great
flexibility in terms of image reconstruction optimization, either toward diagnostic evaluation or image
segmentation.

1. Introduction

X-ray breast computed tomography (bCT) is a fully 3D mammographic technique in which multiple low-dose
projections are acquired over an angle of 180 degrees or more and then reconstructed through suitable
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algorithms (Chen and Ning 2002, Sarno et al 2015, O’Connell et al 2018). Even though the first clinical studies in
bCT were published more than ten years ago (Lindfors et al 2008), the integration of this technique into clinical
practice has started only in recent years(Wienbeck et al 2017). Preliminary clinical studies have suggested that
bCT can provide a good visualization of both masses and microcalcifications with a radiation dose comparable
to, or slightly higher than, conventional mammographic exams (Shim et al 2020). Following the first generation
of bCT scanners, which was based on cone-beam geometry and flat-panel detectors (Lindfors et al 2010,
O’Connell eral 2010), a new generation of bCT systems based on fan beams and photon-counting detectors has
been recently developed (Kalender ef al 2017), reducing the negative impact of scattered radiation in the final
image and improving the system’s dose efficiency.

In addition to conventional x-ray imaging that relies uniquely on the absorption properties of the sample,
phase-contrast (PhC) imaging techniques have demonstrated improved visibility of low-contrast features in soft
tissues (Wilkins et al 1996, Mittone et al 2018, Brombal 2020a). In this context, programs of phase-contrast bCT
(PhCbCT) are under development at Elettra, the Italian synchrotron radiation (SR) facility (Trieste, Italy)
(Longo et al 2019), and at the Australian Synchrotron in Melbourne (Gureyev et al 2019). The setup at Elettra
includes a high-resolution CdTe photon-counting detector (Bellazzini ef al 2013) and it is based on the free-
space propagation modality which is arguably the simplest phase-sensitive technique to implement, only
requiring increasing the sample-to-detector distance to detect phase effects. Owing to the high coherence
provided by a synchrotron source, this arrangement results in images with an enhanced contrast across
interfaces (edge-enhancement) (Wilkins et al 1996). The ‘edge-enhanced’ images, or projections, are further
processed via a phase-retrieval algorithm (Paganin et al 2002). The combined effect of free-space propagation
and phase retrieval results in a major decrease in image noise at similar contrast and spatial resolution levels that
would be observed in a conventional x-ray attenuation-based tomography (Baran et al 2017, Gureyev et al 2017,
Brombal et al 2018a). As recently demonstrated, the image quality of PhC bCT outperforms clinical bCT
systems, providing a higher spatial resolution, signal-to-noise ratio, and a finer granularity (Brombal et al 2019,
Pacile et al 2019). With the goal of setting up a clinical study, the SYRMA-3D collaboration has been working in
the last years to evaluate, quantify and optimize the main parameters of the PhC bCT imaging technique in terms
of x-ray energy (Delogu et al 2019, Oliva et al 2020), sample-to-detector distance (Brombal et al 2018b,

Brombal 2020b), detector’s operating mode, strategies for CT scans and reconstruction workflow (Longo et al
2019, Brombal et al 2021).

Breast computed tomography must provide high spatial and contrast resolution with a radiation dose level
comparable to a standard 2-view mammography. Low radiation dose can be achieved either by reducing the
x-ray fluence per tomographic projection (Greffier et al 2015, Solomon et al 2017) or by decreasing the number
of projections (Sidky et al 2014). The first approach, while preserving a good angular sampling, results in
increased noise in the projection images leading to a noisier CT image. Conversely, when the number of
projections falls significantly below the Nyquist angular sampling criterion, analytical reconstruction algorithms
introduce significant image artefacts and, again, increased noise. Several approaches have been proposed to
improve the global image quality in low dose CT scans and some of them have been applied to bCT data (Zhao
et al 2012), including iterative reconstruction (IR) algorithms (Sidky and Pan 2008, Makeev and Glick 2013, Bian
etal2014, Pacile etal 2015, Delogu et al 2017a).

IR techniques usually search for a smooth/regular solution compatible with the measured projection data
and, for some algorithms, that satisfies other additional constraints (e.g. non-negativity). Thanks to the
advancements in terms of computational power, IRs are attracting a growing interest in many applications of
biomedical x-ray imaging (Love et al 2013, Nishiyama et al 2016). Multiple clinical studies have shown their
potential in terms of image quality improvement and/or radiation dose reduction when compared to the
standard filtered back projection (FBP) or Feldkamp—Davis—Kress reconstructions (Gervaise et al 2012, Love
etal2013, Willemink et al 2013, Chen et al 2014a, Mirone et al 2014, Greffier et al 2015, Nishiyama et al 2016).
Additionally, the integration of regularization filters within IR techniques enables both a noise reduction in
homogeneous regions of the image (low spatial frequency component) and the preservation of details across
interfaces (high spatial frequency component). On the other hand, IRs are generally associated with an
undesired change in the image texture, described by radiologists as patchy (Schulz et al 2013, Chen et al 2014b),
in some cases leading to a negative impact on their clinical implementation (Miéville er al 2013). The image
‘patchiness’ can be understood quantitatively as an increment of noise spatial correlation, described by a shift
towards the lower spatial frequencies of the noise power spectrum (NPS) peak when compared to the FBP case.

In this framework, the reconstruction algorithm optimization represents one of the last steps of the SYRMA-
3D project towards the clinical implementation of PhC bCT aiming to improve the global image quality for
clinical compatible low dose CT scans, i.e. below 5 mGy of total mean glandular dose (MGD) (Fedon et al 2015,
Mettivier et al 2015). In this study, we describe and use a custom-made GPU-based simultaneous algebraic
reconstruction technique (¢SART) in combination with a 3D bilateral regularization filter. Compared to other
iterative algorithms, SART generally ensures fast convergence and flexibility allowing the implementation of
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custom modifications, it is easily parallelizable on GPU and it is usually associated with noise reduction while
preserving the sharpness of edges and interfaces. It should also be remarked that, despite this study being focused
on SART due to its straightforward implementation, the bilateral filter can be in principle integrated within any
iterative reconstruction algorithm. To date, only a few specific studies on IRs dedicated to bCT have been
published (Sidky and Pan 2008, Oliva et al 2017, Tseng et al 2020) and most of the clinical applications reported
in the literature rely on analytical reconstructions. The proposed cSART algorithm requires the tuning of 3
independent parameters, providing higher flexibility with respect to the standard SART (Gordon et al 1970, Kak
etal 2002). Specifically, following the preliminary results published in (Donato et al 2019a), the effect of these
parameters on NPS, spatial resolution, and contrast-to-noise ratio (CNR) are herein discussed and, by analyzing
the peak frequency of the NPS curve, optimal combinations of parameters preserving the image texture are
identified for the PhC bCT system at hand. Moreover, the possibility of obtaining suitable images for tissue
segmentation is quantitatively investigated by using segmentation algorithms based on both gray-scale
thresholding and supervised machine-learning. This task can be of great interest for the glandularity assessment
and for the realization of realistic virtual (Caballo et al 2018) or 3D printed (Germann et al 2020) breast
phantoms. The imaging results obtained with the cSART algorithm are compared with conventional SART and
FBP reconstructions.

2. Materials and methods

2.1. Samples description

The presented study is based on images of two samples: (i) a breast mastectomy with a maximum diameter of

9 cm and a vastly differentiated infiltrating ductal carcinoma (already described in Piai et al 2019); (ii) abCT
dedicated test object (Contillo et al 2018, Piai et al 2019) composed by a polymethyl methacrylate (PMMA)
cylindrical container (diameter 12 cm, height 10 cm) filled with demineralized water and a set of five plastic rods
(diameter 1.2 cm) made of polyethylene (PE), nylon, polyoxymethylene (POM), polytetrafluoroethylene (PTFE)
and BR12 breast-tissue equivalent material, respectively. These materials were chosen to mimic the attenuation
and contrast of breast tissues. The test object’s design allows imaging the plastic rods, for CNR and spatial
resolution measurements, and the uniform water background, located at a different vertical position, for NPS
evaluation. Prior to the CT scan, the mastectomy sample was fixed in formalin and sealed in a vacuum bag.

2.2. Beamline description and experimental setup

Images were collected at the SYRMEP beamline (Tromba et al 2010) of the Elettra synchrotron facility, with the
storage ring operating at 2.4 GeV. X-rays are produced by a bending magnet and they can be monochromatized in the
range 8.5—40 keV by means of a Si(111) double-crystal monochromator, providing an energy resolution of
approximately 0.1%. Samples were positioned in a pendant geometry hanging from the patient support, a rotating
table with an ergonomically designed aperture at the rotation center, 30 m away from the source. At the sample
position, the x-ray beam had a laminar shape with a cross-section of 220 mm (horizontal) x 3.5 mm (vertical,
Gaussian shape, full width half maximum), while the object-to-detector distance was set to 1.6 m. Images were
collected with a CdTe photon-counting detector (Pixirad-8) (Bellazzini et al 2013, Delogu et al 2017b) featuring a

60 pm pixel pitch and a global active area of 246 mm x24.8 mm, leading to a matrix 0f 4096 x 476 pixels. Samples
were scanned in continuous rotation by acquiring 1200 evenly spaced projections over 180° at a rate of 30 Hz. The
beam energy was set to 32 keV while the beam intensity was adjusted by means of aluminum filters to deliver 5 mGy
oftotal MGD.

2.3.Image reconstruction

Projection images were pre-processed through a detector-specific procedure (Brombal et al 2018c) and phase-
retrieved prior to tomographic reconstruction (Brombal et al 2018b, Donato et al 2019b). The well-known phase-
retrieval algorithm based on the homogeneous transport of intensity equation (TIE-Hom) (Paganin et al 2002) was
used, selecting a 6/ 3 value of 2308, which corresponds to (ICRU-44) breast tissue (White et al 1989), as reported in a
publicly available database (Taylor 2018). Phase-retrieved projections were reconstructed with a GPU-based FBP and
Shepp-Logan filtering, a standard SART with 5 iterations -both part of the Astra toolbox for tomography (Van Aarle
etal2016) - and the cSART algorithm introduced in the next section. In addition to the Shepp—Logan filtering, which
is standard in many bCT applications (Brombal et al 2019, Shim et al 2020), reconstructions with different common
FBP filters were performed. Namely, from the sharpest to the smoothest, Ram-Lak, Cosine, Hamming, and Hann,
filters were used and the respective results are reported in the supplementary material (available online at stacks.iop.
org/PMB/67/095012/mmedia). Reconstructions were performed on a system equipped with a GPUNVIDIA”
GeForce RTX 2080 Ti card with 11 GB of GDDR6 VRAM, 4352 CUDA cores, and a boost clock of 1.635 MHz. The
reconstruction time for each slice was: 25 s for the cSART, 21 s for the standard SART, and less than 1 s for FBP.
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2.4. The custom SART algorithm

(1) The iterative corrections are weighed with a relaxation factor (Golosio et al 2004), so that the update formula
for the (k + 1)th iteration reads:

F& (i, i) = FO(, 1)) + nPCO(y, 1)), &

where F*® is the image estimated at the kth iteration and C'¥ is the respective normalized image correction
in the reconstruction plane (i, i,). The relaxation factor nis applied to the corrections to reduce image noise
in the reconstruction. In our implementation, ) grows linearly from zero to a maximum 7, in the first few
angular steps (in the current work this value was set to 10) then it decreases linearly with the number of
iterations and angular steps down to zero for the last angular step of the last iteration. In this work we

used 1, = 0.5.

(ii) Projections corresponding to different angles are used in a random ordering scheme.

(iii) A bilateral 3D filter is applied periodically to the reconstructed image guess during the iterative process. In
the filter, the content of each pixel is replaced with a weighted average accounting for both the (3D)
Euclidean distance and the gray-level difference of neighboring pixels. The used weighting kernels are
Gaussian, so that the weight of the pixel identified with indices i/, i/, i, in filtering the pixel iy, iy 1,182

(1; - ix)z + (1)// - iy)z
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where 0, 0,and 0, are parameters related to the spatial width of the filter in the horizontal plane, to the

width in vertical direction, and to the width in content difference, respectively. F (i, i;, i!yand F(iy, iy 1)
are the contents of the pixels i;, iy’, iz’ and i, i), i, respectively, where x and y are the spatial coordinates in
each projection image and zis the projection index. In this work o, and o, are chosen to be equal and

expressed in pixel size units, while o, is expressed in the same units as F(iy, i,, i,). By calling F® the image

filtered with the kernel K, the reconstructed image is updated periodically during the iterative process as:
F® - (1 — w)F® 4 wi®), 3)

where w is a weighting factor comprised between 0 (no filtration) and 1 (full filtration).

To optimize the cSART parameters, images were reconstructed with different combinations of the algorithm’s
parameters, by varying o,,, = o, in the range [2: 7] pixels with a step of 1 pixel, o, in the range [0.004: 0.014] with
astep 0f0.002 and win the range [0.04: 0.16] with a step of 0.02, corresponding to a total of 252 reconstructions.
Of note, we set 0, = 0, but in principle they can be different for a higher level of customization. The number of
iterations was fixed to 5, consistently with the standard SART reconstructions, while the regularization filter was
applied every 100 randomly ordered angular steps. Reconstructions were also obtained with different numbers
of iterations in the range [4: 8]: in the main text only results corresponding to 5 iterations are shown, whereas
results for different numbers of iterations are reported in the supplementary materials document.

2.5. Quantitative assessment

The quantitative evaluation of cSART images was carried out in comparison with the FBP algorithm, assumed as
areference, and with the standard SART algorithm. We firstly focused on the image texture by analyzing the
NPS. Then a quantitative evaluation was performed by using the CNR and spatial resolution metrics. Lastly, a
further type of assessment involved the use of reconstructions for tissue segmentation. Images were analyzed
through dedicated MATLAB (The MathWorks, Inc., Natick, MA, United States) codes.

2.5.1. Noise power spectrum

Image noise and texture were characterized by means of the NPS (Verdun et al 2015), which is the noise spectral
decomposition in the Fourier space. For each reconstruction the 2D NPS map was measured from equally sized
homogeneous ROIs according to the following definition:
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Figure 1. Homogeneous water-filled (a) and plastic details (b) regions of the test object. Blue squares represent the ROIs used to
evaluate the NPS, in (a), and the CNR of the PE detail, in (b). Breast tissue reconstruction (c) where the ROIs for NPS (black squares),
CNR (green squares for detail, red squares for background) are displayed. Scale bars correspond to 10 mm.
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where f, and f, are the spatial frequencies, N, and N, are the ROI dimensions in number of pixels, d, and d, are
the pixel dimensions in mm, Nyoyis the total number of selected ROIs, F denotes the 2D Fourier transform,
I(x, y) is the pixel value at position (x,y) of the ith ROI, while I is the respective mean value. The corresponding
image noise (o) is obtained from the NPS as:

o2 = [ [NPS(f,. fdf.df, )

Given the radial symmetry of 2D NPS in CT reconstructions, 1D radially averaged NPS maps were also
computed by using the identity f* = f? + fyz. Peak frequency ( fyear) of radial NPS curves was used for the
determination of image texture, where a high peak frequency corresponds to a high granularity and a low peak
frequency corresponds to a coarse noise, resulting in a patchy appearance. On the test object, both 2D and 1D
NPS distributions were evaluated by selecting in a homogeneous water region 25 non-overlapping circularly
distributed square ROIs with an area 0f 0.72 x 0.72 mm?, as shown in figure 1(a). For the breast sample, NPS
measurements were performed over 10 homogeneous ROIs within the adipose tissue (black squares in

figure 1 (¢)) at nearly the same distance from the center of the specimen. Each ROI within the tissue has 64 x 64
pixels area (0.36 x 0.36 mm?). To precisely determine their peak frequency, 1D NPS curves were oversampled
bya factor of 4.

2.5.2. Contrast-to-noise ratio
The CNR was evaluated by using the following definition:

L -1
@i+ op)/2

where I; and I, are the average pixel intensities of the detail d and the background b, while o,and o, are the
respective standard deviations (i.e. noise). In the phantom, the CNR of each plastic insert was measured with
respect to the water background. A square ROI of 64 x 64 pixels was selected within each rod, while, for the
background estimation, 10 evenly spaced ROIs were selected in the neighboring region (see figure 1(b)). The
background’s standard deviation was taken as the average of the background ROIs standard deviations. On the
breast specimen, CNR was measured as the average CNR value of three pairs of square ROIs selected within
glandular (detail) and adipose (background) tissues, as shown by the green and red squares in figure 1(c).

CNR = (©6)

2.5.3. Spatial resolution

In the test object, the spatial resolution was characterized through the task transfer function (TTF), which is an
object-dependent extension of the modulation transfer function (MTF) describing the spatial resolution for a
specific object contrast and background noise (Li et al 2014, Solomon et al 2015). While MTF is usually measured
on asingle high-contrast detail, TTF is measured for various materials exhibiting different contrasts. TTF is
useful in the characterization of nonlinear /iterative algorithms where the spatial resolution is, in general,
influenced by the image contrast level, meaning that different interfaces will show different levels of sharpness. It
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is worth noting that, when phase-retrieval filter is applied, this consideration applies also to FBP reconstructions
and it will be discussed in more detail in section 3.1.2.

TTF was evaluated by using the circular edge method, which requires a polar coordinate transformation
allowing to estimate the detail’s edge-spread function from which TTF is derived (Richard e al 2012, Chen et al
2014b). TTF was measured on PE, Delrin and Teflon inserts whereas the contrast yielded by Nylon and BR12
inserts was insufficient for applying the circular edge method. Starting from the frequency corresponding to the
50% of the TTF curve ( fsgo), the spatial resolution was evaluated as the full width at half maximum (FWHM) of
the corresponding point-spread function (PSF) (Bartels 2013):

1
2.26 X fiy0,(Ip/mm)’

where this equation holds in the Gaussian approximation for both TTF and PSF.

Due to the lack of sharp interfaces in the breast specimen, the spatial resolution was estimated through an
alternative procedure recently introduced by Mizutani et al (2016), which has already been applied to bCT
images (Brombal et al 2019). The main advantage of this approach, based on Fourier spectrum’s fitting (Saiga
etal 2018), is that it allows to estimate the overall spatial resolution in terms of FWHM directly from general
sample images, thus not requiring dedicated test objects. On the other hand, the model underlying this method
contains the assumption of a Gaussian system’s PSF, which is not rigorously true for many modern CT systems,
and it is not material specific. In this context, Mizutani’s method can be regarded as an approximate but easy way
to assess spatial resolution from general samples images that is particularly useful for comparative studies. To
cross-check the spatial resolution results, this technique is also applied to the test object images.

FWHM (mm) =

™)

2.5.4. Segmentation and image comparison

The last type of quantitative assessment in this study involved tissue segmentation and the comparison against a
high dose (50 mGy) ground-truth FBP reconstruction. Image segmentation was performed via two different
methods: (i) standard gray scale-based discrimination of tissues and (ii) supervised machine-learning for
features recognition. The first approach consists in using two thresholds, one for the separation of the
background (air) and the other for the separation of glandular from adipose tissues. For the ground-truth image,
which presents a low level of noise, the gray-level distributions of the tissue’s components are well separated, so
the segmentation thresholds were set at the local minima between each distributions pair. On the other hand, the
gray-level distributions of adipose and glandular tissues in the low dose images present, in general,
superposition, therefore requiring for a threshold optimization. The gray-level distributions of both ground-
truth and low dose images are reported in figure S1 of the supplementary material.

The second segmentation method is based on supervised machine-learning (ML), namely on a multi-
threaded implementation of the fast Random Forest algorithm (Breiman 2001). The algorithm is included in
the WEKA (Waikato Environment for Knowledge Analysis) trainable segmentation toolbox (Arganda-
Carreras et al 2017) available in Fiji (Schindelin et al 2012), and it has been widely applied to tomographic
datasets (Polan et al 2016, Rodrigues et al 2016, Wollatz et al 2017). The algorithm combines a series of
machine learning algorithms to classify an image based on a set of training pixels selected by the user. In
analogy with the gray scale-based segmentation, the training of the classifier is based on the definition of
three categories, namely background, adipose, and glandular tissue, to which representative voxels are
assigned. The feature extraction is performed by applying to input images different filters, namely edge
detectors, texture filters, noise reduction filters, and membrane detectors. The selection of the filters
influences the way the fast Random Forest decision trees classify the remaining pixels. Specifically, based on a
trial-and-error process, classification was performed by selecting Gaussian blur, Sobel, Hessian, difference of
Gaussians, membrane projections, Kuwahara, entropy, and neighbors filters, while the Random Forest
classifier was set to 200 trees with unlimited depth. Once the classifier was properly trained to segment the
high-dose image, it was saved and applied to low-dose images.

The figure of merit chosen for the evaluation of segmentation quality and for the optimization of
reconstruction parameters and segmentation thresholds was the macro-F1 score (Opitz and Burst 2019). This
score is often used in multi-class classification problems (Lipton et al 2014, Wu and Zhou 2017) and it is based
on the image confusion matrix. In particular, let m1;; be the element i, j of the confusion matrix, where the second
index jrepresents the ground-truth, while the firstindex i represents the output of the classification. In our
application, m;; is the number of pixels that belong to class j in the segmented high-dose image and to class i in
the segmented low-dose image. Let P;, R;and F1; denote the precision, recall, and F1 score for the class :

po= iy = i o 2R ®)
> imij > imii P + R;
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Figure 2. Homogeneous 256 x 256 pixel water ROIs obtained with FBP (a), cSART (0, = 2, 0, = 0.004, w = 0.04) (b), cSART
(0xy,z = 6,0, = 0.014, w = 0.06) (c) and standard SART algorithm (d). In (e)—(h) the respective 2D NSP are reported in logarithmic
color scale. In (i) the radial average NPS profiles for FBP (solid blue line), cSART (red dash/dash dotted lines) and standard SART
(green dashed line).

The macro-F1 is computed as the arithmetic mean of the F1 scores of all the classes:
1
1=—-> Fl, ®
n

where n is the number of classes. Given its definition, the values of F1 range from 0 to 1, with 1 indicating a
segmentation identical to the ground truth. The optimal cSART reconstruction in terms of segmentation will be
the one that maximizes F1 with respect to all the four free parameters, namely o,, 0, 1), and the threshold th
between glandular and adipose components. In this analysis, the range of cSSART reconstruction parameters has
been further expanded by varying o, and o, in the range [2: 10] pixels with a step of 1 pixel, o, in the range
[0.004: 0.030] with a step 0of 0.002 and w in the range [0.04: 0.20] with a step of 0.02.

3. Results and discussion

3.1. Test object

3.1.1. Noise power spectrum

As stated in the introduction, the shift toward low frequencies of the NPS peak is followed by a change in the
image texture demonstrated in figure 2. Panels (a)—(d) show homogeneous water ROIs reconstructed with FBP,
cSART (with oy, , = 2, 0, = 0.004 and w = 0.04), cSART (with o,,,, = 6, 5, = 0.014 and w = 0.06) and standard
SART, respectively. Their respective 2D NPS plots are reported in color logarithmic scale in panels (e)—(h). The
2D NPS plots of FBP and cSART show a clear circular symmetry, while in the SART case a slightly higher noise
contribution is observed along the Cartesian directions. From 2D NPS plots the average radial profiles are
computed as shown in panel (i), resulting in peak frequencies of 0.89 mm ™', 0.89 mm ™', 0.44 mm ™', and
0.44mm respectively. In terms of texture, it is clear that the cSART with low parameters values allows
producing images that are very similar to the reference FBP case, whereas larger values, as well as the use of
standard SART, introduce more correlation resulting in a coarser noise. On the other hand, the cSART
algorithm allows a reduction (by a factor larger than 2 with the largest parameters values) in the noise magnitude
if compared with the FBP. Conversely, the standard SART yields a higher noise than FBP. Considering thatin
SART reconstructions the noise magnitude decreases for smaller iteration numbers, additional reconstructions
have been performed with a decreasing number of iterations (from 5 to 1) but little differences (below 10%) in
noise magnitude were found.

Focusing on the optimization of cSART parameters, panel (a) of figure 3 shows the radial NPS behavior
going from the smallest (noisiest image) to the largest (smoothest image) cSART parameter combination in
comparison with the FBP case. Results considering reconstructions performed with FBP filters other than
Shepp-Logan are reported in figure S2 (a) of the supplementary material. The double-arrow line indicates that
the NPS peak frequency moves toward lower values as the image noise decreases. This behavior is further
supported by the scatter plotin panel (b) where it is shown that the NPS peak frequency is strongly correlated
with (as a first approximation linearly dependent to) the image noise magnitude. Moreover, having the
possibility to finely modify the NPS peak frequency by tuning the cSART parameters, it is useful to define a
threshold criterion to distinguish parameters preserving a noise texture similar to the FBP case from parameter
sets yielding a coarse/patchy image appearance. Consequently, in panel (b) a threshold criterion has been
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dot-dashed line), and from cSART with the largest parameter combination (red dashed line). The gray shaded area represents the
range of NPS curves obtained with intermediate cSART parameters. In (b) a scatter plot of the NPS frequency peaks as a function of the
measured image noise: orange and blue points refer to reconstruction within and out of the NPS peak threshold criterion, respectively.
The FBP result (black diamond) is reported for comparison, while standard SART (not shown) has a frequency peak of 0.41 mm ™', In
(c) the image noise is plotted against the bilateral filter parameter o, for different values of o, . (different line colors) and at a fixed
relaxation factor w = 0.04.
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Figure 4. Scatter plots of the measured FWHM against the CNR across PTFE (a), POM (b), and PE (c) interfaces. Orange and blue
points indicate cSART reconstructions within and out from the NPS peak threshold condition, respectively. Results of FBP (black
diamond) and SART (green circle) are also reported.

introduced to identify images whose NPS peaks differ less than 15% from the FBP case (orange points). Despite
being an arbitrary value and related to our imaging system, which can be in principle subject to dedicated
optimization, this threshold is useful as first-line discrimination to rule out parameters yielding a too aggressive
image filtration. Panel (c) shows the dependence of image noise versus the bilateral filter width o, for different
values of o, , at a fixed relaxation factor 7 = 0.04. From the figure, it is clear that larger filter parameters
monotonically bring to lower image noise. The same consideration holds for increasing relaxation factor values.
For this reason, each triplet of the cSSART parameters identifies the image filtration ‘strength’, where the increase
of each parameter brings to a lower noise magnitude and a lower NPS peak frequency. Similar behavior has been
discussed for other iterative filters used in clinical practice in a number of recent publications (Ghetti et al 2013,
Solomon et al 2015, Euler et al 20138).

3.1.2. CNR and spatial resolution

The scatter plots in figure 4 show the spatial resolution, measured with the circular edge technique, as a function
of the CNR corresponding to the PTFE (a), POM (b), and PE (c) details, respectively, for the images
reconstructed with cSART (dots), FBP (diamond marker) and SART (circular marker). Results for the different
FBP filters are reported in figure S2 (b) of the supplementary material. The results show that the use of cSART
algorithm can yield a significant increase in CNR which, considering only the points within the threshold
condition, is as high as 45%, 70%, and 100% for PTFE, POM, and PE details, respectively. In terms of spatial
resolution, the cSART yields comparable or better results with respect to the FBP for the PTFE (a) and POM (b)
details, while the resolution is degraded at the PE (c) interface by a 30% or more. Considering the trends of the
cSART data for the different materials, it is interesting to observe that higher CNR values are associated with
better spatial resolutions at PTFE interface (a) and with a generally worse resolution at POM (b) and PE (c)
interfaces. These different trends further justify the use of the TTF approach, as the results of the custom iterative
reconstruction algorithm exhibit a material-specific behavior. On the same topic, it should be noted that the
FWHM broadly varies as a function of the interface also for FBP reconstructions, going from 0.09 mm for POM
to 0.27 mm for PE. This effect, which should not be present in conventional attenuation-based CT, is due to the



Figure 5. Breast sample detail depicting a tumor mass (light gray) in an adipose background (dark gray), acquired at 50 mGy MGD (a)
and 5 mGy MGD (b)—(e). Reconstructions are performed with FBP in (a) and (b), standard SART in (c), cSART within the threshold
condition in (d), and cSART out from the threshold condition in (e). Scalebar corresponds to 5 mm.

application of the phase-retrieval filter that is common to all the reconstructed images. In fact, the §/J parameter
of the phase-retrieval filter is material /interface specific. Since the scanned object is heterogeneous, the chosen
6/ 3 cannot be optimal for all the interfaces within the sample, resulting in an excessive blurring at the interfaces
where §/3is overestimated, and an enhanced sharpness due to uncompensated phase-contrast fringes at
interfaces where 6/ is underestimated (Thompson et al 2019). In our work, we set 6/ = 2308, which
corresponds to the breast tissue/air interface at 32 keV. On the other hand, the nominal 6/ 3 values for the
phantom inserts’ interfaces with water are 1448 for PTFE, 41765 for POM, and 427 for PE, respectively.
Considering that, from a signal processing perspective higher ¢/ values correspond to higher smoothing due to
the phase retrieval (Beltran et al 2010, Brombal et al 2018b, Donato et al 2019b), it is clear that the POM interface
is under-smoothed, yielding the best spatial resolution, while both PTFE and PE interfaces are over-smoothed,
the latter yielding the worst spatial resolution. To allow for a visual comparison the test object’s images
reconstructed with FBP, SART, cSART within and out from the threshold condition are reported in figures S3
and S$4 of the supplementary material.

3.2. Breast specimen
3.2.1. Texture, contrast-to-noise, and spatial resolution
A qualitative comparison of a detail of the breast sample centered on the tumor mass is shown in figure 5; in
panel (a) the reference image acquired at high radiation dose (50 mGy) is reported, while from (b) to (e) there are
the images acquired with the standard 5 mGy dose and reconstructed through FBP (b), standard SART (c),
cSART within the threshold condition (d) (o, = 2, 0, = 0.008 and w = 0.06) and out from the threshold
condition (e) (0yy,. = 7, 0, = 0.014 and w = 0.08). As expected from the photon statistics, going from the high to
the low dose images reconstructed via FBP a 3-fold decrease in CNR is observed (from 9.2 to 3.1). On the other
hand, no advantage over FBP in terms of image quality is associated with the use of conventional SART, while the
cSART image satisfying the threshold criterion features a higher CNR (4.2), similar texture, and no apparent
spatial resolution degradation. Interestingly, as shown in (e), by increasing the cSART parameters an image with
the same CNR observed in the reference high dose image (CNR = 9.2) can be obtained at cost of increased
patchiness. The corresponding images of the whole sample are reported in figure S5 of the supplementary
material.

The quantitative analysis of the specimen images is reported in figure 6. In particular, panel (a) shows the
FWHM,, evaluated with Mizutani’s approach, as a function of CNR measured on the breast specimen for cSART,
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the test object (b). Orange and blue points indicate cSART reconstructions within and out from the NPS peak threshold condition,
while black diamond and green circle indicate FBP and SART.

FBP, and SART reconstructions. Similar to the test object’s case, the cSART reconstructions satisfying the NPS
frequency peak threshold criterion, yield a higher CNR (up to 35%) if compared to FBP, with only a marginal
degradation (below 10%) in the spatial resolution. On the other hand, the standard SART reconstruction yields a
spatial resolution comparable with FBP but with a 15% lower CNR. In absolute terms, the mean FWHM of
cSART reconstructions satisfying the threshold condition is 0.13 mm, whereas for the FBP case it is around
0.12 mm. The latter value is in good agreement with previous measurements performed with the same imaging
setup on different samples (Brombal et al 2018a, Donato et al 2019b, Brombal et al 2019), and it corresponds
roughly to twice the detector’s pixel size. Interestingly, when applying Mizutani’s approach to the test object,
similar spatial resolution values are observed, as shown in panel (b). As mentioned, this approach aims at
evaluating the overall spatial resolution of the imaging system, therefore it is expected that the FWHM does not
change by changing the sample.

3.2.2. Image segmentation

Qualitative results of the image segmentation are shown in figure 7. Panels (a)—(c) show the overlay of the
segmented ground-truth image with the segmented FBP (a), standard SART (b), and cSART at the highest F1 (c)
images, obtained with the gray scale-based segmentation, while panels (d)—(f) show the same overlay of images
segmented through supervised ML. The three components of the segmentation, namely background, adipose,
and glandular tissue are shown, respectively, in black, gray, and white. Blue and red pixels are the misclassified
pixels of adipose and glandular classes, where blue is glandular classified as adipose and red is vice versa. From
the images, it is clear that, regardless of the segmentation approach, the cSART algorithm with adequately tuned
parameters largely outperforms the FBP-based segmented image. Additionally, it is worth noting that, when
comparing the two segmentation methods, the supervised ML approach is able to recognize and classify subtle
image features (e.g. spiculations) which are lost in the gray scale-based segmentation, thus enabling to preserve
the continuity of structures and boundaries of potential clinical interest.

The quantitative analysis of the gray-scale threshold optimization is reported in the plots in figure 8. In
panels (a)—(c) the optimization of the segmentation threshold between glandular and adipose components for
different cSART parameters combinations is reported. The optimal threshold was found to be loosely
independent from the reconstruction parameters and, in all cases, was around 0.21. Considering the effect of
each cSART parameter on segmentation quality, panel (a) demonstrates that F1 increases at higher o, values
reaching a plateau for o, > 0.022. Conversely, panel (b) shows that higher F1 scores are related to lower o, .,
hence to small spatial blurring which contributes to the preservation of fine details. Finally, panel (c) shows that
F1 peaks for intermediate values of w. In figure 9 the F1 scores are plotted against the respective CNR values, also
including the FBP and SART reconstructions, for the gray scale-based segmentation (a) and for the supervised
ML segmentation (b). Independently from the chosen segmentation approach, the plots indicate that cSART
reconstructions always result in a better segmentation with respect to FBP and SART. Moreover, it is interesting
to observe that a higher fidelity in the segmentation is achieved for cSART reconstructions not comprised within
the NPS frequency peak threshold condition, indicating that optimal parameters for segmentation are different
with respect to the ones for diagnostic visualization. The plots also indicate that when the cSART images reach
the same CNR as the reference image (dashed line) the segmentation quality saturates and there is no advantage
in pursuing higher CNR values. In addition, segmentation results obtained with the cSART algorithm for
different numbers of iterations, from 4 to 8, are reported in figure S6 of the supplementary material and in
supplementary table 1. The results show that the highest F1-score corresponds to 5 iterations, while neither the
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Figure 7. First row: overlay of ground-truth (50 mGy) and FBP (a), standard SART (b), and cSART at highest F1 score (c) images
segmented via gray-scale thresholding. Second row: overlay of ground-truth and FBP (d), standard SART (e), and cSART at highest F1
score (f) images segmented via supervised ML. Air background is shown in black, adipose component in gray, glandular component in
white, and misclassified pixels in blue and red.
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Figure 8. F1 score as a function of the adipose-glandular threshold th for: w = 0.12, 0., = 2.0 and different values for 7, (a);
w = 0.12, 0, = 0.028 and different values for o, . (b); 0. = 2.0, o, = 0.028 and different values for w (c).

optimal o, . nor the optimal o, are dependent on the number of iterations. On the other hand, when increasing
the number of iterations, the optimal weighting factor w tends to decrease.

4, Conclusions

This study shows that the adoption of iterative reconstruction techniques can provide significant advantages in
the context of breast CT imaging with monochromatic synchrotron radiation and using free-space propagation
and phase-retrieval. In particular, based on images of a surgical breast sample, the use of the customized GPU-
based SART algorithm herein presented resulted in a contrast to noise ratio gain of up to 35% with an only
marginal decrease in spatial resolution (less than 10%) and image texture properties similar to the reference FBP
case. Analogous indications were obtained from the analysis on the dedicated test object, revealing a CNR gain
from 45% to 100% across different plastic inserts at a comparable or slightly worse spatial resolution and similar
NPS peak frequency (difference less than 15%) when compared to FBP. On the other hand, the use of the
standard SART algorithm did not provide any advantage over FBP, generally resulting in noisier images and a
coarser noise structure. A threshold for NPS frequency peak was used as a first-line discrimination criterion to
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Figure 9. F1-score as a function of the CNR for, respectively, (a) gray-level threshold optimization and (b) supervised machine-
learning segmentation. Orange and blue open circles indicate cSART reconstructions within and out from the NPS peak threshold
condition, black diamond is FBP, and green circle is SART. The magenta squares indicate cSART yielding the highest F1 score for each
segmentation method, namely o, = 2, 7, = 0.020, w = 0.14 for the gray-level threshold optimization and o,,,, = 2, o, = 0.022,

w = 0.16 for the supervised machine-learning approach. The dashed vertical line represents the CNR value of the FBP reconstructed
reference image at 50 mGy.

identify those cSART parameters that preserve the image texture when compared to FBP. In this study the
threshold was arbitrarily set to 15% but, in the future, its definition will be subject to a dedicated reader study. It
is worth noting that the triplets of parameters satisfying the threshold condition for the test object overlap with
those for the breast specimen.

Moreover, the presence of sharp plastic inserts in the phantom allowed for a TTF analysis, resulting in
different trends in the spatial resolution for different materials. This finding further confirms the need for careful
optimization of IR algorithms as their performance is dependent on the imaged object, plus it suggests the
usefulness of test objects closely reproducing the contrast characteristics of the investigated organ. When the
latter condition is satisfied, the similarity among the trends observed in terms of CNR and spatial resolution for
breast tissue and the test object, suggests that the optimization of the cSART algorithm can be carried out based
on test object images, therefore being feasible virtually in any clinical system. This indication would need to be
confirmed by scanning a larger number of samples with a focus on features of clinical interest, such as
microcalcifications or margins sharpness. The clinical significance of the improvements brought by the cSART
algorithm will be evaluated in a future visual evaluation study performed by qualified readers. Additionally, with
the aim of reducing the scan time and (optionally) the radiation dose, the possibility of further exploiting the
advantages of cSART will be investigated in scans with a coarser angular sampling.

The study also demonstrated that the proposed algorithm offers great flexibility, allowing for the
optimization of image reconstruction either for diagnostic evaluation images (limited CNR gain and textural
properties similar to FBP) or for image segmentation (major CNR gain and increased patchiness). The latter
feature is of great importance as it would enable, starting from low dose clinical images, accurate glandular
fraction estimation and straightforward realization of 3D breast models.
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