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We assess the ground-state phase diagram of the J1–J2 Heisenberg model on the kagome lattice by
employing Gutzwiller-projected fermionic wave functions. Within this framework, different states
can be represented, defined by distinct unprojected fermionic Hamiltonians that include hopping
and pairing terms, as well as a coupling to local Zeeman fields to generate magnetic order. For
J2 = 0, the so-called U(1) Dirac state, in which only hopping is present (such as to generate a π-flux
in the hexagons), has been shown to accurately describe the exact ground state [Y. Iqbal, F. Becca,
S. Sorella, and D. Poilblanc, Phys. Rev. B 87, 060405 (2013); Y.-C. He, M. P. Zaletel, M. Oshikawa,
and F. Pollmann, Phys. Rev. X 7, 031020 (2017)]. Here, we show that its accuracy improves in
presence of a small antiferromagnetic super-exchange J2, leading to a finite region where the gapless
spin liquid is stable; then, for J2/J1 = 0.11(1), a first-order transition to a magnetic phase with
pitch vector q = (0, 0) is detected, by allowing magnetic order within the fermionic Hamiltonian.
Instead, for small ferromagnetic values of |J2|/J1, the situation is more contradictory. While the
U(1) Dirac state remains stable against several perturbations in the fermionic part (i.e., dimerization
patterns or chiral terms), its accuracy clearly deteriorates on small systems, most notably on 36
sites where exact diagonalization is possible. Then, upon increasing the ratio |J2|/J1, a magnetically
ordered state with

√
3×
√

3 periodicity eventually overcomes the U(1) Dirac spin liquid. Within the
ferromagnetic J2 regime, evidence is shown in favor of a first-order transition at J2/J1 = −0.065(5).

I. INTRODUCTION

The Heisenberg Hamiltonian

Ĥ =
∑
i,j

Ji,jŜi · Ŝj , (1)

for spin-S operators, Ŝi = (Ŝxi , Ŝ
y
i , Ŝ

z
i ), arranged on a

crystal lattice, represents one of the pillars of condensed-
matter physics, capturing fundamental phenomena in
quantum magnetism, such as symmetry breaking with
Goldstone excitations, quantum phase transitions, topo-
logical order, and fractionalization emerging from ex-
otic ground states [1, 2]. Particularly interesting are
the cases with small spins (e.g., S = 1/2) on highly-
frustrated low-dimensional lattices (e.g., featuring a tri-
angular motif), for which there is increasing theoretical
and experimental evidence that unconventional phases,
which cannot be described by standard mean-field ap-
proaches, may settle down at sufficiently low tempera-
tures [2, 3]. Solid theoretical evidence for the existence
of spin-liquid phases has been worked out in models with
spin anisotropic super-exchange couplings, most notably
the compass Kitaev model on the honeycomb lattice,
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which represents a unique example of a non-trivial spin
model that can be exactly solved in two spatial dimen-
sions. Here, both gapped and gapless phases are present
as ground states, as well as an interesting chiral state in
presence of a (small) external magnetic field [4]. By con-
trast, for Heisenberg models with SU(2) spin symmetry,
the situation is more debated. A predominant exam-
ple, which has been intensively investigated in the recent
past, is given by the S = 1/2 Heisenberg model on the
kagome lattice with nearest-neighbor antiferromagnetic
coupling (J1 > 0) only. The principal motivation comes
from both experimental and theoretical reasons. As far
as the former ones are concerned, it is remarkable that
different families of materials may be synthesized, pro-
viding a clean realization of this spin model (e.g., pertur-
bations coming from impurities, Dzyaloshinskii-Moriya
or additional inter-plane interactions are relatively small
compared to the nearest-neighbor super-exchange). This
is the case for ZnCu3(OH)6Cl2 [5–8], where no evidence
for the insurgence of magnetic order is detected down to
extremely small temperatures. From a theoretical point
of view, the S = 1/2 Heisenberg model on the kagome
lattice represents one of the major challenges in quan-
tum magnetism, given its unconventional spectrum with
an exceedingly large number of low-energy singlet exci-
tations [9, 10].

A renewed effort to understand its physical proper-
ties followed from density-matrix renormalization group
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(DMRG) calculations, which suggested the possibility
that the ground state is a so-called Z2 spin liquid, with
topological degeneracy and a finite spin gap [11, 12]. An
alternative scenario suggested the stabilization of a gap-
less spin liquid, as proposed from a parton approach of
the original spins [13, 14]. Here, Abrikosov fermions are
introduced to define a mean-field Hamiltonian, with π-
fluxes piercing the hexagonal plaquettes of the lattice.
As a result, Dirac points are present in the free-fermion
band structure. This state has been dubbed U(1) Dirac
state, since the leading gauge fluctuations that emerge
from the mean-field Hamiltonian have U(1) symmetry.
When the Gutzwiller projector is considered, in order
to construct a suitable variational wave function for the
spin model, a remarkably accurate energy is obtained
for the nearest-neighbor Heisenberg model [15]. In fact,
further DMRG calculations with special boundary con-
ditions [16, 17] supported the existence of Dirac cones in
the spinon spectrum. Furthermore, tensor networks on
the infinite lattice [18] also suggested a gapless spin liq-
uid. This possibility immediately triggers the question
of the stability of the gapless ground state against small
perturbations.

Here, we consider the case where a next-nearest-
neighbor super-exchange coupling (J2) is included, with
both ferromagnetic and antiferromagnetic character. In
recent past, only few works have investigated the nature
of the ground state of the J1–J2 Heisenberg model on
the kagome lattice [18–22]. For J2/J1 > 0 an antiferro-
magnetic phase with q = (0, 0) pitch vector is expected
to exist for sufficiently large values of the next-nearest-
neighbor interactions; instead, for J2/J1 < 0 another

magnetically ordered phase with a
√

3 ×
√

3 pattern is
present. In addition, valence-bond crystals (VBCs), with
possibly large unit cells (e.g., containing 12 or even 36
sites) may represent competitive states, as suggested in
previous works [23–29].

Within the Abrikosov-fermion approach, different vari-
ational wave functions can be defined, by allowing differ-
ent terms in the fermionic state, which can induce the
opening of a spin gap (e.g., in a Z2 spin liquid), the
breaking of translational symmetry (leading to a VBC),
or the onset of magnetic order. The main outcome of
the present paper is that the gapless spin liquid is sta-
ble in a finite region of the J1–J2 model. Indeed, for
J2/J1 > 0, its accuracy to reproduce the exact ground-
state improves with respect to the J2 = 0 case, as indi-
cated by a direct comparison with exact diagonalization
on small clusters (the overlap between the gapless spin
liquid and the exact ground state on 36 sites increases
from 0.687 at J2 = 0 to 0.875 at J2/J1 = 0.05). Then,
by increasing the ratio J2/J1, the variational wave func-
tion develops magnetic order with q = (0, 0), namely a
finite Zeeman field can be stabilized (in the thermody-
namic limit) within the fermionic Hamiltonian (on top of
the hopping pattern of the π-flux state). The transition
is located at J2/J1 = 0.11(1) and is weakly first order,
being characterized by a jump in the Zeeman field.

FIG. 1. The antiferromagnetic order parameter for the J1–J2
Heisenberg model on the kagome lattice. Different colors in-
dicate the various ground-state phases: magnetic phases with
q = (0, 0) (red) or

√
3 ×
√

3 periodicity (blue), and gapless
spin liquid (yellow). The values are estimated in the thermo-
dynamic limit (the error bars are smaller than the symbols),
as shown below. The spin patterns for the two magnetically
ordered phases are also shown. The U(1) Dirac state is ex-
pected to represent the paramagnetic region for J2 > 0; in-
stead, for J2 < 0 the situation is more controversial.

For J2/J1 < 0, the situation is more delicate. For
small values of |J2|/J1 the gapless spin-liquid wave func-
tion remains stable when allowing additional terms in the
fermionic state. Upon increasing |J2|/J1, its variational
energy is overcome by a different Gutzwiller-projected
state, with

√
3 ×
√

3 magnetic order and hopping terms
with a different flux pattern (π flux on hexagons and
up triangles, and zero flux on down triangles). The
transition to a magnetically ordered phase is found at
J2/J1 = −0.065(5). In addition, VBC states with large
unit cells (e.g., 36 sites) may also be stabilized and have
competing energies close to the magnetic transition. The
variational phase diagram, as obtained within our ap-
proach, is shown in Fig. 1. However, some care must be
put on small negative values of J2, where the U(1) Dirac
spin liquid no longer represents an accurate wave func-
tion, as shown upon a comparison to the exact ground
state on small clusters. This is due to the presence of
level crossings (on 12 sites) or avoided crossings (on 36
sites) that happen in the low-energy singlet sector when
varying J2/J1 close to J2 = 0. Whether these crossings
correspond to some phase transition in the thermody-
namic limit is hard to resolve. Still, the situation re-
mains more controversial on the J2 < 0 side of the phase
diagram, suggesting that an alternative approach may be
needed when ferromagnetic super-exchange couplings are
present.

The paper is organized as follows: in Section II, we
describe the variational method that has been used; in
Section III, we discuss our numerical results; finally, in
Section IV, we draw our conclusions.
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II. VARIATIONAL WAVE FUNCTIONS

The Abrikosov-fermion representation allows us to ex-
press the S = 1/2 spin operators as products of fermionic
creation and annihilation operators [30–32]:

Ŝi =
1

2

∑
α,β

ĉ†i,ασα,β ĉi,β , (2)

where σ = (σx, σy, σz) is a vector of Pauli matrices and

ĉ†i,α (ĉi,α) creates (destroys) a fermion at site i with spin
α =↑, ↓. This representation fulfills the spin commu-
tation relations, but enlarges the Hilbert space of the
system by including unphysical states with empty or
doubly-occupied sites. The variational states employed
in this work are defined by projecting Abrikosov-fermion
wave functions into the physical spin space by using the
Gutzwiller projector

P̂G =
∏
i

(n̂i,↑ − n̂i,↓)2, (3)

where n̂i,α = ĉ†i,αĉi,α. The fermionic state |Φ0〉 is ob-
tained as the ground state of a noninteracting Hamilto-
nian, featuring hopping, pairing, and a fictitious Zeeman
field. In particular, different symmetries of the pairing
term can be considered, following the classifications of
Ref. [33]. However, the variational minimization suggests
that they are not stabilized for the values of J2/J1 con-
sidered in this work. Then, the best wave function is ob-
tained from a noninteracting Hamiltonian that contains
only hoppings and Zeeman fields:

Ĥ0 =
∑

(i,j),α

χij ĉ
†
i,αĉj,α + h

∑
i

Mi · Ŝi. (4)

In the following, we will include nearest- and next-
nearest-neighbor hopping, |χ1| = 1 (to fix the en-
ergy scale) and χ2 (as a variational parameter), respec-
tively; an additional parameter is the amplitude of the
magnetic field h, while the spatial periodicity is fixed
by the unit vector Mi, which lies in the XY plane,
i.e., Mi = [cos(q ·Ri + φi), sin(q ·Ri + φi), 0] (where q
is the pitch vector, Ri is the coordinate of the unit cell
of site i, and φi is a sublattice-dependent angle). The
same Hamiltonian may also give rise to VBC states, by
setting h = 0 and allowing hoppings to break the space
group symmetries, e.g., considering different values of
|χ1| and |χ2| for different bonds within an enlarged unit
cell [25, 26]. Additionally, a spin-spin Jastrow factor is
included:

Ĵz = exp

1

2

∑
ij

uijŜ
z
i Ŝ

z
j

 , (5)

where uij defines a set of additional variational param-
eters, one for each distance |Ri −Rj |. Finally, the pro-

jection P̂z onto the subspace with
∑
i Ŝ

z
i = 0 is also

performed. As a result, the variational wave function
is written as

|Ψvar〉 = ĴzP̂zP̂G|Φ0〉. (6)

It is worth mentioning that the existence of magnetic
long-range order is directly related to the presence
of a finite parameter h in the thermodynamic limit.
Within magnetically ordered phases, the Jastrow fac-
tor of Eq. (5) plays an indispensable role by introducing
transverse quantum spin fluctuations around the classical
spin state [34]. In contrast to the previous study [20], per-
formed with two different Ansätze for magnetic and non-
magnetic states, the present choice, based upon the non-
interacting Hamiltonian (4) allows us to have a unique
framework for these phases, also including VBC.

As previously mentioned, the U(1) Dirac spin liquid
represents a very accurate variational wave function for
the nearest-neighbor model (J2 = 0). This state is de-

fined by a fermionic Hamiltonian Ĥ0 with hopping terms
χ1 generating a π-flux through hexagonal plaquettes and
0-flux through triangles [33] (an additional χ2 gives a
small energy gain). For sufficiently large values of the
next-neighbor super-exchange, the ground state acquires
magnetic order, with two different pitch vectors depend-
ing on the sign of J2, see Fig. 1. On the one hand, in
the q = (0, 0) ordered phase, the optimal noninteract-

ing Hamiltonian Ĥ0 contains a translationally invariant
magnetic field (with sublattice angles φi such as to have
a relative 120° orientation between neighboring spins in
the unit cell) and the same hopping structure of the U(1)

Dirac state. On the other hand, within the
√

3×
√

3 or-
dered phase, a magnetic unit cell of 9 sites is required,
with neighboring spins still having a relative 120° orien-
tation (see Fig. 1). The optimal variational Ansatz is
constructed from the Hamiltonian with a q = (4π/3a, 0)
magnetic field (where a is the length of the Bravais lat-
tice vectors) and the hopping terms of a different U(1)
state, dubbed [π, π], with π fluxes through hexagons and
up triangles (and 0 flux through down triangles) [33].

Our variational calculations are mostly performed on
N = 3 × L × L clusters, with a few exceptions (includ-
ing results of Lanczos diagonalization) in which the tilted
N = 9×L×L clusters have been employed. All the finite-
size clusters considered in this work fulfill the point group
symmetries of the kagome lattice, and periodic boundary
conditions for the Heisenberg Hamiltonian are imposed.
On the contrary, the fermionic Hamiltonian (4) may have
periodic or antiperiodic boundary conditions along the
two vectors that define the cluster. Among these four
possibilities, one of them gives rise to zero-energy modes
in the fermionic spectrum of the U(1) Dirac state. The
other three choices give the same variational energy after
Gutzwiller projection, however, each one of them breaks
rotational symmetries on finite clusters [35]. Within the
variational calculations, one of these three possibilities
has been considered. To evaluate the expectation val-
ues for a given variational state, we perform a quantum
Monte Carlo sampling [36]. For the optimization of the
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variational parameters we make use of the stochastic re-
configuration technique [37].

III. RESULTS

Let us now discuss our variational results. First of
all, we investigate the case with antiferromagnetic next-
nearest-neigbor super-exchange, i.e., J2/J1 > 0. Here,
we consider a variational wave function that is gener-
ated from the uncorrelated Hamiltonian (4), including a
fictitious Zeeman field with q = (0, 0). In this regime,
the best choice of the hoppings is such to obtain the
U(1) Dirac state. In particular, both nearest- and next-
nearest-neighbor hoppings are allowed [25], which to-
gether with the antiferromagnetic parameter h and all
the independent uij ’s of the spin-spin Jastrow factor (5)
constitute the variational parameters. After optimizing
on cluster sizes up to L = 24 (with 190 variational param-
eters, among which 188 for the Jastrow factor), we find
that for J2/J1 > 0.12, the h parameter extrapolates to
a finite value in the thermodynamic limit [see Fig. 2(a)],
suggesting the existence of magnetic order. By contrast,
for J2/J1 6 0.10, strong frustration is able to stabilize
a quantum spin-liquid ground state; indeed, here the h
parameter goes to zero as 1/L2 for L→∞, consistently
with a power-law decay of the spin-spin correlations of
the U(1) Dirac state [38] [see Fig. 2(a)]. We remark that,
on each finite cluster, the Jastrow factor always leads to
an improvement of the variational energy, although in
the spin-liquid regime the effect is less pronounced.

Previous studies [18, 19, 21, 22, 39–42] [see Table I] in-
vestigated the onset of magnetic order for J2 > 0. Apart
from one-loop pseudo-fermion functional renormalization
group calculations [19] (which are expected to be signif-
icantly altered at high-loop orders where convergence is
reached), all other methods obtained values ranging be-
tween J2/J1 ≈ 0.05 and ≈ 0.20. Our estimate of the
transition point lies in this range, slightly smaller than
DMRG calculations [21, 22] but larger than the tensor-
network evaluation [18]. We mention that in a previ-
ous work of ours [20], we used a simplified variational
wave function to describe the magnetic phase [including
only the fictitious magnetic field h but not the fermionic
hopping in Eq. (4)], leading to a substantial shift of the
magnetic transition to larger values of J2/J1 (or, in other
words, enlarging the stability region of the spin liquid by
reducing the variational manifold of the magnetic states).

In order to have solid evidence for magnetic ordering,
we compute the sublattice magnetization m, which is ob-
tained from the expectation value of the spin-spin corre-
lation at maximum distance (for two spins within the
same sublattice):

m2 = lim
|i−j|→∞

〈Ŝi · Ŝj〉 (7)

for the variational state |Ψvar〉. The magnetization dis-
plays a similar scaling as the h parameter, thus confirm-

ing the extent of the spin-liquid regime, see Fig. 2(b).
The magnetization estimate in the thermodynamic limit
is shown in Fig. 1. Here, we observe a relatively sharp
jump in m upon traversing the phase boundary, suggest-
ing that the transition is not continuous. Since, a contin-
uous transition between the U(1) Dirac spin liquid and
the q = (0, 0) state is, in principle, allowed [43], we at-
tempt to ascertain the order of the phase transition in
our numerical simulations. For this purpose, we chart
out the variational energy landscape as a function of the
fictitious Zeeman field h: this is done by fixing the field
h to a grid of different values and optimizing only the
remaining variational parameters to get the lowest en-
ergy. In Fig. 3, we show this energy landscape for dif-
ferent system sizes and for two values of J2/J1, one on
either side of the transition. At J2/J1 = 0.10 (i.e., in-
side the spin-liquid regime), there are two minima: the
lowest-energy one, extrapolating to h = 0 in the thermo-
dynamic limit, and another one at higher energy for finite
field h ≈ 0.3. A finite-size scaling of the energy differ-
ence between these minima shows that it remains finite
in the thermodynamic limit. At J2/J1 = 0.12 (i.e., inside
the magnetic regime), the two minima switch, the one at
h ≈ 0.3 corresponding now to the lowest energy. The
energies for the two possible states (with small and large
Zeeman fields) are shown in Fig. 4 as a function of J2/J1.
Hence, our variational approach clearly indicates that, in
the thermodynamic limit, the best-energy solution has a
jump from h = 0 to a finite value for J2/J1 = 0.11(1),
indicative of a first-order transition.

Let us now discuss the accuracy of the variational
wave function when compared to the exact ground state
for small finite-size lattices, e.g., the 36 sites cluster
(namely, 9 × 2 × 2, still possessing all the symmetries
of the infinite kagome lattice). Here, in order to make
a neat comparison with the exact ground state, we con-
struct a fully-symmetric U(1) Dirac state (taking nearest-
neighbor hoppings only). In fact, even though in Ref. [35]
it was claimed that this is not possible on 36 sites, we
verified that a suitable linear combination of the three
possible choices of boundary conditions that do not give
zero-energy modes corresponds to a state, |Ψsym〉, which
lies in the same symmetry subspace of the exact ground
state, |Ψex〉. First of all, we compute the overlap between
|Ψsym〉 with the first few exact eigenstates in the same
symmetry subspace, as a function of J2/J1. The results
are shown in Fig. 5, where the case of a small cluster with
12 sites is also reported. Remarkably, the overlap with
the exact ground state increases when going from J2 = 0
up to J2/J1 ≈ 0.05.

Further highly convincing evidence that the ground-
state wave function is well approximated by the U(1)
Dirac spin-liquid Ansatz comes from performing the
Lanczos technique, which allows us to obtain the exact
ground state on a small cluster by an iterative proce-
dure [44]. Starting from an arbitrary quantum state |Ψ0〉,
after p iterations, an estimate of the ground state is given
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FIG. 2. Finite-size scalings of the fictitious Zeeman field h, see Eq. (4), and the square of the sublattice magnetization m2

[panels (a) and (b) refer to the q = (0, 0) order, panels (c) and (d) refer to the
√

3 ×
√

3 order with q = (4π/3a, 0)]. For
J2 > 0, we employed 3 × L × L clusters with L = 4n (n = 1, . . . , 6); for J2 < 0 we used L = 6n (n = 1, . . . , 4). The hopping
structure of the fermionic Hamiltonian (4) reproduces the U(1) Dirac state for J2/J1 > −0.06, while it gives the [π, π] state
for J2/J1 6 −0.07. The insets in (b) and (d) show the finite-size scaling of m2 within the spin-liquid regime, as a function of
1/L2, which is consistent with a power-law decay of the spin-spin correlations of the U(1) Dirac state [38].

Phase I Phase II Method J2/J1

J2–Antiferromagnetic Spin liquid q = (0, 0)

Variational Monte Carlo (present work) 0.11(1)

Variational Monte Carlo [39] 0.08

DMRG [21] 0.15− 0.20

DMRG [22] 0.20

Tensor networks [18] 0.045(10)

Exact diagonalization [40] 0.16

Exact diagonalization [41] 0.10

Coupled-cluster method [42] 0.127

One-loop PFFRG [19] 0.7

J2–Ferromagnetic Spin liquid q = (4π/3a, 0)

Variational Monte Carlo (present work) −0.065(5)

DMRG [22] −0.10

Tensor networks [18] −0.03

Exact diagonalization [40] −0.06

Exact diagonalization [41] −0.10

Coupled-cluster method [42] −0.07

One-loop PFFRG [19] −0.4

TABLE I. The value of the transition between the spin-liquid and q = (0, 0) (for J2 > 0) and
√

3×
√

3 (for J2 < 0) magnetic
orders obtained from our present calculations, compared to different methods for the J1–J2 Heisenberg model on the kagome
lattice. Here, PFFRG stands for pseudo-fermion functional renormalization group.

by

|Ψp〉 =

(
p∑
k=0

αkĤk
)
|Ψ0〉, (8)

where the coefficients αk are found by minimizing the
energy

Ep = 〈Ψp|Ĥ|Ψp〉. (9)

Here, we choose |Ψ0〉 ≡ |Ψsym〉 and compute the energy
Ep as a function of the variance

σ2
p = 〈Ψp|Ĥ2|Ψp〉 − 〈Ψp|Ĥ|Ψp〉2, (10)

which tends to zero when p → ∞. The results are
shown in Fig. 6 for different values of J2/J1. For
both J2 = 0 and 0.05, an approximately linear behav-
ior Ep ≈ Eex + const × σ2

p is observed, suggesting a
smooth convergence of the initial wave function to the
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Clusters with 3 × L × L sites have been used, with L = 12,
16, 20, and 24.
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FIG. 4. Variational energies as a function of J2/J1 on the
9 × 8 × 8 cluster. Different wave functions are considered,
including a VBC state with 36 sites in the unit cell. When
two local minima in the energy landscape are present (with
small and large Zeeman fileds, as in Fig. 3), both variational
energies are shown. We note that the energy landscape of the
[π, π] state with a (4π/3a, 0) field has a single minimum as a
function of h.

exact ground state. Indeed, an extrapolation of the to-
tal energy based on the first three steps of the Lanc-
zos procedure (p = 0, 1, 2) gives E/J1 ≈ −15.769, com-
pared to the exact value Eex/J1 = −15.781, for J2 = 0.
Similar results are also obtained for J2/J1 = 0.05, i.e.,
E/J1 ≈ −15.826 compared to Eex/J1 = −15.835. These
results confirm the ones reported in Fig. 5, showing that
the variational wave function has a large overlap with the
exact ground state (for these values of J2/J1). Therefore,
we are confident that the U(1) Dirac state faithfully rep-
resents the exact ground state of the Heisenberg model

−0.1 0.0 0.1 0.2 0.3
J2/J1

0.00

0.25

0.50

0.75

1.00

1.25

∆
/J

1

N = 36

0.0

0.2

0.4

0.6

0.8

1.0

−0.1 0.0 0.1
J2/J1

0.00

0.25

0.50

∆
/J

1

N = 12

FIG. 5. Overlap between the symmetrized U(1) Dirac state
|Ψsym〉 and few low-energy exact eigenstates on the 36-site
cluster, obtained by Lanczos diagonalization. Both the area
and the colors of the circles represent the value of the overlap.
On the horizontal axis we report the value of J2/J1, while on
the vertical axis we show the energy gap ∆ of the exact eigen-
states with respect to the ground state, in units of J1. Notice
that, the variational Ansatz |Ψsym〉 has a finite overlap only
with the exact eigenstates belonging to the same symmetry
sector. In the inset, analogous results on the 12-site cluster
are reported.

on the kagome lattice, especially in presence of a small
antiferromagnetic J2/J1.

Then, we move towards investigating the regime with
ferromagnetic J2, i.e., J2/J1 < 0. Here, we fix q =
(4π/3a, 0) in the fermionic Hamiltonian (4). In Fig. 4,
we compare the energies for different wave functions,
corresponding to local minima in the variational energy
landscape. While for J2/J1 > −0.06, the best Ansatz
is given by the U(1) Dirac state with a small h param-
eter [eventually extrapolating to zero in the thermody-
namic limit, see Fig. 2(c)], for J2/J1 6 −0.07, the best
state is magnetically ordered and obtained by employing
a different flux pattern, i.e., the [π, π] state defined in
Ref. [33]. Therefore, a first-order transition is expected.
A detailed size scaling of the magnetization is reported
in Fig. 2(d), confirming the existence of a magnetic state
for J2/J1 6 −0.07. Our estimate of the phase bound-
ary is in good agreement with those from other methods
as shown in Table I. In previous works that used simi-
lar Ansätze for the ground-state wave function [25, 26],
we proposed that the U(1) Dirac spin liquid should give
way to a 36-site VBC for J2/J1 ≈ −0.045; however,
the present results, with magnetic ordering emerging for
J2/J1 . −0.06, suggest that a phase with VBC order is
highly unlikely, or may be stabilized only in a sliver of
parameter space close to the

√
3×
√

3 magnetic ordered
region, see Fig. 4. Indeed, in this regime, the variational
energies of the VBC candidates are similar to the ones
of other competing states, i.e., the U(1) Dirac state and
the magnetic one [28].

In spite of these variational results, we must empha-
size that the accuracy of the spin-liquid wave function
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FIG. 6. Energy Ep [see Eq. (9)] versus variance σ2
p [see

Eq. (10)] starting from the initial state given by the sym-
metrized U(1) Dirac Ansatz for three values of the ratio J2/J1.
The energy (variance) is given in units of J1 (J2

1 ). Calcula-
tions are done for a cluster with 36 sites.

strongly deteriorates as soon as a small ferromagnetic J2
is included. Indeed, the overlap of the symmetrized U(1)
Dirac state with the exact ground state is very small, as
shown in Fig. 5 for a 36-site cluster. Rather, the U(1)
Dirac state has a significant overlap with an exact ex-
cited eigenstate. The Lanczos procedure also confirms
that this variational state is not smoothly connected to
the exact ground state, since the linear extrapolation con-
verges to an energy that is well above the ground-state
one, see Fig. 6. In fact, on the 36-site cluster there is
an avoided crossing at J2/J1 ≈ 0 (in the fully-symmetric
subspace) [45]: the lowest-energy state for J2 > 0 is well
described by the U(1) Dirac spin liquid, while the one for
J2 < 0 is not. On 12 sites, a similar behavior is observed,
with an actual level crossing for J2 slightly larger than
0. These results put some doubts into the variational
outcomes, for which the Dirac state remains stable up
to J2/J1 ≈ −0.06, with no other wave functions that
we are able to construct, within the present Gutzwiller-
projected states, having a lower energy. Indeed, we ver-

ified that both symmetric and lattice nematic Z2 [33] as
well as chiral U(1) and Z2 [46] states cannot be stabi-
lized (or are not energetically competing with the Dirac
state). In addition, a few VBCs with 12-site unit cell (of
the diamond type [11, 29]) have been assessed, with no
gain in energy.

IV. CONCLUSIONS

In this work, we analyzed the S = 1/2 J1–J2 Heisen-
berg model by using a family of variational wave func-
tions constructed from Abrikosov fermions, able to de-
scribe both spin liquid and magnetic phases on the same
footing. This approach was previously shown to be suc-
cessful for the case with nearest-neighbor interactions
only [15]. Here, we provided evidence that, for anti-
ferromagnetic values of the next-nearest-neighbor super-
exchange, the U(1) Dirac state remains stable up to
J2/J1 = 0.11(1); then, for larger values of J2/J1 a mag-
netically ordered state settles down, with q = (0, 0)
pitch vector, in agreement with other numerical meth-
ods [18, 21, 22, 39–42]. Note that, although a first order
transition is found, a continuous transition between the
Dirac state and the q = (0, 0) magnetic phase is not
forbidden [43]. Within the (gapless) spin-liquid regime,
no energy gain is obtained by allowing pairing terms in
the noninteracting fermionic Hamiltonian (4), in anal-
ogy to what has been emphasized for the case with
J2 = 0 [47, 48]. In addition, no VBC order has been de-
tected by allowing nonuniform hopping amplitudes. The
fact that the U(1) Dirac state faithfully represents the ex-
act ground state of the J1–J2 model for 0 . J2/J1 . 0.10
also follows from a direct comparison with exact calcu-
lations on small clusters. For example, on the 36-site
cluster, a linear combination of Dirac states with three
different boundary conditions can be constructed to have
all the symmetries of the infinite lattice. This varia-
tional state (with no adjustable variational parameters)
has quite a large overlap with the exact ground state,
e.g., 0.875 for J2/J1 = 0.05.

By contrast, the ferromagnetic regime, i.e., J2/J1 < 0,
is more problematic and asks for future investigations.
Indeed, the U(1) Dirac state continues to give the low-
est energy within Gutzwiller-projected fermionic Ansätze
up to J2/J1 = −0.065(5), where a magnetic state, with√

3 ×
√

3 periodicity, becomes the best variational wave
function. No signal for opening of a spin gap has been
detected for −0.06 . J2/J1 . 0, including the instabil-
ity towards symmetric and lattice nematic Z2 spin liq-
uids [33], U(1) and Z2 chiral spin liquids [46], or VBCs
with different unit cells (most notably containing 12 or 36
sites) [25, 26]. Nonetheless, a comparison with exact cal-
culations on small sizes shows that the U(1) Dirac state
no longer accurately represents the ground state of the
J1–J2 model. For example, on 36 sites for J2/J1 = −0.05,
the overlap between the (symmetrized) spin-liquid state
and the exact ground state is only 0.063. This fact
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roots itself in the existence of an avoided crossing that
changes the nature of the ground-state wave function.
The resulting lowest-energy state does not seem to be
described by any simple Gutzwiller-projected fermionic
Ansatz. Whether this change in the low-energy sector
is relevant for the true thermodynamic limit, or is only
peculiar to the 36-site cluster is hard to ascertain. Cer-
tainly, the J2 = 0 point is at the crossroads between dif-
ferent quantum phases (including the gapless spin liquid
and magnetic phases, but possibly also VBC and chiral
states, or even more exotic possibilities), and a crucial
question to address in the future is the character of the
several singlet states which populate the low-energy spec-
trum [49].
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