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Abstract. When a partially coherent X-ray source illuminates an object with an irregular surface, a near-field speckle pattern may
appear at some distance downstream. Speckle-based X-ray, a relatively novel imaging technique, exploits this effect to extract
information about attenuation, refraction, and small-angle scatter induced by a sample. Over the last ten years, different acquisition
and image processing techniques have been developed to extract this information from the image data. One of these techniques,
Unified Modulated Pattern Analysis (UMPA), uses a speckle-tracking approach, implemented by the least-squares minimization
of a cost function that simultaneously models all three image modalities. We here present a new implementation of UMPA. By
shifting from Python to C++ and Cython, execution speed was increased by a factor of about 125. Furthermore, a new acquisition
modality, “sample-stepping”, was introduced. Finally, we discuss the origin and mitigation of two types of image artifacts that may
arise during image processing with UMPA.

INTRODUCTION

Over the last three decades, a wide variety of X-ray phase-contrast imaging methods has been developed. Propagation-
based imaging (PBI) employs no optical elements, but extracts information about the sample from propagation fringes
which occur due to self-interference of the beam [1, 2]. Alternatively, rocking curves can be acquired using analyzer
crystals, which allows isolating rays with a specific angle of refraction, yielding “differential-phase” data [3, 4]. In
grating-based imaging (GBI), a third approach, attenuating and/or phase-shifting transmission gratings can be used to
produce grating self-images, whose deflection can be detected very sensitively by arranging two or three gratings into
a Talbot- or Talbot-Lau interferometric arrangement [5, 6]. Closely related to this is the edge-illumination technique,
which instead uses masks of larger pitch that do not exploit interference effects [7, 8]. Finally, a range of “wavefront
marking” techniques have been developed which introduce an (ordered or unordered) optical element into the beam
and directly measure the resulting intensity modulation on a detector. The properties of an imaged specimen are then
determined by analyzing its impact on the modulation pattern (i.e., attenuation, distortion, or blurring).

Among the more recent developments of wavefront marking techniques is “speckle-based X-ray imaging” (SBI),
where the intensity modulation is achieved by an object with an irregular microstructure (such as layers of sandpaper,
or biological membranes). The random microstructure acts as an unordered array of refracting lenses and produces a
similarly unordered intensity pattern on the detector (near-field X-ray speckle) [9].

Numerous measurement techniques and signal extraction approaches have been developed for SBI. X-ray speckle
tracking (XST) [10, 11], the oldest approach, was adapted from digital image correlation (DIC), a widespread optical-
light technique used to measure strain and deformation in planar objects [12]. An image is acquired with and without
the object in the beam. A pixel neighborhood or “window” is defined for every pixel in one of the images, and
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a matching window is sought in the other image. Information about refraction is encoded in the distance between
the locations of the two windows, attenuation is determined from the decrease of mean intensity, and small-angle
scattering is given by the decrease of the mean-normalized speckle amplitudes within the window (upon introducing
the object).

Further refinements to this approach were later introduced, such as “X-ray Speckle Scanning” (XSS) [13], where
the analysis window is replaced by a displacement of the diffuser in small steps, thus yielding better resolution and
sensitivity, at the cost of slower measurements. Later, “X-ray Speckle Vector Tracking” (XSVT) combined arbitrary
diffuser displacements [14] trajectories with the optional use of analysis windows [15].

The “Unified Modulated Pattern Analysis” (UMPA) approach, although developed independently from XSVT,
uses a relatively similar approach: images are acquired with and without the sample, optionally at different diffuser
positions. In contrast to XSVT, which uses zero-normalized cross-correlation (ZNCC) as the metric of similarity
between the sample and reference images, UMPA uses a cost function written as a sum of squared differences (SSD),
which also directly incorporates attenuation and dark-field (see the section below) [16].

Besides this speckle-tracking approach, more recent publications have introduced alternative techniques for ex-
tracting information from speckle images, such as the “Multimodal Intrinsic Speckle Tracking” (MIST) approach,
which solves the transport-of-intensity equation [17] or the Fokker-Planck equation [18], and does not require the use
of analysis windows. Additionally, “Ptychographic X-ray Speckle Tracking” (PXST) has been recently introduced
for use in setups with very strong geometric magnification. This approach does not necessitate a diffuser, and instead
requires transverse movement of the sample between frames. Image information is retrieved in an iterative process
reminiscent of ptychography [19].

Nearly all signal extraction methods for SBI are quite computationally intensive, e.g., when compared to PBI
or GBI. This is especially problematic since the resolution and frame rate of X-ray detectors (and thus, the rate of
generated data) is steadily increasing. In order to maintain UMPA as a practical and convenient solution for SBI
imaging tasks, especially for large computed tomography acquisitions, we have re-implemented the model using C++

and Cython, which yielded significant improvements in execution speed.
In the following section, we introduce the mathematics behind the UMPA model, give an overview of the re-

implementation of the model in Cython and C++, quantify the achieved speedup, and introduce a new acquisition
technique called “sample-stepping”. In the section “Artifacts and their mitigation”, we introduce two types of artifacts
that may arise while processing image data with UMPA, and we present techniques to reduce their impact. We finish
with a brief conclusion.

STRUCTURE OF UNIFIED MODULATED PATTERN ANALYSIS

Cost function definition
UMPA determines image modalities by comparing “sample images” and “reference images”, i.e., speckle images with
and without a sample in the beam. This has also been called the “differential mode” of speckle imaging [10]. It can
be applied to a set of M ≥ 1 sample and reference images with different relative lateral displacements between the
speckle pattern and the sample. This relative displacement is usually achieved by lateral displacement of the diffuser
by a motorized stage, but this can also be achieved by translating the sample. Our new implementation allows directly
processing datasets acquired in this manner (so-called “sample-stepping”, see below).

This matching of sample and reference images is achieved by defining an analysis window, centered on a pixel
of interest in the sample images Im, and comparing these to an analysis window centered on another pixel of interest
in the reference images I0,m (m = 1, . . . ,M). The similarity between the windows is calculated as a sum of squared
differences (SSD) of gray values in the two windows. In order to also include attenuation and small-angle scattering,
a physical model is first applied to the reference image values before calculating the SSD. In short, the cost function

L(r; u,T,D) =

M∑
m=1

N∑
wx,wy=−N

Γ(w)
[
I(model)
m (r + w − Sm; u,T,D) − Im(r + w − Sm)

]2
. (1)

is minimized, where r = (rx, ry) is the pixel of interest, u = (ux, uy) is the shift between the two analysis windows, and
w = (wx,wy) is a summation variable over the analysis window. The parameter N characterizes the size of the analysis
window [which is (2N+1)×(2N+1) pixels]. Γ(w) is a 2D Hamming window which decreases to zero towards the edges
of the analysis window and thus produces a smoother appearance of the output images. The quantity Sm represents the
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lateral translation of the sample if the “sample-stepping” mode is used (see below), and is otherwise (0, 0) for all m.
Finally, I(model)

m (r; u,T,D) represents the application of the physical model for attenuation and small-angle scattering,
applied to the reference images I0,m:

I(model)
m (r; u,T,D) = T

{
D

[
I0,m(r − u) − 〈I0,m〉(r − u)

]
+ 〈I0,m〉(r − u)

}
, (2)

〈I0,m〉(r) =

∑N
wx,wy=−N Γ(w)I0,m(r + w)∑N

wx,wy=−N Γ(w)
. (3)

D is a scaling factor for the amplitude of the speckle pattern, whereas T is a scaling factor for the overall intensity of
the gray values. Γ(w) is also used as a weighting factor for the local average of the reference, 〈I0,m〉.

Minimization
Image information is extracted by minimizing L(r; u,T,D) from Eq. (1) for every value of r:

û(r), T̂ (r), D̂(r) = argmin
u,T,D

L(r; u,T,D). (4)

Note, however, that u is only well-defined for integer multiples of the pixel size, whereas T and D can assume any
real value (and make physical sense for the interval [0, 1]). In order to simplify the cost function space over which to
minimize, a partial minimization of L with respect to T and D is performed for every new evaluated value of u. This
is done by setting ∂L/∂T = ∂L/∂D = 0, and solving for T and D (which can be done analytically). This thus yields
the partially minimized cost function L̂, as well as the optimized transmittance and dark-field values T̃ , D̃ (which still
depend on u):

L̂(r; u) = min
T,D

L(r; u,T,D), (5)

T̃ (r; u), D̃(r; u) = argmin
T,D

L(r; u,T,D). (6)

The remaining minimization thus takes place entirely in u-space. For each r, the first step of this minimization is
determining a local minimum of L̂(r; u). This is achieved by one-dimensional optimization performed alternately in
the ux- and uy-directions, yielding the discrete minimum ûd(r), as well as the transmittance and dark-field values T̂ (r),
D̂(r):

ûd(r) = argmin
u

L̂(r; u), T̂ (r) = T̃ (r; ûd(r)), D̂(r) = D̃(r; ûd(r)). (7)

Since the amount of shift û is rarely more than one pixel, ûd(r) is not of sufficient precision. We therefore “inter-
polate” the cost function landscape to a continuous range of u values. To this aim, we have determined a convolution
kernel which yields the equivalent result of first bilinearly interpolating the raw data, and then performing the cost
function calculation on this data. We find that the kernel to use for this purpose is B ? B, i.e. the autocorrelation
function of the kernel for bilinear interpolation.

L̂cont(r; u) = L̂(r; u′) ⊗ (B ? B)(u′) [for u values in the vicinity of ûd(r)], (8)
û(r) = argmin

u
L̂cont(r; u), (9)

where ⊗ denotes convolution, and ? denotes cross-correlation. Minimization according to Eq. (9) in the resulting cost
function landscape is then performed using the Newton-Raphson algorithm.

IMPROVEMENTS BY THE NEW IMPLEMENTATION

Speedup due to re-implementation in Cython and C++

The new implementation of UMPA uses C++ libraries for the computationally intensive parts of the calculation,
namely the calculation of the cost function, as well as its minimization. The main program structure (program flow,
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memory management, etc.) is written in Cython, which serves as an interface between the C++ libraries and a Python
interface. Like its predecessor, the new version of UMPA can thus be used like an ordinary Python module.

In a simple benchmark (measuring processing time for a simulated speckle dataset of 20 sample and reference
images of 1000 × 1000 pixels), we measured a single-thread performance increase of about 125 compared to the
previous implementation (old version: 3864 s, new version: 30.9 s). This speedup factor is further increased by the use
of multithreading, although the previous implementation can also be parallelized. With this speedup, applying UMPA
to large tomographic datasets with thousands of projections becomes feasible with limited processing time. This new
implementation has previously been used in [20] for signal extraction from both speckle data and Talbot images of
two-dimensional gratings (Talbot array illuminators).

Sample-stepping

Combining image data from multiple diffuser positions has the primary benefit of eliminating spurious minima from
the cost function landscape, thus reducing the frequency of failed minimization procedures and significantly increasing
image quality. Usually, this is achieved by displacing the diffuser in the plane orthogonal to the beam, but it works
equally well by displacing the sample instead (which is what we call “sample-stepping”). This latter approach has the
added benefit of increasing the effective field of view (if the movement steps of the sample are sufficiently large, see
Figure 1). In principle, a “sample-stepping” dataset can always be turned into a “diffuser-stepping” dataset by shifting
the individual image frames to undo the translation of the sample. However, it must be considered that, unlike in a real
“diffuser-stepping” dataset, the number of image frames contributing to the cost function (the “coverage”) varies with
the position in the field of view, which must be taken into account for image reconstruction. The new implementation
of UMPA calculates this coverage from the lateral displacement of the sample in each frame of the dataset (in pixel
multiples) and calculates the resulting images without requiring further manual input.

Diffuser DetectorSample

2

1

1

4

2

2

2

1

1

4

Coverage

0

FIGURE 1. Comparison of multi-frame acquisition methods. Top row: In the conventional “diffuser-stepping” method, the sample
remains stationary and the diffuser is displaced, yielding a constant coverage across the field of view of the detector. Bottom row:
In the “sample-stepping” approach, the diffuser remains stationary, and the sample is displaced. This yields a larger measured field
of view, albeit at the expense of a decrease of coverage towards the edges.

To demonstrate the practical use of this technique, we measured a small flower at the P05 beamline at PETRA III,
DESY (Hamburg, Germany) (Figure 2). The “sample-stepping” technique is especially useful when the field of view
must be increased beyond the size of the detector, since it requires much fewer motor displacements than an equivalent
“tiled” acquisition with the “diffuser-stepping” method. Furthermore, this technique is compatible with a continuous
displacement of the sample, which would completely eliminate the measurement overhead due to motor movements.
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FIGURE 2. Small flower imaged with the “sample-stepping” technique at the P05 beamline at PETRA III, DESY, and processed
by the new implementation of UMPA. From the left: horizontal differential phase ûx, vertical differential phase ûy, dark-field D̂
and transmittance T̂ . The effective size of the detector field of view (3.48 mm × 7.25 mm) is shown by the red rectangle. The
second row of images shows zoomed-in sections of the images (indicated by the yellow rectangle). The sample was displaced on a
2-dimensional grid of 25 × 10 positions. 9 layers of 400-grit sandpaper were used as a diffuser. Photon energy: 35 keV, pixel size:
0.916 µm. Sample-detector distance was 20 cm, and the diffuser was 11.5 cm upstream of the sample. The full size of the processed
images is 13500 × 25700 pixels. Scalebars are 2 mm.

ARTIFACTS AND THEIR MITIGATION

Estimation bias in differential phase

We have identified the presence of a bias in the calculation of the differential phase signal û. This effect is visible
as a speckle-like background pattern even in sample-free areas of the field of view. We believe that this bias occurs
due to a slight inaccuracy in the derivation used for the convolution kernel B ? B. The calculation assumes that the
cost function can be written as a sum of cross-correlation terms involving Im, I0,m, and 〈I0,m〉. This is accurate for the
original cost function L, but during the calculation of the partially minimized cost function L̂, a non-linear step is
introduced to the calculation, invalidating this assumption, and probably leading to the observed behavior.

However, we have determined a simple method to find an estimate for this bias, namely: using UMPA to compare
the reference images to themselves. In other words, the input variable Im(r) meant for the sample image stack is
simply replaced by the reference image stack I0,m(r). The differential-phase images resulting from this are a good
approximation to the differential-phase bias, and can be simply subtracted from the normally retrieved differential
phase images of the sample.
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Ambiguity in the attribution of UMPA output to pixel coordinates
In the presence of refraction, the UMPA model compares reference and analysis windows centered on different pixels.
This is apparent from Eq. (1) and (2): the cost function L(r; u,T,D) is calculated from the reference window centered
on r−u, while the sample window is centered on r. This prompts the question of which pixel the found signal values û,
T̂ , and D̂ should be assigned to. Assigning found values to the center of the reference window (r−u) is the physically
accurate solution, since this location coincides with the interaction point of beam and sample, disregarding shifts
due to refraction occurring after the interaction. However, the previously published implementation of UMPA instead
assigns the values to the center of the sample window.

The new implementation supports both assignment methods, but we find that the “old” approach leads to a better
image quality near sharp edges or strong propagation fringes. The reason for this is that the cost function landscapes
(as a function of u) that result from the two approaches differ: If values are assigned to the reference window, the
location of the matched sample window varies with u during the optimization. In regions of sample images with
strong edges or propagation fringes, UMPA yields high cost function values (since these effects are not well described
by the UMPA model). The optimization thus consistently avoids matching with these regions of the sample image(s),
leading to a black-and-white artifact in the differential-phase maps.

If output values are instead assigned to the center of the sample window, UMPA can not avoid matching certain
regions of the sample images. The presence of edges or fringes in a sample image region leads to an increase in
cost function values with all reference window positions, and thus mostly acts as an added offset of the cost function
landscape, and convergence is only weakly affected. In most cases, the misattribution of positions due to this physically
incorrect assignment is negligible, since the magnitude of û(r) is far below one pixel. In cases of very strong refraction,
however, a correction method is imaginable that applies an image warping transform to the images produced by
UMPA, the magnitude of which is determined by û(r).

CONCLUSION

We have introduced the mathematical basis of the Unified Modulated Pattern Analysis (UMPA) approach for pro-
cessing speckle-based X-ray imaging data, and presented an improved implementation of UMPA. This new version
features a much higher computational efficiency, and also includes a number of new features, most prominently the
ability to perform “sample-stepping” measurements. Furthermore, we have discussed two important artifacts which
may arise during UMPA processing and presented approaches to minimize their impact. The program code for this
new implementation will be made publicly available on GitHub in the context of an upcoming publication [21]. This
implementation forms the basis for ongoing work, such as its extension to directional small-angle scattering, which is
the focus of an additional upcoming publication [22].
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