
Industrial Internet of Things:
Persistence for Time Series with NoSQL Databases

Sergio Di Martino, Luca Fiadone, Adriano Peron, Vincenzo N. Vitale
DIETI

University of Naples ”Federico II”
80127, Naples, Italy

sergio.dimartino-adriano.peron2-vincenzonorman.vitale@unina.it

luca.fiadone@gmail.com

Alberto Riccabone
Avio Aero

a GE Aviation Business
80038, Pomigliano D’Arco (NA), Italy

Alberto.Riccabone@avioaero.it

Abstract—With the advent of Internet of Things (IoT) tech-
nologies, there is a rapidly growing number of connected devices,
producing more and more data, potentially useful for a large
number of applications. The streams of data coming from each
connected device can be seen as collections of Time Series,
which need proper techniques to guarantee their persistence.
In particular, these solutions must be able to provide both an
effective data ingestion and data retrieval, which are challenging
tasks. This problem is particularly sensible in the Industrial IoT
(IIoT) context, given the potentially great number of equipment
that could be instrumented with sensors generating time series.
In this study we present the results of an empirical comparison of
three NoSQL Database Management Systems, namely Cassandra,
MongoDB and InfluxDB, in maintaining and retrieving gigabytes
of real IIoT data, collected from an instrumented dressing
machine. Results show that, for our specific Time Series dataset,
InfluxDB is able to outperform Cassandra in all the considered
tests, and has better overall performance respect to MongoDB.

Index Terms—Big Data, Time Series, IoT, Database

I. INTRODUCTION

The spreading of the Internet of Things (IoT) is leading

to the constitution of a big, connected and heterogeneous

environment. A report by Gartner [1] forecasts that, within

2020, there will be 20 billion connected devices.

In the context of a modern factory, the application of IoT

in the industrial context, also known as Industrial IoT or

IIoT, implies the usage of many sensors, actuators, control

systems, and so on [2] to optimize the production chain. This

is often referred to as the Fourth Industrial Revolution. The

IIoT allows to take advantage of Cyber Physical Systems

(CPS) with many applications, like Anomaly Detection and

Predictive Maintenance. Beyond the great advantages of IIoT,

there is also a great number of challenges, like data storage,

retrieval, processing, visualization and knowledge extraction.

In an industrial context, over 4 trillion Gigabytes of data, could

be generated in a year [3], and this volume will increase, as

observed by McKinsey Institute [4] [5]. As a consequence,

many companies entered the Big Data era, characterized by an

enormous increment of volume, variety and velocity of data

to manage [2] [3]. In such context, the Big Data are known as

Industrial Big Data [2] [3]. Beyond the great volume of data

to store and retrieve, in the industrial manufacturing, there is a

further challenge, namely the data processing. In the Big Data

field in addition to the high data production rate, we have

to note that great volumes of data are quickly processed. An

important aspect to note is that, the information has a useful
time, i.e. a time range in which it is useful. After that period

it becomes useless, or at least not useful for certain tasks. It

is known that handling Industrial Big Data with traditional

storage solutions, like RDBMSs, may be difficult, as this kind

of data can usually be heterogeneous and unstructured [2]

[6]. Thanks to the relaxation of some constraints enforced

by RDBMSs, NoSQL DBMSs [7] [8] might turn out to be

more suitable to handle these Big Data [9], allowing Decision

Makers to extract greater value from Big Data [10]. These

systems are appreciated for their flexibility, in some kind of

applications where great amount of heterogeneous data needs

to be handled. NoSQLs are usually classified according to four

kinds of data models, with different advantages and limitations

[7] [8]. Among them, two types of systems, namely Wide-
Column and Document store, are usually considered more

suitable to store and also retrieve huge volumes of data [7].

Furthermore, in an IIoT context,we look at data gathered from

each device, as a collection of streams. Each stream can be

associated to a specific sensor, so we treat each stream as a

Time Series, obtaining collections of Time Series, associated

to each device. Looking at data streams of this form, we

can choose the best system to handle them, namely the best

with respect to storage and retrieval phases, for a specific

application. As a consequence, another kind of DBMS can

be considered, namely the Time Series Management Systems

(TSMS) [11], specifically devised to handle time series data.

To evaluate these systems there are some benchmarking, like

TPC [12]. Unfortunately there are no standard benchmarks

specifically suited for TSMS [13], neither for the specific

format in the proposed industrial context.

In this work we presents the results of an empirical study

conducted on storage technologies in a real IIoT context. More

in detail, by exploiting a dataset of about 60 Gigabytes of real

IIoT data, collected from vibrational sensors of a grinding

machine, we compared the performances of three NoSQL

1



DBMSs, namely MongoDB1, Apache Cassandra2 and Influx-

Data InfluxDB3. The experimental protocol for the assessment

included the measurement of performances about ingestion

of massive amount of data and different types of query

which might be used for Predictive Maintenance. Results

show that MongoDB is able to provide the best performances

for queries on non-temporal indexed attributes. On the other

hand, InfluxDB turns out to be on average the more balanced

solution, outperforming the competitors in all the other tests,

while Cassandra is surpassed by the two competitors in almost

all the tests.

The main contribution of this paper to the body of knowl-

edge consists of a practical experience on real IIoT data,

on which storage technology is the most suited to handle

vibrational data. Thus, practitioners having to face similar

challenges can exploit these empirical results in the definition

of their technological IIoT architecture.

The rest of the paper is structured as follows: in section

II we present some preliminary definitions on Time Series,

and an overview of well known DBMS technologies used to

handle the Time Series. In section III we describe the industrial

use case, together with the investigated technologies and the

research question. The section IV contains a description of

the experimental protocol. We identified some aspects to look

at, during the evaluation of a system, suitable to handle time

series. Eventually in section V we present the results obtained

from the protocol application, in the mentioned use case. Some

final remarks conclude the paper.

II. DEFINITIONS AND STATE OF ART ON

IIOT TIME SERIES

Time Series are a widely used format for changing-over-
time data representation and analysis. Formally, a Time Series

is a description of a stochastic process, consisting of a col-

lection of couples [(p1, t1), (p2, t2), ..., (pn, tn)], where pi is

the information collected at the time instant ti [14]. Thanks

to their nature, Time Series are widely used to express data

coming from sensors or assets in the IIoT context [11], in order

to bind a sensor reading to time. More in detail, since each

data stream acquired by a specific sensor has fixed schema, it

can be considered a time-ordered collection, or a Time Series,

of measures from that sensor. Industrial Time Series are the

basis to perform advanced analytic tasks, such as Anomaly
Detection, in order to check for spurious patterns, or Predictive
Maintenance, in order to predict failures [15].

In literature, some related works report the use of two

NoSQL DBMSs to handle Time Series, namely Cassandra

and MongoDB. The former is a Column store system while

the latter is a Document store. Both DBMSs can handle great

volumes of data, from IoT devices [16] [17], and both can

model a discrete Time Series [18] [19]. We have to take

into account a last kind of systems, Time Series Management

Systems (TSMS) [11]. Designed to handle Time Series data,

1https://www.mongodb.com/
2http://cassandra.apache.org/
3https://www.influxdata.com/

they have been recently studied [13] to establish a way to

evaluate them. In particular we will focus on InfluxDB [20],

a recent system optimized for fast, high-availability storage

and retrieval of time series, designed for fields like Internet of

Things sensor data, real-time analytics and so on. Anyhow, to

the best of our knowledge, no vendor-independent benchmark

is available, to support a Decision Maker of an IIoT context

in the choice of the most suited DBMS for managing data

collected from instrumented machinery, in a Industry 4.0

scenario.

III. THE INVESTIGATED SCENARIO OF TIME SERIES

STORAGE SYSTEMS IN IIOT

This study has been carried out within a Predictive Main-

tenance pilot project of Avio Aero1. Avio Aero designs,

manufactures and maintains components and systems in the

field of civil and military aviation engines. The factory, located

in Pomigliano D’Arco, Italy, is involved in a modernization

process in the Industry 4.0 direction, thanks to the deployment

of a significant number of IIoT devices. The project aims to

minimize the downtime of critical assets, by detecting trends in

sensed attributes which might indicate an imminent breakage

of specific components.

In particular, we focused on a grinder machine, used

to smooth the surface of engine blades. The machine was

retrofitted with many sensors, mainly monitoring vibrations,

RPM, oil temperature and pressure. This is a typical Industrial

Big Data scenario. There is velocity, since the data is acquired

with very high frequency of about 13KHz. Then the volume, as

data we collect about 2GB of data per hour, per instrumented

machine. And the variety comes from the context, as the

heterogeneous nature of the data is a consequence of the

amount of installed sensors.

Within this IIoT environment, data acquired by sensors on

board of instrumented machineries can be stored in many ways

inside a company data lake. For example, they can be stored in

CSV files or in a DBMS, depending on the nature of data, on

the available technologies, and on the intended use of these

data. The main motivation for the present study came from

the problems encountered with the use of a free relational

DBMS, namely MySQL, in the management of this stream of

heterogeneous data. Indeed, in an initial set-up, also due to the

presence of some indexes to improve retrieval performances,

the instance of MySQL running on a personal computer with

a standard configuration, was not able to write data at the

rate generated by the sensors. As a consequence, we identified

a set of potential alternative DBMSs, and run an empirical

evaluation, using our real IIoT data on them. The selected

technologies and the goals of the empirical study are detailed

in the following.

A. The Investigated DBMSs

In the following we provide an overview of the tested

DBMSs. The selection was done according to some non-

1Avio Aero is part of General Electric Aviation

2



functional requirements posed by Avio Aero (e.g. the pos-

sibility to run on computers with Windows), integrated by

an analysis of the related literature. Indeed, as discussed

before, many papers report a successful adoption of Apache

Cassandra or MongoDB to handle Time Series (e.g. [16],

[18]). Moreover, we were interested in assessing the potential

benefits and drawbacks of DBMSs specifically designed for

this specific type of data, namely the TSMS [11]. Among

them, InfluxDB was the only one able to fulfill all the

non-functional requirements. For example, the TSMS Apache

Druid is not available for Windows operating systems.

1) Apache Cassandra: Apache Cassandra is a NoSQL

DBMS belonging to the Column Store class, created to operate

in a distributed environment, providing high availability, fault

tolerance and capable to manage huge amount quantity of data.

According to the consequences of the CAP Theorem [21], and

being a NoSQL store, Cassandra is an AP DBMS, because it

allows horizontal partitioning and favouring high availability

over data consistency. In this sense, Cassandra wasn’t designed

to operate in master-slave configuration, then removing any

risk derived from the Single Point Of failure. It also balances

workloads among peers, i.e. write/read requests can be sent to

any node in the cluster: when a client sends a request, it gets

connected to the node in the cluster that manages the commu-

nication. Unlike some other NoSQL DBMSs, Cassandra has

a SQL-like querying language, named CQL Cassandra Query

Language, since its flexible data model can be mapped on a

relational one. Actually, the data model underlying Cassandra

is represented by a well-defined hierarchy of components:

within each node, data are firstly organized in keyspaces, that

resemble the relational concept of database. Keyspaces are

the outermost containers for column-families, that are similar

to a relational table. Of course, the atomic component for

Cassandra is not the row, but rather the column, being a

column-oriented DBMS.

Cassandra can be used for storing Time Series too [18].

In particular, it offers optimizations for storing and retrieving

temporal data, such as its reordering according to the times-

tamp key. In fact, while declaring a table (i.e. the column-
family), the designer can declare a composite primary key that

involves n attributes (with n ≥ 2). The first n − 1 attributes

form the partition key, used for partition data across nodes,

while the last attribute forms the clustering key, used to sort

data within a node. Using the time key as the clustering key

will sort data by time, thus favouring retrieval tasks based on

time ranges.

2) MongoDB: MongoDB is a NoSQL DBMS, in the

document-oriented category: data, which can have heteroge-

neous structure, is stored in a JSON-like format. According

to Brewer’s CAP Theorem [21], Mongo is an AP database:

high Availability and Partition tolerance are effectively pro-

vided. Data Model can be easily mapped to the application

domain. Indeed, each record is composed of key-value pairs,

contained in BSON documents, i.e. binary JSON, a binary

serialization schema for documents. This format is often used

for Time Series storage [18], using different techniques (i.e.

one document per record, or a document for values recorded

in a given time frame). Furthermore, MongoDB provides some

optimization for temporal data, such as data sharding, i.e.

data distribution, across nodes, by a defined key value, like

time. Mongo’s sharding is conceptually not far from Cassandra

partitioning. In fact, the sharding only defines how data is split

across nodes, while using a distributed cluster for data storing.

This provides no guarantee on data sorting inside each single

node of the cluster.

3) InfluxDB: Within the wide family of NoSQL DBMSs,

a new branch is defined specifically to handle Time Series.

Among them, InfluxDB [20] is one of the most promising,

being designed from the scratch to handle this specific kind of

data, rather than being an adoption of a generic data schema

to this particular case. Since in a Time Series the primary

aspect is ordering, in Influx data is physically ordered by time.

Another key feature is the ability to define, for a given data

group, some retention policies, i.e. specific rules to manage

old data, like for example deleting all the data older than

three months or replacing them with some aggregated values.

Another key feature of InfluxDB is the possibility to define

continuous queries, i.e. a query tool able to work continuously

on a stream of input data, rather than in a batch fashion. As a

final remark, InfluxDB uses an hybrid data model, where the

values are stored like in a row-based DBMS, while indexes,

named tags in InfluxDB, are stored like in a column-based

DBMS.

B. The Research Questions

A modern factory is a challenging scenario for data storage,

due to the great number of instrumented machines producing

huge data volumes. Since the acquired information will be

used for critical business tasks, the time needed to store,

retrieve and process the data is limited. Storage and retrieval

are thus crucial phases in the IIoT [9] [10], and are the very

first steps after the acquisition phase.

In our investigation, the first choice concerned the aspects

to consider, in order to identify the more appropriate DBMS

[11]. Right after the acquisition, there is the storage phase

for which, given the potential volume of the data stream,

there are two critical aspects: ingestion time and Disk usage.

On the other side, the retrieval phase can be an expensive

operation, and since it is crucial for subsequent analytics tasks,

an important aspect to consider are Query performances, in

terms of recovery time. The first kind of queries to look at

are the time-based ones, since the time is the primary aspect

in this kind of data, the time based recovery needs to be as

fast as possible. Then we have the attribute specific queries,

another fundamental aspect, since beside time-value there are

often other attributes enriching the information given by each

reading. Given those observation, the research question we

investigated is Which storage technology is able to provide
the better performances in our IIoT environment?

3



IV. EXPERIMENTAL PROTOCOL

Given the high frequency data streams collected from the

machineries, we aimed at experimentally understand benefits

and drawbacks of Time Series DBMS over general purpose

NoSQL ones, already reported to be successfully used to

handle this kind of data.

Consequently, we tested various aspects of the above men-

tioned DBMSs, with real data we got from an instrumented

machine. As done in similar works (but in other contexts), we

defined an experimental protocol aimed at assessing three key

performance dimensions:

• Batch-Ingestion time i.e. the time need to load a massive

amount of data in the database, measured in seconds.

Through this measure, we can understand the volume of

data that each DBMS is capable to handle during the

ingestion phase.

• Retrieval time in seconds, measured on some queries

we used for subsequent data analyses. Considering both

ingestion and retrieval performances is fundamental, since

it is very common the risk to strongly optimize one of

the two (for example defining indexes), slowing down the

other.

• Disk usage in Gigabytes, intended to measure the ability

of the DBMS to efficiently store massive amounts of data

generated by the IIoT continuous data streams.

For all the experiments, we used records with the following

fixed data schema:

1) Timestamp (timestamp): the time instant of the ac-

quisition, expressed as standard Unix epoch time in

nanoseconds;

2) Sensor (string): the name of sensor collecting the mea-

surement;

3) Value (floating point): the value of the measurement;

4) Program (integer): the Part Program, i.e. the processing

procedure executed by the grinder, represented by an Id;

5) Subprogram (integer): the id of a specific subroutine

associated to the part program;

6) Tool (integer): the tool type, on which the sensor was

mounted.

Despite the fact that three analysed DBMSs have different

technical characteristics, we tried to optimize them in a

comparable way. The details of the configurations for each

of the tests is detailed in the following.

A. Configurations for Ingestion Tests

We performed two types of ingestion tests. In the first one,

we considered an empty database in which we inserted 300

million points, representing about one day of registration for a

single high frequency sensor. In the second one, we simulated

a scenario of a database already containing a massive amount

of data, and, on it, we performed again an ingestion of 300

million points. The rationale behind these configurations is to

stress the way indexes are managed.

The ingestion tests were performed with two configurations

of indexes for each DBMS. In both the configurations, we

defined in MongoDB and Cassandra an index on the time

attribute, since an index on time is native in InfluxDB. In

the first configuration, we forced the DBMS to index also

attributes Program, Subprogram and Tool of the previous list,

while in the second one, only the timestamp is indexed.

We ran all the experiments five times for each DBMS,

rebooting each time the computer to minimize biases due to

caching. For each experiment, we had a script measuring the

time, in seconds, required for the ingestion.

B. Configurations for Retrieval Tests

To analyse the retrieval performances, we employed three

real queries. The first one includes a Time-based filtering to

retrieve all the data regarding a specific processing procedure,

giving its starting and ending time, which are known from an

external application. The second query retrieves data for all the

processing procedure belonging to a given type of Program.

The last one does the same, for a SubProgram. In all the cases,

no projection is applied, as the three queries return all the six

attributes above described. Let us note that, as the Programs

for the considered machine are just three, its selectivity is

extremely low.

Before executing these queries, the DBs were populated

with two days of data, corresponding to about 600M points of

real data. We ran all the retrieval experiments twenty times for

each DBMS, rebooting each time the computer to minimize

biases due to caching. For each experiment, we used a script

to measure the time, in seconds, required for the retrieval.

C. Configurations for Disk Usage Tests

At the end of each ingestion test, we measured also the Disk
Usage, in Gigabytes for both the configuration, with four and

with one index. This is a useful measure on how the DBMS

can store in an efficient way, both data and indexes.

D. Hardware Configurations

To eliminate temporal variability (and thus biases) due to

the way sensors can produce data, for all the experiments

we simulated the acquisition phase by replaying a stream of

recorded data. Thus, we used two computers. The first one is

the DB server, equipped with a hyper-threaded exa-core Intel

Xeon, 64GB RAM, 1TB SSD. The computer replaying the

stream is equipped with an Intel i5, 16GB RAM, and 256GB

SSD. The two computers are directly connected through a

gigabyte LAN. The tests were performed in isolation to

estimate the performance of each chosen systems, without

outer interferences, on a single node configuration.

V. RESULT AND DISCUSSION

In this section we discuss the results obtained in the

experiments.

A. Ingestion Performances

In Figure 1 are reported the average ingestion times for

InfluxDB, Cassandra and MongoDB, for each mentioned

configuration and load. From the image, we can see that

InfluxDB clearly outperforms the competitors, showing the

4



Fig. 1. Time, in seconds, to import 300M and 600M records for each DBMS,
with and without indexes.

best performances for all the configurations. This is due to

the fact that InfluxDB is highly optimized for ingestion tasks,

natively including buffering algorithms. MongoDB show lower

performances, and a very sensible increase of running time

when indexes are defined. Even if this is a known trend, we

did not expected that the use of indexes would have doubled

the ingestion times. Cassandra, on the other hand, ingests ≈
300 millions points in 4.5 hours, at least, no matter about

parameters, being thus almost 10 times slower than InfluxDB

in all the configurations.

It is also important to highlight that the configuration of

InfluxDB without indexes has slightly worse performances:

this is probably due to InfluxDB storage engine, that, being a

columnar store on indexed attributes, i.e. tags, saves different

tag values only once, then storing only references to all records

containing that value for that tag. On the other hand, InfluxDB

will allocate space for all the ≈ 600 millions records. In an

IIoT context this is a very good result, since it shows how a

specific DBMS optimized for Time Series data, as InfluxDB,

is capable to handle a huge quantity of data, outperforming

general-purpose solutions.

B. Retrieval Performances

From Figure 2, we can see the results for the time-based

queries. Recorded data is about three principal work programs

performed by the industrial asset, with a fixed length, namely

2, 6, and 20 minutes. Retrieval operations have then been

performed for all these programs, thus resulting in result-sets

with, respectively, ≈ 1.5, 5, 16 millions points. MongoDB and

Cassandra show, again, lower performances in all cases, but

pretty stable among the different configurations. On the other

hand, InfluxDB takes advantage from its sorting of the data

by timestamps, returning 16 millions records, for the longest

program, in less than half the time required by the other two

DBMSs.

These results have been obtained filtering data using the

time attribute only. In this sense, since timestamps are always

indexed, there is no no-indexes case to report. Moving on, in

Fig. 2. Average Execution Time of Queries with Time-based Filtering, in
Seconds, for three different amounts of data.

Fig. 3. Average Execution Time of Queries by Non-Temporal Attribute
Filtering, in Seconds.

figure 3 are reported the Program-based queries results. In

particular, data has been searched while fixing the value of

some attributes, or of all of them, thus increasing query selec-

tivity. In 4 cases (with the lowest selectivity rates) Cassandra

service crashed, being unable to return any result. The other

two cases, i.e. when all non-vibrational fields have been used

as filters, or the most selective one only (i.e. subprogram),

Cassandra was able to return correct results, but showing very

low performances. On the other hand, as we can see, Mongo

and InfluxDB have better performances in all the measured

cases, even if, for InfluxDB especially, with no definition

of indexes/tags there is a considerable performance decrease.

Indeed, in this configuration, MongoDB is able to provide

the best performances for retrieval from 600 millions points,

outperforming the two other competitors.

C. Disk Performances

In Figure 4 are reported the Disk Occupancy measurements

from both configurations, index and no-index, for each system.

Let us note that for InfluxDB we talk about ”tags” not ”index”,

since tag values set is limited, while an index can have a very

big value set.

5



Fig. 4. Disk space need to store 600M points, in Gigabytes.

As we can see, InfluxDB has the best performances also

in terms of space. This makes it more suitable to handle

high frequency data in contexts where the sources number is

very high. The great compression rate is due to the presence,

within the InfluxDB storage engine, of several compression

techniques and algorithms, for each different data type. In

this way, needed space for 600 millions of points is ≈ 4.5

GB, or 2.7 GB if tags are stored as fields. Cassandra and

MongoDB need by far more space on disk for data storage,

that increases when indexes are defined. This is true especially

for Cassandra, whose indexes need more space than the data

itself.

D. Discussion

Although Cassandra is a successful general purpose NoSQL

DBMS, capable to handle great volumes of data and, already

used for Time Series storage, on a single node configuration

it was always by far outperformed by InfluxDB. While Mon-

goDB showed good performances during the retrieval phase,

performing better than InfluxDB in some cases, during the

ingestion phase, InfluxDB performed better than MongoDB.

In general, InfluxDB seems to be able to provide more

balanced performances, between ingestion and retrieval, than

MongoDB

VI. CONCLUSION

In the IIoT scenario, the amount of data generated by

instrumented machinery can be huge, clearly falling in the

Big Data class. The most of this data is often composed

of heterogeneous Time Series, that can be challenging for a

Decision Maker interested in adopting a suitable DBMS to

handle them.

In this paper we presented an empirical analysis we con-

ducted on three NoSQL DBMSs, to investigate the achievable

performances in terms of ingestion, retrieval and required

storage space, for IIoT data. In particular, we measured

the performances of two widely employed DBMSs, namely

Apache Cassandra and MongoDB, and of a Time Series

Db, i.e. InfluxDB, in handling a dataset of about 600 mil-

lion records (about 60 GB), collected from an instrumented

grinding machine. With our dataset, MongoDB gave the best

performances for queries on non-temporal indexed attributes,

while Cassandra is outperformed by the two competitors in

almost all the tests and turned out to be unstable on a single

node configuration. Lastly InfluxDB turns out to be on average

the more balanced solution, outperforming both competitors

under storage aspects, and providing the best performances

on ingestion and time-based queries. In conclusion, given our

IIoT use case, InfluxDB turned out to be the most advisable

solution.

Since this is a first experimental set-up, many possible

evolutions of this evaluation are envisioned. We need to run

experiments on a cluster, rather than on a single node, to

measure the impact of data distribution and parallelization.

It would also be interesting to include in the evaluation a

Relational DBMS. Finally, it would also be interesting to

consider different data schemas.

REFERENCES

[1] Gartner, “Leading the iot,” 2017.
[2] D. Mourtzis, E. Vlachou, and N. Milas, “Industrial big data as a result

of iot adoption in manufacturing,” Procedia Cirp, vol. 55, pp. 290–295,
2016.

[3] GE, “The rise of industrial big data,” 2012.
[4] M. G. Institute, “Big data report,” Mckinsey Global Institute, 2011.
[5] M. Baily and J. Manyika, “Is manufacturing “cool” again,” Project

Syndicate, vol. 21, 2013.
[6] S. Yin and O. Kaynak, “Big data for modern industry: challenges and

trends [point of view],” Proceedings of the IEEE, vol. 103, no. 2, pp.
143–146, 2015.

[7] A. Davoudian, L. Chen, and M. Liu, “A survey on nosql stores,” ACM
Computing Surveys (CSUR), vol. 51, no. 2, p. 40, 2018.

[8] F. Gessert, W. Wingerath, S. Friedrich, and N. Ritter, “Nosql database
systems: a survey and decision guidance,” Computer Science-Research
and Development, vol. 32, no. 3-4, pp. 353–365, 2017.

[9] J. S. Van der Veen, B. Van der Waaij, and R. J. Meijer, “Sensor data
storage performance: Sql or nosql, physical or virtual,” in 2012 IEEE
fifth international conference on cloud computing. IEEE, 2012, pp.
431–438.

[10] J. Bhogal and I. Choksi, “Handling big data using nosql,” in 2015 IEEE
29th International Conference on Advanced Information Networking and
Applications Workshops. IEEE, 2015, pp. 393–398.

[11] S. K. Jensen, T. B. Pedersen, and C. Thomsen, “Time series manage-
ment systems: A survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 11, pp. 2581–2600, 2017.

[12] TPC. TPC. [Online]. Available: http://www.tpc.org/
[13] R. Liu and J. Yuan, “Benchmark time series database with iotdb-

benchmark for iot scenarios,” arXiv preprint arXiv:1901.08304, 2019.
[14] S. Das, Time Series analysis. Princeton University Press, Princeton,

NJ, 1994.
[15] P. Esling and C. Agon, “Time-Series Data Mining,” ACM Computing

Surveys, vol. vol. 45, November 2012.
[16] A. Lavin and D. Klabjan, “Clustering time-series energy data from smart

meters,” Energy efficiency, vol. 8, no. 4, pp. 681–689, 2015.
[17] Y.-S. Kang, I.-H. Park, J. Rhee, and Y.-H. Lee, “Mongodb-based

repository design for iot-generated rfid/sensor big data,” IEEE Sensors
Journal, vol. 16, no. 2, pp. 485–497, 2016.

[18] D. Ramesh, A. Sinha, and S. Singh, “Data modelling for discrete time
series data using cassandra and mongodb,” in 2016 3rd International
Conference on Recent Advances in Information Technology (RAIT).
IEEE, 2016, pp. 598–601.

[19] A. Chebotko, A. Kashlev, and S. Lu, “A big data modeling methodology
for apache cassandra,” in Big Data (BigData Congress), 2015 IEEE
International Congress on. IEEE, 2015, pp. 238–245.

[20] S. N. Z. Naqvi, S. Yfantidou, and E. Zimányi, “Time series databases
and influxdb,” Studienarbeit, Université Libre de Bruxelles, 2017.

[21] S. Gilbert and N. Lynch, “Perspectives on the cap theorem,” Computer,
vol. 45, no. 2, pp. 30–36, Feb 2012.

6




