

Supplementary Material to

Complement protein C1q stimulates hyaluronic acid degradation *via* gC1qR/HABP1/p32 in malignant pleural mesothelioma

Andrea Balduit^{1,\$,*}, Romana Vidergar^{2,\$}, Paola Zacchi², Alessandro Mangogna¹, Chiara Agostinis¹, Micaela Grandolfo³, Cristina Bottin⁴, Francesco Salton⁴, Paola Confalonieri⁴, Andrea Rocca⁴, Fabrizio Zanconati^{4,5}, Marco Confalonieri⁴, Uday Kishore⁶, Berhane Ghebrehiwet⁷, Roberta Bulla^{2,*}

¹ Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy

² Department of Life Sciences, University of Trieste, Trieste, Italy

³ Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy

⁴Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy

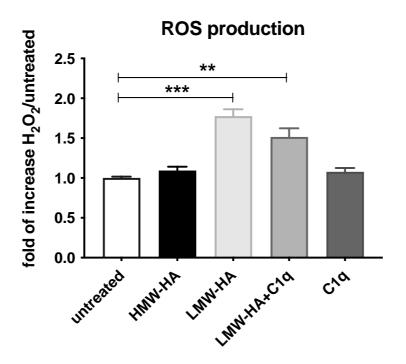
⁵ Struttura Complessa di Anatomia ed Istologia Patologica, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), Trieste, Italy

⁶ Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates

⁷ Department of Medicine, Stony Brook University, Stony Brook, NY, United States

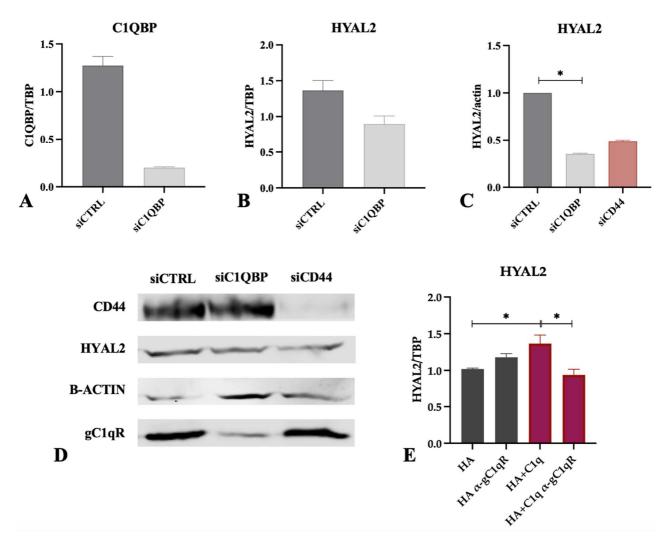
^{\$} These authors have contributed equally to this work and share first authorship.

* Correspondence:


Andrea Balduit (abalduit@units.it). Roberta Bulla (rbulla@units.it) Department of Life Sciences, via Valerio 28, University of Trieste, 34127, Trieste, Italy. Phone +39 040 558 8653; Fax +39 040 558 4023

Running title: C1q upregulates HYAL2 via gC1qR/p32/HABP1.

Key words: malignant pleural mesothelioma; hyaluronic acid; hyaluronidase; C1q; HYAL2; gC1qR/HABP1/p32; reactive oxygen species.



Supplementary Figures

Supplementary Figure 1. Hydrogen peroxide (H₂O₂) production was measured by using AmpliFlu Red reagent on MPM cells stimulated with soluble high-molecular weight HA (HMW-HA), soluble low-molecular weight HA (LMW-HA) and/or soluble C1q, as compared to untreated cells. Data are expressed as a ratio between fluorescence units measured by Tecan (E/I 535nm/595nm) in treated and untreated cells (F.U. = 1). The means of three to five experiments performed in triplicate are reported \pm SEM. LMW-HA increased ROS production, regardless of C1q presence. **p<0.01; ***p<0.001.

Supplementary Figure 2. (A,B) ZL34 cell line was transfected with siCTRL and siC1QBP for 72h. *C1QBP* (A) and *HYAL2* (B) gene expression was analyzed by RT-qPCR. *HYAL2* mRNA expression was found to be downregulated after *C1QBP* silencing. TATA-box binding protein (*TBP*) was used as a housekeeping gene. Data were expressed as the mean of three experiments performed in duplicates \pm SEM. (C,D) Western blot analysis performed on ZL34 cell lysates after transfection with siCTRL, siC1QBP and siCD44. Membrane was probed with α -CD44, α -HYAL2 and α -gC1qR primary antibodies, followed by anti-rabbit or anti-mouse IRDye 800CW secondary antibodies. Signal intensity was detected using Odyssey CLx near-infrared scanner (LI-COR Biosciences, Lincoln, NE, USA). Image acquisition, processing and data analysis were performed in duplicate. Beta-actin was used to normalize the results. **p*<0.05. (E) ZL34 cells were treated with anti-gC1qR blocking antibodies and seeded onto HA+C1q, or HA alone. HYAL2 expression was then evaluated through RT-qPCR. TATA-box binding protein (*TBP*) was used as a housekeeping gene. **p*<0.05.