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Abstract 

Background:  The combined effects of biological variability and measurement-related 
errors on cancer sequencing data remain largely unexplored. However, the spatio-tem-
poral simulation of multi-cellular systems provides a powerful instrument to address 
this issue. In particular, efficient algorithmic frameworks are needed to overcome the 
harsh trade-off between scalability and expressivity, so to allow one to simulate both 
realistic cancer evolution scenarios and the related sequencing experiments, which can 
then be used to benchmark downstream bioinformatics methods.

Result:  We introduce a Julia package for SPAtial Cancer Evolution (J-SPACE), which 
allows one to model and simulate a broad set of experimental scenarios, phenom-
enological rules and sequencing settings.Specifically, J-SPACE simulates the spatial 
dynamics of cells as a continuous-time multi-type birth-death stochastic process on 
a arbitrary graph, employing different rules of interaction and an optimised Gillespie 
algorithm. The evolutionary dynamics of genomic alterations (single-nucleotide 
variants and indels) is simulated either under the Infinite Sites Assumption or several 
different substitution models, including one based on mutational signatures. After 
mimicking the spatial sampling of tumour cells, J-SPACE returns the related phyloge-
netic model, and allows one to generate synthetic reads from several Next-Generation 
Sequencing (NGS) platforms, via the ART read simulator. The results are finally returned 
in standard FASTA, FASTQ, SAM, ALN and Newick file formats.

Conclusion:  J-SPACE is designed to efficiently simulate the heterogeneous behaviour 
of a large number of cancer cells and produces a rich set of outputs. Our framework 
is useful to investigate the emergent spatial dynamics of cancer subpopulations, as 
well as to assess the impact of incomplete sampling and of experiment-specific errors. 
Importantly, the output of J-SPACE is designed to allow the performance assessment of 
downstream bioinformatics pipelines processing NGS data. J-SPACE is freely available 
at: https://​github.​com/​BIMIB-​DISCo/J-​Space.​jl.
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Background
Cancer development is an evolutionary process characterised by the emergence, com-
petition and selection of cell subpopulations exhibiting certain functional advantages 
with respect to normal cells (i.e., cancer clones). Each subpopulation originates from 
specific somatic alterations of the (epi)genome, which are typically referred to as drivers 
[1]. Drivers confer cancer cells an increased fitness, for instance in terms of enhanced 
replication rate, ability to evade the immune system, avoid apoptotic signals, or ability to 
diffuse, as well as resistance to therapeutic interventions [2].

Both cancer and normal cell subpopulations compete in a complex interplay occur-
ring within the micro-environment and are continuously either selected or purified in 
Darwinian evolution scenario, hence resulting in the high levels of intra-tumour hetero-
geneity that are observed in most cancer types [3]. In addition, during replications, both 
normal and cancer cells acquire and accumulate a large number of neutral mutations, 
named passengers, which do not alter their overall fitness. In principle, all mutations can 
be used as barcodes to track the clonal composition and evolution in time, by perform-
ing variant calling from DNA- and RNA- Next-Generation Sequencing (NGS) experi-
ments generated from tissue biopsies or from patient-derived cell cultures, xenografts or 
organoids, and this can be done either at bulk or single-cell resolution [4].

In recent years, many computational methods have been developed to exploit the 
increasing amount of NGS data, either to detect point mutations, indels, copy number 
variations and structural variations [5–7], perform clonal deconvolution [8, 9] or return 
evolutionary models [10–14].

However, despite the impressive number of works exploiting NGS data, the effects of 
the combination of the experimental protocols many parameters with those of the bio-
informatics pipelines remains unexplored and may lead to biases that affect any down-
stream analysis [15]. Therefore, developing a standardised procedure to assess such 
biases and validate the results is necessary, and simulations are one of the most effective 
tools available to achieve these goals [16]. For this reason, a significant number of soft-
ware tools have been recently developed and released to simulate either (i) the molecular 
(genomic) evolution of tumours or (ii) the (spatial) population dynamics of multi-cellu-
lar systems.

Many approaches simulate the genomic evolutionary dynamics of tumours, typically 
by considering branching processes (or coalescent models) that underlie the origination 
and accumulation of Single-Nucleotide Variants (SNVs) and other genomic alterations 
[17–21]. This is often achieved by relying on the Infinite Sites Assumption (ISA) [22, 
23], which however presents some important limitations. First, it is known that the ISA 
might be violated and that such violations are relatively common in several cancer types, 
for instance due to convergent evolution and back mutations [24, 25]. Second, distinct 
processes underlie the nucleotide substitution patterns that are observed in most cancer 
types, also known as mutational signatures [26, 27]. Such processes can be endogenous 
(e.g., APOBEC deaminase activity causes mainly C to T substitutions) or exogenous (e.g., 
tobacco smoke causes mainly C to A substitutions), and their activity may change during 
the development of the disease [28]. These processes cannot be realistically simulated 
without a finite-sites model, where sites are not independent. Finally, large structural 
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variations such as gene fusions and copy number alterations, which are essential for 
clonal/lineage tracking [29–31] cannot be represented using the ISA. Importantly, most 
frameworks modelling the genomic evolution of tumours do not explicitly consider the 
spatial dynamics of cancer cells, which is known to have a dramatic impact on the over-
all evolution of tumours and on the related samplings [32, 33].

A different class of approaches comprises several simulation tools that have been 
developed to represent the spatial population dynamics of cells and tissues and the 
microscopic interaction among cells, via plausible biophysical representations [34]. For 
instance, agent-based models [35], cellular automata [33, 36, 37], finite elements simula-
tions [38, 39], and hybrid approaches [40] have been used to investigate the influence of 
spatial constraints on cancer development. Other simulation frameworks focus on the 
mechanical interactions among neighbours cells [41], the interaction between different 
cell (sub)types, e.g., between cancer cells and the stroma [42, 43], the metabolic interplay 
[44–46], or the specialisation/differentiation processes [47–49].

Notably, some recent attempts combine the simulation of genomic evolution with that 
of spatial dynamics of tumours, yet they rely on the ISA to produce their results [33].

In this extremely lively field, we observe a shortage of efficient spatial cancer simu-
lation tools capable to generate a broad spectrum of in-silico scenarios, while produc-
ing a rich set of standardised outputs usable in downstream bioinformatics pipelines. 
In principle, such tool should be able to simulate a large number of cells and realistic 
sequencing experiment scenarios, and abide distinct spatial constraints, microscopic 
interactions and substitution models. To fill this gap, we introduce the SPAtial Cancer 
Evolution SIMulator (J-SPACE), a Julia package that exploits optimised algorithms for 
the simulation of spatio-temporal evolution of tumours, spatial sampling of cells, molec-
ular evolution of sequences under different substitution models, with the possibility to 
include indels. By relying on the NGS read simulator ART [50], J-SPACE generates syn-
thetic reads in standard formats such as FASTA, ALN, SAM and FASTQ, giving the pos-
sibility of a straightforward implementation of bioinformatics benchmarking pipelines.

Implementation
A schematic workflow of J-SPACE is depicted in Fig. 1. J-SPACE relies on an Optimized 
Gillespie Algorithm (OGA) to simulate the spatial dynamics of cells populations [51]. 
The dynamics of the spatio-temporal evolution of a tumour is modelled by a stochastic 
continuous-time multi-type Birth-Death (BD) process over an arbitrary graph.

J-SPACE can work with a 2D or 3D regular lattice, but it can also work with any arbi-
trary graph (which, of course, must be approprately interpreted). In a simulation, all 
cells can acquire and accumulate random mutations over time; rarely, some of these 
mutations enhance the birth rate (i.e., the fitness) of all descendants. These mutations 
are the so-called ”drivers”. Then J-SPACE mimics the sampling of a portion of cells 
(e.g., a biopsy) and after computing the phylogenetic tree of such cells, it simulates the 
evolution of nucleotide sequences along the phylogeny, in order to obtain the genetic 
sequences of all sampled cells [52–54]. To model the mutation evolutionary dynamics, 
J-SPACE allows the user to employ any of the following.
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•	 An Infinite Sites model [55].
•	 A set of finite-sites models (JC69 [56], F81 [57], K80 [58], HKY85 [59], TN93 [60], 

K81 [61])
•	 A custom time-dependent trinucleotide substitution model using a linear combina-

tion of mutational signatures from the COSMIC database [26].

In addition, J-SPACE allows to simulate indels in any of the finite-sites models.
Finally, J-SPACE mimics NGS experiments by calling ART​ [50] to generate sequencing 

reads. The user can run any configuration of ART​: it is possible to simulate single-end, 
paired-end/mate-pair reads, with various error models and different values of coverage 
for different sequencing platforms.

J-SPACE provides the following outputs:

•	 The state of the lattice/graph at any time of the simulation.
•	 The Ground Truth (GT) sequence of the sampled cells as FASTA files.
•	 The list of mutations for each sampled cell.
•	 The GT phylogenetic tree of the sampled cells in Newick format.
•	 The mutational tree of the driver mutations (if present), where the nodes represent 

mutations and edges model the accumulation temporal direction as proposed in [11, 
13].

•	 The simulated NGS reads as FASTQ files.
•	 The alignment file, which maps the noisy reads on the sequences of the sampled cells 

both in formats SAM and ALN.
•	 The GT alignment file, with the reads without noise in SAM format.

Fig. 1  The J-SPACE framework. Schematic representation of J-SPACE. A First, the algorithm simulates the 
spatial growth of the cells over an arbitrary graph. Then, J-SPACE simulates a spatial sampling (black circle) 
at a given time point. B J-SPACE reconstructs the phylogeny of the sampled cells (i.e., the leaves of the tree) 
and, given an ancestral genome, it generates the ground-truth sequence of the sampled cells using various 
substitution models. C A NGS experiment is simulated to return synthetic reads as outputs
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All parameters of J-SPACE are managed by means of two simple input textual files, the 
first one used to set up general configuration parameters (e.g., file paths, plotting and 
output options, etc.), the second one including all simulation parameters. For a complete 
description of the parameters and usage examples, please refer to https://​github.​com/​
BIMIB-​DISCo/J-​Space.​jl.

Generating spatial cancer dynamics

In J-SPACE, the spatio-temporal dynamics of a multi-cellular system is modeled as a sto-
chastic process over an arbitrary graph embedded in RD , in which each node can be 
empty or occupied by a single cell. More in detail, the graph is composed by a set of 
points in RD . A pair of points can interact if their distance in RD is smaller than a posi-
tive real number J, called the range of interaction. By connecting each point with the 
points within distance less than J, we obtain a graph that represents the finite elements 
space where the dynamics occurs.

Each point has an associated state: an integer in {0, 1, . . . npop} , where 0 indicates an 
empty node, and i = 1, . . . , npop indicates that a node is occupied by the ith subpopula-
tion present in the system. Subpopulations here represent the cells bearing the same set 
of driver mutations (see below), i.e., cancer clones, Accordingly, all cells belonging to the 
same subpopulation will have the same state. Note that, by design, subpopulation i = 1 
does not harbour any driver mutation, so it can be considered either as the wild type 
(e.g., healthy cells) or as the ancestral cancer subpopulation.

As in a standard BD model, two probabilistic moves are possible. 

(1)	 Death, that is a constant stochastic process where sites become vacant (state = 0 ) 
at a constant rate β per unit of time.

(2)	 Birth, that represents an interaction between two nodes of the lattice.

In J-SPACE the birth event is modeled as follows: a parent cell divides into two daughter 
cells with a rate equal to α per unit of time, occupying the location of the parent cell and 
that of randomly chosen position among its nearest neighbours node. When studying 
the cells’ spatial interaction, it is crucial to simulate processes such as the replication 
inhibition due to the absence of space, e.g., the exclusion process [41, 62]. For this rea-
son, J-SPACE implements three different kinds of interaction rules. 

(a)	 The contact process [63].
(b)	 The voter model on heterogeneous graphs [64].
(c)	 The hierarchical voter model.

In the contact process, a cell can duplicate itself only if it has an empty node in its neigh-
bourhood: in this scenario, there is a strong replication inhibition due to spatial con-
straints, while the advantage of driver mutations is softened. In the voter model, the 
exclusion principle is dropped: a cell can “kill” one of its neighbours and substitute it 
with one of its daughters: this situation is equivalent to a Moran process, and it helps 
generating highly correlated spatial clusters [65]. Finally, the hierarchical voter model is 
akin to the previous one, but a cell can “kill” and replace one of its neighbours only if it 

https://github.com/BIMIB-DISCo/J-Space.jl
https://github.com/BIMIB-DISCo/J-Space.jl
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has a greater birth rate (e.g., it bears more driver mutations). This situation represents a 
tissue where the growth of wild-type cells is inhibited by its neighbourhood, while cells 
bearing driver mutations are unregulated and can proliferate even if their neighbour-
hood is full.

J-SPACE simulates the emergence and accumulation of driver mutations, which also 
allow us to define the subpopulations (i.e., clones) interacting within the system. We set 
a probability µdri that one of the two daughter cells acquires a new driver mutation. Each 
newly acquired driver mutation provides the cell with a birth rate increase and, in par-
ticular, we suppose that such increase is distributed as a (positively truncated) Gaussian 
variable with both mean and standard deviation provided as input. Since we here assume 
that cells inherit the same mutations of their parental cell, every distinct subpopulation 
will have a different birth rate αi per unit of time, which is equal to the linear combina-
tion (all weights = 1 ) of the birth rate of the wild type and the birth rate advantages of 
the driver mutations of the specific subpopulation. In addition, in order to give the user 
the possibility to control the evolution of cancer subpopulations, it is possible to provide 
the mutational tree of the drivers [11, 13] and the birth rate of each subpopulation as 
inputs to J-SPACE. Note that, in this case, the simulation can lead to the emergence of 
subtrees of the input mutational tree, due to the stochastic dynamics of the framework.

Many theoretical approaches that optimise an event based simulation of a BD process 
on a graph [66] have been developed in the past. Despite the outstanding results of these 
methods, minimal deviations from statistically exact prescriptions can lead to uncon-
trolled biases [51, 66, 67], and Montecarlo simulations are the only statistical methods to 
integrate these system in every configuration [66].

A straightforward implementation of an event based simulation (i.e., the Doob-
Gillespie algorithm [68, 69]) in networks including a large number of nodes, quickly 
becomes computationally cumbersome. For this reason, J-SPACE relies on an OGA 
that is borrowed from methods originally developed for the simulation of Markovian 
epidemic processes on large networks [51]. Briefly, an OGA introduces phantom events 
that are those events that violate the chosen interaction rule. The algorithm follows the 
standard procedure of an event-based simulation on a graph, but it evaluates the total 
rate of events considering both phantom and non-phantom events. It randomly picks 
the waiting time of the next event from a exponential distribution. An event is chosen 
with a probability proportional to its rate, if such event is a phantom event only the time 
is updated, otherwise both the time and the state of the system are updated. Phantom 
events are differently defined for every interaction rule included in the implementation 
of J-SPACE. For the contact process, a phantom event occurs when a cell replicates itself 
occupying a non-empty node; for the voter model when a cell replicates itself occupying 
a node that is inhabited by a cell of the same subpopulation; for the hierarchical voter 
model when a cell replicates itself occupying a node that is occupied by a cell with equal 
or higher birth rate (see Fig. 2A for an example).

The algorithm then follows the usual procedure of an event-based simulation. It evalu-
ates the total rate of events considering both phantom and non-phantom events. It ran-
domly pick the waiting time of the next event from a exponential distribution. An event 
is chosen, if such event is a phantom event only the time is updated, otherwise both 
the time and the state are updated. The main computational improvement of OGA with 
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respect to the standard the Doob-Gillespie algorithm is that the set of the nodes that 
could be occupied by a cell is not evaluated every time an event occurs. By introducing 
such phantom events, the computational time may improve by several orders of mag-
nitude with respect to the standard implementation. Moreover the difference increases 
with the number of nodes of the graph [51].

Importantly, J-SPACE introduces the possibility of performing an arbitrary number of 
bottleneck events, in which a user-defined portion of the tumour is wiped-out. This can 
be achieved by specifying the time and the size of such events (i.e., the proportion of the 
population that will survive to these events). This simulation option allows one to mimic 
the impact of simple pharmacological interventions, and sets the basis for future devel-
opments involving more realistic simulations based on pharmacokinetic and pharmaco-
dynamic models [70].

Finally, J-SPACE returns the subpopulation dynamics (in a textual format) and the 
configuration of the graph at any time as output.

Generating phylogenetic trees

After the simulation of the spatial dynamics, J-SPACE offers the possibility of sampling 
a user-selected number of randomly distributed cells or a circular/spherical region 
(2D/3D scenario) with a user-selected radius, in order to simulate a biopsy and obtain 
the list S of sampled cells.

J-SPACE reconstructs the phylogenetic tree of the sampled cells by computing their 
genealogy tree, i.e., a graph G = (V ,E) . In G the set of the nodes V is composed by the 
nodes of degree 1 (i.e., the sampled cells S and their least recent common ancestor) and 
by the nodes of degree 2 or 3 that are ancestors of the sampled cells. The set of edges 
E represents the parental relations between cells. To reconstruct G = (V ,E) , J-SPACE 
saves the following lists while computing the spatial dynamics.

•	 PAm , i.e., the label of the parental cell in the mth birth event.

A

Subpopulation 1,
birth rate = α1

Subpopulation 2, 
birth rate = α2

Contact process

Phantom events for α1 < α2

B Algorithm to generate the phylogenetic tree

Birth event Sampled cell Birth event that is not a coalescent eventCoalescent event between samplesNot sampled cell

Phylogenetic tree of the sampled cellsPhylogenetic tree of the whole population Genealogy tree of the sampled cells
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Fig. 2  Phantom events and the reconstruction of phylogenetic trees. A Pictorial representation of the 
possible phantom events in a simulation with two different subpopulations. B Simplified scheme of the 
algorithm that generates the ground-truth phylogenetic tree from the list of birth events. First, the algorithm 
prunes the branches the leaves of which are not sampled (in red), then it removes the remaining edges that 
are not coalescent events
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•	 DAm the list of the labels of the two nodes occupied in the mth event.
•	 Tm the timestamp of the mth event.

Note that the label associated with a cell is unique during the simulation and we assume 
that, when dividing, a cell dies and generates two cells with two distinct new labels. Since 
one parent cell always generates two daughter cells, this list defines a binary phyloge-
netic tree where the leaves are either dead cells or cells present at the time of sampling.

Then, J-SPACE scrolls backwards the lists PAm and DAm , and it obtains G = (V ,E) by 
registering the non-phantom birth and mutation events that are in the past of the sam-
pled cells (see Fig. 2B).

Since the nodes of G with degree 3 are the internal nodes of a phylogenetic tree (i.e., 
the birth or mutation events that are coalescent events between the samples), whereas 
the nodes with degree 1 are either the root or the leaves of such tree, by deleting all the 
nodes with degree equal to 2 (i.e., the birth or mutation events that are not coalescent 
events between the sampled cells) and redrawing the edges between the remaining node 
coherently, J-SPACE obtains the ground truth phylogenetic tree of the sampled cells S 
(see Fig. 2B). Finally, the GT phylogenetic tree is returned in Newick format.

Genotype of sampled cells

As specified in the Background Section, the large majority of mutations that can hit a 
given cell during its lifetime have no functional effect (i.e., they are passengers), and only 
a very small number of events implies a phenotypic change. From the computational 
perspective, it would be inefficient to explicitly simulate the evolution of nucleotide 
sequences during the computation of the spatial dynamics of the subpopulations. There 
are two reasons for this: i) a large number of cells implies an huge number of nucleotides, 
and therefore a huge computational load to compute all the genetic events, and ii) simu-
late the sequence of non-sampled cells would be a waste of computational resources.

For these reasons, J-SPACE simulates a posteriori the evolution of nucleotide 
sequences along the phylogeny of the sampled cells [52–54]. Assuming that mutations 
are independent among sites, and that the mutational process could be modelled as a 
continuous-time Markov chain, J-SPACE simulates the mutational events via the exact 
Doob-Gillespie algorithm, both infinite and finite-sites models are implemented. In the 
case of a finite-sites model, also indels could be simulated. Note that using finite-sites 
models allow for simulating back-mutations and multiple mutations at a site, although 
this comes at the cost of decreased computational performance [53].

To simulate the molecular evolution, J-SPACE uses the phylogenetic tree of the sam-
pled cells S and an ancestral genome, which can be given by the user or generated ran-
domly, given the length of the genome L and the frequencies of the nucleotides (e.g., 
νA = number of nucleotides “A”/L ) . In the case of the infinite-sites model, J-SPACE 
generates the number of mutations for each branch of the phylogenetic tree in the fol-
lowing way: starting from time equal to zero, the time of the next event is picked ran-
domly from an exponential distribution with a rate equal to the product of the length of 
the sequence and the neutral mutational rate ( µneut ). Then the time is updated. When 
the elapsed time is longer than the branch length, the number of events is the number 
of mutations associated with such a branch. The genotype of a sample is retrieved by 
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enumerating the edges of the paths between the given ancestral genome and the sam-
ple itself, and associating to it all the mutations present on the edges of the path. Note 
that in this case each branch is considered independent and each mutation is considered 
unique, for this reasons back-mutations or multiple hits are not possible. This approxi-
mation is useful to have fast simulations where the genome is very long, the mutational 
rate is very low, and the total simulated time is long.

In the case of finite-sites models, J-SPACE takes as input the matrix of instantaneous 
rates for different substitution models and, for each branch of the phylogenetic tree, the 
evolution of the genome is evaluated. Given a branch between two nodes, we start from 
the sequence of the parent cell and set the time t equal to 0. Then, we evaluate the total 
substitution rate for the entire sequence as the sum of the rate of all possible events, i.e.:

where L is the length of the sequence, s(k) is the state on the sequence at position k, qs(k),i 
is the rate of substitution from the azotate base s(k) to the base i per unit of time, and 
µindel is the indel rate per site per unit of time. Subsequently, the time τ of the next event 
is picked randomly from an exponential distribution with rate R, and the type of event is 
randomly chosen with a probability proportional to its total rate. For example, the prob-
ability that a substitution C>T is chosen is PC>T =

L
k=1 qC ,T /R . After that, the time 

is updated to t = t + τ and the rate and the sequence are updated. The simulation is 
continued till the elapsed time t is longer than the branch length. This procedure is per-
formed on each branch of the phylogenetic tree starting from to the root and moving 
toward the leaves (i.e., the samples).

In the case the event is an indel, following [54] we suppose that its length has a size 
distributed as a Lavalette law, where the probability of having an indel of length l is pro-
portional to [lLindel/(Lindel − l + 1)]−a . In this case the user should give the maximum 
possible length of an indel Lindel and the parameter a of the Lavalette distribution. Since 
this exact simulation is very time consuming, and possible only for small trees, it is pos-
sible to simulate the substitutions and the indels as independent processes [53, 54]. In 
this case J-SPACE compute the SNVs with a substitution model, and afterwards the 
indels are generated along phylogenetic tree branches as before.

J-SPACE implements the following substitution models: JC69 [56], F81 [57], K80 [58], 
HKY85 [59], TN93 [60], and K81 [61].

To simulate the SNVs, it is also possible to generate a time-dependent trinucleotide 
substitution model starting from the Single Base Substitution (SBS) signatures present 
in the COSMIC database [71]. In this case, the user should specify the of list of desired 
signatures (i.e., their label in the COSMIC database S1, . . . , Sn ), an average mutational 
rate per trinucleotide per unit of time µavg , and the activities Ai(t) of each signature such 
that ∀t

∑

i Ai(t) = 1 . The i-th signature is specified by a vector Pi that contains the 96 

(1)R =

L
�

k=1



µindel +
�

i∈{A,T ,C ,G}�=s(k)

qs(k),i



,
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probabilities of each possible substitution in the trinucleotides context Pi
N [K>M]P , where 

N ,P ∈ {A,C ,G,T } , K ∈ {C ,T } , and K  = M ∈ {A,C ,G,T }1. The rate of each of the 96 
possible substitutions is evaluated as a linear combination between the selected signa-
tures using their activities as weights summed to a background uniform mutational pro-
cess P0 , i.e.,

where nNKP is the number of the trinucleotides with the nucleotide sequence NKP and 
ξ is a user-defined shrinkage coefficient weighing the signatures against the background 
(e.g., if ξ = 1 all the SNVs will be due to the mutational signatures, if ξ = 0 all the muta-
tions will be due to the uniform background mutational process). After the generation 
of the rate matrix, J-SPACE generates the SNVs with the same computational scheme of 
the previous case (i.e., the Doob-Gillespie algorithm among the branches of the phylo-
gentic tree). Since it was observed that the exposure of the signatures can change during 
cancer development [28], in J-SPACE it is possible to simulate piece-wise variations of 
Ai(t) . In this case, the user should specify (i) a time vector that represents the change 
points of the signature activities and (ii) the values of all the Ai(t) for each time interval.

As a final step, J-SPACE returns the sequences of all samples cells in FASTA format 
and the related mutation list in textual format.

Simulating DNA‑sequencing

In-silico simulation of NGS data is an expanding field and various simulation tools have 
been developed [72]. Most tools take as input: (i) a genetic sequence (e.g., a reference 
genome), (ii) a set of parameters related to the experimental protocol (e.g., read length) 
and/or (iii) an error model, which may include sequencing errors, PCR artefacts, experi-
mental biases, insertion errors,deletion errors and other [50, 73–77]. In some cases the 
error models are parameterised empirically from large existing datasets, in other cases 
they can be generated in a custom way. Importantly, in the former case the error model 
is platform-dependent, but it allows one to avoid ad hoc arbitrary parameterisations.

For this reason, in order to simulate the reads of a sequencing experiment, J-SPACE 
relies on the widely-used ART​ NGS reads simulator [50], which allows one to automati-
cally set the parameters tailored to specific sequencing platforms. More in detail, the 
user can supply a separate configuration file to specify the error model (for Illumina 
platforms), the number of reads, the length of the reads, and whether the experiment 
uses single-end or paired-end/mate-pair reads. In addition, it is possible to insert cus-
tom ”calls” to ART​ in the configuration file. After the execution, J-SPACE returns the 
simulated reads as FASTQ file for each cell, and the alignment map of the sampled cells’ 
reads over the genome in SAM and/or ALN format. Note that, in principle, the user can 

(2)RN [K>M]P = µavg · nNKP

[

(1− ξ)P0 + ξ

n
∑

i=1

Ai(t)P
i
N [K>M]P

]

,

1  There are 96 possible substitutions because, in the signature discovery process, only the pyrimidines are considered. 
Accordingly, there are only six different possible substitutions C>A, C>G, C>T, T>A, T>C, and T>G and, if we consider 
two flanking bases, we have 96 classes of substitution.



Page 11 of 19Angaroni et al. BMC Bioinformatics          (2022) 23:269 	

generate the FASTA of the samples without calling ART and could use them as input for 
other NGS simulation tools that take FASTA files as input.

Results
We performed different experiments, inspecting different scenarios. We carried out 
tests to study the cellular dynamics both in 2D and 3D, for different values of driver 
probability, and for different interaction rules. We analysed the computational time, the 
influence of spatial constraints on cellular growth and on the molecular evolution of the 
sequences. Finally, we performed tests to confirm the possibility of using the synthetic 
NGS reads generated by J-SPACE as input for a single-cell variant calling pipeline. The 
pipeline and the simulations are available at: https://​github.​com/​BIMIB-​DISCo/J-​Space.​
jl/​tree/​main/​Exper​iments.

Computational time

To assess the performance of J-SPACE, we measured the computational time necessary 
to simulate the dynamics and the molecular evolution of many in-silico scenarios.

First, we run 50 simulations in a 3D regular graph with 106 nodes, with a maximum 
time of 200 units, a birth rate = 0.4 per unit of time per cell, death rate = 0.01 per unit of 
time per cell, using the contact process and driver probability µdri = 0 per birth event. 
Results are presented in Fig. 3A. The computational time increases exponentially with 
respect to the number of simulated cells. However, J-SPACE is able to generate more 
than 105 cells in about one hour.

To evaluate the time necessary to generate the phylogenetic tree from the list of the 
samples, we simulated the evolution of a single tumour on a 3D regular lattice with 
10000 nodes, with maximum time of 300 units, birth rate for unit of time = 0.4 , death 
rate for unit of time = 0.01 , using a contact process, and performed 150 independent 
samplings, with different sample sizes (10, 100 and 1000 cells, with 50 repetitions each). 
The distribution of the computational time required to generate the phylogenetic trees 
related to each sampling is shown in Fig. 3B.
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Fig. 3  Performances assessment. A The distribution of computational time in seconds to perform the 
simulation described in the text with respect to distinct sample size (over 50 simulation per configuration). 
B The distribution of computational time in seconds to generate the phylogenetic tree with respect to 
different sample size (over 50 simulation per configuration). C Distribution of computational time in seconds 
to generate the sequences for the phylogenetic trees above, with respect to distinct sample size (left) and 
genome length (right). In the top row, we present the results of the ISA-based model, in the bottom row we 
show the results of a finite-sites model (JC69) with indels (see the main text for further details)

https://github.com/BIMIB-DISCo/J-Space.jl/tree/main/Experiments
https://github.com/BIMIB-DISCo/J-Space.jl/tree/main/Experiments
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Moreover, for each of the 150 output trees, we evaluated the computational time nec-
essary to simulate the genetic sequences, with distinct genome length ( 103 , 104 , 105 and 
106 ). The evaluation was carried on by comparing the ISA-based simulation versus the 
case of independent simulation of SNVs and indels2.

The results are presented in Fig. 3C (in all cases, the depth of the trees was normalised 
to 1 [53, 54]). As expected, the infinite-sites model is orders of magnitude faster than the 
finite-sites model with indels. In addition, the length of the genome leads to a limited 
increase of the computational load, whereas the computational time increases exponen-
tially with respect to the number of samples. Summarising, we show that J-SPACE is able 
to simulate long genome sequences ( ≈ 106 nucleotides) and thousands single cells in a 
reasonable time. All the computation was performed on a Intel(R) Xeon(R) Gold 6240 @ 
2.60GHz.

Analysis of cancer spatial dynamics and phylogenetic models

We simulated the dynamics of 240 tumours with different driver mutational rates, inter-
action rules and in both in the 2D and 3D square regular lattice with 5041 and 5832 
nodes respectively. The birth rate was set to α = 0.4 per unit of time, death rate β = 0.01 
per unit of time, driver mutational probabilities µdri = {0, 10−4, 10−6, 10−8} per unit of 
time, and for a total of 200 units of time.

We analysed the dynamics of the number of cells. In Fig.  4A, one can observe the 
probability distribution and the expected value of the number of cells for different types 
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Fig. 4  Analysis of cancer spatial dynamics and phylogenetic models. A The dynamics of the probability 
distribution of the number of cells is presented, divided by lattice dimensionality (2D or 3D). The dotted lines 
represent the expected values.B Box plots representing the distribution of the inferred steepness values of 
logistic growth are presented. C–D The distribution of the of the Sackin index and Beta-splitting statistic, 
evaluated on the trees divided by interaction rules and lattice dimensionality

2  Mutational rate of µneut = 10
−6 for the ISA-based case; JC69 model with µ = 10

−6 per unit of time, with maximum 
indel length of Lindel = 100 bases, and µindel = 10

−8 per unit of time, and Lavalette parameter a = 0.5 , for the latter 
scenario.
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of lattices. The expected number of cells in a BD process on a lattice follows a logistic 
growth of the number of cells [63]. We fitted the dynamics of every single run with a 
logistic curve, and we analysed the distribution of the steepness of such growths Fig. 4B. 
It is possible to notice that the 3D case has faster growth with respect to the 2D case. 
This is because in the 3D case, there are more possibilities for cells to replicate. To give 
a characterisation of the selective pressure between the cells present in the generated 
tumours and the deviations with respect to a non-spatial simulation, for each of the pre-
vious tumours we sampled 100 cells, and we reconstructed their phylogenetic trees. We 
evaluated the trees balance via the Sackin index (normalised with respect to the pure 
birth process with no spatial constraints, i.e., the Yule model) [78, 79]. As one can see 
in Fig. 4C, the distribution of the Sackin index shows that each contact rule has a devia-
tion with respect to the expected Yule model due to the presence of spatial constraints 
and we notice a strong difference between the 2D and 3D cases. This result is likely due 
to the fact that the normalised Sackin index considers a star-tree as more balanced with 
respect to with a fully symmetric tree [80]. For instance, the 2D case has a higher genetic 
drift due to the spatial constrains and exhibits a star-like structure.

We also measured the Beta-split statistic [79, 81], which evaluates the diversification 
rates between cells, and the results are presented in Fig. 4D. We observe that the hier-
archical voter model shows a more substantial diversification rate, due to the strong 
advantage of bearing driver mutations.

Analysis of synthetic sequencing data

We simulated a single tumour using an hierarchical voter process in a 3D square regu-
lar lattice with 42875 nodes. The death rate was set to β = 0.01 per unit of time, the 
driver mutational probability to µdri = 0.01 per unit of time, for a total of 200 units of 
time. In this case, we fixed a linear mutational tree with 4 driver mutations. The birth 
rate of each subpopulation and the mutational tree are presented in Fig. 5. In the same 
figure, we also show the cell population dynamics. It is possible to notice that the last 
subpopulation performs a clonal sweep in the latest part of the simulation. From this 
tumour, we sampled 100 cells and we present the related phylogenetic tree (Fig.  5B). 
The tree has a very long initial branch ( ≈ 82 time units), due to the fact that we sam-
pled only cells of the subpopulation 4 and that the least common ancestor of such cells 
is the first cell bearing the corresponding driver mutations. For this tree, we generate 
the sequences of the samples with three different substitution models, composed by 
distinct linear combinations of signatures SBS6 (a mutational process associated with 
defective DNA mismatch repair) and SBS22 (associated to the exposure to aristolochic 
acid) with different activation functions. In detail, we imposed: i) a constant activity for 
both signatures with values of ASBS6(t) = 0.5 and ASBS22(t) = 0.5 , ii) the presence of a 
change-point of the activities at 100 units of time, i.e., in the first time span only SB22 is 
active ASBS6(t < 100) = 0 and ASBS22(t < 100) = 1 , in the second time span the activa-
tions are exchanged, i.e., ASBS6(t ≥ 100) = 1 and ASBS22(t ≥ 100) = 0 , iii) an opposed 
time-dependent activation pattern with respect to the previous one (see Fig.  5B). The 
other parameters of the simulation are the following: an ancestral genome with 10000 
bases with following composition νA = 0.3 , νC = 0.2 , νG = 0.2 , νT = 0.3 , the average 
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mutational rate µavg = 10−3 per trinucleotide and unit of time, the ratio between signa-
ture mutation and background of ξ = 0.8.

In Fig. 5C, we present the counts of the number of unique mutations divided per class 
of substitution. In this plot it is evident the effect of the change-point in the activities of 
the signatures. In particular, due to the structure of the phylogenetic tree (with a very 
long initial branch), the number of unique SNVs related to the signature that is activated 
at t < 100 is smaller with respect to the other signature. This behaviour is expected and 
shows that, with J-SPACE, it is possible to study the combination of spatial dynamics, 
clonal evolution and time-dependent substitution models.

Finally, for all the samples of the previous examples, we simulated an Illumina HiSeq 
2500 paired-end sequencing experiment, with 100 average reads per cell, mean read 
length = 100 bases, and DNA fragment size of = 200± 10 bases.

Fig. 5  Variant calling with different mutational signatures. A An example dynamics of the number of cells 
for each subpopulation generated during the simulation. The bottom part of the panel presents the input 
driver mutational tree with the birth rate for each subpopulation. B At the top we present the phylogenetic 
tree generated by sampling 100 cells. We proceeded by simulating three different substitution models 
generated combinations of signatures SBS6 and SBS22 from the COSMIC database [71]. The difference 
between the three models consists in the time dynamics of the activation functions presented in this figure. 
C The count of the number of unique mutations simulated divided per class of substitution. The plot presents 
the result for the three different models. D The count of the number of unique mutations divided per class of 
substitution detected using the pipeline described in the main text
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To analyse the FASTQ files so generated, we used the following bioinformatics pipe-
line. First, we created the indexing and dictionary of the reference FASTA.

Second, the paired-end reads (FASTQ) were aligned using BWA-mem2 [6], and 
duplicate reads of a sequence fragment originated from PCR duplication artefacts were 
removed.

Third, SNVs and indels calling was performed followed by a standard set of filtering 
steps.

Fourth, we retrieved the count of the number of unique mutation simulated divided 
per class of substitution from the VCF files. The plot is presented in Fig.  5D. We see 
how with this experiment we detect a smaller number of mutations, either due to the 
poor quality or the low coverage. However, in this experimental scenario it is possible to 
observe the same effect described in the GT case (see Fig. 5C). The complete simulation, 
the variant calling pipeline, the FASTQ, the BAM/SAM, the GT sequences of the sam-
ples, the phylogenetic tree, and the VCF files can be downloaded at: https://​github.​com/​
BIMIB-​DISCo/J-​Space.​jl/​tree/​main/​Exper​iments/​Exper​iment_​Pipel​ine.

Conclusion
We introduced J-SPACE, a framework to simulate the spatial dynamics of a multi-cellu-
lar system and, especially, of tumour subpopulations. J-SPACE is specifically designed 
to efficiently simulate the heterogeneous behaviour of the spatial growth of cancer cells 
and returns a rich output, which is useful to analyse the emergent dynamics, the con-
sequences of incomplete spatial sampling and those of experiment-specific errors. We 
tested the outputs in various in-silico scenarios to test if J-SPACE replicates the influ-
ence of spatial constraints on cellular growth and on the generated phylogenetic trees. 
Finally, we showed how is possible to use the synthetic NGS reads generated by J-SPACE 
as input for a single-cell variant calling pipeline. Accordingly, J-SPACE can be used to 
produce synthetic datasets to test bioinformatics tools that process either bulk or single-
cell cancer sequencing data. J-SPACE is distributed as a Julia package freely available to 
the community.

Several improvements of J-SPACE are underway, with the main objective of deliver-
ing a more biologically faithful representation of cancer evolution, including (but not 
limited to): (i) the design of evolutionary models of large structural variations, such as 
copy-number alterations and gene fusions, (ii) the definition of an explicit model of cell 
differentiation/specialisation, (iii) the simulation of the interaction between different cell 
types, including stroma and extra-cellular matrix, (iv) the modelling of external inter-
ventions, such as pharmacological treatments or therapeutic strategies.
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