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Propagation-based phase-contrast x-ray imaging (PB-
PCXI) generates image contrast by utilizing sample-imposed 
phase-shifts. This has proven useful when imaging weakly 
attenuating samples, as conventional attenuation-based 
imaging does not always provide adequate contrast. We 
present a PB-PCXI algorithm capable of extracting the x-
ray attenuation � and refraction �, components of the 
complex refractive index of distinct materials within an 
unknown sample. The method involves curve fitting an error-
function-based model to a phase-retrieved interface in a 
PB-PCXI tomographic reconstruction, which is obtained 
when Paganin-type phase retrieval is applied with incor-
rect values of � and �. The fit parameters can then be 
used to calculate true � and � values for composite materi-
als. This approach requires no a priori sample information, 
making it broadly applicable. Our PB-PCXI reconstruction 
is single-distance, requiring only one exposure per tomo-
graphic angle, which is important for radiosensitive samples. 
We apply this approach to a breast-tissue sample, recover-
ing the refraction component �, with 0.6–2.4% accuracy 
compared with theoretical values. 

Attenuation-based x-ray radiography relies on absorption and
scatter of x-rays traversing a material. In attenuation regimes, the
registered intensity images are proportional to the negative expo-
nential of the object’s projected linear attenuation coe�cient,

µ(r), along straight-line ray paths [1]. Attenuation-based tech-
niques can be used to image objects whose projected attenuation
varies significantly over the detector plane, but this approach is
insu�cient when this variation is small. Phase-contrast x-ray
imaging (PCXI) [2–11] is a non-destructive imaging method
that has proven particularly useful in imaging weakly attenuat-
ing samples. PCXI techniques, including grating-based [4,12],
analyzer-based [2,3,5,13], interferometric [6], edge-illumination
[11,14], and propagation-based (PB-PCXI) [7–9] approaches,
consider refraction e�ects, described by �(r), as well as atten-
uation, described by �(r), where n(r) = 1 � �(r) + i�(r) is the
complex refractive index, as a function of position r.

PB-PCXI, achieved using the setup in Fig. 1, visualizes phase-
contrast e�ects via Fresnel di�raction fringes [7,10] formed
during free-space propagation of transmitted x-rays. PB-PCXI
phase-retrieval algorithms are often employed to obtain pro-
jected phase, attenuation, or thickness information from the
detector-measured intensity. Paganin et al. [15] derived a noise-
robust deterministic phase-retrieval method for PB-PCXI, for
the case of a single-material object. This algorithm requires a

priori sample knowledge via an input parameter � = �/�. The
approach in Ref. [15] is single-exposure, which becomes impor-
tant when imaging radiosensitive samples, as radiation dose can
be diminished. Such phase-retrieval algorithms have also proven
to increase the signal-to-noise ratio [16–19].

Paganin et al.’s [15] phase-retrieval algorithm has been
extended to allow for multi-material objects [16] and par-
tially coherent sources [17]. Beltran et al. [16] reported a
computed tomography (CT) PB-PCXI algorithm capable of
correctly phase-retrieving pairs of adjacent materials within a
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Fig. 1. Schematic of experimental setup for PB-PCXI.

multi-material object. However, this algorithm requires a pri-

ori knowledge of the complex refractive index for each material
present in the sample, limiting its application when the exact
sample composition is unknown. Thompson et al. [20] used
the homogeneous form of the transport of intensity equation
[21], in a similar way to Paganin et al. [15], to derive a three-
dimensional phase-retrieval algorithm for PB-PCXI CT data. In
this Letter, we extend these two- and three-dimensional algo-
rithms [15–17,20] to the case of multi-material objects, aiming
to independently extract refractive and absorption properties
without a priori sample knowledge. The proposed method may
be viewed as a deterministic multi-material extension of the iter-
ative single-material method for electron microscopy described
in Eastwood et al. [22].

We begin with Eq. (18) from Thompson et al. [20], which
describes the three-dimensional distribution of the � component
of a single-material object’s complex refractive index, which can
be transformed to the � component since � = �/� is constant:

�Recon.(x, y, z) = (1/2k)
⇥
1 � ⌧r2⇤�1 <F2K✓ (x, y, z). (1)

Here, < is the filtered back-projection (FBP) operator [23], F2
is the two-dimensional Fourier transform, K✓ (x, y, z) is the in-
line contrast function at sample angular orientation ✓ [20], and
r2 = @2/@x2 + @2/@y2 + @2/@z2 is the Laplacian. ⌧ is related
to the phase-retrieval input parameter, �, for a single-material
object, via ⌧ = sdd ��/(M4⇡), where sdd is the sample-to-
detector propagation distance, � = 2⇡/k is the x-ray wavelength,
where k is the x-ray wavenumber, M = 1 + sdd/ssd is the
sample magnification due to divergent x-rays, and ssd is the
source-to-sample distance.

Equation (1) can model a profile of the reconstructed �Recon.
across an interface between two materials, here denoted as mate-
rials ↵ and ⌘, by making the replacement of the phase-retrieval
parameter ⌧ with ⌧edge, where we now define �edge as [24]

�edge =
⇥
�↵ � �⌘

⇤
/
⇥
�↵ � �⌘

⇤
. (2)

Furthermore, consider Eq. (1) in the case where �edge is
selected incorrectly for the given pair of interfaces within a
multi-material object. We denote the correct input parameter by
�edge and the incorrect parameter by �0edge, and follow the same
convention for ⌧edge. The value for �0edge will result in under-
or over-smoothed interfaces in the reconstructed CT image. To
consider these e�ects, we follow Beltran et al. [16], and apply
the operator [2k(1 � ⌧edger2)/2k(1 � ⌧0edger2)] to both sides of
Eq. (1). This operator describes the non-step-like behavior seen
at material interfaces when �edge is selected incorrectly, with
�0edge. Applying this operator, and retaining terms of only first
order in r2 in the Taylor series expansion of the left-hand side,

Fig. 2. Line profiles, modeled using the right-hand side of Eq. (5),
demonstrating (from left to right, first lower curve) under-smoothing
and (upper curve) over-smoothing e�ects of phase retrieval, in algo-
rithms implemented within CT reconstruction. The middle trace
demonstrates correct phase retrieval.

gives ⇥
1 + (⌧0edge � ⌧edge)r2⇤ �True(x, y, z) =

(1/2k)
⇥
1 � ⌧0edger2⇤�1<F2K✓ (x, y, z). (3)

The right-hand side of this expression represents the recon-
structed three-dimensional distribution of the attenuation coef-
ficient, �Recon.(x, y, z), for an incorrect ⌧0edge.

To proceed, consider Eq. (3) in one transverse direction,
x, such that two materials ↵ and ⌘ are spanned. Under this
consideration, the correct reconstructed attenuation coe�cient,
�True(x, y, z), in Eq. (3), that is, with no over- or under-smoothing
e�ects, can be modeled by an error function, given by the form

�True(x) =
�↵ + �⌘

2
+
�⌘ � �↵

2
erf

⇣
x � x

o

l

⌘
. (4)

Here, �↵ and �⌘ are the uniform values of � taken on either
side of the interface (outside of the PB fringe), l is the interface
width, x is the position coordinate in a direction perpendicular
to the interface located at x = x

o

, and erf(x) represents an error
function, as defined in Eq. (7.1.1) of Abramowitz and Stegun
[25]. The error function comes from convolving a step function
(sharp interface) and a Gaussian. This Gaussian can describe
either the imaging system point-spread function (PSF) [26] or
an interface that is not perfectly sharp, owing to mixing of the
two materials at the interface. The middle curve in Fig. 2 plots
Eq. (4), describing a profile across an interface within a phase-
retrieved CT reconstruction, for the case where �edge is chosen
correctly for the two materials making up that interface.

Substituting Eq. (4) into the left-hand side of Eq. (3) takes us
to a relationship between the incorrect ⌧0edge and the true value,
⌧edge, for a given phase-retrieved CT line profile, �Recon.(x),

�Recon.(x) =
�
�↵ + �⌘

�
2

+

�
�⌘ � �↵

�
2

erf
⇣
x � x

o

l

⌘
+

C

⇣
x � x

o

l

⌘
exp

✓
� (x � x

o

)2
l

2

◆
, (5)

where the coe�cient C is derived to be

C =
4(�⌘ � �↵)(⌧edge � ⌧0edge)

2l

2
p
⇡

. (6)

Equation (5) can model the residual edge enhancement (under-
smoothing) and over-smoothing e�ects across an interface that is
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produced by an incorrect choice for �edge [16,26]. The first lower
curve (from left to right) in Fig. 2 demonstrates how a positive
value of C in Eq. (5) models residual edge enhancement at the
boundary of two materials. In the contrary case, the first upper
curve (from left to right) in Fig. 2 demonstrates the e�ect of over-
smoothing, with a negative coe�cient C. Equations (5) and (6)
can be used, in conjunction with curve-fitting techniques, to
(i) determine the correct �edge for a given boundary in a multi-
material sample and then (ii) reconstruct � and � for composite
materials. The latter task can be achieved via a set of linear
equations, with one equation per class of sample interface in
the form of Eq. (2), which can then be uniquely solved for � for
each composite material in the object. �↵ � �⌘ in Eq. (2) can be
directly measured from reconstructed CT slices, as variations of
�edge do not a�ect reconstructed � values far away from the given
interface [27]. Moreover, initial guesses for the curve-fitting
algorithm of fit parameters, including x0, and l in Eq. (5) can be
extracted from the raw line-profile data across a phase-contrast
edge. To uniquely solve the system of linear equations, and
extract � for all composite materials in the sample, the following
criteria should be met: (i) The number of unique interfaces in
the sample has to be greater than, or equal to, the number of
composite materials. (ii) One reference material, for which � is
known, is required. The reference material can be vacuum, where
� = 0. Usually the sample is surrounded by either air (�air ⇡ 0)
or a known material, so this is not an onerous requirement.

Our algorithm was applied to CT of a breast-tissue sam-
ple, shown in Fig. 3; this is the same dataset that is labeled
“Tissue 5c” in Gureyev et al. [28]. The tissue was inside
a polypropylene tube, material 1 in Fig. 3. The experimen-
tal CT data were collected at the Synchrotron Radiation for
Medical Physics (SYRMEP) ELETTRA Beamline. A 20 keV
quasi-monochromatic x-ray beam illuminated the sample, which
was fixed on a rotation stage, with ssd = 23 m and sdd = 1 m.
The detector was a water-cooled CCD camera (Photonic Sci-
ence model VHR), 4008 ⇥ 2672 pixels full-frame, used in 2 ⇥ 2
binning mode (resulting in a pixel size of 9µm), coupled to a
gadolinium oxysulfide scintillator placed on a fiber optic taper.

CT reconstructions, employing a Hamming filter in filtered
back projection (FBP), were performed using the XTRACT
[29] implementation of Paganin et al.’s single-material phase-
retrieval algorithm [15], using �edge = 350. One reconstructed
CT axial slice is shown in Fig. 3. Six line profiles, labeled
I–VI in Fig. 3, were drawn across unique interfaces in the
phase-retrieved CT slice. This initial choice of �edge = 350 cor-
rectly reconstructed interfaces IV and V; however, residual edge
enhancement was seen across interfaces I, II, III, and VI. The
figures on the left of Fig. 4 show raw and fitted line pro-
files I, II, and VI, taken between air, labeled 4 in Fig. 3, and
composite materials, labeled 1, 2, and 3, in the breast-tissue
sample. Curve fits to Eq. (5) were performed using a Leven-
berg–Marquardt algorithm [30], and the fit coe�cients were
extracted. These fit data were then used to calculate the correct
�edge for each interface, giving: �edge:I = 2500 ± 100, �edge:II =
1430 ± 90, �edge:III = 2000 ± 1000, �edge:IV = 350 ± 20, �edge:V =
350 ± 20, and �edge:VI = 2900 ± 200. Here, the uncertainties
were calculated using propagation of the one-standard-deviation
errors of the curve-fit coe�cients. CT reconstructions using each
of these �edge input parameters were performed, where the cor-
responding � for the optimized materials, either side of the
interface, could be measured. Instances of Eq. (2) for each inter-
face in the sample established a set of linear equations that

Fig. 3. PB-PCXI CT of a breast-tissue sample. Composite mate-
rials polypropylene, adipose, glandular tissue, and air are labeled
1, 2, 3, and 4, respectively. Arrows I–VI denote line profiles taken
across various interfaces in the sample.

Table 1. Coefficients of Index of Refraction of Compos-

ite Materials of Breast-Tissue Sample: 20 keV X-Rays

1, polypropylene 2, adipose 3, gland
Calculated �(⇥107) 5.0 ± 0.3 5.4 ± 0.3 5.8 ± 0.4
Theoretical �(⇥107) 5.03 5.36 5.94
�: % di�erence 0.60% 0.75% 2.4%
Calculated �(⇥1010) 1.77 ± 0.04 2.17 ± 0.04 3.9 ± 0.1
Theoretical �(⇥1010) 1.82 2.54 3.96
�: % di�erence 2.8% 15% 1.5%

could be uniquely solved. In our case, the resultant system of
linear equations was over-determined, hence QR factorization
was used to give a least-squares solution [30] for the refractive-
index decrement, �, for composite materials in the breast tissue.
In these calculations �4 ⇡ 0 and �4 ⇡ 0, since material 4 is known
to be air, satisfying criterion (ii).

Table 1 shows the calculated, and theoretical [28,31], com-
ponents of the index of refraction for composite materials in
the breast tissue. Our approach determined the refractive-index
decrement, �, to, at worst, 2.4% accuracy. The small discrepan-
cies are thought to be due to small intrinsic di�erences typically
seen in identical biological samples. Note that the e�ects of
residual phase contrast were utilized in this analysis, i.e., edge
enhancement at boundaries that remain after the phase retrieval
has been performed. While our model, in principle, can admit
negative C values, that is, model over-smoothed interfaces,
the reconstruction proposed here is more robust in a regime
with under-smoothed interfaces, seen also in Eastwood et al.’s
electron microscopy phase-retrieval algorithm [22].

An interesting avenue for future work would be to extend the
analysis of this paper to a laboratory-based x-ray source, which
is polychromatic and has finite source size. Regarding polychro-
maticity, the algorithm of Paganin et al. [15], which underpins
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Fig. 4. Line profiles across interfaces in breast-tissue CT. Refer-
ring to Fig. 3: (top) line profile VI, (middle) line profile I, and
(bottom) line profile II are (left) taken from the incorrectly phase-
retrieved CT image with �edge = 350, and (right) taken when the
correct �edge for the given interface was used: (b) �edge = 2900,
(d) �edge = 2500, (f) �edge = 1430.

the work presented here, has been generalized to the case of poly-
chromatic illumination, for weakly absorbing samples [32,33].
The mathematical form of the polychromatic phase-retrieval
method is unchanged by this extension, with material-dependent
constants being replaced with suitable spectral sums. Hence our
method may be translated to polychromatic sources, if they are
su�ciently spatially coherent and the sample is weakly absorb-
ing. Moreover, e�ects of finite source size can be accounted
for by the replacement � ! � � (4kS

2/sdd) [17], where S is the
radius of the e�ective incoherent PSF at the detector plane.
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