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We analyze the phase transition in improved holographic QCD to obtain an estimate of the
gravitational wave signal emitted in the confinement transition of a pure SU(3) Yang-Mills dark sector.
We derive the effective action from holography and show that the energy budget and duration
of the phase transition can be calculated with minor errors. These are used as input to obtain a
prediction of the gravitational wave signal. To our knowledge, this is the first computation of the
gravitational wave signal in a holographic model designated to match lattice data on the thermal
properties of pure Yang-Mills.
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I. INTRODUCTION

First order phase transitions (FOPT) in the early universe
emitting gravitational waves (GWs) are detectable in
upcoming experiments [1–3], and would be clear hints
for new physics since the electroweak and QCD PTs in the
standard model are cross-overs. These GWs might allow us
to probe the dynamics of otherwise inaccessible dark or
hidden sectors [4–6]. SU(N) Yang-Mills theories are known
to feature a color confinement FOPT [7,8], and they appear
in many extensions of the standard model [9–17]. These
scenarios are minimal in the sense that the confinement
scale is their only free parameter, and thus ideal as
benchmark models. However, due to the strong coupling,
nonperturbative methods are needed for quantitative studies
of the dynamics.
Here we employ the AdS=CFT correspondence [18,19]

in a bottom-up framework. We use the improved holo-
graphic QCD model [20,21], which successfully reprodu-
ces lattice data of SU(3) thermodynamics [22,23], to
calculate the equilibrium and quasiequilibrium quantities
relevant for GWs. Previous attempts to study the GW signal
in such models include Refs. [24–31].
The outline of this work is as follows. We will start by

reviewing improved holographic QCD and compute the
equilibrium thermodynamics of the model. We will then
construct an effective action by using the free energy

landscape approach [25,26,32–34]. For the kinetic term
of the effective action, we follow the approach of [34]
regarding its normalization. We use our effective action to
calculate the GW signal by using the LISA Cosmology
Working Group [35] template for the PT parameters
β; α; vw; κðαÞ. Finally, we will discuss our results and some
future prospects.

II. REVIEW OF IMPROVED HOLOGRAPHIC QCD

Improved holographic QCD (IHQCD) [20–23] is a
bottom-up 5-D theory inspired by noncritical string theory,
that describes the gluon sector of Yang-Mills theories. The
model is constructed in such a way to reproduce various
features of QCD, for instance, linear confinement, a
qualitative hadron spectrum, asymptotic freedom in the
UV, and a finite temperature phase diagram that matches
SUðNcÞ Yang-Mills theory. Here we will limit ourselves to
a pure gluonic sector, but the inclusion of flavor and chiral
symmetry breaking is possible by introducing tachyonic
D-branes, as well as an axion. Moreover, we will fit the free
parameters of the model comparing with lattice calculations
of SU(3) Yang-Mills. We plan to extend our results to other
values of Nc in a future publication. In our equations, we
will not impose Nc ¼ 3 in the expressions which are valid
for every Nc. The model consists of a metric gμν dual
to the energy-momentum tensor, the dilaton Φ dual to
(λYM; TrF2) and an axion dual to (θYM; TrF ∧ F). The
axion part of the theory can be neglected here, as our
interest lies in the thermodynamics mainly. The action for
the axion is N−2

c suppressed. In the Einstein frame, the 5-D
action which describes this model both at zero and finite
temperature is given by
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where Mp is the plank mass, Nc is the number of colors,
R the Ricci scalar, g the metric and VðΦÞ is the dilaton
potential. The second term in the action is the Gibbons
Hawking term that depends on the induced metric h on the
boundary, and K is the extrinsic curvature

Kμν ¼ ∇μnν ¼
1

2
nρ∂ρhμν; K ¼ habKab: ð2Þ

Since this is a boundary term it does not affect the solutions
to the equations of motion in the zero-T theory, but in the
finite T case it plays a pivotal role for providing with a
holographically renormalized action [36,37]. For the dila-
ton potential we take the ansatz [23]:

V ¼ 12

l2
ð1þ V0λþ V1λ

4
3ðlog½1þ V2λ

4
3 þ V3λ

2�12ÞÞ; ð3Þ

where λ ¼ expðΦÞ, and l is the AdS length that sets the
scale of the fifth dimensional coordinate. The parameter V0

and V2 are related to the coefficients of the SU(3) YM
β-function

V0 ¼
8

9
b0; V2 ¼ b40

�23þ 36 b1
b2
0

81V1

�2

; ð4Þ

with b0 ¼ 22=ð3ð4πÞ2Þ and b1=b20 ¼ 51=121. These values
depend on setting λ equal to the ’t Hooft coupling of the
YM theory in the UV. Other normalizations are possible,
but do not influence the physical results [23]. The free
parameters V1, V3 are set in order to fit lattice results for the
thermodynamical properties of the model: [23]

V1 ¼ 14; V3 ¼ 170: ð5Þ

At finite temperature, after going into imaginary time and
compactifying time on a circle β ¼ 1=T, we identify two
types of solutions. The first reads

ds2 ¼ b20ðrÞðdr2 − dt2 þ dxmdxmÞ; ð6Þ

and corresponds to a thermal gas at a temperature T. Here r
is the coordinate of the fifth dimension, and b20ðrÞ is a scale
factor. This is the same metric as in the case of the zero T
solution [20,21] except for the identification of time being
compactifield t ∼ tþ iβ. The second solution is a AdS
black hole (BH) metric

ds2 ¼ b2ðrÞ
�
dr2

fðrÞ − fðrÞdt2 þ dxmdxm

�
; ð7Þ

where the “blackening” factor fðrÞ goes to 0 at the horizon
position rh. Regularity of the solution at the horizon implies
that

Th ≡ j _fðrhÞj
4π

¼ T; ð8Þ

where Th is the Hawking temperature of the BH. In the UV
(r → 0) the two solutions asymptotically coincide, and AdS
metric is recovered: b0ðrÞ ≈ l=r. In this setup, the AdS BH
metric represents the deconfined phase, and the thermal gas
solution corresponds to the confined phase [19].
For a given temperature T, there are either zero or two

values of rh which give a solution with Th ¼ T. These two
values identify two separate BH branches, one for small rh,
and correspondingly large bðrhÞ (big black holes branch),
and one at larger rh and smaller bðrhÞ (small black hole
branch), which is thermodynamically unstable. Below Tmin
there is no BH solution, and the confinement phase
transition must complete. The dilaton profile λðrÞ grows
monotonically from 0 at r → 0 to λ → ∞ at large r, and the
horizon position rh corresponds to a finite value λh. A
convenient choice is the dilaton frame [38], in which λ is
used as the radial coordinate along the fifth dimension.
The thermodynamical quantity which controls the phase

transition is the free energy difference between the BH
solution and the thermal gas one, which is defined as the
difference between the actions of the two solutions:

F ¼ β

V3

ðSdec: − Sconf:Þ: ð9Þ

The action is regularized with a cutoff at r ¼ ϵ → 0, and the
difference avoids the need for computing counterterms. The
sign of F indicates the energetically favorable phase, with
F < 0 corresponding to the deconfined phase. The critical
temperature Tc is defined at F ¼ 0. In practice, the free
energy can be computed by integrating the thermodynamic
relation dF ¼ −dS=dT along both black hole branches [22]:

F ¼ −
Z

λh

∞
bðλ̃hÞ3

dT

dλ̃h
dλ̃h: ð10Þ

Figure 1 shows the temperature and the free energy of theBH
solutions.
The entropy is given by the Hawking-Beckenstein

formula

S ¼ Area
4G5

¼ 4πM3
pN2

cV3bðrhÞ3; ð11Þ
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where G5 ¼ 1=ð16πM3
pN2

cÞ is the 5D Newton constant and
V3 is the volume of 3D space.
More details about the geometric properties of the solution

can be obtained as discussed in Sec. 7 of Ref. [22] and
summarized in the Appendix.

III. EFFECTIVE ACTION FROM HOLOGRAPHY

In order to study how the deconfinement phase transition
tookplace in the early universe,weneed to define an effective
action that we can use to compute the transition rate. The
qualitative picture is as follows. For T > Tc, the free energy
is minimized on the BBH solution. In the 4D picture, this
corresponds to a deconfined phase. At T < Tc, it becomes
energetically favorable to tunnel to the free gas solution,
corresponding to a confined phase. The phase transition
completes before the temperature redshifts below Tmin.
In lattice gauge theory or other phenomenological

approaches for understanding the confinement phase tran-
sition, the conventional order parameter is the vacuum
expectation value of the Polyakov loop. This exhibits a
discrete jump at confinement [39–41]. In our holographic
approach, instead, the most natural order parameter is the
horizon position λh. The effective potential for λh is
obtained using a free energy landscape approach, similarly
to Refs. [25,32–34] (see also [42] for an interesting
example applied to the Hawking-Page phase transition).
In this approach, one selects a direction in field space that
interpolates between the two BH solutions, assuming a
specific ansatz for the metric and field configuration, thus
reducing the problem of finding the bouncing solution to a
single field one [32]. In practice, we proceed as follows. At
a given temperature T, we construct field and metric
configurations as in Eqs. (6) and (7), with λh not restricted
to match the BBH or the SBH solutions. These configu-
rations satisfy the equations of motion, except for the
condition T ¼ Th, which will be satisfied only for the two
values corresponding to the BBH and SBH branches, and
violated otherwise. In the latter case, a conical singularity is

present at the horizon, and its contribution to the free
energy is obtained after regularizing it with a spherical cap
(more details are provided in the Appendix) [43]. The
condition posed by the equations of motion guarantee that
the chosen field configuration correspond to a local minima
of the action with respect to transverse oscillations. Strictly
speaking, this does not prove that other tunneling directions
do not exist, but we consider it as a good estimate of the
bounce action and a lower limit on the transition rate.
We obtain

Veffðλh; TÞ ¼ F ðλhÞ − 4πM3
pN2

cbðλhÞ3
�
1 −

Th

T

�
: ð12Þ

Here F is computed using Eq. (10) with Th in the integral.
Even though T ≠ Th, this relation can be used to compute
the action of a given field configuration. The same result
can be obtained from the UV asymptotics of bðλÞ, fðλÞ.
The result is shown in Fig. 2. We see that the potential
reproduces the expected features from the discussion
above. For T > Tmin the potential has a minimum corre-
sponding to the BBH solution, a maximum corresponding
to the unstable SBH, and another minimum at λh → ∞,
where the free gas solution is recovered. Below Tmin, the
latter is the only extremum.
The tunneling proceeds through the nucleation of a

bubble that interpolates between the BBH solution at
infinity and some unstable, singular configuration at the
center, rapidly decaying to the confined thermal gas phase.
The bounce solution goes through the unstable SBH
solution. This is the equivalent, in our setup, of the
Hawking-Page transition in 4D space-time, in which the

FIG. 1. Left: temperature as a function of the horizon position
λh. Right: free energy as function of temperature, along the two
BH branches.

FIG. 2. Thermal effective potential as a function of the horizon
position λh, for different temperatures T. The dashed line
represents the free energy density of the black hole
solution Eq. (7).
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SBH solution acts as an instanton connecting the BBH
solution to AdS space-time [44].
The other ingredient that we need in order to define an

effective action is the kinetic term. In principle, this can be
computed by evaluating the dilaton kinetic term and the
Ricci scalar term in Eq. (1) on a configuration as discussed
above, and extracting the term proportional to ð∇⃗λhðx⃗ÞÞ2,
where x⃗ and ∇x are the 3-space coordinates and spatial
derivatives. This is anyway a complicated task, which we
postpone for a future investigation. Here, we will assume a
kinetic term [34]

c
N2

c

16π2
ð∇⃗λhÞ2; ð13Þ

and we vary c in the range, 0.3–3. The dependence on the
kinetic term appears to be moderate, in contrast to what
happens in the regime of strong supercooling [45]. The
bounce action is the sum of Eqs. (12) and (13), computed
on the bounce solution:

SB ¼
4π

T

Z
drr2

�
c
N2

c

16π2
ð∂rλhðrÞÞ2þVeffðλhðrÞ;TÞ

�
ð14Þ

where we assumed an Oð3Þ symmetric action, as we are
interested in thermal tunneling. The bounce solution is
obtained using the shooting method with boundary con-
ditions λhðr → ∞Þ ¼ λBBHh and ∂rλhðrÞjr¼0 ¼ 0. We dou-
ble-checked our results using the publicly available code
FINDBOUNCE [46]. The tunneling rate per unit volume and
time is then [47]

Γ ¼ T4

�
SB

2π

�
3=2

e−SB : ð15Þ

IV. GRAVITATIONAL WAVES

We now turn our attention to the calculation of the GW
spectrum. The phase transition parameters that we need for
this estimate are the inverse duration of the phase transition in
units of the Hubble time β=H, the energy liberated during the
phase transition α, the kinetic energy of the bubble walls
κðαÞ, and finally the bubblewall velocity vw. In this work, we
only concern ourselves with the sound wave contribution to
the gravitational wave spectrum [48,49], also including the
suppression of having a short lived source [50–53]. We will
employ the templates presented in the works of the LISA
Cosmology Working Group [35,54].
In order to compute the GW spectrum, we need to

specify the energy scale of the theory. Pure Yang-Mills
theories are determined by a single energy scale, with all
other scales being proportional to this one. Equivalent
choices may be the mass of the lightest glueball, the strong
coupling scale Λ (defined as the energy at which the
perturbative coupling constant formally diverges), or the

critical temperature Tc. In SU(3) IHQCD, one finds m0 ≈
5.1Λ and m0 ≈ 6Tc, in quite good agreement with lattice
results [21,23]. In the following, we will use Tc to set the
energy scale, as it will be very natural to compare it with the
nucleation and percolation temperatures.
We start by estimating the nucleation and percolation

temperatures as functions of the critical temperature Tc.
The nucleation temperature Tn is determined by the
condition that the nucleation rate per Hubble volume per
Hubble time equals 1, i.e., ΓðTÞ=H4 ¼ 1. For c ¼ 1, we
obtain Tn ¼ 0.992Tc for Tc ¼ 100 GeV and Tn ¼
0.993Tc for Tc ¼ 50 MeV. Having Tn close to Tc is not
unexpected, as it could be estimated from thermodynamics
using some lattice input (see e.g. Ref. [55]).
The percolation temperature roughly indicates the end of

the phase transition. It is defined as the time when the
probability P of remaining in the false vacuum is reduced
by Oð30Þ%

PðtÞ ¼ e−IðtpÞ; ð16Þ

IðtÞ ¼ 4π

3

Z
t

tc

dt0Γðt0Þaðt0Þ3rðt; t0Þ3; ð17Þ

where

rðt; t0Þ ¼
Z

t

t0
dt00

vw
aðt00Þ ð18Þ

is the radius at time t of a bubble emitted at t0. The precise
definition of Tp varies across the literature. Here we impose
IðTpÞ ¼ 0.34 as discussed e.g. in Ref. [56]. An alternative
definition, leading to smaller Tp, is IðTpÞ ¼ 1 [57,58]. We
assume a constant value of vw, and we obtain Tp ¼
ð0.993� 0.003ÞTc for vw ¼ 0.01–1 and for both Tc ¼
50 MeV and 100 GeV, where the uncertainty in Tp comes
from varying c and only negligibly from vw. We will
discuss the wall velocity in more detail below. We see that
the ratios Tn=Tc, Tp=Tc are almost independent of the
critical temperature Tc. This is due to the strong exponen-
tial dependence of ΓðTÞ on T=Tc.
The parameter β=H describes the duration and the

number of nucleated bubbles the phase transition generates,
and is evaluated when the phase transition has completed,
i.e., at the percolation temperature Tp. For a fast phase
transition one can approximate Γ ∼ exp½βðt − tpÞ�, and the
inverse duration of the phase transition is given by

β

H
¼ T

�
dSB

dT

�����
T¼Tp

: ð19Þ

We obtain β=H ∼Oð105Þ (the exact values are summarized
in Table I), with an uncertainty of order 10% stemming
from vw, while the uncertainty from varying c ¼ 0.3–3 is of
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orderOð1Þ and is indicated by the width of the bands in our
GW spectra in Fig. 3.
The next quantity that we need to compute is the strength

of the phase transition α, i.e., the amount of energy released
during the phase transition that is available to convert into
the fluid motion of the plasma. We define it as

α ¼ 4

3

Δθ
Δw

¼ 1

3

Δρ − 3Δp
Δw

: ð20Þ

where θ is the trace of the energy-momentum tensor, w is
the enthalpy, and Δ indicates that we take the difference of
the corresponding values in the deconfined and confined
phases.
The enthalpy and trace anomaly are given by Δw ¼

T · Δs and Δθ ¼ 4F þ T · Δs. We obtain αjTp
≈ 0.343,

with a Oð10−2Þ relative uncertainty coming from the
variation in c in the evaluation of Tp, and an even smaller
dependence on Tc and on vw. Our result differs from the

lattice one of Ref. [62] by roughly 10%, which we consider
to be a good estimate of the overall uncertainty on α.
The calculation of wall velocity vw in cosmological

phase transitions has received a lot of attention throughout
the years. An estimate of vw is typically obtained by
computing the transmission coefficient of particles at the
bubble wall [28,63–70], or can be understood from the
local thermodynamics properties of the plasma [71,72]. In
strongly coupled theories the problem becomes even more
complicated, and can be addressed using holography in
certain models [73–77].
Extrapolating the result of Refs. [74,75,77] to our

parameter range, we obtain vw ∼Oð0.01Þ. Even smaller
velocities are obtained in Ref. [14]. On the other hand,
Ref. [76] obtains a terminal bubble wall velocity of vw ∼
0.3 in a 3þ 1 dimensional simulation of the bubble growth
in a regime of at least moderately strong supercooling.
Finally if one resorts to the Chapman-Jouguet formula for
the wall velocity we obtain vCJ ≈ 0.867. Under these
circumstances, we treat the bubble wall velocity as a free
parameter and leave it for future work.
Figure 3 shows our results for the GW spectra, together

with the expected sensitivity of future observatories. The
contours are evaluated by computing the effective action
Eq. (14), varying c ¼ 0.3–3. The dashed line corresponds to
c ¼ 3, the dotted to c ¼ 0.3, with c ¼ 1 in between. The
variation of c affects the GW spectrummainly through β=H.

V. DISCUSSION

In this work, we report on the first computation of the
GW signal from the confinement/deconfinement phase
transition in pure SU(3) Yang-Mills theory using bot-
tom-up holography. We use the IHQCD framework which
successfully reproduces lattice results for the equilibrium
thermodynamics of this theory, and calculate the equilib-
rium and quasiequilibrium quantities of the phase transition
relevant for GWs. These are the energy budget α, the
percolation temperature Tp and the average bubble size
compared to the Hubble horizon β=H, which we obtain
withOð1Þ errors. Our calculation of β=H agrees up toOð1Þ
with previous estimates based on effective models of low
energy QCD [24,27,29].
The recent works of Refs. [78–80] also employ holo-

graphic techniques for studying phase transition dynamics
and the resulting GWs, however their holographic models
do not aim to quantitatively reproduce the behavior of
known strongly coupled theories. References [25,26] study
the WSS model, which can reproduce qualitative features
of QCD. References [81–83] also use holography to model
the phase transition of QCD-like theories, however they do
not calculate β=H and instead choose an optimistic value.
Our study suggests that their GW signal predictions are
grossly overestimated because of this.
The resulting GW spectra are shown in Fig. 3. Even for

the most optimistic case of highly relativistic bubble walls,

FIG. 3. Gravitational wave spectra estimated with our effective
action for IHQCD and the projected sensitivity curves for future
GWexperiments: Square Kilometer Array (SKA) [2], μAres [59],
LISA [1], DECIGO/BBO [3], Einstein Telescope (ET) [60], and
Cosmic Explorer (CE) [61]. For illustration, we choose a critical
temperature Tc ¼ 50 MeV and Tc ¼ 100 GeV, and the contours
denote vw ¼ 1 (gray), vw ¼ 0.1 (red) and vw ¼ 0.01 (blue).

TABLE I. Values of β=H and α for different wall velocities and
critical temperatures. All entities are evaluated at the percolation
temperature Tp ¼ 0.993Tc.

α β=Hðvw ¼ 1Þ β=Hð0.1Þ β=Hð0.01Þ
Tc ¼ 50 MeV 0.343 9.0 × 104 8.6 × 104 8.2 × 104

100 GeV 0.343 6.8 × 104 6.4 × 104 6.1 × 104
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the signal is out of reach for next generation GW detectors.
However, we expect a magnification of the GW signals for
larger Nc due to additional supercooling from delaying
nucleation by having additional degrees of freedom. We
intend to elaborate on this in future work by utilizing the
methods presented here for SU(3) case to the SUðNcÞ case.
Additional questions left for future work are the inclusion
of flavor to study chiral symmetry breaking/confinement,
the glueball spectra for Nc > 3 and the impact of an axion
on the deconfinement temperature.
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APPENDIX: DETAILS OF THE CALCULATIONS

1. Equations of motion and thermodynamics of IHQCD

Starting from the black hole ansatz of Eq. (7), the
Einstein equations are written as

6
_b2

b2
þ 3

b̈2

b2
þ

_b
b

_f
f
¼ b2

f
V ðA1Þ

6
_b2

b2
− 3

b̈2

b2
¼ 4

3
_Φ2 ðA2Þ

f̈
f
þ 3

_b
b
¼ 0 ðA3Þ

Φ̈þ
�
_f
f
þ 3

_b
b

�
_Φþ 3b2

8f
dV
dΦ

0 ðA4Þ

where the dilaton potential is given in Eq. (3). The thermal
gas equations of motion are obtained by setting fðrÞ ¼ 0
and replacing bðrÞ → b0ðrÞ. A very convenient way of
solving the system is to define two scalar variables

XðΦÞ ¼ Φ0

3A0 ; YðΦÞ ¼ g0

4A0 ; ðA5Þ

where we have defined A ¼ log b, g ¼ log f and with a
prime we denote a derivative with respect to the coordinate
of the fifth dimension in the domain-wall frame, u defined
such that du ¼ eAdr. Expressing all these quantities as

functions of Φ (or, equivalently, λ ¼ eΦ), the Einstein
equations turn into first-order differential equations forX, Y:

dX
dΦ

¼ −
4

3
ð1 − X2 þ YÞ

�
1þ 3

8X
d logV
dΦ

�
ðA6Þ

dY
dΦ

¼ −
4

3
ð1 − X2 þ YÞ Y

X
; ðA7Þ

where the initial conditions are set close to the horizon and
descend from the requirement of regularity only:

YðΦÞ ≈ Yh

Φh −Φ
þ Y1 ðA8Þ

XðΦÞ ≈ −
4

3
Yh þ X1ðΦh −ΦÞ; ðA9Þ

with

Yh ¼
9

32

V 0ðΦhÞ
VðΦhÞ

ðA10Þ

and

X1 ¼
3

16

�
V 00ðΦhÞ
VðΦhÞ

−
V 0ðΦhÞ2
VðΦhÞ2

�
ðA11Þ

Y1 ¼
9

64

�
V 00ðΦhÞ
VðΦhÞ

− 2
V 0ðΦhÞ2
VðΦhÞ2

�
− 1: ðA12Þ

The only free parameter is the position of the horizon in the
dilaton frame,Φh (or, equivalently, λh). Equation (A9), with
Y ¼ 0, describes instead the thermal gas solution, with initial
condition

X0ðΦ → ∞Þ ¼ −
1

2
−

3

16Φ
: ðA13Þ

The geometry of the solution can be obtained from the
knowledge of X, Y:

A ¼ A0 þ
Z

Φ

Φ0

dΦ̃
3X

ðA14Þ

g ¼
Z

Φ

Φ0

4

3

Y
X
dΦ̃; ðA15Þ

where eA0 is the value of the scale factor at position Φ0.
Clearly, there is some redundancy, in that one can vary Φ0

and A0 in such a way to obtain the same theory. The only
physical quantity is the scale Λ, which enters the UV
behavior of the scale factor and of λ. This is defined from
the scale factor at some small value λ0 as

MORGANTE, RAMBERG, and SCHWALLER PHYS. REV. D 107, 036010 (2023)

036010-6



Λl≡ exp

�
Aðλ0Þ −

1

b0λ0

�
ðb0λ0Þ−b1=b20 ; ðA16Þ

where the right-hand side is constant for λ0 → 0. This scale is
the perturbative strong coupling scale, appearing in the UV
expansion of the coupling

1

b0λ
¼ log

E
Λp

−
b1
b20

log log
E
Λ
þ…; ðA17Þ

where we identified the energy E on the 4D field theory side
with the 5D scale factor bðrÞ ¼ eAðrÞ. Correspondingly, Λ
controls the UV behavior of the solutions close to the UV
boundary at r → 0, where the geometry asymptotes to AdS:

bðrÞ¼l
r

�
1þ4

9

1

logrΛ
−
4

9

b1
b20

logð− logrΛÞ
ðlogrΛÞ2 þ…

�
; ðA18Þ

b0λðrÞ ¼ −
1

log rΛ
þ b1
b20

logð− log rΛÞ
ðlog rΛÞ2 þ… ðA19Þ

The scale Λ can be used to set the energy scale of the theory.
Alternatively, one can fix the energy scale by choosing the
mass of the lightest glueball or the critical temperature of the
confinement phase transition, as we do in this paper.
In principle, Eqs. (A14) and (A15), together with

Eqs. (8), (11), and (10) are enough to compute all the
thermal properties of the system. Nevertheless, it is
interesting to notice that the same quantities can be
extracted from the UV behavior of X, Y. In the UV limit
λ → 0, X, Y satisfy

YðλÞ ¼ Y0e
− 4
b0λðb0λÞ−4b1=b20 ðA20Þ

XðλÞ − X0ðλÞ

¼
�
Y0=2 −C0

X0ðλÞ
þ C0X0ðλÞ

�
e−

4
b0λðb0λÞ−4b1=b20 ; ðA21Þ

where b0, b1 are defined in the main text. Here C0;Y0 are
constants that determine, respectively, the energy density
and the entropy of the system, while the combination C0 −
Y0=2 determines the vev of the gluon condensate. Indeed,
one can show that the following relations hold:

T ¼ Λ4l3

π

Y0ðλhÞ
bðλhÞ3

ðA22Þ

ST ¼ 4M3
pN2

cV3Y0l3Λ4 ðA23Þ

F ¼ M3
pN2

cΛ4l3ð6C0 − 4Y0Þ: ðA24Þ

Moreover, the energy density, the specific heat, and the
speed of sound of the system are given by

ρ ¼ 6M3
pN2

cC0Λ4l3 ðA25Þ

cv ¼ 6M3
pN2

cΛ4l3
dC0

dT
ðA26Þ

c2s ¼
�
d logY0

d logT
− 1

�
−1
: ðA27Þ

Finally, the constants Y0;C0 are related by

C0ðTÞ ¼
2

3
Y0ðTÞ −

2

3

Z
T

Tc

Y0ðT̃Þd log T̃: ðA28Þ

We checked numerically that the results using Y0;C0 are
consistent with the ones obtained from Eqs. (A14)
and (A15).

2. IHQCD comparison with SUðNcÞ lattice results

Given our numerical solutions for the thermodynamical
quantities ðT;F ; SÞ, we can calculate the energy density ρ,
pressure P and θ ¼ ρ − 3P and compare them to lattice
results.
The authors of [23] used the lattice data of [84] and

achieved a qualitatively good fit for the entropy density,
energy density, and pressure with the parameters of the
dilaton potential V1 ¼ 14; V3 ¼ 170. The work by [8]
performs a lattice study for the equilibrium thermodynam-
ical properties of SUðNcÞ theories varying Nc ¼ 3–8 and
showed that IhQCD provides an overall good fit to the
various gauge groups.
Lattice observables of equilibrium thermodynamical

quantities are extracted mainly in the continuum limit,
where the error induced by the lattice spacing gets mini-
mized. Here we reproduce the results in [23] using the latest
lattice data from [62] in the case of SUð3Þ and fit to the
data, see Fig. 4. We find that the same parameters values as
in [23] provide an adequate fit to the newer data. For a
thorough introduction to lattice gauge theory and how their
observables are constructed we refer to Refs. [41,85–87].
We use Eq. (7.38) in [22] to obtain the first lattice

observable, i.e., the entropy density s=T3 as a function of
the dilaton potential and the scalar variable XðλÞ. To find
the pressure and energy density we compute the free energy
F , and use the thermodynamical relations i.e., P ¼
−F ; ρ ¼ F þ ST and Eqs. (A22)–(A24) to obtain the
lattice observables provided the proper normalization.
The results of our fit to the lattice data are shown in
Fig. 4, together with the extracted best-fit parameters for
V1, V3.

3. Effective potential

Here we show the details of the calculation of the
effective potential. We start from the Euclidean BH metric
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ds2 ¼ b2ðrÞ
�
dr2

fðrÞ þ fðrÞdt2 þ dxmdxm

�
; ðA29Þ

which we expand in the vicinity of rh using

fðrÞ ≈ _fhðr − rhÞ; bðrÞ ≈ bh; ðA30Þ

obtaining

ds2 ¼ b2h

�
dr2

_fhðr − rhÞ
þ _fhðr − rhÞdt2 þ ðdx⃗Þ2

�
: ðA31Þ

Let us now define

y ¼ 2bh
ð _fhÞ1=2

ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p
with y > 0; ðA32Þ

φ ¼ 2πTt with 0 < φ < 2π; ðA33Þ

The metric (restricting ourselves to the r, t directions) is

ds2 ¼ dy2 þ y2
�

_fh
4πT

�2

dφ2 ðA34Þ

which is the metric of a cone, where y is the distance from
the tip, φ the angular direction and the angle α of the cone is

sin α ¼
_fh
4πT

¼ Th

T
ðA35Þ

The singularity, which disappears for sinα ¼ 1, can be
regularized by cutting the cone surface at some small ys,

and smoothly gluing a spherical cap of radius Rs ¼
ys tan α. In polar coordinates, the metric on the spherical
cap is ðR2

s ; R2
s sin θ2; bðyÞ2; bðyÞ2; bðyÞ2Þ, with 0 < θ <

π=2 − α. We can now compute the contribution of the
cap to the action:

SBH
cone ¼ −M3

pN2
c

Z
d5x

ffiffiffi
g

p �
R −

4

3
ð∂ϕÞ2 þ VðϕÞ

�
ðA36Þ

The matter contribution to the action is regular and goes to
zero as the cap is shrunk. The geometric part is the relevant
one, and it is easily evaluated using

ffiffiffi
g

p ¼ R2
s sin θbðyÞ3≈

R2
s sin θb3h, the area of the spherical cap is 2πR2

sð1 − sinαÞ
andR ¼ 2=R2

s þ � � �where the dots are terms containing the
derivatives ∂θb ∝ Rs → 0. The result is thus

SBH
cone; geom ¼ −M3

pN2
c

Z
d5x

ffiffiffi
g

p
R

¼ −4πM3
pN2

cV3b3hð1 − Th=TÞ: ðA37Þ

4. LISA Cosmology Working Group Gravitational
Waves Template

In the context of gravitational waves emitted from
FOPT’s numerous numerical studies [35,49,54,88,89] pro-
vides the literature with an estimated GW spectrum based
on knowledge of the parameters α; β=H; vw; g�; T�. In this
work, we use the estimated formula provided by the LISA
cosmology working group [35]

dΩGW;0

d ln f
¼ 0.687FGW;0K

3
2ðHðT�ÞRðT�ÞÞ2Ω̃GWC

�
f

fp;0

�
;

ðA38Þ

where the prefactor FGW;0 ¼ ð3.57� 0.05Þ × 10−5ð100g� Þ
1
3

accounts for the redshift. The expression for K describes
the fraction of kinetic energy available during the transition

K ¼ κðαÞα
1þ α

; ðA39Þ

where

κðαÞ ¼ α

0.73þ 0.083
ffiffiffi
α

p þ α
; ðA40Þ

is the efficiency factor for wall speeds vw ≈ 1, which gets
modified for lower wall velocities [90]. The scaling of K in
Eq. (A38) indicates that we in this work have a short lived
source which induces a suppression to the spectrum of
GWs. Furthermore the term RðT�Þ is the mean bubble
separation evaluated at the percolation temperature, can be
related to the inverse transition rate β, as

Blue
T4 Nc2

Black 3P
T4 Nc2

Red 3 s
4 T3 Nc2

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 4. SU(3) equilibrium thermodynamics from [62] in dotted
points and where the lines are the prediction from IhQCD for the
dilaton potential parameters V1 ¼ 14 V3 ¼ 170. The y-axis ends
at the SB-limit for the thermal gas limit of π2

15
.
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RðT�Þ ¼
ð8πÞ13
β

max ðcs; vwÞ: ðA41Þ

The term Ω̃GW ≈ 10−2 stems from the numerical simulation
as a residual prefactor, and the function Cðf=fp;0Þ
describes the spectral shape

CðxÞ ¼ x3
�

7

3þ 4x2

�7
2

; ðA42Þ

fp;0 being the peak frequency redshifted until today

fp;0 ¼ 26

�
β

vwð8πÞ13HðT�Þ

��
zp
10

�

×

�
T�

100 GeV

��
gðT�Þ
100

�1
6

μHz: ðA43Þ

The term zp ≈ 10 appears from the numerical simulation,
and T� denote the temperature when the PT has completed
and the GW’s are being emitted at this temperature. The
aforementioned set of equations are valid when the duration
of the sound waves are less than a Hubble time.
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