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Abstract
This paper deals with the computation of the Hankel transform by means of the sinc rule
applied after a special exponential transformation. An error analysis, particularly suitable
for meromorphic functions, together with the parameter selection strategy, is considered. A
prototype algorithm for automatic integration is also presented.
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1 Introduction

In this work we consider the computation of the Hankel transform of order ν of a function
f , given by

H (ν)(ω) =
∫ +∞

0
f (x)Jν(ωx)xdx, (1)

where ω ∈ R and Jν is the Bessel function of the first kind of order ν (see [26] for an
overview). For ν > − 1

2 , the inverse Hankel transform is defined as

f (x) =
∫ +∞

0
H (ν)(ω)Jν(ωx)ωdω. (2)

Sufficient conditions for the validity of (1) and (2) are (see [23]):

1. f (x) = O (xα), with α < − 3
2 , for x → +∞;

2. f
′
(x) is piecewise continuous over each bounded subinterval of [0,+∞);

3. f (x) is such that

f (x) = lim
δ→0+

f (x + iδ) + f (x − iδ)

2
, i = √−1.

The Hankel transform commonly appears in problems of mathematical physics and applied
mathematics, described by equations having axial symmetry, as for instance in the analysis
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of central potential scattering [24], in geophysical electromagnetic survey [25] and medical
tomography [14]. Among the existing techniques employed to compute integral (1), here
we quote the ones based on the logarithmic change of variables leading to the Fast Hankel
transforms [6, 10, 15], digital filtering algorithms [12, 13, 27], asymptotic expansion of
the Bessel function [5, 22], integral representations of the Bessel function [4] and complex
Gaussian quadrature [2, 28]. Recently, in [7] a Gaussian rule for weight functions involving
powers, exponentials and Bessel functions of the first kind was developed.

In this work we consider the sinc rule together with the single exponential transform

x = τ

ω
φ (t − q) , φ(ξ) = ξ

1 − e−ξ
, (3)

where τ > 0 and q ∈ R are suitable parameters. The idea is similar to the one developed
in [18–21] for Fourier type integrals. In these papers a double exponential approach is con-
sidered and an exponential convergence is shown (see also [8]) by a suitable choice of the
step size that allows to overcome the difficulties due to the oscillations. Indeed, for Fourier
type integrals, the transformations can be defined in order that the quadrature points dou-
ble exponentially converge to the zeros of the sine/cosine function. This allows to "rapidly"
neglect the tails of the sinc rule and then obtain fast convergence. Working with the Hankel
transform, the problem is more complicated. Indeed, the double exponential transformations
designed for Fourier type integrals do not work properly. The reason is that the zeros of the
Bessel function can only be approximated and then a double exponential convergence to
them is not achievable. This is the main motivation for the choice of a single exponential
transformation of type (3).

In this work we provide a rather accurate error analysis of the truncated sinc rule which
shows that, after a proper definition of the step size and the number of points to consider, the
error decay is asymptotically quite similar to the one of f (m), for slowly decaying functions,
where m is the total number of points of the quadrature rule. If f decays exponentially, then
the error is of type e−const

√
m . By exploiting some experimental evidences, we also provide

an algorithm for automatic integration in which the only inputs are the function f and the
error tolerance. A simple Matlab code is also reported in Appendix.

Throughout the paper, together with ν > − 1
2 , we always also assume ν �= 1

2 , since

J 1
2
(z) =

(
2

π z

) 1
2

sin z,

(see [17, 10.16.1]), and so integral (1) reduces to a sine transform.
In this work the symbol ∼ denotes the asymptotic equality, ≈ a generic approximation

and � states for less than or asymptotically equal to.
The paper is organized as follows. In Sect. 2 we recall some basic results concerning the

sinc rule over unbounded intervals. In Sect. 3 we study the transformation (3). In Sect. 4 we
present the error analysis and in Sect. 5 we show some numerical experiments. In Sect. 6
we describe a prototype automatic integrator, implemented in the Matlab code reported in
Appendix.
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2 General Results for the Sinc Rule

Before presenting our approach for the Hankel transform, in this section we recall some
useful results concerning the sinc approximation

I (g) =
∫ +∞

−∞
g(x)dx ≈ h

+∞∑
j=−∞

g( jh), (4)

in which g : R → R is a generic integrable function and h is a positive scalar. Given M and
N positive integers, we denote the truncated rule by

TM,N ,h(g) = h
N∑

j=−M

g( jh).

Defining the quadrature error as

EM,N ,h = ∣∣I (g) − TM,N ,h(g)
∣∣ ,

it holds

EM,N ,h ≤ ED + ETL + ETR ,

where

ED =
∣∣∣∣∣∣
∫ +∞

−∞
g(x)dx − h

+∞∑
j=−∞

g( jh)

∣∣∣∣∣∣
is the discretization error and

ETL = h

∣∣∣∣∣∣
−M−1∑
j=−∞

g( jh)

∣∣∣∣∣∣ , ETR = h

∣∣∣∣∣∣
+∞∑

j=N+1

g( jh)

∣∣∣∣∣∣
are the truncation errors. For simplicity of notations, we omit their dependence on M, N , h.

Definition 1 [16, Definition 2.12] Given d > 0, let Dd be the infinite strip domain of width
2d given by

Dd = {ζ ∈ C : |�(ζ )| < d},
and let B (Dd) be the set of functions analytic in Dd that satisfy

∫ d

−d
|g(x + iη)|dη = O (|x |a) , x → ±∞, 0 ≤ a < 1,

and

N (g, d) = lim
η→d−

{∫ +∞

−∞
|g(x + iη)|dx +

∫ +∞

−∞
|g(x − iη)|dx

}
< +∞.

As for the discretization error, the following theorem holds (see [16, Theorem 2.20]).

Theorem 1 Assume g ∈ B (Dd). Then

ED ≤ N (g, d)

2 sinh(πd/h)
e− πd

h . (5)
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By (5) we have that

ED ∼ N (g, d)e− 2πd
h , h → 0.

The above result shows that, in order to obtain a sharp estimate for ED , one should optimize
the bound with respect to d , taking into account the position of the singularities of g with
respect to Dd .

In the case of meromorphic functions, the analysis is simpler because one can exploit the
results presented in [3, 9], that are based on the use of the residue theorem. Indeed, assuming
that the poles of g are simple and symmetric with respect to the real axis, it can be seen that

ED ∼ 4π |ρ0| e−2d π
h , h → 0, (6)

where ρ0 = Res(g(z), z0), d = |�(z0)| and z0, together with its conjugate z0, is the pole
closest to the real axis (see also [8] for details). In case of unsymmetric poles, multiplicity
greater than one, many poles at the same distance from the real axis, the analysis follows
the same line and formula (6) remains true with the factor 4 replaced by another suitable
integer as consequence of the residue theorem. Formula (6) is also valid for any function not
necessary meromorphic but analytic in a strip symmetric with respect to the real axis, except
for two simple poles z0 and z0. With respect to the bound (5), the above formula shows an
error constant that is independent of d , and a faster exponential decay (in (5) one has to take
d < |�(z0)|).

3 Exponential Transformation

As mentioned in Introduction, in order to numerically evaluate integral (1), we consider the
transformation (3)

x = τ

ω
φ (t − q) , φ(ξ) = ξ

1 − e−ξ
, (7)

where τ > 0 and q ∈ R are given parameters. We observe that φ(ξ) > 0, ∀ξ ∈ R, ξ �= 0,
and

φ(ξ) ∼
{

|ξ |eξ , ξ → −∞
ξ, ξ → +∞ . (8)

As for its derivative

φ
′
(ξ) = 1 − e−ξ (1 + ξ)

(1 − e−ξ )2
,

we have that φ
′
(ξ) > 0, ∀ξ ∈ R, ξ �= 0, and

φ
′
(ξ) ∼ 1, for ξ → +∞. (9)

Remark 1 It is interesting to notice that the function φ is the generating function of the
Bernoulli numbers Bn

(
B1 = 1

2

)
[17, 24.2(i)]. Indeed, it holds

φ(ξ) =
∞∑
n=0

Bnξ
n

n! ,
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so that the singularities of φ and its derivatives at zero can be removed by taking

φ(k)(0) = Bk, k = 0, 1, . . . .

By using (7), integral (1) becomes

H (ν)(ω) =
( τ

ω

)2 ∫ +∞

−∞
f̃ (t)Jν(τφ(t − q))φ(t − q)φ

′
(t − q)dt, (10)

where f̃ (t) = f
(

τ
ω
φ(t − q)

)
, and the sinc rule with mesh size h reads

H (ν)
M,N ,h(ω) =

( τ

ω

)2
h

N∑
j=−M

f̃ ( jh)Jν(τφ( jh − q))φ( jh − q)φ
′
( jh − q). (11)

The term φφ
′
in (10) introduces a first limitation in the admissible value of d in formula (5)

or (6). Indeed, φ and φ
′
have a removable singularity at 0 (cf. Remark 1), but they have poles

at 2kπ i , k ∈ Z, k �= 0. Besides, in order to study the accuracy of (11), it is fundamental to
understand how the region of analiticity of f is mapped in the t-plane for f̃ .

To this purpose, let A be the region of analiticity of f (R+ ⊂ A) and let S = C \ A. In
order to study the region of analiticity of f̃ , for any givenw ∈ S we have to find t that solves

τ

ω
φ(t − q) = w. (12)

This reduces to study the equation

φ(ξ) = ξ

1 − e−ξ
= z /∈ R

+, (13)

whose countable set of solutions is given by

χ(z) = {
ξ ∈ C \ {0} | ξ = z + Wk(−ze−z), k ∈ Z

}
,

where Wk denotes the k-th branch of the Lambert-W function (see [17, 4.13]). We remark
that, even if ∀z ∈ C there exists k ∈ Z such that

z + Wk(−ze−z) = 0, (14)

0 /∈ χ(z) because it is not a solution of (13), since φ(0) = 1 (cf. Remark 1). The regions of
the complex plane where (14) holds true are reported in [17, Figure 4.13.2].

In order to exploit (5) or (6), we need to study the imaginary part of the set χ(S̃), where

S̃ =
{
z ∈ C | z = ω

τ
w,w ∈ S

}
,

cf. (12). To this purpose, for z /∈ R
+, we define the function

Φ(z) = min |� (χ(z))| . (15)

By setting

d̃ = inf
z∈S̃

Φ(z), (16)

if d̃ is an isolated minimum, then we can use (6) with d = d̃ , otherwise we use (5) with
d < d̃ . Since in a given subset of the complex plane the function Φ may be defined by using
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more than one branch of the Lambert-W function (see again [17, 4.13]), the analysis is not
immediate. Anyway, numerically we observe that

Φ(z) ≥ min (π,max(| arg(z)|, |�(z)|)) . (17)

The above relation can be explained by the following results.

(a) For any π
2 ≤ θ ≤ π and−π ≤ θ ≤ −π

2 , the functionΦ(reiθ ) is increasing with respect
to r and Φ(reiθ ) → 2π for r → +∞. For 0 < θ < π

2 or −π
2 < θ < 0, the function

Φ(reiθ ) initially increases, reaches a maximum greater than 2π and then tends to 2π .
In any case, Φ(reiθ ) → |θ |, for r → 0+. Indeed, for r → 0+, Φ(reiθ ) involves only
W1 (for 0 < θ ≤ π ) or W−1 (for −π ≤ θ < 0) and therefore (cf. (15))

Φ(reiθ ) =
∣∣∣�

(
reiθ + W±1

(
−reiθe−reiθ

))∣∣∣ .
By using the approximation (see [17, 4.3.11])

W±1(−ze−z) = ln(ze−z) − ln(− ln(ze−z)) + O
(
ln(− ln(ze−z))

ln(ze−z)

)
,

with z = reiθ , we obtain

Φ(reiθ ) =
∣∣∣r sin θ + �

(
W±1

(
−reiθe−reiθ

))∣∣∣
= ±θ + O

(
1

ln r

)
.

(b) For 0 < y ≤ 2π , we have Φ(x + iy) → y, for x → +∞. This holds true because
in this case the branch to consider is W0 and W0(z) ∼ z for z → 0 (see [17, 4.13.5]).
Moreover, Φ(x + iy) → 2π , for x → −∞, since � (Wk(z)) → 2πk, k ∈ Z, for
|z| → ∞. In particular, for 0 ≤ y ≤ π , Φ(x + iy) is monotone increasing. For
π < y < 2π , Φ(x + iy) involves onlyW0 and shows a local minimum at x� > 0 where
π ≤ Φ(x� + iy) < y. Indeed, suppose Φ(x� + iy) < π , then there exists x�� > x�

such that, for z = x�� + iπ , � (
z + W0

(−ze−z
)) = π , that is � (

W0(−ze−z)
) = 0.

This is impossible because � (
W0

(−ze−z
)) = 0 only for � (−ze−z

) = 0, that is,

tan�(z) = �(z)
�(z) (see [17, 4.13]). For y > 2π , the situation is even more complicated

but, nevertheless, Φ(x + iy) ≥ π . The case of y < 0 is specular.

In order to validate the above considerations, in Fig. 1 we show the contour plot of the
function Φ(z).

The accuracy and the efficiency of the sinc rule (11) are strictly related with the choice of
τ, q, h. Similarly to the choice made in [8, 21] for the case of Fourier type integrals, the idea
is to set

τ = π

h
and q = π

4τ
(1 − 2ν), (18)

in order to cancel the dominant term in the asymptotic representation of the Bessel function.
Indeed, by using (8), (18) and

Jν(z) =
√

2

π z

[
cos

(
z − 1

2
νπ − 1

4
π

)
+ e|�(z)|O

(
1

z

)]
, |z| → +∞, (19)

(see [17, p. 223, 10.7.8]), we have that

Jν(τφ( jh − q)) ∼ Jν(τ ( jh − q)) = Jν
(
jπ − π

4
(1 − 2ν)

)
= O

(
j−

3
2

)
, j → +∞,
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Fig. 1 Contour plot of the function Φ defined in (15)

since

cos

(
τ( jh − q) − 1

2
νπ − 1

4
π

)
= cos

(
jπ − π

2

)
= 0.

4 Error Analysis

The analysis presented in this section is based on the standard idea of defining h, M, N in (11)
in order to equalize the error contributions ED , ETL , ETR . We assume to work with functions
f such that

f (x) ∼ e−βxk xα, for x → +∞,

with β, k ≥ 0, α ∈ R (α < − 3
2 if β = 0 or k = 0), and | f (x)| ≤ c for x ∈ [0,+∞).

4.1 The Discretization Error ED

The analysis of the term ED hasmore or less already been given in previous section. Neverthe-
less, a question still open is how to approximate d in practice. We restrict our considerations
to the case of d̃ in (16) isolated minimum. This is true for instance when f is a meromorphic
function with poles

{
w j

}
j∈J , J ⊆ Z, symmetric with respect to the real axis, and such that∣∣�(w j )

∣∣ ≤ R, ∀ j ∈ J , for a certain R > 0. Since for h → 0 (τ → +∞) the set S̃, now
given by

S̃ =
{
z ∈ C

∣∣∣ z = ω

τ
w j , j ∈ J

}
,

tends to collapse on the imaginary axis, we have that d = d̃ ∼ min j∈J
{| arg(w j )|

}
, for

h → 0, since Φ(reiθ ) → |θ |, for r → 0+ (see item a) of previous section). Therefore, by
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(6),

ED ∼ 4π |ρ̃|e− 2πd
h , (20)

where

ρ̃ = Res( f , w̃)φ(t̃)Jν(t̃)
( τ

ω

)2
φ

′
(t̃),

in which w̃ is the pole of f defining d and t̃ is the corresponding one for f̃ .

4.2 The Truncation Error ETL

For the truncation error (see (11))

ETL =
∣∣∣∣∣∣
( τ

ω

)2
h

−M−1∑
j=−∞

f̃ ( jh)Jν(τφ( jh − q))φ( jh − q)φ
′
( jh − q)

∣∣∣∣∣∣ ,

by using (8)–(9) and the asymptotic relation

Jν(z) ∼
(
1

2
z

)ν 1

�(ν + 1)
, z → 0, ν �= −1,−2, . . . ,

(see [17, 10,7.3]), where � denotes the Gamma function, we have

ETL �

∣∣∣∣∣∣
cτ ν+2

ω22ν�(ν + 1)
h

−M−1∑
j=−∞

(φ( jh))ν+1 φ
′
( jh)

∣∣∣∣∣∣
� cτ ν+2

ω22ν�(ν + 1)

∫ −Mh

−∞
(φ(x))ν+1 φ

′
(x)dx

∼ cπν+2

ω22ν�(ν + 1)(ν + 2)
Mν+2e−(ν+2)Mh . (21)

4.3 The Truncation Error ETR

In order to study the truncation error (see again (11))

ETR =
∣∣∣∣∣∣
( τ

ω

)2
h

+∞∑
j=N+1

f̃ ( jh)Jν(τφ( jh − q))φ( jh − q)φ
′
( jh − q)

∣∣∣∣∣∣ ,

we first need the following result.

Proposition 1 For j → +∞, it holds

Jν(τφ( jh − q)) =
√
2

8π2 (4ν2 − 1) j−
3
2 (−1) j

(
1 + O

(
1

j

))
. (22)

Proof By writing

Jν(τφ( jh − q)) = Jν(τ ( jh − q)) + J
′
ν(τ ( jh − q))[τφ( jh − q) − τ( jh − q)]

+ O[φ( jh − q) − ( jh − q)]2,
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and denoting by t j the j-th positive zero of Jν , we have

Jν(τφ( jh − q)) = Jν(t j ) + J
′
ν(t j )[τ( jh − q) − t j ] + O[τ( jh − q) − t j ]2

+ J
′
ν(τ ( jh − q))(τφ( jh − q) − τ( jh − q))

+ O(φ( jh − q) − ( jh − q))2.

(23)

At this point, we need the following observations. First of all, for the derivative J
′
ν(z) it holds

(see [1, p. 361, 9.1.27])

J
′
ν(z) = Jν−1(z) − ν

2
Jν(z),

and, in particular,

J
′
ν(t j ) = Jν−1(t j ). (24)

Moreover, from [1, p. 371, 9.5.12] we have

t j = a j − 4ν2 − 1

8a j
+ O

(
1

j2

)
, a j =

(
j + 1

2
ν − 1

4

)
π. (25)

Then, remembering that q = π
4τ (1 − 2ν), τ = π

h , and by using (25), we have that

τ( jh − q) − t j = 4ν2 − 1

8a j
+ O

(
1

j2

)
. (26)

Finally, we observe that, for ξ → +∞,

τ(φ(ξ) − ξ) = τ
ξe−ξ

1 − e−ξ
∼ τξe−ξ . (27)

By inserting (24)–(26)–(27) in (23), we obtain

Jν(τφ( jh − q)) = Jν−1(t j )
4ν2 − 1

8a j
+ O

(
1

j2

)
.

Now, by using (19) the above expression becomes

Jν(τφ( jh − q)) =
√

2

π t j

[
cos

(
t j − ν − 1

2
π − π

4

)
+ O

(
1

t j

)]
4ν2 − 1

8a j
+ O

(
1

j2

)

=
√

2

π t j

[
(−1) j + O

(
1

t j

)]
4ν2 − 1

8a j
+ O

(
1

j2

)
,

where we have also used (cf. (25))

t j =
(
j + 1

2
ν − 1

4

)
π + O

(
1

j

)
.

Finally, since obviously

t j = jπ

(
1 + O

(
1

j

))
,

we obtain the result. ��
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By the above proposition and relations (8)–(9), for the truncation error ETR it holds

ETR ∼
√
2

8ω2 |4ν2 − 1|
∣∣∣∣∣∣

+∞∑
j=N+1

f
(π

ω
j
)

(−1) j j−
1
2

∣∣∣∣∣∣ , N → +∞, (28)

where we have also used

f
( τ

ω
φ( jh − q)

)
∼ f

( τ

ω
jh

)
= f

(π

ω
j
)

, j → +∞.

Then, we have the following results.

Proposition 2 Let f (x) ∼ e−βxk xα , for x → +∞, with β ≥ 0, k ≥ 0, α ∈ R (α < − 3
2 if

β = 0). Let moreover

f j = f
( τ

ω
j
)

(−1) j j−
1
2 . (29)

Then,

+∞∑
j=N+1

f j ∼ γ (−1)N+1
∫ +∞

N
p(x)dx, N → +∞,

where γ = 1
2

(
π
ω

)α
, and

p(x) = e−β̄xk xα− 1
2

(
1 − e−β̄kxk−1 −

(
α − 1

2

)
1

x
e−β̄kxk−1

)
, β̄ = β

(π

ω

)k
. (30)

Proof First of all, we show that

f j + f j+1 ∼ 2γ (−1) j p( j), for j → +∞. (31)

Since f (x) ∼ e−βxk xα , for x → +∞, by (29) we have that

f j ∼ 2γ (−1) j jα− 1
2 e−β̄xk , j → +∞.

Therefore,

f j + f j+1 = 2γ (−1) j e−β̄ j k
(
jα− 1

2 − ( j + 1)α− 1
2 e−β̄(( j+1)k− j k )

)
.

Now, since for j → +∞
( j + 1)k − j k ∼ k jk−1,

( j + 1)α− 1
2 ∼ jα− 1

2

(
1 +

(
α − 1

2

)
1

j

)
,

we obtain (31). Then,

+∞∑
j=N+1

f j = ( fN+1 + fN+2) + ( fN+3 + fN+4) + . . .

= γ (−1)N+1(2p(N + 1) + 2p(N + 3) + . . .)

∼ γ (−1)N+1
∫ +∞

N
p(x)dx, N → +∞.

��
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Before going on, we recall that, by [11, p. 317, 3.381, n. 3 and p. 942, 8.357],
∫ +∞

u
xτ−1e−μxdx = μ−τ�(τ, μu) ∼ 1

μ
uτ−1e−μu, u → +∞, (32)

where � is the incomplete Gamma function (see e.g. [11, 8.35]).

Proposition 3 Let f be as in Proposition 2. For N → +∞, we have

(a) ETR ∼ κN ᾱ , for β = 0 and α < − 3
2 ,

(b) ETR ∼ κs
kβ̄

N ᾱ−ke−β̄Nk
, for β > 0 and k > 0,

where κ = πα

ωα+2

√
2

16 |4ν2 − 1|,

ᾱ =
{

α − 1
2 , 0 < k < 1 or β = 0

α + 1
2 , k ≥ 1

,

and

s =

⎧⎪⎨
⎪⎩

∣∣ 1
2 − α

∣∣ , 0 < k < 1

1 − e−β̄ , k = 1

1, k > 1

.

Proof By (28) and Proposition 2, we have

ETR ∼ κ

∫ +∞

N
p(x)dx .

For β = 0 we have p(x) = ( 1
2 − α

)
xα− 3

2 , and then (a) straightfully follows. For β > 0, by
using (30), a simple asymptotic analysis shows that

p(x) ∼ sx ᾱ−1e−β̄xk .

At this point,
∫ +∞

N
p(x)dx ∼ s

∫ +∞

N
x ᾱ−1e−β̄xk dx = s

k

∫ +∞

Nk
e−β̄ y y

ᾱ
k −1dy,

and using (32) we find (b). ��

4.4 Definition of h,M,N

As already mentioned, the idea is to define h, M, N such that ED , ETR , ETL have similar
asymptotic behavior. By comparing (5) or (6) and (21) we simply impose

(ν + 2)Mh = 2πd

h
,

so that, for any given M , we define

h :=
√

2πd

M(ν + 2)
. (33)
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Then, by inserting (33) in (21), we have

ETL ∼ cπν+2

ω22ν�(ν + 1)(ν + 2)
Mν+2e−√

2π(ν+2)dM . (34)

As for the definition of N , we need to distinguish between the two cases (cf. Proposition 3),
that is, we define N by solving

cπν+2Mν+2e−√
2π(ν+2) arg(z0)M

ω22ν�(ν + 1)(ν + 2)
=

{
κNα− 1

2 for β = 0, α < − 3
2

κs
kβ̄

N ᾱ−ke−β̄Nk
for β > 0, k > 0

. (35)

We remark that for β = 0 or k ≈ 0 previous formulas lead to N > M and, therefore, the
error decay with respect to m = M + N + 1 is qualitatively given by (a) of Proposition 3
(with N replaced by m). The same holds true for high frequency, since β̄ may be very small
(cf. (30) and (b) of Proposition 3). In these situations, by solving (35), one can observe that

N ≈ ω
2α

2α−1 , which represents the deterioration of speed in presence of high frequencies.
On the other side, for β > 0 and k > 1

2 we obtain N < M and the decay rate is of type

e−const
√
m . These considerations are quite evident by looking at Tables 1, 2, 3, 4 and 5 of

Sect. 6.

5 Numerical Experiments

In this section we show some numerical experiments in which we compare the sinc rule (11)
and the error estimate obtained by summing up the three contributions, that is, ED+ETL +ETR ,
by using (20), (34) and Proposition 3. In particular, for M = 1, 2, . . ., we define h as in (33)
and N by solving (35). Since the functions considered are

f1(x) = 1

1 + x2
, with poles w j = (−1) j i, j = 0, 1,

f2(x) = xν

(1 + x4)ν+ 1
2

, with poles w j = ei
π
4 (1+2 j), j = 0, 1, 2, 3,

f3(x) = e−x

1 + x2
, with poles w j = (−1) j i, j = 0, 1,

f4(x) = e−x2

1 + x2
, with poles w j = (−1) j i, j = 0, 1,

we use formula (20) with the approximations d ∼ π
2 for f1, f3, f4 and d ∼ π

4 for f2.
In Figs. 2, 3, 4 and 5, for different values of ω, we plot the error (obtained with respect to

a reference solution), together with the error estimate, with respect to m, the total number of
function evaluations.

In this section we also compare formula (11) with the sinc rule applied after using in
integral (1) the standard logarithmic change of variables (see e.g. [15])

y = ln

(
1

x

)
and λ = lnω,

that leads to

H (ν)
(
eλ

) =
∫ +∞

−∞
f (e−y)Jν(e

λ−y)e−2ydy. (36)
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Fig. 2 The error of the sinc rule and the estimate for f1(x) and ν = 0

Fig. 3 The error of the sinc rule and the estimate for f2(x) and ν = 3
2

In Fig. 6, working with f3(x) and ω = 1, 5, we show the results of formula (11) and the
ones of the sinc rule applied to (36), with parameters M = N , h = 1e − 1 (for ω = 1) and
h = 5e − 2 (for ω = 5). With respect to the sinc rule applied to (36), this and many other
experiments not reported reveal that the sinc rule based on the exponential transformation
described in Sect. 3 provides better results, especially for "large" frequencies. Indeed, by
increasing ω the problem becomes more difficult due to the oscillations introduced by the
Bessel function. By using formula (11), this issue is partially smoothed by the choicemade for
the parameters of the transformation φ (cf. (18)). We remark that we report only the results
of a couple of experiments obtained by working with the function f3(x), which decays
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Fig. 4 The error of the sinc rule and the estimate for f3(x) and ν = 1

Fig. 5 The error of the sinc rule and the estimate for f4(x) and ν = 0

exponentially. Indeed, the standard logarithmic change of variable is not suitable for slowly
decaying functions.

6 Automatic Integrator

In this section we provide a prototype automatic integrator for the computation of the Hankel
transform. The idea is based on the observation that the left truncation error ETL does not
depend on the function f . Therefore, if for a generic function we plot the total error with
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Fig. 6 The relative error of the sinc rule (11) (solid black line) and of the sinc rule applied to integral (36)
(blue dots) for f3(x) and ν = 0 (Color figure online)

respect to M , we always obtain something of the type

EM,N ,h ≈ γ 10−δM ,

with γ, δ > 0. By running a number of experimentswith different functionswe have observed
that conservative but rather good values of the parameters are given by

δ = 1

5
and γ = 1.

In this way, by setting an arbitrary tolerance η, the idea is to define

M = −5 log10 η.

Then, in order to define h, we impose (cf. (21))

πν+2

ω22ν�(ν + 1)(ν + 2)
Mν+2e−(ν+2)Mh = η,

that leads to

h = 1

(ν + 2)M

(
ln

Mν+2

η
+ ln

πν+2

ω22ν�(ν + 1)(ν + 2)

)
. (37)

As for the choice of N , we observe that

ETR ∼ cω,ν f
(π

ω
N

)
N− 1

2 ,

with cω,ν =
√
2

16 ω2
∣∣4ν2 − 1

∣∣ (cf. Proposition 3). Then, we set N as the numerical solution
of

cω,ν f
(π

ω
N

)
N− 1

2 = η. (38)

We summarize the above strategy in the following algorithm.
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Table 1 Results of Algorithm 2
with f (x) = e−x , ν = 0

η = 1e − 4 η = 1e − 7 η = 1e − 10

ω = 1 Error 5.6e − 5 6.3e − 8 8.9e − 11

M 20 35 50

N 5 5 7

h 0.42 0.35 0.32

k 1 1 5

ω = 5 Error 2.8e − 4 1.8e − 5 2.5e − 9

M 20 35 50

N 5 14 25

h 0.34 0.31 0.29

k 1 10 20

ω = 20 Error 3.3e − 3 5.4e − 7 6.6e − 11

M 20 35 50

N 5 36 77

h 0.27 0.27 0.26

k 1 10 20

Algorithm 2 Given η > 0

1. set M = �−5 log10 η�;
2. set h as in (37);
3. solve problem (38) to define N;
4. evaluate integral (1) by using (11).

In Tables 1, 2, 3, 4 and 5, working with different functions and taking ω = 1, 5, 20, we
report the results of Algorithm 2 for η = 1e − 4, 1e − 7, 1e − 10. In particular, we solve
problem (38) by employing the secant method with N0 = 5 as starting point. In the tables we
also report the number of iterations of the secant method, denoted by k, since it represents an
additional number of function evaluations. As stopping criteria for the secant algorithm we
set a termination tolerance in the order of η and amaximum number of iterations kmax = 100.
The Matlab code that implements Algorithm 2 is reported in Appendix. We want to point
out that the code can be labeled as a first attempt. For instance, the subfunction relative to
the secant method is not optimized and can be strongly improved. Nevertheless, a further
development would also be the computation on a vector of frequencies.

7 Conclusion

In this work we have considered the computation of the Hankel transform of a function f
by employing a particular exponential transformation followed by the sinc rule. A rather
accurate error analysis, based on the theory of analytic functions, allowed to proper define
the parameters of the quadrature formula and to derive quite sharp error estimates. The the-
ory and the numerical experiments reveal that the rule is also able to handle the difficult
cases represented by the presence of slowly decaying functions f . The main reason is that
the choice of the parameters of the exponential transform and, as consequence, of the step
size allowed to manage the oscillations due to the Bessel function, especially for increasing
frequency. Anyway, for increasing values of ω the method slows down (cf. Sect. 4.4). The
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Table 2 Results of Algorithm 2
with f (x) = ln(1+x)

1+x3
, ν = 1

η = 1e − 4 η = 1e − 7 η = 1e − 10

ω = 1 Error 1.4e − 5 3.6e − 7 1.7e − 10

M 20 35 50

N 5 36 275

h 0.33 0.27 0.24

k 1 12 23

ω = 5 Error 1.9e − 3 2.2e − 7 1.4e − 10

M 20 35 50

N 6 50 431

h 0.28 0.24 0.22

k 2 13 25

ω = 20 Error 7.8e − 4 1.5e − 7 1.8e − 10

M 20 35 50

N 5 70 571

h 0.23 0.21 0.20

k 1 12 23

Table 3 Results of Algorithm 2

with f (x) = e−
1
2 x

3
2 , ν = 2

η = 1e − 4 η = 1e − 7 η = 1e − 10

ω = 1 Error 1.2e − 4 1.2e − 7 1.2e − 10

M 20 35 50

N 5 5 5

h 0.28 0.22 0.20

k 1 1 1

ω = 5 Error 1.4e − 4 1.8e − 7 3.9e − 11

M 20 35 50

N 8 13 18

h 0.24 0.20 0.18

k 5 14 24

ω = 20 Error 2.4e − 3 6.3e − 7 1.9e − 11

M 20 35 50

N 15 41 62

h 0.20 0.18 0.17

k 4 14 24

prototype automatic integrator, implemented in Matlab, has been successfully tested on sev-
eral examples and, in our opinion, it represents a good starting point for the development of
a reliable code.
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Table 4 Results of Algorithm 2

with f (x) = e−
√
x ln(1 + x),

ν = 3
2

η = 1e − 4 η = 1e − 7 η = 1e − 10

ω = 1 Error 5.3e − 4 1.3e − 7 1.7e − 10

M 20 35 50

N 23 71 146

h 0.30 0.24 0.22

k 9 19 29

ω = 5 Error 5.2e − 4 1.5e − 7 1.7e − 10

M 20 35 50

N 32 195 491

h 0.26 0.22 0.20

k 6 17 27

ω = 20 Error 5.2e − 3 1.9e − 7 1.5e − 10

M 20 35 50

N 17 365 1308

h 0.22 0.20 0.19

k 2 12 23

Table 5 Results of Algorithm 2
with f (x) = x

cosh x , ν = 2
η = 1e − 4 η = 1e − 7 η = 1e − 10

ω = 1 Error 2.4e − 5 4.2e − 9 7.1e − 13

M 20 35 50

N 5 7 9

h 0.28 0.22 0.20

k 1 3 14

ω = 5 Error 8.1e − 4 7.5e − 7 4.7e − 10

M 20 35 50

N 12 24 35

h 0.24 0.20 0.18

k 7 17 27

ω = 20 Error 7.0e − 6 1.1e − 7 1.1e − 10

M 20 35 50

N 53 71 116

h 0.20 0.18 0.17

k 2 6 16

Matlab code

1 function [H,nval] = Hankel(f,w,ni ,eta)
2 % HANKEL evaluates the Hankel transform H^(ni)(w)

(see (1))
3 % with prescribed error tolerance around eta. The

code
4 % follows the steps of Algorithm 7.
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5 % In output nval is the total number of function
evaluations

6
7 % step 1
8 M = ceil(-5*log10(eta));
9 % step 2

10 K = pi^(ni+2)/(w^2*2^ ni*gamma(ni+1)*(ni+2));
11 h = 1/((ni+2)*M)*log(K*M^(ni+2)/eta);
12 % step 3
13 c = sqrt (2) /16/(w^2)*abs(4*ni^2-1);
14 fun = @(x) c*f(pi/w*x).*x.^( -1/2);
15 [N,k] = secant(fun ,eta); N = ceil(N);
16 % step 4
17 phi = @(t) t./(1-exp(-t));
18 phiP = @(t) (1-exp(-t)-t.*exp(-t))./(1-exp(-t))

.^2;
19 v = [-M:N]*h;
20 tau = pi/h; q = pi/(4* tau)*(1-2*ni);
21 F = @(t) f(tau/w.*phi(t-q)).*(tau/w)^2.* phi(t-q).*

...
22 besselj(ni ,tau*phi(t-q)).*phiP(t-q);
23 % output
24 H = h*sum(F(v)); nval = M+N+1+k;
25
26 function [N,k] = secant(fun ,eta)
27 N0 = 5; N = N0; N1 = N0+1; st = 1; kmax =

100;
28 F0 = fun(N); F1 = fun(N1); k = 1;
29 while st > eta && k < kmax && abs(F1) >=

eta
30 der = (F1 -F0)/(N1-N0);
31 if der >= 0
32 disp('solution not found , increase

N0')
33 break
34 end
35 N = N - (F1-eta)/der;
36 N0 = N1; F0 = F1;
37 N1 = N; F1 = fun(N);
38 st = abs(F1-eta);
39 k = k+1;
40 end
41 end
42
43 end
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