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Abstract
Questions: Can we map complex habitat mosaics from remote- sensing data? In doing 
this, are measures of spectral heterogeneity useful to improve image classification 
performance? Which measures are the most important? How can multitemporal data 
be integrated in a robust framework?
Location: Classical	Karst	(NE	Italy).
Methods: First,	a	habitat	map	was	produced	from	field	surveys.	Then,	a	collection	of	
12	monthly	Sentinel-	2	images	was	retrieved.	Vegetation	and	spectral	heterogeneity	
(SH) indices were computed and aggregated in four combinations: (1) monthly layers 
of vegetation and SH indices; (2) seasonal layers of vegetation and SH indices; (3) 
yearly	layers	of	SH	indices	computed	across	the	months;	and	(4)	yearly	layers	of	SH	
indices	computed	across	the	seasons.	For	each	combination,	a	Random	Forest	clas-
sification was performed, first with the complete set of input layers and then with a 
subset obtained by recursive feature elimination. Training and validation points were 
independently extracted from field data.
Results: The maximum overall accuracy (0.72) was achieved by using seasonally ag-
gregated vegetation and SH indices, after the number of vegetation types was re-
duced by aggregation from 26 to 11. The use of SH measures significantly increased 
the overall accuracy of the classification. The spectral β- diversity was the most im-
portant variable in most cases, while the spectral α- diversity and Rao's Q had a low 
relative importance, possibly because some habitat patches were small compared to 
the window used to compute the indices.
Conclusions: The results are promising and suggest that image classification frame-
works could benefit from the inclusion of SH measures, rarely included before. Habitat 
mapping in complex landscapes can thus be improved in a cost-  and time- effective 
way, suitable for monitoring applications.
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1  |  INTRODUC TION

Mapping	natural	habitats	 is	 fundamental	 for	 the	conservation	of	
biodiversity.	The	Habitats	Directive	(European	Commission,	1992) 
requires	 EU	 member	 states	 to	 conserve	 habitats	 and	 species	
“of community interest” and to assess their conservation status 
every six years, by reporting on parameters such as habitat area, 
range, indicators of habitat quality and future provisions for hab-
itat	survival	(European	Commission,	2005). These reports require 
regular habitat mapping. However, habitat maps are traditionally 
produced through time- consuming and costly field surveys, mak-
ing them unsuitable for regular updates. Thus, more cost-  and 
time- effective monitoring strategies are required, and remote 
sensing has high potential to become an essential tool (Corbane 
et al., 2015).

Habitat mapping by remote sensing is generally carried out 
through automatic image classification, in which all pixels in an 
image	 are	 categorized	 into	 classes	 (Borra	 et	 al.,	2019). Over time, 
many data sources have become available, while image- processing 
tools have been improved, allowing a broad range of habitats to be 
mapped (Corbane et al., 2015). Despite these advances, some types 
of habitats remain difficult to map, especially in heterogeneous 
areas.	Mosaics	of	grassland	types,	for	example,	are	particularly	chal-
lenging to map, due to the small spatial extent of the habitat patches, 
their spectral similarity, and the high spatial, structural and tempo-
ral variability of the vegetation (Corbane et al., 2015).	 Moreover,	
boundaries between the patches are often not discrete (Rocchini 
et al., 2013). Thus, innovative approaches should be tested (Schuster 
et al., 2015).

Multitemporal	 data	 facilitate	 the	 differentiation	 of	 habitats	
in areas with seasonal variability, based on the phenological dif-
ferences among vegetation types (Rapinel et al., 2019). However, 
there are many ways to include the multitemporal information 
in the classification process: increasing the number of images 
(Schuster et al., 2015), using a time series of a single vegeta-
tion index (Tarantino et al., 2021), or using seasonal composites 
(Praticò et al., 2021).

Image classifications can also be improved by ancillary data, such 
as topographic features, that influence the distribution of natural 
communities	on	fine	scales	(Bhatt	et	al.,	2022), and data on vegetation 
structure	derived	from	active	sensors	(Osińska-	Skotak	et	al.,	2021). 
However, some of the greatest improvements are achieved when 
texture information is included (Khatami et al., 2016). Image texture 
metrics measure the spatial arrangement and variation of pixel val-
ues, and thus provide valuable information on the homogeneity of 
areas (Haralick et al., 1973).

The spatial variability of the remotely sensed signal is also 
the basis for the assessment of plant biodiversity from remote 
sensing	 (Rocchini,	 Balkenhol,	 et	 al.,	 2010). The spectral diver-
sity, or spectral heterogeneity (SH), has been directly related to 
environmental	 heterogeneity	 (Spectral	 Variation	 Hypothesis;	
Palmer et al., 2002), and is often positively related to species 

diversity	 (Rocchini,	Balkenhol,	et	al.,	2010). The relationship be-
tween	SH	and	species	diversity	is	not	universally	valid	(Fassnacht	
et al., 2022), since it is sensitive to spatial scale (Wang et al., 2018), 
spectral resolution (Rossi et al., 2021)	and	temporal	scale	(Fauvel	
et al., 2020). However, SH can be useful regardless of its relation-
ship with taxonomic diversity, since it integrates a broad range 
of vegetation properties and their spatial arrangement (Wang & 
Gamon, 2019).

Among	the	many	measures	of	SH,	two	novel	approaches	have	
emerged (Wang & Gamon, 2019). The first one relies on informa-
tion theory: diversity indices based on information theory, such 
as Rao's quadratic entropy, are computed from spectral data, 
generally by applying the moving- window approach (Rocchini, 
Marcantonio,	 et	 al.,	 2021). The second approach is based on 
“spectral species,” that is, spectral types considered as proxies 
for	 biological	 species	 (Féret	 &	 Asner,	 2014).	 Following	 this	 ap-
proach, each pixel of the image is assigned to a spectral species, 
and metrics of α-  and β- diversity are inferred from the variation in 
spectral	 species	 (Féret	&	de	Boissieu,	2020). So far, this method 
has been applied to tropical forests, based on very high- resolution 
airborne	imaging	spectroscopy	(2 m/pixel;	Féret	&	Asner,	2014), to 
low-	resolution	MODIS	 images	 of	 Europe	 (500 m/pixel;	 Rocchini,	
Salvatori, et al., 2021),	and	recently	also	to	Sentinel-	2	data	(10 m/
pixel), in secondary forests (Chraibi et al., 2021) and in an ecologi-
cal network (Liccari et al., 2022).

In this light, measures of SH have the potential to improve hab-
itat mapping frameworks, especially in complex landscape mosaics. 
Indeed, when vegetation types share similar spectral reflectance 
characteristics, considering additional levels of information may 
facilitate	their	differentiation	(Bhatt	et	al.,	2022). The variability of 
taxonomic, functional and phylogenetic traits, as expressed by SH, 
may be such a type of information (Wang & Gamon, 2019). However, 
very few studies have tried to incorporate these measures for habi-
tat	mapping	(e.g.	Marzialetti	et	al.,	2020).

Moving	forward	from	these	premises,	the	aim	of	this	study	was	
to test and discuss an integrated approach to map a complex mo-
saic of natural and semi- natural habitats through remote sensing, 
using the Classical Karst as a case study. The habitats considered 
correspond to the main vegetation types present in the study area. 
Specifically, the main objectives were:

1. to quantify the importance of measures of SH for habitat 
classification;

2. to provide a robust framework to include multitemporal remotely 
sensed data for habitat classification.

To achieve these goals, multiple sets of remote- sensing- 
derived variables, namely vegetation and SH indices, were com-
puted based on a series of Sentinel- 2 images and aggregated in 
four combinations, for which separate classifications were per-
formed. Classification accuracies were compared to find the most 
reliable approach.
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2  |  METHODS

2.1  |  Study area

The study was carried out in the Italian part of the Classical Karst, a 
limestone	plateau	with	altitudes	ranging	from	0	to	600 m,	located	in	
the	provinces	of	Trieste	and	Gorizia	(NE	Italy;	Figure 1). Six different 
areas	 involved	 in	 a	 habitat	 restoration	 project	 called	 “Ecomosaico	
del	Carso”	were	considered,	for	a	total	surface	of	55 ha	(see	Table S1 
for	details).	These	areas	are	partially	 included	 in	two	Natura-	2000	
network sites: the special area of conservation “Carso Triestino e 
Goriziano”	(IT3340006)	and	the	special	protection	area	“Aree	carsi-
che	della	Venezia	Giulia”	(IT3341002).

Land cover is a fine mosaic of natural and semi- natural habitats, 
where the main vegetation types are grasslands, downy oak (Quercus 
pubescens) woodland and black pine (Pinus nigra) plantations. The Karst 
grassland is an extremely species- rich herbaceous formation domi-
nated by grasses that evolved through thousands of years of grazing 
and is now being replaced by shrublands and woodlands due to land 
use abandonment. Downy oak woodlands are expanding in abandoned 
pastures	and	cover	70%	of	the	Karst	nowadays.	Black	pine	has	been	
introduced since the mid- 19th century for reforestation purposes re-
sulting in extensive species- poor pine plantations and from then on it 
has spontaneously expanded (Poldini, 1989, 2009).	Many	conservation	

projects are being developed to maintain and restore Karst grasslands 
(Marin	&	Altobelli,	2021), which are recognized as habitats of commu-
nity	 interest	 [code	62A0	“Eastern	sub-	Mediterranean	dry	grasslands	
(Scorzoneratalia villosae)”	included	in	Annex	I	of	the	Habitats	Directive].

The	climate	of	the	study	area	is	transitional	between	Mediterranean	
and continental (Poldini, 1989),	with	an	average	rainfall	of	1200 mm/
year, and a mean annual temperature of 12.5°C, but with large differ-
ences	due	to	elevation	and	slope	exposure	(OSMER,	2015).

2.2  |  Field data collection

Field	 surveys	 were	 carried	 out	 between	 March	 and	 May	 2022.	
Habitats	 in	 the	 intervention	 areas	 of	 the	 “Ecomosaico	 del	 Carso”	
project were identified in the field. Two classifications with different 
degrees of detail were used to categorize the habitats. In a first clas-
sification, habitats were described as vegetation types with a high 
level of detail, mainly on a phytosociological basis and in most cases 
at the association level, according to the typologies recognized for 
the Classical Karst by Poldini (1989, 2009). In a second classification, 
habitats were classified on the basis of their structural- physiognomic 
and ecological features, and some classes of the first classification 
were aggregated into coarser types, which are the most relevant in 
terms of environmental conservation and management of the study 

F I G U R E  1 Location	of	the	study	area	in	the	Italian	part	of	the	Classical	Karst,	represented	on	the	Sentinel-	2	median	composite	of	summer	
2021.	The	areas	involved	in	the	“Ecomosaico	del	Carso”	project	are	indicated	in	red.
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area. The two classifications account respectively for 26 and 11 habi-
tat classes. Specifically, for the first classification process, different 
classes of Karst grassland were distinguished according to the fol-
lowing criteria:

1. type of grassland: thermophilous calcareous, mesophilous cal-
careous, thermophilous on flysch;

2. degree of alteration of the floristic composition due to the pres-
ence of Sesleria autumnalis (“felting”), which is a species typical of 
scrubs and mixed oak woodlands of the Karst, its presence indicat-
ing degraded Karst grasslands or initial phases of shrub encroach-
ment: typical grassland (rich in Bromopsis erecta, no S. autumnalis), 
first degradation stage (few, scattered patches of S. autumnalis), 
second degradation stage (mosaic with ca. 50% patches of typi-
cal Karst grassland and 50% S. autumnalis- dominated patches), 
third degradation stage (felted grassland, completely invaded by 
S. autumnalis);

3. dynamic stage of bush encroachment: no bushes (zero encroach-
ment	level,	E0),	few	bushes	with	low	height	(ca < 1.5 m)	and	widely	
spaced	(first	encroachment	level,	E1),	medium-	height	bushes	(ca	
3–4 m)	relatively	close	to	each	other	(second	encroachment	level,	
E2).

In the second classification, Karst grasslands were categorized 
in three classes adopting only the last criterion (bush encroach-
ment).	 All	 shrublands	 distinguished	 in	 the	 first	 classification	were	
aggregated into a single class, and the two classes of downy oak 
woodland — namely	a	class	corresponding	to	young	stages	with	low	
height individuals, and a class including mature stages with individu-
als	higher	than	6 m — were	also	merged.	Groves	with	Ailanthus altis-
sima and Robinia pseudoacacia were aggregated into an invasive alien 
species class, while sessile oak woodlands, black pine plantations, 
hay meadows and pasture grasslands were kept as separate classes. 
Finally,	 a	 grassland–woodland	mosaic,	 defined	 as	 a	 dynamic	 stage	
with patches of grassland and well- spaced patches of downy oak 
woodland, was used in both classifications. The list of habitat classes 
considered in this study is presented in Table S2.

Habitat maps were produced by field mapping for both the 
classifications	 using	 QGIS	 3.16.14	 software	 (QGIS	 Development	
Team, 2022). To improve the accuracy of manual mapping, we used 
vegetation	height	maps	derived	from	LiDAR	data	following	the	pro-
cedure	described	in	Appendix	S1.

2.3  |  Satellite data collection and processing

The workflow applied to manage satellite data is given in Figure 2. 
First,	Sentinel-	2	images	covering	the	period	March	2021–February	
2022	 were	 retrieved	 using	 the	 Google	 Earth	 Engine	 platform	
(Gorelick et al., 2017).	 The	 Sentinel-	2	 level-	2A	 image	 collection	
(“COPERNICUS/S2_SR_HARMONIZED”)	was	filtered	by	date	(from	
March	1,	2021	to	February	28,	2022),	by	area	(the	Trieste	and	Gorizia	

Karst)	and	by	cloud	coverage	 (cloudy	pixel	percentage < 50%).	The	
less cloudy image of each month was manually selected, to produce 
a collection of 12 monthly images.

Then, the 12 Sentinel- 2 images were divided into four groups: 
spring	 (March–May	 2021),	 summer	 (June–August	 2021),	 autumn	
(September–November	 2021),	 and	 winter	 (December	 2021–
February	2022).	Each	group	was	reduced	to	a	single	image	by	com-
puting the median of each spectral band, so that, at each location in 
the output image, the pixel value of a band is the median of all pixel 
values of that band in the input group.

2.4  |  Vegetation and spectral heterogeneity indices

Four	vegetation	 indices	 (Table 1) were computed from each image 
in the monthly data set and then aggregated into seasonal median 
composites, following the procedure used for Sentinel- 2 bands.

Rao's Q layers were separately obtained from each vegetation 
index raster using the R package rasterdiv (Thouverai et al., 2021). 
Then, Rao's Q was computed over the temporal dimension, produc-
ing a single raster per year, where distances among pixel values rep-
resent also the variability over time. Specifically, two sets of rasters 
were obtained: a set of yearly aggregated Rao's Q values computed 
over months, and a set of yearly aggregated Rao's Q values com-
puted over seasons.

Spectral α-  and β- diversity layers were separately calculated 
from each Sentinel- 2 monthly and seasonal image using the R pack-
age biodivMapR	(Féret	&	de	Boissieu,	2020). Then, α-  and β- diversity 
were computed over the temporal dimension, starting from a stack 
of vegetation index layers instead of a stack of spectral bands. In this 
way, two sets of rasters were obtained: a set of yearly aggregated 
α-  and β- diversity values computed over months, and a set of yearly 
aggregated α-  and β- diversity values computed over seasons.

All	 SH	 indices	 were	 computed	 in	 R	 4.1.0	 software	 (R	 Core	
Team, 2022).	Details	are	in	Appendix	S2.

2.5  |  Satellite image classification

The remote- sensing variables were aggregated in four combinations 
(Table 2), that were used as input for distinct classifications.

Reference data were randomly derived from the map of habitats 
produced by field surveys. Training points were extracted from a set 
of training areas selected in the field, while validation points were 
launched in the whole set of polygons after excluding the training 
areas. Thus, training and validation points can be considered as in-
dependent.	All	image	classifications	were	performed	twice,	first	set-
ting the number of habitat classes to 26 and then to 11, as outlined 
in Section 2.2.

Random	 Forest	 (RF)	 classifications	 (Breiman,	 2001) were per-
formed with the caret R package (Kuhn, 2021).	For	each	combina-
tion, two alternative pathways were followed. In one case, the whole 
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set of variables was used as input. In the other case, a subset of 
variables	was	extracted	through	recursive	feature	elimination	(RFE;	
Guyon et al., 2002). The relative variable importance was assessed 
by the “varImp” function, by systematically comparing the perfor-
mance of the decision trees that include specific variables and of 
those that do not, assigning high importance to variables with a pos-
itive	effect	on	the	prediction	accuracy	(Breiman,	2001).	More	details	
are	in	Appendix	S3.

Accuracy	 assessment	 was	 performed	 by	 computing	 the	 over-
all	 accuracy	 (OA),	 the	 kappa	 coefficient,	 the	 user's	 accuracy	 (UA)	
and	 the	 producer's	 accuracy	 (PA).	 After	 all	 classifications	 were	

performed, the best classification was repeated using only vegeta-
tion indices as input, to assess the effect of excluding SH.

The	 significance	of	 differences	 in	OA	between	 individual	 clas-
sification	pathways	was	tested	with	McNemar's	test,	as	suggested	
by	Foody	(2004).	A	t- test was used to assess the effect of choosing 
26	 or	 11	 classes	 on	 the	mean	OA,	 and	 to	 compare	 classifications	
performed	with	or	without	RFE.	Finally,	differences	in	mean	OA	ob-
tained from the four combinations were assessed with a Kruskall–
Wallis test.

All	 classifications	 and	accuracy	assessment	 analyses	were	per-
formed using R (R Core Team, 2022).

F I G U R E  2 Workflow	synthesizing	the	approach	used	to	map	natural	habitats	through	a	Random	Forest	classification	and	multiple	
combinations of input layers (vegetation and spectral heterogeneity indices).

TA B L E  1 List	of	vegetation	indices	used	for	the	analysis.

Index Formula Reference

NDVI
(

NIR(B8) − Red(B4)

)

∕
(

NIR(B8) + Red(B4)

)

Rouse et al. (1975)

GNDVI
(

NIR(B8) − Green(B3)

)

∕
(

NIR(B8) + Green(B3)

)

Gitelson et al. (1996)

NDWI
(

NIR(B8) − SWIR(B11)

)

∕
(

NIR(B8) + SWIR(B11)

)

Chen et al. (2005)

IRECI
((

RedEdge(B7) − Red(B4)
)

∕
(

RedEdge(B5) ∕RedEdge(B6)
))

× 10000 Frampton	et	al.	(2013)

Abbreviations:		NDVI,	Normalized	Difference	Vegetation	Index;	GNDVI,	Green	Normalized	Difference	Vegetation	Index;	NDWI,	Normalized	
Difference	Water	Index;	IRECI,	Inverted	Red-	Edge	Chlorophyll	Index;	NIR,	Near	Infrared;	SWIR,	Shortwave	Infrared.
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3  |  RESULTS

3.1  |  Accuracy of image classification

The	values	of	OA	and	kappa	obtained	from	the	RF	classifications	as	de-
scribed	in	Appendix	S3 are in Table 3.	The	mean	OA	was	significantly	
higher when 11 habitat classes were considered instead of 26 (p- 
value < 0.05;	Figure 3a), while there was no significant difference when 
the	number	of	 input	variables	was	reduced	through	RFE	(Figure 3b), 
nor when different combinations were used as input (Figure 3c).

An	OA	higher	than	70%	was	achieved	only	with	the	monthly	and	
the	seasonal	combinations,	considering	11	habitat	classes.	For	each	
of these combinations, an additional classification was performed 
after removing SH layers, and resulted in a lower accuracy (0.65 vs 
0.72 for the seasonal combination, p-	value < 0.05;	0.69	vs	0.73	for	
the monthly combination, p-	value < 0.05).

The	classifications	that	achieved	an	OA > 70%	did	not	differ	sig-
nificantly among them. Thus, the seasonal combination was chosen 
as the best one based on a parsimony criterion, for its lower number 
of	 predictors	 (34	 predictors	 after	 RFE).	 The	 habitat	map	 resulting	

TA B L E  2 Sets	of	input	variables	used	for	image	classification.

Set of input variables Input variables
Number of 
input variables

#1 Monthly	aggregated Vegetation	indices:	4	layers	per	month	(NDVI,	GNDVI,	NDWI,	IRECI)
Rao's Q:	4	layers	per	month	(NDVI,	GNDVI,	NDWI,	IRECI)
α- diversity: 1 layer per month
β-	diversity	(first	3	PCoA	axes):	3	layers	per	month

144

#2 Seasonally aggregated Vegetation	indices:	4	layers	per	season	(NDVI,	GNDVI,	NDWI,	IRECI)
Rao's Q:	4	layers	per	season	(NDVI,	GNDVI,	NDWI,	IRECI)
α- diversity: 1 layer per season
β-	diversity	(first	3	PCoA	axes):	3	layers	per	season

48

#3 Yearly aggregated based on monthly values Temporal Rao's Q:	4	layers	per	year	(NDVI,	GNDVI,	NDWI,	IRECI)
Temporal α-	diversity:	4	layers	per	year	(NDVI,	GNDVI,	NDWI,	IRECI)
Temporal β-	diversity	(first	3	PCoA	axes):	3 × 4	layers	per	year

20

#4 Yearly aggregated based on seasonal values Temporal Rao's Q:	4	layers	per	year	(NDVI,	GNDVI,	NDWI,	IRECI)
Temporal α-	diversity:	4	layers	per	year	(NDVI,	GNDVI,	NDWI,	IRECI)
Temporal β-	diversity	(first	3	PCoA	axes):	3 × 4	layers	per	year

20

Abbreviations:	NDVI,	Normalized	Difference	Vegetation	Index;	GNDVI,	Green	Normalized	Difference	Vegetation	Index;	NDWI,	Normalized	
Difference	Water	Index;	IRECI,	Inverted	Red-	Edge	Chlorophyll	Index;	PCoA,	Principal	Coordinate	Analysis.

TA B L E  3 Overall	accuracy	(OA)	and	kappa	values	obtained	from	the	different	classification	pathways.	Variable	selection	through	
recursive	feature	elimination	(RFE)	was	performed	when	indicated.

No. of classes Set of input variables No. of predictors OA Kappa

26 Set	#1	(Monthly) 144 0.65 0.58

Set	#1 + RFE 48 0.63 0.56

Set #2 (Seasonal) 48 0.63 0.56

Set	#2 + RFE 46 0.62 0.54

Set #3 (Yearly based on months) 20 0.62 0.54

Set	#3 + RFE 20 0.61 0.53

Set	#4	(Yearly	based	on	seasons) 20 0.57 0.50

Set	#4 + RFE 20 0.58 0.51

11 Set	#1	(Monthly) 144 0.73 0.65

Set	#1 + RFE 100 0.73 0.65

Set #1 with only vegetation indices 48 0.69 0.59

Set #2 (Seasonal) 48 0.72 0.64

Set	#2 + RFE 34 0.72 0.64

Set #2 with only vegetation indices 16 0.65 0.56

Set #3 (Yearly based on months) 20 0.66 0.57

Set	#3 + RFE 14 0.67 0.57

Set	#4	(Yearly	based	on	seasons) 20 0.64 0.55

Set	#4 + RFE 17 0.64 0.55
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from this classification is shown in Figure 4: the most common hab-
itats	are	grassland	E2	(24.80%),	downy	oak	woodland	(21.70%)	and	
shrubland (16.10%).

The confusion matrix for the best classification is given in 
Table 4, while class- specific accuracy parameters are in Table 5. The 
best	 results	 were	 achieved	 for	 black	 pine	 plantations	 (PA = 0.88,	
UA = 0.92)	and	downy	oak	woodland	(PA = 0.74,	UA = 0.86),	while	the	
lowest values of accuracy were obtained for sessile oak woodlands 
(UA = 0.36,	PA = 0.27)	and	invasive	alien	species	groves	(UA = 0.00,	
PA = 0.00).

In the case of the 26- class classifications, the seasonal combi-
nation was also selected as the best one based on a parsimony cri-
terion	 (OA = 0.62;	 Figure S12). The highest class- specific accuracy 
(Tables S3 and S4)	was	found	for	black	pine	plantations	(UA = 0.91,	
PA = 0.89)	and	the	lowest	for	the	two	classes	of	invasive	alien	spe-
cies	(PA = 0.00,	UA = 0.00).	For	grassland	classes,	the	different	types	
(mesophilous calcareous, thermophilous calcareous and on flysch) 
were well differentiated, and most errors occurred between dif-
ferent levels of encroachment and presence of Sesleria autumnalis. 
More	details	on	the	class-	specific	performances	are	in	Appendix	S3.

3.2  |  Relative variable importance

The relative importance of the variables used as input for the best 
classification is presented in Figure 5. The most important variable 

is the principal coordinate 2 (PCo2) of the β- diversity computed 
from	the	autumn	composite	 (present	 in	every	RF	model,	equals	to	
100.00%), followed by PCo1 of the winter β-	diversity	(94.19%),	PCo1	
of the autumn β- diversity (88.93%), green normalized difference 
vegetation	 index	(GNDVI)	and	 inverted	red-	edge	chlorophyll	 index	
(IRECI)	of	the	summer	(respectively	79.39%	and	72.29%).

In the other classifications (Figures S15–S18), the most import-
ant variable is almost always β- diversity, with the monthly classifi-
cation with 11 classes as the only exception, in which vegetation 
indices are at the first places. The relative importance of the indices 
of α- diversity and Rao's Q is low in all the classifications: the maxi-
mum	values	are	respectively	42.56%	for	α- diversity (in the monthly 
26-	classes	 classification)	 and	 64.91%	 for	 Rao's	Q (in the monthly 
11-	classes	classification).	A	description	of	the	input	variables	is	given	
in	Appendix	S2.

4  |  DISCUSSION

The approach developed in this study showed the potential of 
novel SH indices and multitemporal frameworks for the auto-
matic mapping of vegetation types in complex landscapes. In our 
example, the landscape was highly dynamic and our goal was 
to develop a framework to classify vegetation types with a high 
level of detail, to monitor their distribution and to assess the ef-
fects of management over different areas and in short periods of 

F I G U R E  3 Comparison	of	the	overall	
accuracy achieved by (a) considering 
different numbers of habitat classes; (b) 
by performing or not a variable selection 
step through recursive feature elimination 
(RFE);	and	(c)	by	using	different	input	
combinations.

(a) (b)

(c)
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time. In this context, remote sensing allowed the development 
of time- effective and efficient monitoring strategies, even if the 
maximum level of accuracy achievable was likely constrained by 
the presence of transition areas with high heterogeneity, by the 

spatial and spectral resolution of satellite data, and by the pres-
ence of some classes particularly difficult to map and with small 
patches.	Nonetheless,	remote	sensing	provides	a	useful	basis,	for	
example	to	identify	sites	with	potential	for	restoration	(Marignani	

F I G U R E  4 Habitat	map	resulting	from	the	Random	Forest	classification	based	on	seasonal	layers	of	vegetation	and	spectral	
heterogeneity	indices.	Among	all	the	possible	classifications,	the	one	selected	is	the	one	that	resulted	in	the	highest	accuracy	while	
minimizing	the	number	of	input	layers.	A	total	of	11	habitat	classes	was	considered,	based	on	structural-	physiognomic	and	ecological	
characteristics.	The	areas	are	located	in	Monfalcone	(a),	Case	Coisce	(b),	Opicina	(c),	Aurisina	(d),	San	Lorenzo	(e)	and	San	Giuseppe	(f).

TA B L E  4 Confusion	matrix	for	the	best	classification	(seasonal	classification	performed	with	11	classes).

Gr_E0 Gr_E1 Gr_E2 PG HM GWM Shr DOW SOW BPP IAS

Gr_E0 12 2 1

Gr_E1 21 5 1

Gr_E2 3 7 51 1 2 3 1 5 1

PG 1

HM 6 10 1

GWM 2 1 2 1 13 1 22 4

Shr 2 20 8 6 1 2

DOW 1 1 1 2 156 10 9 1

SOW 7 4

BPP 1 1 7 107

IAS 1 4 1

Note: The rows represent the results obtained from the classification, while the columns represent the reference data. The values on the matrix 
diagonal,	highlighted	with	gray	shades,	are	the	correctly	classified	pixels.Abbreviations:	Gr_E0,	grassland	with	no	encroachment;	Gr_E1,	grassland	
at	first	encroachment	stage;	Gr_E2,	grassland	at	second	encroachment	stage;	PG,	pasture	grassland;	HM,	hay	meadow;	GWM,	grassland–woodland	
mosaic;	Shr,	shrubland;	DOW,	downy	oak	woodland;	SOW,	sessile	oak	woodland;	BPP,	black	pine	plantation;	IAS,	invasive	alien	species.
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et al., 2008), that can be improved with more detailed field analysis 
on limited areas.

4.1  |  Accuracy of image classifications

In	this	study,	multiple	RF	classifications	were	performed	to	test	dif-
ferent combinations of vegetation and SH indices, using as study 
area a complex mosaic of habitats in the Classical Karst. The small 
spatial extent of the habitat patches, their spectral similarity and the 
high variability of vegetation make this type of landscape challeng-
ing to map from remote sensing (Tarantino et al., 2021). The maxi-
mum	OA	achieved	in	this	study	(0.73)	is	comparable	to	the	levels	of	
accuracy achieved by similar studies. Rapinel et al. (2019) mapped 
seven wet grassland plant communities with an accuracy of 0.78, 
using Sentinel- 2 time series. Tarantino et al. (2021) achieved an 

accuracy of 0.95 using multiseasonal Sentinel- 2 images, a time series 
of	the	modified	soil	adjusted	vegetation	index	(MSAVI)	and	a	digital	
terrain	model	 (DTM),	 but	 they	 only	mapped	 four	 grassland	 types.	
Bhatt	et	al.	 (2022),	who	used	very	high-	resolution	 imagery	 (60 cm)	
to map nine heterogeneous habitats, reached an accuracy of 0.79.

In this study, habitat classes were defined with a high level of 
detail.	Although	 the	high	number	of	 classes	 reduced	 the	accuracy	
of	 image	classifications	 (maximum	OA = 0.65	 for	 the	26-	class	clas-
sifications, as shown in Figure 3a), our approach was promising, be-
cause it allowed differentiation of the types of grassland, distinction 
of patches of typical grasslands from patches completely invaded 
by Sesleria autumnalis, and differentiation of the earliest stages of 
encroachment from the most advanced ones. The conservation 
of grassland depends on the persistence of the typical species 
(Butaye	et	al.,	2005)	and	on	the	degree	of	encroachment	(Altobelli	
et al., 2014); thus, distinguishing the transitional stages of grassland 
by remote sensing is highly important for conservation.

Two other factors increased the complexity of the classification. 
Firstly,	the	intra-	habitat	variability	was	high	in	the	study	area	due	
to differences in altitude and substrate composition (Poldini, 1989). 
Generally, spectrally heterogeneous habitats are more difficult to 
map	(Villoslada	et	al.,	2020), and indeed we observed the best per-
formances for black pine plantations, the most spectrally homoge-
neous habitats. Secondly, most habitat patches were small (median 
patch	size = 0.32 ha,	20%	of	the	patches	covering	less	than	10	pix-
els), thus the proportion of mixed pixels was high, complicating 
habitat separation (Rocchini et al., 2013). The lowest class- specific 
accuracy, indeed, was found for invasive alien species groves that 
were present in the smallest areas. In our case, Ailanthus altissima 
and Robinia pseudoacacia stands were considered as a single hab-
itat	 class	 (i.e.	 Invasive	 Alien	 Species),	 but	 the	 two	 species	might	
have a different spectral signature, and this could explain the low 
accuracy in classifying this habitat class. The use of hyperspectral 
imagery could facilitate the differentiation of target alien species 
and lead to more promising results (Rocchini et al., 2015).

TA B L E  5 Class-	specific	accuracy	parameters	obtained	for	the	
seasonal	classification	performed	with	11	classes.	Accuracy	was	
assessed using independent validation data.

Class UA PA

Grassland	E0 0.80 0.71

Grassland	E1 0.78 0.68

Grassland	E2 0.69 0.64

Pasture- grassland 1.00 0.13

Hay meadow 0.59 0.71

Grassland- woodland mosaic 0.28 0.72

Shrubland 0.21 0.57

Downy oak woodland 0.86 0.74

Sessile oak woodland 0.36 0.27

Black	pine	plantation 0.92 0.88

Invasive alien species groves 0.00 0.00

Abbreviations:	UA,	user's	accuracy;	PA,	producer's	accuracy.

F I G U R E  5 Relative	importance	of	the	variables	used	as	input	for	the	seasonal	classifications	with	11	classes.	Classifications	were	
performed	with	the	whole	set	of	input	variables	(a)	and	with	a	subset	obtained	by	RFE	(b).	Only	the	first	20	variables	are	shown.

(a) (b)
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SH measures improved the capacity of classifying habitats from 
satellite data. The classifications performed without SH measures 
(maximum	OA = 0.69)	were	significantly	less	accurate	than	the	oth-
ers	 (maximum	OA = 0.73),	 and	 the	 resulting	maps	were	more	 con-
fused, as the spatial integrity of the classes was not maintained. SH is 
mainly investigated nowadays for its relationship with species rich-
ness (Wang & Gamon, 2019), and it has rarely been used for the clas-
sification of habitats. Our results suggest that image classification 
frameworks could benefit from the inclusion of SH measures as an 
additional level of information, although with differences according 
to the type of metric.

The most important variable in almost all the classifications was 
spectral β- diversity, defined here based on the spectral species ap-
proach	(Féret	&	Asner,	2014).	All	diversity	metrics	based	on	this	ap-
proach have some advantages. The distinction of spectral species 
is based on k- means clustering, which exploits the full spectral in-
formation	(Féret	&	Asner,	2014), and groups spectrally extreme pix-
els into separate classes, avoiding an unproportional effect on the 
results	 (Fassnacht	 et	 al.,	 2022).	 Moreover,	 the	 algorithm	 involves	
two	ordinations,	an	initial	principal	components	analysis	(PCA)	and	a	
principal	coordinates	analysis	(PCoA)	for	the	computation	of	spectral	
β- diversity, that are useful to reduce feature dimensionality while 
maximizing	spectral	separability	(Borra	et	al.,	2019).	Although	both	
α-  and β- diversity in this study were based on the same approach, 
the latter was far more important than the former for habitat classifi-
cation. Indeed, β- diversity allows habitats to be differentiated based 
on their compositional dissimilarity, while a similar α- diversity can 
be shared also by habitats with different species (Whittaker, 1960). 
Here, spectral β- diversity clearly separated the three main groups of 
habitats in the Classical Karst: habitats dominated by woody decid-
uous plants (woodlands and shrublands), habitats dominated by her-
baceous plants (grasslands and meadows) and habitats dominated by 
evergreens (pine forests).

Moreover,	 the	 link	 between	 species	 and	 spectral	 diversity	
seems to be stronger for β-  than for α- diversity. In many studies, 
α- diversity could only be estimated with very high- resolution data 
(e.g.	1 m2 in Wang et al., 2016), while β- diversity could be estimated 
also	 at	 coarser	 spatial	 resolutions	 (e.g.	 20 × 50 m	 in	 Rocchini,	 He,	
et al., 2010), although generally less studies focused on this compo-
nent (Wang & Gamon, 2019).

The other SH index considered in this study, spectral Rao's Q, 
had a low relative importance. This index measures the heterogene-
ity of a pixel with respect to its surroundings (Thouverai et al., 2021), 
and matches species diversity in natural areas but not in heteroge-
neous agricultural lands (Rocchini, Salvatori, et al., 2021). We found 
an unclear relation between spectral Rao's Q and species diversity: 
the lowest Rao's Q values were found for black pine plantations, 
which host a low species diversity, and the highest values for pas-
ture grasslands and pure grasslands, which are species- rich habitats 
(Poldini, 2009), but high values were found unexpectedly also for in-
vasive alien species groves. One possible reason is the spatial extent 
of the habitat patches: habitats with smaller patches are more likely 
to border with different habitats inside the moving window used to 

calculate the index, and thus to have higher Rao's Q values. Using 
data with higher spatial resolution would probably improve this as-
pect. However, the approach used to calculate Rao's Q may itself be 
a problem, since it highlights the differences among close pixels, and 
thus maximizes the noise, instead of minimizing it. Therefore, while 
the Rao's Q index can be used to estimate species diversity in some 
cases (Rocchini, Salvatori, et al., 2021), it might be less useful in the 
context of habitat mapping.

Our results show that some SH metrics might be more useful 
than others for habitat mapping. These measures can be useful re-
gardless of their link with actual species diversity, which is still often 
unclear, since they allow the exploitation of the main strength of 
remote sensing: repeating measures over time, to capture habitat- 
specific	 variations	 and	 monitor	 landscape	 evolution	 (Fassnacht	
et al., 2022).

4.2  |  Importance of vegetation indices

Vegetation	 indices	 were	 the	 most	 important	 variables	 after	 β- 
diversity in all the monthly and seasonal classifications. In particular, 
summer	 GNDVI	 and	 IRECI	 and	 autumn	 NDVI	 were	 the	 most	 im-
portant	vegetation	indices	in	the	best	classification.	NDVI,	with	its	
variant	GNDVI,	has	been	found	useful	in	many	studies	(e.g.	Schuster	
et al., 2015).

IRECI	 is	 the	 only	 index	 considered	 that	 includes	 the	 Red	
Edge	 Sentinel-	2	 bands	 and	 has	 a	 strong	 linear	 relationship	with	
canopy	 chlorophyll	 content	 and	 leaf	 area	 index	 (LAI)	 (Frampton	
et al., 2013).	Here,	IRECI	varies	following	the	seasonal	changes	of	
canopy chlorophyll content, with an increase in spring, a maximum 
in summer and a decrease in autumn (Gara et al., 2019). Differences 
between habitats reflect the differences in chlorophyll content 
between broadleaved trees and conifers (Li et al., 2018) and the 
differences	 in	 LAI	 across	 ecosystems,	which	 generally	 increases	
from grasslands and shrublands to temperate deciduous broad-
leaved	and	evergreen	needle-	leaved	 forests	 (Asner	et	al.,	2003). 
Optical traits like chlorophyll content can improve the estimation 
and mapping of species composition over space, as demonstrated 
by	 Feilhauer	 et	 al.	 (2017) in semi- natural temperate grasslands. 
Although	IRECI	itself	has	not	been	tested	much	for	habitat	map-
ping,	other	indices	using	the	Red	Edge	spectrum	have	been	shown	
to	 be	 useful.	 For	 example,	 Schuster	 et	 al.	 (2012) found that the 
Red	Edge	channel	of	the	RapidEye	satellite	had	a	positive	influence	
on the overall accuracy of a land cover classification in a mosaic 
of natural and agricultural areas in Germany, especially for the 
bush	and	dry	grassland	 classes.	Bayle	et	 al.	 (2019) distinguished 
alpine grasslands from shrublands relying on the Sentinel- 2 Red 
Edge	bands,	by	detecting	the	seasonal	anthocyanin	accumulation	
in	 the	shrub	species.	A	Red	Edge-	based	 index	was	also	 found	to	
be	more	 useful	 than	NDVI	 to	map	 plant	 communities	 in	 coastal	
meadows	(Villoslada	et	al.,	2020). These examples are in line with 
our	results,	which	confirm	the	role	of	the	Red	Edge	spectrum	for	
the distinction of habitats.
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4.3  |  Inclusion of multitemporal data

The aggregation of monthly data in seasonal composites using the 
median statistical operator allowed the reduction of the number 
of input layers without losing information. The levels of accuracy 
achieved with the monthly and seasonal combinations were, indeed, 
not significantly different, while the number of input layers was re-
duced	from	144	to	48.	This	method	of	reducing	data	dimensionality	
can	be	complemented	with	variable	selection	through	RFE,	which	did	
not have a significant effect on accuracy (as shown in Figure 3b). The 
use of seasonal composites for habitat mapping is known to be use-
ful because it reduces the problem of cloudy images but maintains 
the advantage given by multitemporal data (Kollert et al., 2021). In 
a recent work by Praticò et al. (2021), the mean turned out to pro-
duce slightly better results than other statistical operators such as 
the median. In this study the median was chosen because it is less 
sensitive to outliers and is the most common way to perform image 
reduction (Kollert et al., 2021), but other statistical operators could 
be investigated.

The combinations including only yearly aggregated values of 
spectral diversity and heterogeneity generally led to worse results 
than	the	other	combinations	(mean	OA = 0.59	for	26	classes	and	0.65	
for 11 classes, Figure 3c).	Marzialetti	et	al.	(2020) achieved good re-
sults using the temporal Rao's Q of vegetation indices computed 
over a year to map coastal dune habitats, but they included also the 
mean, the 10th and the 90th percentiles of vegetation indices. Here, 
only temporal heterogeneity layers were used, thus including other 
measures that summarize the annual variation of vegetation indices 
could increase the capacity of distinguishing habitats.

The most relevant seasons for distinguishing vegetation types 
in the Classical Karst were summer, autumn and winter, but spring 
was also important in some classifications, suggesting that there 
is not one single period better than the others, and confirming the 
advantage of using multitemporal data (e.g. Schuster et al., 2015; 
Rapinel et al., 2019).	Each	season	can	provide	specific	information,	
as was found for example by Soubry and Guo (2021) to distinguish 
shrubs and grasslands: in spring the most important feature was the 
peak in growth (red and blue bands), in summer the leaf structure 
(near infrared bands), while in autumn the greenness and moisture 
(shortwave infrared and red bands). In the case of Classical Karst, 
autumn and winter generally allowed evergreens to be distinguished 
from deciduous or semi- deciduous plants, while summer separated 
the	different	deciduous	forest	habitats	especially	with	the	NDVI	and	
IRECI	indices.

5  |  CONCLUSIONS

In this study, we tested novel SH indices in a multitemporal clas-
sification framework and demonstrated their potential to improve 
habitat mapping in complex landscapes, using the Classical Karst as 
testing area.

Our framework could be improved using different remote- sensing 
data sources, as hyperspectral sensors, sensors with higher spatial 
resolutions,	 or	 active	 sensors	 (Nagendra	 et	 al.,	 2013).	 Moreover,	
other combinations of input variables can possibly produce better 
results, such as combinations of Sentinel- 1 and Sentinel- 2 time se-
ries	(Fauvel	et	al.,	2020).

The framework presented here was applied to some areas of the 
Classical Karst, but could be extended to test its validity on a larger 
scale. This approach based on remote sensing cannot replace field 
work and requires field data for training and validation, though it can 
be a valid tool to map habitats in a cost-  and time- effective way that 
is very suitable for monitoring purposes.
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SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	 in	 the	
Supporting Information section at the end of this article.

Appendix S1. Study area and habitat classes.
Appendix S2.	Vegetation	and	SH	indices.
Appendix S3. Satellite image classifications.
Data S1.
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