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ABSTRACT: In the last decade, the application of progressive flooding simulations improved the decision sup-
port available onboard in case of flooding. However, all these Decision Support Systems (DSS) rely on flooding
sensors, thus cannot be adopted on the large majority of the existing fleet without a costly retrofit of the flooding
detection system. Here an alternative has been proposed to assess the main flooding consequences from the time
evolution of the floating position, which can be recorded with a very basic set of sensors. Here the decision trees
are employed to assess the final fate of the ship, the damaged compartments and estimate the time-to-flood. Deci-
sion trees are here trained by means of two types of databases of progressive flooding simulations: one based on
Monte Carlo (MC) generation of damages according to SOLAS probability distributions and a parametric one.
The method has been tested on barge geometry employing another MC database for validation purposes.

1 INTRODUCTION

In recent years, the importance of decision support
during the progressive flooding of a damaged ship has
been highlighted by many severe accidents. In this
contest, one of the most vulnerable ship types is repre-
sented by large passenger vessels (Braidotti et al.
2021a), whose complex non-watertight subdivision,
limited stability reserve and limited freeboard at bulk-
head deck lead to a difficult prediction of the flooding
consequences. Hence, after damage due to collision or
grounding it is very handy for the master to have his
decisions supported by evidence since thousands of
human lives can be a stake.

The disaster of Costa Concordia clearly showed
the inadequacy of information to the master required
by late international rules. At that time, it was not
easy even identifying the breached compartments.
Moreover, the consultation of mandatory onboard
documentation regarding damage stability/control
can further waste time. Some decision support could
be provided by the loading computer system (Rupo-
nen et al. 2019) or by Decision Support Systems
(DSS) for damage control (Hu & Ma 2008, Kang
et al. 2017). However, systems based on lost-
buoyancy calculation are not capable to assess the

intermediate stages of flooding, which might lead to
large heeling angles or even ship capsize before
reaching the final equilibrium position.

The introduction of a mandatory flooding detection
system on passenger vessels that come into force on
July 1st 2010 (IMO 2008) improved a fast achieve-
ment of situational awareness for new buildings. Fur-
thermore, it opened new possibilities for the direct
application of quasi-static progressive flooding simu-
lation codes onboard (Ruponen et al. 2012, Dan-
kowski & Krüger 2012, Rodrigues, & Guedes Soares,
2015). The flooding sensors fitted in each ship
internal space permit the assessment of the damage
dimension and location (Ruponen et al. 2017), which
serves as input for the simulation of the progressive
flooding process in the time-domain. In this manner,
the damage consequences can be reliably forecasted
to support master decisions immediately after damage
occurrence, reducing the reaction time for damage
control or ship abandonment, if required.

However, up to now, the large majority of the world
fleet is not equipped with flooding sensors, being still
vulnerable due to deficient emergency decision sup-
port. Besides, the high cost of flooding detection
system retrofit hinders the application of time-domain
tools on older vessels. To make available the essential
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information during a flooding emergency, the time evo-
lution of the damaged ship floating position can be
exploited instead of floodwater levels (Trincas et al.
2017). In this context, a method has been proposed to
correlate the recorded floating position with the main
flooding consequences by applying Machine Learning
(ML) techniques (Braidotti et al. 2021b). An onboard
DSS based on such a technique needs very limited sen-
sors sets: inclinometers (usually fitted on old vessels
too) and a measurement of actual draught (which can
be obtained from level radar(s) fitted in still-pipes or
below bridge wings).

In order to train supervised ML algorithms,
a database of progressive flooding simulations in the
time-domain is required. The training database is built
according to a damage case generator. The present
work explores the effect of different damage cases
generation algorithms on the prediction of progressive
flooding consequences. In particular, two solutions
are tested: a Parametric (P) one and one based on
Monte Carlo (MC) sampling according to the SOLAS
probability distributions for damage dimensions.
After a short overview of the progressive flooding
consequences prediction, the database generation
algorithms are presented. The proposed methodology
is applied to a box-shaped barge using a large SOLAS
based database for validation purposes.

2 PREDICTION OF MAIN DAMAGE
CONSEQUENCES

Considering a flooding casualty, there are a few essen-
tial information required to support the master decision.
First, the final fate of the ship, means whether the ship
will survive the damage scenario reaching a new equi-
librium position or will sink, capsize or shift towards
an unsafe condition (excessive equilibrium heeling
angle). Another important information is the set of
flooded watertight compartments, since this knowledge
is mandatory to carry out properly the damage control
procedures and prevent further spreading of floodwater
towards intact watertight compartments. Finally, the
time frame of the events is of the utmost importance,
especially for non-survival damage scenarios. In such
a case, ship abandonment is required, hence, the know-
ledge of the time-to-flood tf can help to properly
manage the ship evacuation. This basic information
can be assessed by employing ML algorithms based on
the time evolution of the floating position according to
the process depicted in Figure 1, developed in
MATLAB.

During the progressive flooding, the vessel float-
ing position changes due to the embarked floodwater.
The floodwater spreading is governed by the
hydraulic laws, being predictable by applying flood-
ing simulation codes. Hence, a link can be defined
between the recorded time evolution of sinkage s,
heel ϕ and trim θ angles, used as predictors, and the
main flooding consequences, i.e. the responses (Brai-
dotti 2021b). During the emergency, the predictors

can be recorded at defined time instants up to t*, i.e.
the current one. Hence their number increase as the
progressive flooding evolves. Here, the floating pos-
ition is recorded at constant time instant dt and, at
each time instant, three specific learners are trained
to predict the three studied consequences (final fate,
flooded compartments and time-to-flood).

Among the options available in the literature,
Random Forests (RF) have shown good performances

Figure 1. Flowchart showing the preparation of the data-
bases and the process for onboard prediction of damage
consequences.
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in addressing the stated problems (Braidotti 2021b).
Hence they have been employed in the present work.

These decision trees shall be trained with
a database of progressive flooding simulations defined
by a proper damage cases generator. Moreover, to val-
idate the process, another independently generated
database shall be employed. The progressive flooding
simulations included in the validation database provide
the predictors’ values up to the current instant t*
allowing to statistically test the accuracy of the classi-
fication (for final fate and flooded compartments) and
regression (for the time-to-flood). Hence, the valid-
ation database shall be as far as possible representative
of a real probability distribution of damage scenarios.

2.1 Employed learners

Decision trees are a popular class of supervised ML
algorithms that can be employed in both classifica-
tion and regression problems (piecewise approxima-
tion of the response function). The decision trees are
based on binary decisions taken according to the one
predictor’s value xi at each node. Hence, the process
is shaped like a tree: it starts from a root and deci-
sion by decision reaches a leaf, i.e. the response
(Figure 2). A single decision tree is trained with a
database capable to describe the link between pre-
dictors and response (Breiman et al. 1984).

The accuracy of the prediction provided by deci-
sion trees can be improved by employing the so-
called RF (Breiman 2001). Like bootstrap aggrega-
tion, instead of a single tree trained with the complete
database, the problem is decomposed in a set of trees
trained with a partition of the database. The final
response of the overall model is selected according to
the vote of the multiples trees for classification prob-
lems and as the average of responses for regression

ones. Here, 30 weak learners are employed. Besides,
to decorrelate the trees in the ensemble, RF employs
also a random selection of a predictors’ subset each
time a split in a tree is considered (James et al.
2017). The RF have proved to be more resilient to
noise/missing data and more capable to deal with
higher dimensionality data. Hence, the choice of such
an ML technique is very suitable for the studied prob-
lem involving a large number of predictors for higher
t* and being progressive flooding affected by uncer-
tainties (Rodrigues et al. 2018, Braidotti et al. 2019).

2.2 Accuracy evaluation

As mentioned the accuracy evaluation is performed
testing the proposed methodology with the damage
cases including in a validation database. The per-
formance measure has been carried out with two dif-
ferent approaches for the classification and
regression problems, respectively.

Considering classification, the accuracy Acc at
a specific time instant t* is evaluated as the quotient
of the number of correctly classified damage cases
Nc on the total number of cases within the data-
bases N:

Acc ð%Þ ¼ 100
Nc

N
ð1Þ

Aiming to assess the forecast capability of the
model, a so-called ongoing accuracy Acc* has also
defined considering only the damage cases having tf
greater than t*. Means, considering only the N*
scenarios that at that point have not already reached
the final stage:

Acc� ð%Þ ¼ 100
N�
c

N� ð2Þ

Regarding the regression problem, the perform-
ances are measured employing the coefficient of
determination R2:

R2 ¼ 1� SSE
SStot

ð3Þ

SSE ¼
XN
i¼1

yi � y
0
i

� �2
ð4Þ

SStot ¼
XN
i¼1

yi � ymð Þ2 ð5Þ

Where yi, ym and y′i are the known responses,
their mean value and the responses predicted by the
model, respectively. Again, besides the overall one,

Figure 2. Structure of a decision tree (Braidotti 2021b).
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an ongoing coefficient of determination R2* is
defined considering only the N* ongoing damage
scenarios.

3 DATABASE GENERATION

In this work, two main methods for database gener-
ation have been tested, the first based on MC sam-
pling to define side collision damage cases, the latter
based on a parametric generation aimed to cover all
the possible damage scenarios involving multiple
rooms and compartments.

In both cases, progressive flooding has been
simulated using a fast quasi-static code developed
in Java (Braidotti & Mauro 2019, Braidotti &
Mauro 2020). The employed quasi-static method
has deemed appropriate since there is no interest in
the dynamic transient simulation. The present sec-
tion describes the two methods to generate damage
cases.

3.1 Monte Carlo database

The MC database has been defined according to
SOLAS probability distribution. Hence, it is as far as
possible representative of realistic side collision
damages. SOLAS considers damage as
a parallelepiped defined by five parameters: the
damage length ld, the longitudinal position of its
centre xd, the damage penetration bd, the height of
the highest zmax and lowest zmin damage tip from
baseline.

SOLAS provides the probability distribution of
the first four parameters (IMO 2018) whereas the
distribution related to zmin can be retrieved from the
literature (Bulian et al. 2019). In the present work,
all the internal structures (bulkheads, decks, etc.) are
assumed to be intact, hence the damage penetration
has been neglected.

Applying MC sampling, randomly generated
damage cases can be defined following the so-
called non-zonal approach (Kruger & Dankowsky
2019). Considering that the probability distributions
have been obtained by statistical analysis of
a database of real collision accidents, a large MC
database has been always used for validation
purposes.

3.2 Parametric database

The parametric generation of damages is divided
into two phases. In the first, the box-shaped damages
are generated considering every single room. In the
latter, these damage cases are parametrically com-
bined to define multiple-room damage cases.

Considering a single room, it was observed that
the longitudinal position of the damage centre has
only a limited impact on progressive flooding (Brai-
dotti et al. 2019). Hence, all the room damages have

been applied at half of the room longitudinal exten-
sion assuming an ld equal to the room longitudinal
extension. On the contrary, for each room, at least
three different vertical positions of damage centre zd
have been considered: at the bottom, half-height, and
top. For rooms extending over multiples decks more
intermediate positions have been considered corres-
ponding to the main decks’ hights from baseline. In
order to define damages within room boundaries, the
damage centre height shall be corrected for top and
bottom damages, considering the applied damage
area.

For each possible damage location (xd, zd), mul-
tiple damage sizes shall be applied. The area of the
i-th damage in j-th room, considering the k-th centre
is evaluated as:

1

Aijk
¼ 1

Amaxjk
þ k
n

1

Amaxjk
� 1

Aminjk

!
ð6Þ

with k=[1,2,…,n], where n is the so-called
number of divisions, which is the main parameter
governing the database size. Besides, the minimum
and maximum damage area (Amin, Amax) have been
also defined. In a real application, floodwater inflow
due to very small damages can be taken under con-
trol by the bilge system. Hence, for each position,
a minimum area can be defined as the one corres-
ponding to an initial inflow equal to bilge pumps
capacity. On the other hand, very large damages
drive to the almost instantaneous filling of the dam-
aged room. In the present study, the maximum
damage area for each room has been estimated for
each location as the area that causes the room-filling
in 15 s. Furthermore, every single room is assumed
as lost at the beginning of progressive flooding
(instantaneous flooding) defining an additional
damage case.

As the single room damage cases have been
defined, they are combined with the ones related to
the contiguous rooms. In detail, combined damage
cases are elaborated considering all the possible
combinations of damage areas of damages having
the same centre height (bottom, half-height, top) and
sharing a boundary (watertight bulkhead, deck).
Hence, at the intersection of a deck and a transverse
bulkhead, the combinations are defined considering
up to four rooms. In the present work, only one or
two compartments damages have been considered.
However, the proposed generation technique can be
easily extended to a higher number of contiguous
compartments.

4 TEST CASE

The proposed methodology has been tested on
a box-shaped barge. In the present section, the test
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geometry is presented, including details regarding
the damage cases’ generation process applying both
the previously described techniques. Then the
accuracy of the outcomes of random forests trained
with the two databases is compared and discussed.

4.1 Test arrangement

The test geometry is a box-shaped barge having
a quite complex internal subdivision. It is divided
into five watertight compartments and has three
main decks. The main rooms in compartments 1 and
3 extend across the first deck from the baseline.
Moreover, a longitudinal bulkhead is fitted in some
spaces in compartments 1, 2 and 5. The main par-
ticulars of the test geometry are provided in Table 1
whereas the internal layout of the barge is provided
in Figure 3. More details about the test geometry can
be found in Braidotti et al. 2021b.

The following databases have been generated:

– MC20: 20,000 damage cases (3,083 non-survival)
– P8: 18,885 damage cases (15,388 non-survival)
– MC50: 50,000 damage cases (8,059 non-survival)

According to previous experiences (Braidotti
et al. 2021b), an MC database composed of
20,000 progressive flooding simulations is suffi-
cient to maximize the classification/regression
accuracy for the test geometry. Hence, the MC20
database has been assumed for training purposes.
In order to assure a fair comparison of the two
damage generation techniques, for the parametric
database, a subdivision number n = 8 has been
selected since the resulting P8 database is com-
posed of 18,885 damage cases for the test geom-
etry. Hence the size of the two training databases
is comparable. The database MC50 has been
assumed as the common validation database in
both cases. All the progressive flooding simula-
tions have been carried out up to 2500 s (the
limited number of damage cases exceeding such
a maximum simulation time are classified as time
exceeded).

4.2 Comparison of the results

As mentioned, here three problems have been
addressed: the classification of final fate, the classifi-
cation of damaged compartments and the regression
of the time-to-flood. In the first and second problem,
the random forests have been trained at each time
instant t* with the complete database, whereas, in the
latter, only non-survival damage cases have been con-
sidered for training and validation. In fact, for survival
damage scenarios, the final floating position is
reached with a limited exponential trend, leading to
a difficult definition of the time-to-flood value. This
uncertainty was proved to degrade the performances
of the time-to-flood prediction for non-survival cases
(for which the definition of the time-to-capsize/time-
to-sink is easier since it occurs ad a well-defined
instant). It is worth to notice, that the percentage of
non-survival damage cases on the total is very differ-
ent for the parametric and the MC databases. The
application of the parametric generation on the test
geometry led to 81% of non-survival scenarios while
the MC generation according to SOLAS led to 16%.

Figures 4-6 provides the performances of the
random forests for all the studied problems. In all the

Table 1. Main particulars of the test barge.

Description Symbol Value

Length overall LOA 75.0 m
Breadth B 20.0 m
Draught T 6.0 m
Depth D 17.5 m
Displacing volume ∇ 7500 m3

Metacentric height GM 2.685 m Figure 3. General arrangement of the test barge.
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cases the MC20 training database provides better
results than the P8 one. This is not very surprising,
since the SOLAS probability distribution implies
a maximum damage length ld = 22.72 m, which is
larger than the length of one main compartment of the
barge. Hence, in MC databases, there is about 7.4%
of damage scenarios involving three main compart-
ments. Since the P8 database is limited to damage
scenarios involving up to two compartments, cannot
properly deal with all the damage cases in the valid-
ation database.

Nevertheless, it is worth to notice that the gap
among the accuracies related to the final fate predic-
tion is about 1% and 3% for overall and ongoing,
respectively. So the random forests trained with P8
database are capable to properly classify many
damage cases involving three compartments. Confu-
sion matrices reported in Tables 2-5 confirm this
behaviour. Anyhow, the results coming from the P8
training database are affected by noise, reach later
a stable prediction (larger predictors’ set than the
MC20 is needed) and show larger decay of the
ongoing accuracy as the ongoing damage cases
number decreases.

Both the overall and ongoing accuracy in the clas-
sification of flooded compartments converges to
a gap of about 7%, i.e. the percentage of three com-
partments damage cases. Moreover, a very strong
decay of the ongoing accuracy is observed applying
P8 training database, despite it occurs later than the
one associated with MC20.

Regarding the prediction of the time-to-flood
for non-survival damage scenarios, again the
results provided in Figure 6 show a better per-
formance of the MC20 database, despite it has
a smaller number of non-survival damage cases
than the P8 one. The absence of three damaged
compartments scenarios in P8 database has

Figure 6. Comparison of regression accuracy in time-to-
flood prediction.

Figure 4. Comparison of classification accuracy in ship
final fate prediction.

Figure 5. Comparison of classification accuracy in flooded
compartments prediction.
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a strong impact on the ongoing accuracy, leading
to a maximum value of R2* of 0.33 instead fo

0.61 obtained with MC20 training database,
which is anyway quite a small value. In fact, as
shown in Figures 7 & 8, the random forests,
which provides a piecewise approximation of the
response function, are not capable to predict time-
to-floods greater than 1200 s applying the MC20
database because of the too reduced number of
ongoing damage cases.

The application of the P8 database goes beyond
this limitation due to the larger number of non-
survival damage scenarios. However, the gain in
terms of accuracy is vanished by the strong under-
estimation/overestimation of the time-to-flood asso-
ciated with the three damaged compartments
scenarios.

Table 5. Confusion matrix evaluated at 500 s (MC50b
damage cases) applying P8 training database.

C S EH TE

C 12.9% 0.3% - -
S 1.0% 82.2% - -
EH - - 3.1% -
TE 0.2% 0.5% - -

C: capsize; S: survival; EH: excessive heeling,
TE: time exceeded.

Table 2. Confusion matrix evaluated at 250 s (MC50b
damage cases) applying MC20 training database.

C S EH TE

C 12.8% 0.2% - -
S 0.1% 83.0% - 0.1%
EH - - 3.0% -
TE - 0.3% - 4%

C: capsize; S: survival; EH: excessive heeling,
TE: time exceeded.

Table 3. Confusion matrix evaluated at 500 s (MC50b
damage cases) applying MC20 training database.

C S EH TE

C 12.9% 0.1% - -
S - 83.0% - 0.1%
EH - - 3.1% -
TE - 0.2% - 0.5%

C: capsize; S: survival; EH: excessive heeling,
TE: time exceeded.

Table 4. Confusion matrix evaluated at 250 s (MC50b
damage cases) applying P8 training database.

C S EH TE

C 12.7% 0.3% - -
S 12.4% 70.7% - -
EH 2.9% 0.1% 0.2% -
TE - 0.7% - -

C: capsize; S: survival; EH: excessive heeling,
TE: time exceeded.

Figure 7. Time-to-flood forecast (MC50b damage cases)
applying MC20 training database.
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5 CONCLUSIONS

This work showed once again the feasibility of the
prediction of the damage consequences from the
time evolution of the floating position of the dam-
aged ship. Random forests have been applied,
obtaining very promising results. Moreover, it has
been proved that the process’ accuracy is strongly
influenced by the adopted training database.

In detail, two options have been explored, one
parametric and one based on MC sampling and
SOLAS probability distributions. Applying an MC
validation database, better performances have
been obtained on the test geometry. However,
since the parametric training database was limited
to two damaged compartments scenarios,
a decisive conclusion on which is the preferred
option cannot be yet stated. In fact, the

parametric database showed quite good resilience
for the classification of the ship final fate. More-
over, the parametric generation method led to
a higher percentage of non-survival damage cases
and thus to a less skewed dataset. Besides, the
increased number of long damage scenarios seems
to enable extending the prediction capabilities on
the time-to-flood beyond the limitations related to
an MC training database, which does not predict
any time-to-flood above 1200 s. However, further
work is advisable to test a parametric database
including three damaged compartments scenarios
as well as to analyse more complex geometries,
such as a full-scale cruise ship. Furthermore,
although the RF showed good performances,
other ML algorithms, such as neural networks,
might be tested or combined in future works to
achieve better performances. Finally, the introduc-
tion of damage penetration, here neglected, should
be as well studied.
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