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Abstract
Art heritage cities are popular tourist destinations but for many of them overcrowding
is becoming an issue. In this paper, we address the problem of modeling and analyt-
ically studying the flow of tourists along the narrow alleys of the historic center of a
heritage city. We initially present a mean field game model, where both continuous
and switching decisional variables are introduced to respectively describe the posi-
tion of a tourist and the point of interest that he/she may visit. We prove the existence
of a mean field equilibrium. A mean field equilibrium is Nash-type equilibrium in
the case of infinitely many players. Then, we study an optimization problem for an
external controller who aims to induce a suitable mean field equilibrium.

Keywords Tourist flow optimal control · Mean field games · Switching variables ·
Dynamics on networks

1 Introduction

In the recent years, art heritage cities have experienced a continuous growth of
tourists’ flow, to the point that overcrowding is becoming an issue, and local
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authorities start implementing countermeasures. In this paper we address the prob-
lem of modeling and analytically studying the flow of tourists (or, more precisely, of
daily pedestrian excursionists) along the narrow alleys of the historic center of a her-
itage city. Starting from the contents of Bagagiolo and Pesenti (2017), we recast those
results into a mean field game with controlled dynamics on a network, representing
the attractive sites in the city and the possible paths to reach them.

We here assume for simplicity that tourists have only two main attractions to visit,
as a context with more attractions can be equally treated. We represent possible paths
as a circular network containing three nodes: the train station S where tourists arrive
in the morning and to which they have to return in the evening; the first attraction P1;
the second attraction P2 (see Fig. 1a). The arrival flow at the station is exhogenous,
given by a continuous function g : [0, T ] → [0, +∞[ representing, roughly speak-
ing, the density of arriving tourists per unit of time. The time by which everyone has
to be returned to the station after the tour is the final horizon T > 0.

A single tourist (agent), starting at position θ at time t , controls its own dynamics,
represented by the equation {

θ ′(s) = u(s), s ∈]t, T ]
θ(t) = θ

(1)

where θ(s) ∈ R is the space-coordinate in the network, and s �→ u(s) ∈ R is a
measurable and locally integrable control, namely u ∈ L1

loc(t, T ). We represent the
network by a circle (see Fig. 1), and we denote with θS , θ1 and θ2 respectively the
position of the station, and of the attractions P1 and P2. In particular, we assume that

0 < θ1 < θS < θ2 < 2π, (2)

which is not restrictive due to the circularity representation of the state space.
Moreover (see Figs. 1 and 2), when convenient, we will identify θ and θ ± 2π .

To each tourist, we associate a time-varying label (w1, w2) ∈ {0, 1} × {0, 1}.
For i ∈ {1, 2}, wi(t) = 1 means that, at the time t , the attraction Pi has not been
visited yet, and wi(t) = 0 that the attraction has been already visited. The state of
an agent is then represented by the triple (θ, w1, w2), where θ is a time-continuous
variable and w1, w2 are switching variables. In the following, we denote by B =
[0, 2π ] × {0, 1} × {0, 1} the state space of variables (θ, w1, w2), and in particular
we call (circle) branch any subset Bw1,w2 of B which includes the states (θ, w1, w2),
with (w1, w2) fixed and θ varying in [0, 2π ]. Such branches correspond to edges
of the switching networks in Fig. 2, which represents the network of Fig. 1 in an
equivalent way.

While the evolution of θ is governed by Eq. 1, switching variables can only evolve
from 1 to 0, that is

wi =
{
1 for s ∈ [t, τi]
0 for s ∈]τi, T ],

with τi ∈ [t, T ] the first instant at which the agent reaches and visits attraction Pi ,
i ∈ {1, 2}. This evolution is represented by the arrows and the labels in Fig. 1b (see
also Fig. 2). To exemplify, consider in Fig. 1b an agent that arrives at the station and
visits P1 first: its initial state is (θS, 1, 1) ∈ B1,1; at τ1 ∈ [0, T ], w1 switches from
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Fig. 1 a the physical network of the paths inside the city, counterclockwise positively oriented (with the
three identified points: train station, S, and two attractions, P1, P2 ) and two tourists visiting the city
following opposite directions. b the state network and the states (θ, w1, w2) of the tourists during their
visits. Each singular circle-branch represents the network of the city paths as seen by tourist with given
values of the switching variables w1, w2. The dashed arrows between the four circles-branches represent
the switching of the four labels: at the beginning the label is (1, 1); when the attraction P1 is reached
(and hence visited), the label switches to (0, 1), and similarly when P2 is reached; the last is (0, 0) which
holds when both attractions are reached. The point-dashed arrow represents the external arrival flow in the
station

1 to 0 so that, immediately after τ1, the tourist’s state (θ, 0, 1) belongs to the branch
B0,1 (see also Fig. 2).

The cost to be minimized by every agent takes into account: i) the hassle of running
during the tour; ii) the pain of being entrapped in highly congested paths; iii) the
frustration of not being able to visit some attractions; iv) the disappointment of not
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Fig. 2 Switching cross branches representation

being able to reach the station by the final horizon T . Such a cost can be analytically
represented by

J (u; t, θ, w1, w2) =
∫ T

t

(
u(s)2

2
+ Fw1(s),w2(s)(M(s))

)
ds

+c1w1(T ) + c2w2(T ) + cSξθ=θS
(T ) (3)

Here, c1, c2, cS > 0 are fixed, and ξθ=θS
(s) ∈ {0, 1} and it is equal to 0 if and

only if θ(s) = θS . In Eq. 3, the quadratic term inside the integral stands for cost i)
while the other term stands for the congestion cost ii); the following two addenda
stand for costs iii); the last addendum stands for cost iv). In particular, the congestion
cost Fw1(s),w2(s)(M(s)) is instantaneously paid by an agent whose switching label
at time s is (w1(s), w2(s)), beingM(s) the actual distribution of the agents. For any
(w1, w2) ∈ {0, 1} × {0, 1}, Fw1,w2 is a positive function defined on the set of all
admissible distribution of agents.

The problem here treated differs from that in Bagagiolo and Pesenti (2017) in the
respect that the discontinuous final cost cSξθ=θS

(T ) in Eq. 3 is replaced by a smooth
cost c3(θ − θS)2. As done in Bagagiolo and Pesenti (2017), the problem is consid-
ered as a mean field game, and the existence of a mean field equilibrium is proven
under suitable assumptions. A mean field equilibrium is a time-varying distribution
of agents on the network, s �→ M∗(s) for s ∈ [0, T ] generating, when plugged in
Eq. 3, an optimal control u∗ and associated optimal trajectory, for any agent starting
at the station at time t ∈ [0, T ], yielding again the time-varying distribution M∗. A
mean field equilibrium can be seen as a fixed point, over a suitable set of time-varying
distributions, of a map of the form

M −→ uM −→ MuM (4)

where uM is the optimal control when M is inserted in Eq. 3, and MuM is the
corresponding evolution of the agents’ distribution when all of them are moving
implementing uM as control. Of course, the problem must be coupled with an initial
condition for the distribution M , whereas the boundary condition is represented by
the incoming flow g.
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We remark that the concept of mean field equilibrium is of Nash type. Indeed,
in the case of a large number of agents (even infinitely many, as in the case of a
mean field game) every single agent is irrelevant, the single agent has measure zero,
it is lost in the crowd. Hence, at equilibrium, for a single agent is not convenient to
unilaterally change behavior, because such a single choice will not change the mean
field M, and the agent will not optimize his behavior.

That said, the goal of the present paper is twofold. First we amend some stringent
assumptions that were made in Bagagiolo and Pesenti (2017) to prove the existence
of a mean field equilibrium. Then, we study a possible optimization problem for an
external controller who aims to induce a suitable mean field equilibrium. We sup-
pose that the external controller (the city administration, for example) may act on
the congestion functions Fw1,w2 , choosing them among a suitable set of admissible
functions.

We also note that the presence of a discontinuous final cost is by-passed using
a characterization of the value function at some significant states, identifying at the
same time a finite set of optimal controls.

Consider as an example the historical center of the city of Venice, Italy. Tourists
typically enter the city at the train station and from there they have two main routes,
a shorter and a longer one, to major monuments. In recent years, the shorter route
has been particularly congested on peak days. For this reason, local authorities have
introduced both some gates to slow down the access to the shorter route and some
street signs to divert at least part of the tourist flow along the longer route.

Mean field games theory goes back to the seminal work by Lasry and Lions
(2006) (see also Huang et al. 2006), where the new standard terminology of mean
field games was introduced. This theory includes methods and techniques to study
differential games with a large population of rational players and it is based on the
assumption that the population influences the individuals’ strategies through mean
field parameters. Several application domains such as economic, physics, biology
and network engineering accommodate mean field game theoretical models (Achdou
et al. 2012; Lachapelle et al. 2010). In particular, models to the study of dynamics on
networks and/or pedestrian movement are proposed, for example, by Camilli et al.
(2015), by Cristiani et al. (2015), by Camilli et al. (2017), and by Bagagiolo et al.
(2017).

Very recently (Lasry and Lions 2018) have introduced a new class of mean field
games to model situations involving one dominant agent and a large group of small
players. Our work can be framed in this new class when it deals with the possible
role of local authorities in the optimization of tourist flows.

The problem here treated is also a routing problem (for a particular case of pedes-
trian movement with possible multiple destinations see, for example, Hoogendoorn
and Bovy 2005). Note that different strategies were proposed to control the road-
way congestion, such as variable speed limits (Hegyi et al. 2005), ramp metering
(Gomes and Horowitz 2006) or signal control (Park et al. 2009). However, such
mechanisms neither consider the agents’ perspective, nor affect the total amount of
vehicles/people. A significant research effort was done to understand the agents’
answer to external communications from intelligent traveler information devices
(Khattak et al. 1996; Srinivasan and Mahmassani 2000) and, in particular, to study
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the effect of such technologies on the agents’ choice and on the dynamical proper-
ties of the transportation network (Como et al. 2013). Moreover it is well known that
when individual agents make their routing decisions to minimize their own experi-
enced delays, then the overall network congestion is considerably higher than the
congestion resulting from a central planner directing traffic explicitly (Pigou 1920).
From that the idea to include in our problem an external controller inducing a suitable
mean field equilibrium.

Note also that in the specific case of vehicular congestion, tolls payment is con-
sidered to influence drivers to make routing choices that result in globally optimal
routing, namely to force the Wardrop equilibrium to align with the system optimum
network flow (Smith 1979; Morrison 1986; Dial 1999; Cole et al. 2006). The Wardop
equilibrium, proposed by Wardrop (1952), is a configuration in which the perceived
cost associated to any source-destination path chosen by a nonzero fraction of drivers
does not exceed the perceived cost associated to any other path. This is a station-
ary concept, whose continuous counterpart was recently developed by Carlier et al.
(2008) and by Carlier and Santambrogio (2012).

Not only does the latter fit the situation of pedestrian congestion but also is useful
to analyse large-scale traffic problems, in which one only wants to identify the aver-
age value of the traffic congestion in different zones of a large area. Actually, also
the models using that continuous framework are essentially stationary, as they only
account for a sort of cyclical movement, where every path is constantly occupied by
the same density of vehicles, since those reaching the destination are immediately
replaced by others. This is the essential difference with respect to the mean field mod-
els. Indeed in the latter, due to the explicit presence of time, the optimal evolution is
given by a system coupling a transport equation and an Hamilton-Jacobi equation.

2 Preliminary Results

As anticipated in the introduction, the problem here treated differs from that in Baga-
giolo and Pesenti (2017), under the respect that the final cost cSξθ=θS

(T ) in Eq. 3
replaces the smooth cost c3(θ − θS)2 of Bagagiolo and Pesenti (2017). Hence, we
here recall some of the results from the previous paper that still hold true in our case,
and present some new ways to approach the problem.

We define the value function V (θ, t, w1, w2) as the infimum over the measurable
controls of the cost (3) faced by an agent starting its evolution at the state (θ, w1, w2),
at time t , that is

V (θ, t, w1, w2) = inf
u∈L1

loc(t,T )

J (u; t, θ, w1, w2)

Note that when the distributional evolution t �→ M(t), i.e. the density of the
agents, is initially given, then V does not depend onM. As well as in Bagagiolo and
Pesenti (2017), the following two sets of equations are considered:

(a) the set of Hamilton-Jacobi-Bellman equations (one for each branch Bw1,w2 )
associated to the problem, and fully described through Eq. 26 in Appendix B
(corresponding to equations (3)–(6) in Bagagiolo and Pesenti 2017);
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(b) the associated set of transport equations (one for each branch), fully described
through Eq. 27 in Appendix B (corresponding to equations (8a)–(8d) in
Bagagiolo and Pesenti 2017).

Regarding (a), note that in Eq. 26 boundary conditions are given by the value, at
the switching points, of the solution in the consecutive branch. This fact comes from
the dynamic programming principle, and from interpreting the optimal control prob-
lem on a single branch as an exit-time problem (Bagagiolo and Danieli 2012). More
in detail (see Fig. 2), the exit cost from B1,1 at time τ is given by V (θ1, τ, 0, 1) at
θ1, and by V (θ2, τ, 1, 0) at θ2. The exit costs from B0,1 and from B1,0 are, respec-
tively, V (θ2, τ, 0, 0) and V (θ1, τ, 0, 0) (on both exit points of the branch). On the
final branchB0,0 the problem is reduced to reaching the station at the least cost within
the final time T .

Note also that, when the distribution M is given, the optimal control problem
faced by an agent on a branch is a rather standard combination of a reaching tar-
get (the station) problem and suitable exit time problems. In particular, the optimal
control problem on B0,0 can be solved, and V (·, ·; 0, 0) calculated, independently
from the evolution of the system on the other branches. Once the problem on B0,0 is
solved, one may proceed backwards and solve the problems on B0,1 and B1,0 and,
eventually, on B1,1.

Regarding (b), the transport Eq. (27) are solved, for every (w1, w2) ∈ {0, 1}2 and
for every t ∈ [0, T ], by a time dependent measure mw1,w2(·, t) : [0, 2π ] → [0, +∞[
representing the agents’ distribution on the branch Bw1,w2 at time t . It is assumed that
the city network is initially empty of tourist, that is, mw1,w2(·, 0) = 0 for (w1, w2) ∈
{0, 1}2. By conservation of mass principle,M = (m1,1, m0,1, m1,0, m0,0) satisfies

∫
B

dM(t) =
∫

B1,1

dm1,1(t) +
∫

B1,0

dm1,0(t)

+
∫

B0,1

dm0,1(t) +
∫

B0,0

dm0,0(t) =
∫ t

0
g(s)ds, t ∈ [0, T ].

The connection between the solutions mw1,w2 in the different branches is obtained
again through boundary conditions in Eq. 27.

As in Bagagiolo and Pesenti (2017), we here assume the following hypotheses:

(H1) g : [0, T ] → [0, +∞[ is a Lipschitz continuous function;
(H2) mw1,w2 are continuous functions of time into the set Bw1,w2 of Borel measures

on the corresponding branch Bw1,w2 , endowed with the weak-star topology,
and M(0) = 0;

(H3) t �→ Fw1,w2(M(t)) continuous and bounded for all (w1, w2) ∈ {0, 1}2; in
particular, Fw1,w2 is continuous as function from B1,1 × · · · × B0,0 to R;

(H4) Fw1,w2 does not depend explicitly on state variable θ .

Note that M(0) = 0 in (H2) means that no one is around the city at t = 0, while
(H4) means that all agents in the same branch at the same instant equally suffer the
same congestion pain.
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We recall that in Bagagiolo and Pesenti (2017, Theorem 1) it is proven, under the
previous assumptions, that the value function V coincides in every branch with the
unique (continuous) viscosity solutions of the system of Hamilton-Jacobi-Bellman
Eq. 26. Moreover, for every branch Bw1,w2 , the optimal feedback control u∗ needs to
satisfy for all t and θ

u∗(θ, t, w1, w2) = −Vθ(θ, t, w1, w2). (5)

Remark 1 Note that (H1) (H3) (H4) also imply that the control choice made by agents
at states (θS, 1, 1), (θ1, 0, 1), (θ2, 1, 0), (θ1, 0, 0) and (θ2, 0, 0) (that from now on
we call significant states) does not change as long as the agent remains in the same
branch, and is constant in time. To see this, we observe beforehand that if an agent

moves from θ ′ at time t ′ and reaches θ ′′ at time t ′′ > t ′, its cost 1
2

∫ t ′′
t ′ u2(τ )dτ is

minimized, by Jensen’s inequality and Eq. 1, when the control is chosen constant
and equal to the mean speed u∗(τ ) ≡ θ ′′−θ ′

t ′′−t ′ . This fact excludes the possibility -

recall that F1,1 does not explicitly depend on the space variable θ - that an optimally
behaving agent persists at a state (i.e, chooses u = 0) along a positive time interval
and moves later, as this behaviour would be worse than choosing the mean speed from
the beginning. As a consequence of the above argument, an agent has the choice, at
every significant state, of either stay still forever or move to the next significant state
at constant speed. Such a characterization of the optimal controls is used in the next
subsections.

2.1 Value Functions

The presence of the discontinuous final cost cSξθ=θS
(T ) in Eq. 3 calls for a charac-

terization of the value function different than Eq. 26, and contained into Eqs. 7, 9, 11
and 13. We remark that, along the process, we will also easily detect all available
optimal controls in view of Remark 1.

An agent standing at (θi, 0, 0) at time t ∈ [0, T ], with i ∈ {1, 2}, has two possible
choices (meaning, the optimal behavior may only be one of the following two): either
staying at θi indefinitely or moving to reach θS exactly at time T (it is not optimal
to reach θS before T and wait there for a positive time length, as pointed out in
Bagagiolo and Pesenti 2017). The controls among which the agent chooses are then,
respectively

u
0,0
0 (t) ≡ 0, u

0,0
1 (t) = ±θS − θ1

T − t
, u

0,0
2 (t) = ±θS − θ2

T − t
. (6)

Here θS−θi stands for the length of the minimal path between θS and θi in the circular
network, while the sign is chosen consistently with Eq. 1 in running that path. In
particular, they are constant controls, determined by the arrival time (T in this case)
and the distance to be run. Hence, given the cost functional (3), we derive

V (θi, t, 0, 0) = min

{
cS,

1

2

(θS − θi)
2

T − t

}
+

∫ T

t

F0,0 ds (7)
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(we do not display the argument ofF0,0, that being the fixed distributionM). Instead
an agent standing at (θ1, 0, 1) at time t has three possible choices: staying at θ1,
moving to reach θS at time T ; moving to reach θ2 at τ ∈]t, T ]. Accordingly, the
possible choices for a control are, respectively

u
0,1
0 (t) ≡ 0, u

0,1
1 (t) = ±θS − θ1

T − t
, u

0,1
2 (t) = ±θ2 − θ1

τ − t
. (8)

Hence,

V (θ1, t, 0, 1) = min

{
c2 + cS +

∫ T

t

F0,1 ds, c2 + 1

2

(θS − θ1)
2

T − t
+

∫ T

t

F0,1 ds,

inf
τ∈]t,T ]

{
1

2

(θ2 − θ1)
2

τ − t
+

∫ τ

t

F0,1 ds + V (θ2, τ, 0, 0)

}}
(9)

Similarly at (θ2, 1, 0) the control is chosen among

u
1,0
0 (t) ≡ 0, u

1,0
1 (t) = ±θS − θ2

T − t
, u

1,0
2 (t) = ±θ2 − θ1

τ − t
. (10)

yielding

V (θ2, t, 1, 0) = min

{
c1 + cS +

∫ T

t

F0,1 ds, c1 + 1

2

(θS − θ2)
2

T − t
+

∫ T

t

F0,1 ds,

inf
τ∈]t,T ]

{
1

2

(θ2 − θ1)
2

τ − t
+

∫ τ

t

F0,1 ds + V (θ1, τ, 0, 0)

}}
. (11)

Finally, an agent standing at (θS, 1, 1) at time t may choose: to stay there, to reach
θ1 at a certain τ ∈ (t, T ], to reach θ2 at a certain η ∈ (t, T ]. At (θS, 1, 1) the control
is chosen among

u
1,1
0 (t) ≡ 0, u

1,1
1 (t) = ±θS − θ1

τ − t
, u

1,1
2 (t) = ±θS − θ2

η − t
. (12)

Consistently, one has

V (θS, t,1,1) = min

{
c1 + c2 +

∫ T

t

F1,1ds, inf
τ∈]t,T ]

{
1

2

(θ1 − θS)2

τ − t
+

∫ τ

t

F1,1 ds

+V (θ1, τ, 0, 1)

}
, inf
η∈]t,T ]

{
1

2

(θ2−θS)2

η − t
+

∫ η

t

F1,1 ds+V (θ2, η,1, 0)

}}
.

(13)

Note that, the optimal controls described in Eqs. 6, 8, 10, 12 are detected along
with the arrival times τ and η along the minimization process carried on in Eqs. 7, 9,
11, 13. Note again that, whenM is given, the construction of the optimal controls is
performed backwardly, starting from the minimization problem (7).

We summarize the previous discussion as follows.

Theorem 1 Assume that M is given and that (H1)–(H4) hold. Then the value func-
tion V : B × [0, T ] → R, at the significant states (θ̂ , w1, w2), with θ̂ ∈ {θS, θ1, θ2},
and for all t ∈ [0, T ], is determined through Eqs. 7–13. In addition, V is Lipschitz
continuous with respect to time, and its Lipschitz constant is independent ofM.

251Optimal Control of the Mean Field Equilibrium for a Pedestrian...

9



Proof The proof that the value function is characterized by Eqs. 7–13 is contained in
the previous discussion. It is sufficient to prove the Lipschitz continuity with respect
to time at the significant states, as implied by (H4), and by the fact that once a control
is chosen at one of those states, then it is maintained up to the exit from the branch.
Note now that (H3) implies there exists a positive constant k1, independent of M,
such that

∣∣∣∣
∫ τ

t

Fw1,w2(M(s))ds

∣∣∣∣ ≤ ∥∥Fw1,w2(M(·))∥∥∞ |τ − t | ≤ k1 |τ − t | ≤ k1T

for all τ ∈ [t, T ], and for all (w1, w2). That in particular implies that V (θi, t, 0, 0)
given by Eq. 7 is Lipschitz continuous in t and bounded in absolute value by a
constant k2, also not depending on M. Proceding backwards, this implies that also
V (θ1, t, 0, 1) given by Eq. 9 is Lipschitzian, as the infimum with respect to τ of
appearing in Eq. 9 can be computed on [t + h, T ], with h such that

1

2

(2π)2

h
+ k2 ≤ c1 + c2 + cS . (14)

Arguing similarly, one proves the Lipschitz continuity on the branches B1,0 and B1,1.

2.2 Masses and Flows of Agents

Along with significant states, we consider the arrival flows at such states (see Fig. 2):
the given external arrival flow at the station g, and the four flows g0,1 at (θ1, 0, 1),
g1,0 at (θ2, 1, 0); g1,2 at (θ2, 0, 0), and g2,1 at (θ1, 0, 0). The flows need satisfy the
following conservation constraints for all t ∈ [0, T ]:

∫ t

0
g(τ)dτ ≥

∫ t

0
g0,1(τ )dτ +

∫ t

0
g1,0(τ )dτ,

∫ t

0
g0,1(τ )dτ ≥

∫ t

0
g1,2(τ )dτ,

∫ t

0
g1,0(τ )dτ ≥

∫ t

0
g2,1(τ )dτ . (15)

Note that the flow functions g0,1, g1,0, g1,2 and g2,1, as well as the given flow g, are
time densities entering the switching states. They generate spatial densities along the
branches Bw1,w2 , and spatial densities transform once again into time densities at the
subsequent switching point. The reader may find the thorough description of spatial
and temporal components of flow functions in Appendix A.
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Denoting by ρw1,w2(t) the actual total mass of agents on the branch Bw1,w2 , we
then have

ρ1,1(t) =
∫ t

0
g(τ)dτ −

∫ t

0
g0,1(τ )dτ −

∫ t

0
g1,0(τ )dτ,

ρ0,1(t) =
∫ t

0
g0,1(τ )dτ −

∫ t

0
g1,2(τ )dτ,

ρ1,0(t) =
∫ t

0
g1,0(τ )dτ −

∫ t

0
g2,1(τ )dτ,

ρ0,0(t) =
∫ t

0
g1,2(τ )dτ +

∫ t

0
g2,1(τ )dτ . (16)

and, with the notation of the previous section,

ρw1,w2(t) =
∫

Bw1,w2

dmw1,w2(t). (17)

We denote by ρ = (ρ1,1, ρ0,1, ρ1,0, ρ0,0) the vector of masses in different branches.

Remark 2 All the possible functions ρw1,w2 are obviously uniformly bounded by

0 ≤ ρw1,w2(t) ≤ K≡
∫ T

0
g(s)ds. (18)

Moreover, since the optimal controls are necessarily equi-bounded by a constant
depending only on the parameters of the problem (because of the presence of the
term u2/2 in the cost), and since the flow g, entering at θS in the branch B1,1, is
continuous and hence bounded, by results on the transport equations (see for exam-
ple the unpublished notes by Cardaliaguet (2013): https://www.ceremade.dauphine.
fr/∼cardaliaguet/MFG20130420.pdf), we get that ρ1,1 is Lipschitz continuous, with
Lipschitz constant depending only on the parameters of the problem. Hence it has
bounded derivatives almost everywhere. Differentiating with respect to t the first line
of Eq. 16, we obtain that also the flow functions g0,1 and g1,0 (which are positive) are
almost everywhere bounded, by a constant only depending on the parameters of the
problem. Proceeding in this way in the subsequent branches, we obtain the uniform
boundedness of all flow functions and the uniform Lipschitz continuity of all possi-
ble functions ρw1,w2 in the other branches. Let us denote by L̃ the common Lipschitz
constant. We also point out that (as explained in Appendix A), the flow functions gi,j

are necessarily quite regular, because moving agents (i.e. agents not using null con-
trol) cannot accumulate at any time less than the final time T . Moreover, they have
bounded integrals by Eq. 15.

From now on, we assume that Fw1,w2 only depends on ρ, instead of M, and in
particular on ρw1,w2 only. With an abuse of notation, we keep indicating the function
by Fw1,w2 and replace (H3) with the following (simplifying) assumption.
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(H3′) Fw1,w2 : [0, K] → [0, +∞[ are Lipschitz continuous, and
Fw1,w2(M(t)) = Fw1,w2(ρw1,w2(t)), ∀t ∈ [0, T ], ∀(w1, w2) ∈ {0, 1}2.

Assumption (H3′) implies that congestion costsFw1,w2 only depend on the total mass
ρw1,w2 of agents on the single branch Bw1,w2 , instead that on agents’ distributionM
or on the entire vector ρ. This simplification, although less realistic from a modeling
perspective, allows to completely treat the model. Note that flows from and to the
station S are, in the practice, distributed in different times, hence assumption (H3′),
although simplistic, is still reasonable for the considered case.

Remark 3 We point out that the optimal choice of an agent at a time s also depends
on the congestion along the branches (namely, the other components of ρ) that it
will be running in the future. Nonetheless all statements would hold true also for a
congestion function Fw1,w2 depending on the whole vector ρ, instead that on ρw1,w2 .
Indeed, all along the process of search of a fixed point, what is relevant is that the the
vector ρ is considered given, so that the values of the congestion costs are also given,
and the arguments of the proofs contained in this paper would not change.

Note that, under the hypothesis (H3’), the search of a fixed point described in
Section 1 can be performed for ρ rather than for M. This is the subject of the next
section.

3 Existence of a Mean Field Equilibrium

In this section we give a proof of the existence of a mean field equilibrium.
Let L(f ) the Lipschitz constant of a function f . As space to search for a fixed

point, we choose

X =
{
f : [0, T ] → R+ : L(f ) ≤ L̃, |f | ≤ K

}4
. (19)

the Cartesian product four times of the space of Lipschitzian functions with Lipschitz
constant not greater than L̃ and overall bounded by K , where L̃ and K are the con-
stants defined in Remark 2. Note that X is convex and compact with respect to the
uniform topology.

We then search for a fixed point of the multi-function ψ : X → X, with ρ �→
ρ′ ∈ ψ(ρ) where the idea is to obtain ρ ′ as follows: (i) ρ is inserted in Eqs. 7–13,
the optimal control u = −Vθ is derived; (ii) u is inserted in Eq. 27 and the distri-
bution m is derived; (iii) ρ′ is derived from Eq. 17. Actually, due to the hypothesis
(H3’), in steps (ii) and (iii) we do not need to use the continuity equations for mw1,w2

as in Bagagiolo and Pesenti (2017): instead from the input ρ we may build the opti-
mal controls and then the flow functions g at the significant states, as described in
Appendix A, and finally the new mass concentrations ρ′ by means of Eq. 16.
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Remark 4 Note that in general ψ is not single valued, that is, ψ(ρ) is a nonsigle-
ton subset of X. Indeed the optimal control may not be unique. For any fixed t ,
the minimization procedure in Eqs. 7–13 may return more than one minimizer. In
particular, in Eqs. 9–13 this may happen even along a whole time interval (on the
contrary, in Eq. 7 this may occur at most at a single instant). With uniqueness of the
optimal control all agents in the same position at the same instant make the same
choice (consistently with mean field game models, where agents are homogeneous
and indistinguishable). When instead uniqueness fails, ψ can be built in many ways,
as many as the different optimal behaviors.

In Bagagiolo and Pesenti (2017, Assumption 1), the above difficulty was bypassed
assuming a-priori a finite number N of times, independent of ρ, at which those
multiplicities appear. Here we drop such an assumption.

We will obtain ψ and its fixed point ρ̄ through a limiting procedure on a sequence
{ψε}ε>0 of functions approximating ψ in a suitable sense, and the corresponding
fixed points ρε. The single function ψε is obtained through (i)–(iii) above, with the
difference that in (ii), rather than choosing optimal controls, one chooses ε−optimal
controls and, along time, an ε−optimal stream. We divide the construction into
several steps.

Step 1: ε-optimal streams.

Definition 1 Assume the branch Bw1,w2 is entered at the state (θ̂ , w1, w2), with
θ̂ ∈ {θS, θ1, θ2}, and let u

w1,w2
i , i ∈ {1, 2, 3} be the controls defined through Eqs. 6,

8, 10 and 12. Consider also a partition τw1,w2 = {tn}n of the interval [0, T ], and fix
ε > 0. Then u

w1,w2
ε is an ε−optimal stream for Bw1,w2 associated to the partition

τw1,w2 if

uw1,w2
ε (s) = u

w1,w2
in

(s), s ∈ [tn, tn+1[

where u
w1,w2
in

is optimal at tn and ε-optimal at all s ∈]tn, tn+1[, that is, it realizes the
minimum cost up to an error not greater than ε.

An ε−optimal stream associated to a general partition τ may or may not exist, but
it certainly does when the partition is refined enough. Indeed, consider the functions
involved in the minimization process in Eq. 7, 9, 11, 13. If the minimum is realized
up to the error ε, the minima are attained within intervals of type [t + hε, T ], where
hε is determined as h in Eq. 14, with due differences, so that the functions cited
above are Lipschtiz continuous. Denote by L the greater of Lipschtiz constants of
these functions. Then a control u

w1,w2
i optimal at t remain ε-optimal at least along

[t, t + ε
L
[.

In addition note that, for every fixed ε > 0, there may exist more than one ε-
partition, as optimal controls at significant points may be multiple. Anyway, the
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number of ε-partitions is overall bounded by a number Mε, as the optimal controls at
every switching point are at most 3. This argument proves the following Lemma.

Lemma 1 Fixed ε > 0, set N = max{n ∈ N : n < (T L)/ε} + 1. Consider the
partition τε of [0, T ] such that:

(i) t0ε = 0; tNε = T ;
(ii) tnε = nL

ε
, for all n ∈ {1, . . . , N − 1}.

Then the set of ε-optimal streams associated to τε is nonempty and finite.

To better clarify the definition of ε-optimal stream, we specify how the agents
implementing it behave. For example, consider the state (θS, 1, 1) at time t0ε = 0
and the ε-optimal stream on branch B1,1, so that optimal controls that we refer to are
chosen among those in Eq. 12. Say, the controls u

1,1
1 and u

1,1
2 are both optimal at

t0ε . Then, at t0ε , agents all chose one of the two, say u
1,1
1 (t0ε ). The agents arriving at

(θS, 1, 1) at times s > t0ε continue to choose the same control u1,11 (s) along the time

interval [0, L/ε] (where u
1,1
1 (s) is ε-optimal). Let t1ε = L

ε
: at this time, the agents

arriving at (θS, 1, 1) update the strategy choice, selecting among controls optimal at
t1ε as before. Say they choose u

1,1
2 (t1ε ). As before, agents arriving at (θS, 1, 1) at time

s, with s > t1ε , continue to use u
1,1
2 (s) until time t2ε ≡ 2L

ε
, knowing that u

1,1
2 (s) is

ε-optimal on [L/ε, (2L)/ε], and so on.

Remark 5 By definition, an agent implementing a control chosen along a ε−optimal
stream is using an ε-optimal control, that is, it is realizing the minimum of the payoff
up to a maximum error of ε.

Streams on different branches all start at 0 and are defined along the interval
[0, T ]. Note that an ε-optimal stream is not the strategy of a single agent at different
times, whereas a strategy that is ε-optimal if adopted, along time, by the agents at θ̂ ,
independently of the fact that any agent is present at θ̂ at that time.

Remark 6 Controls that are ε-optimal account for a phenomenon known in litera-
ture as herd behavior (Banerjee 1992): an agent is influenced by the decisions made
by other agents, even when that is not the optimal choice for him/her, unless the
discrepancy from the optimal choice is too large (greater than ε).

Step 2: Split Fractions. For a fixed ε > 0, consider the partition τε defined in Lemma
1. Consider then the vector uε = (u1,1ε , u0,1ε , u1,0ε , u1;0,0ε , u2;0,0ε ) whose components
are ε-optimal streams associated to τε at the points (θS, 1, 1), (θ1, 0, 1), (θ2, 1, 0),
(θ1, 0, 0), (θ2, 0, 0), respectively.

As consequence of Lemma 1, the ε-optimal vectors uε are a finite number.
Note that once uε is fixed, all agents choose equally, in time. Since we will need

to consider the possibility for agents to split into fractions among different vectors
uε (that is, splitting among multiple optimal controls on instants of τε), we give the
following definition.
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Definition 2 Consider the partition τε defined in Lemma 1. An ε-split function is a
vector λε ∈ L∞(0, T )13, with coordinates(

λ
(θS,1,1)
1 , λ

(θS,1,1)
2 , λ

(θS,1,1)
3 ,

λ
(θ1,0,1)
1 , λ

(θ1,0,1)
2 , λ

(θ1,0,1)
3 , λ

(θ2,1,0)
1 , λ

(θ2,1,0)
2 , λ

(θ2,1,0)
3 ,

λ
(θ1,0,0)
1 , λ

(θ1,0,0)
2 , λ

(θ2,0,0)
1 , λ

(θ2,0,0)
2

)
. (20)

constant on subintervals induced by the partition τε and such that the split fractions

λ
(θ̂,w1,w2)
i satisfy:

(i) λ
(θ̂,w1,w2)
i (s) ≥ 0, for all s ∈ [0, T ], and λ

(θ̂,w1,w2)
i (t) = 0 if u

w1,w2
i is not

optimal at (θ̂ , w1, w2, t) for t ∈ τε;

(ii)
∑3

i=1 λ
(θ̂,w1,w2)
i (s) = 1 for all s ∈ [0, T ].

Step 3: Construction of ψε(ρ).

Let ε > 0 and ρ = (ρ1,1, ρ0,1, ρ1,0, ρ0,0) ∈ X be fixed. Let also τε be the
partition of [0, T ] described above. We now build a multifunction ψε(ρ) ⊆ X with
compact and convex images and closed graph, to which later we can apply Kakutani
fixed point theorem.

(a) We define ψ̃ε(ρ) ⊆ X as the finite set of vectors ρ′ = (ρ′1,1, ρ′0,1; ρ′1,0, ρ′0,0)
in X constructed in the following way. For every significant point (θ̂ , w1, w2),
we consider an ε−optimal vector uε, associated to τε. Then, given the arrival
flow of agents g, we use uε to determine (forwardly from (θS, 1, 1), and at all
significant points) all the flow functions gw1,w2 , as explained in Appendix A.
Finally, we use gw1,w2 and Eq. 16 to compute the total mass ρ′. We repeat the
construction for all possible (and finite, by Lemma 1) choices uε and call the
set of all outcomes ψ̃ε(ρ). Note that ψ̃ε(ρ) is a finite set.

(b) We define ψε(ρ) ⊆ X as follows. We consider an arbitrary ε-split function
λε, and assume that at every point of τε the incoming mass gi,j of agents

split in fractions λ
(θ̂,w1,w2)
1 gi,j , λ

(θ̂,w1,w2)
2 gi,j , λ

(θ̂,w1,w2)
3 gi,j (remaining at θ̂ or

acceding the subsequent branches, through the process explained in Appendix
A). At the end of the process, the output is ρ′. We define ψε(ρ) as the set
of all ρ′ generated for all possible choices of the ε-split function λε. Clearly
ψε(ρ) ⊃ ψ̃ε(ρ).

Lemma 2 The set ψε(ρ) is a non-empty convex and compact subset of X, for any
ρ ∈ X. In addition, the map ρ �→ ψε(ρ) has closed graph and, in particular, it has a
fixed point ρε ∈ X.

Proof We preliminarily observe that the set ψε(ρ) is non-empty by construction. In
addition, it is also closed, and hence, since X is compact, it is compact. The closed-
ness comes from the fact that the multifunction ρ �→ ψε(ρ) has closed graph, which
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will be proved below. To prove that ψε(ρ) is convex, we select ξ, η ∈ ψε(ρ), and
α ∈ [0, 1] and show that also αξ + (1 − α)η ∈ ψε(ρ). Assume that λ

ξ
ε and λ

η
ε

are the splits generating ξ and η respectively. Then αξ + (1 − α)η is generated by
αλ

ξ
ε + (1 − α)λ

η
ε , which is itself an ε-split function, and the proof is complete.

Next, prove that the map has closed graph. We consider a sequence {ρn} ⊂ X,
with ρn → ρ inX and we prove that for every selection ρ′n ∈ ψε(ρ

n), with ρ′n → ρ′
in X, we have ρ ′ ∈ ψε(ρ). We divide the long proof into several steps. Note that all
along the partition τε = {tnε } is the same for all ρn, ρ.

(1) Consider the the value functions V n and V , defined by Eqs. 7, 9, 11, 13 and
associated, respectively, to the choices of masses ρn and ρ in the congestion
cost F . By Theorem 1 and hypothesis (H3’) they are equi-bounded and equi-
Lipschitz in time, and continuously depending on ρn, ρ respectively. Since
ρn → ρ uniformly in time, then V n → V uniformly on [0, T ], and the corre-
sponding minimizers τn, ηn ∈ [0, T ] of the arguments in Eqs. 7, 9, 11, 13 are
converging (at least along a subsequence) to suitable τ and η, minimizing the
same arguments with ρ in place of ρn.

Then, along the same subsequence, at any instant tnε of the partition τε, the
optimal controls un

ε (t) induced by ρn converge to an optimal control uε(t)

induced by ρ.
(2) Every ρ′n is generated by some ε-split functions λn

ε associated to ρn. We prove
next that ρ′ is also generated by a split function λε associated to ρ.

Since ε-optimal vectors uε are finite, we may assume that (possibly along a
subsequence) in every subinterval [tnε , tn+1

ε [ the active components of all ε-split
functions λε are the same: if a component of λm

ε is nonzero in a subinterval,
then the same component is nonzero for all other ε-split functions λn

ε . Moreover,
since ε-split functions are constant in all subintervals, we can also suppose that
the sequence λn

ε (uniformly) converges to a limit function λε which is also a
ε-split function.

(3) We examine first the branch B1,1 and assume w.l.o.g. that along [0, t1ε ] the total
mass of entering agents is nonzero (i.e. the integral of the given flow g is not
null). Note that ρ′n is uniformly converging to ρ′, and that branches are initially
empty (see hypothesis (H2)). These facts would be in contradiction with a first
component of ρ′ (i.e. the component on B1,1) not generated by the limiting
process described in (1) and (2). Indeed, the second and the third components
of ρ′n and ρ′ on the branches B0,1 and B1,0 respectively, are given by the flow
functions as in Eq. 16, which strongly depend on the optimal controls and on
the split functions on B1,1 (see Appendix A).

(4) We iterate the argument in (3) both for subsequent intervals of τε and for the
other branches, finally obtaining the closed graph property of ψε.

Hence, by Kakutani fixed point theorem, the map ρ �→ ψε(ρ) has a fixed
point.

Hereinafter, we denote by ρε a fixed point for ψε(ρ), i.e., a total mass that satisfies
ρε ∈ ψε(ρε).
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Before stating the existence of a mean field equilibrium, we introduce the fol-
lowing definitions that help restrict the equilibrium concept to the purpose of our
problem.

Definition 3 A split function is a vector λ ∈ L∞(0, T )13, with components given by

Eq. 20 such that λ(θ̂,w1,w2)
i satisfy:

(i) λ
(θ̂,w1,w2)
i (s) ≥ 0, for a.a. s ∈ [0, T ], and λ

(θ̂,w1,w2)
i (s) = 0 if u

w1,w2
i is not

optimal at s;

(ii)
∑3

i=1 λ
(θ̂,w1,w2)
i (s) = 1 for a.a. s ∈ [0, T ].

Note that the definition differs from Definition 2 in the fact that split function are
not linked to any ε-partition, and they are not necessarily piecewise constant.

Definition 4 Let ψ and ψε be the functions described at the beginning of Section 3.
A ε-mean field equilibrium is a total mass ρε ∈ X that satisfies ρε ∈ ψε(ρε).
A mean field equilibrium is a total mass ρ ∈ X that satisfies ρ ∈ ψ(ρ).

Note that ρ ∈ ψ(ρ) implies that ρ induces a set of optimal controls as
in Eqs. 6, 8, 10, 12, used by masses of agents fractioned according to a split function
λ in every branch: the flows λ

(θS,1,1)
i g generate the corresponding flows entering in

the branches B0,1, B1,0; incoming flows in branches B0,1, B1,0 split again according
to λ, and generate flows entering B0,0, so that the final outcome, ruled by Eq. 16, is
again ρ.

Theorem 2 Assume (H1),(H3’),(H4). Then there exists a mean field equilibrium.

Proof Consider ε > 0, the ε-partition τε, a fixed point ρε for ψε, and the associ-
ated ε-streams uε and ε-split function λε ∈ L∞(0, T )13. Recall that λε is constant
along subintervals induced by τε. (Note also that the number of subintervals is not
uniformly bounded with respect to ε). Arguing as in (3) in Lemma 2 we see that,
at least along a subsequence, λε converges in the weak star topology to a vector

λ ∈ L∞(0, T )13, as ε → 0, that is
∫ T

0 λεμ dt
ε→0→ ∫ T

0 λμdt , for all function
μ ∈ L1(0, T ), and ρε converges uniformly to ρ ∈ X. Hence by construction λ is a
split function generating the total mass ρ.1 What is left to show is that whenever a
component of λ is not null, then the corresponding choice of the control is optimal.
For almost every instant t such that one of the components of λ is not null, by weak-
star convergence there exists a sequence of instants tε converging to t such that, at
least along a subsequence, the corresponding component of λε(tε) is not null.

1Note that Eq. 16 are integral equalities, and that every flow function gi,j is built by means of the incoming
flow g, the optimal controls and the split functions, as explained in Appendix A. Hence the use weak star
convergence of the split functions is appropriate.
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Indeed, if this is not true, then there exists a neighborhood of t where, for ε suf-
ficiently small, that component of all λε are null a.e.. By the weak star convergence,
that would mean that the corresponding component of λ is also null a.e. on that
neighborhood, which is a contradiction.

This means that, for every ε the choice of the corresponding component of uε is
ε-optimal at tε. The conclusion is then reached sending ε → 0 and arguing as in (1)
in the proof of Lemma 2.

4 The Optimization Problem

In this section we describe an optimization problem faced by a local authority, that
we refer to as controller, and that needs to manage the tourists’ flow in a city. As
mentioned in the Introduction, this problem can be framed in the new class of mean
field games proposed by Lasry and Lions (2018).

We restrict our analysis to congestion cost functions of the form

Fw1,w2(ρ) = αw1,w2ρ
w1,w2(s) + βw1,w2 (21)

with ρ = (ρ1,1, ρ0,1, ρ1,0, ρ0,0) ∈ X. In Eq. 21, the coefficients (αw1,w2, βw1,w2) are
chosen by the controller, aiming to force the equilibrium to be as close as possible
(in uniform topology) to a reference string ρ ∈ X, i.e. to minimize:

max
w1,w2∈{0,1}

{
max

t∈[0,T ]
|ρw1,w2(t) − ρw1,w2(t)|

}
= ‖ρ − ρ‖X. (22)

Let us denote by χα,β the set of mean field game equilibria corresponding to the
choice of parameters α = (α1,1, α0,1, α1,0, α0,0) and β = (β1,1, β0,1, β1,0, β0,0),
which are assumed to belong to a compact set K ⊂ R

4 × R
4. Then the controller

faces the optimization problem given by

inf
(α,β)∈K

E(α, β), (23)

where E(α, β) = infρ∈χα,β ‖ρ − ρ‖X.

Theorem 3 In the same assumptions of Theorem 2, there exists an optimal pair
(α, β) ∈ K that solves problem (23).

Proof Let (αn, βn) ∈ K be a minimizing sequence for E , and for every n let ρn ∈
χαn,βn realize the infimum in Eq. 23 up to an error 1/n. By compactness of K and
X, we may suppose that (αn, βn) converges to (α̃, β̃) ∈ K, and that ρn uniformly
converges to ρ̃ ∈ X. Hence we only need to prove that ρ̃ ∈ χα̃,β̃ , that is, ρ̃ is a
mean field equilibrium. Let λn be the split function (Definition 3) associated to the
mean field equilibrium ρn, and let λ̃ be its weak-star limit. Arguing as in the proof of
Theorem 2, we derive that λ is a split function generating the total mass ρ̃, and hence
ρ̃ is a mean field equilibrium for (α̃, β̃).
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Remark 7 A variation of problem (23) is the following

E(α, β) = sup
ρ∈χα,β

‖ρ − ρ‖X

The interest of this new problem relies on the fact that the controller tries to manage
the worst case scenario. Unfortunately, in this case the existence of an optimal pair
is not evident. It can be proved that there exists a pair (α, β) and ρ ∈ Xα,β such that
‖ρ − ρ‖X is equal to the infimum of E(α, β). However, we are not able to prove that
(α, β) is optimal, due to the possible presence of multiple mean field equilibria.

A way to bypass the above difficulty could be to guarantee the uniqueness of the
equilibrium, for example assuming stronger hypotheses on the cost F . We leave such
matter for future investigations.

So far we have assumed that the coefficients (αw1,w2, βw1,w2) of congestion
cost functions Fw1,w2 are constant over time. We now generalize by assuming that
(αw1,w2, βw1,w2) piecewise constant over time and that the control is implemented at
the significant points of each branch of the network, e.g. through gates.

We consider a finite sequence of fixed instants t0 = 0 < t1 < t2 < ... < tN = T

and, for every i = 0, ..N − 1, the coefficients (αi, βi) ∈ K chosen by the controller
in [ti , ti+1[. The congestion cost paid by an agent at time s becomes

Fw1,w2(s) = αw1,w2(τ (s))ρw1,w2(s) + βw1,w2(τ (s))

where αw1,w2(τ ) = αi
w1,w2

, respectively βw1,w2(τ ) = βi
w1,w2

, for ti ≤ τ < ti+1,
i = 0, ..., N − 1; and τ(s) ≤ s is the instant at which the agent state entered Bw1,w2 .

In this situation the total cost payed by an agent is the usual

J (u; θ, t, w1, w2) =
∫ T

t

(
u(s)2

2
+ Fw1,w2(s)

)
ds

+c1w1(T ) + c2w2(T ) + cSξθ=θS
(T ) (24)

but the congestion cost explicitly depends on time through αw1,w2 and βw1,w2 . Nev-
ertheless, such a dependence is compatible with the structure of the choices of the
agents in our model as presented in the following example.

The agents that arrive at (θS, 1, 1) at time t they are given the parameters α1,1(t)

and β1,1(t), which remain constant until their exit from the branch B1,1. Suppose that
the agents now move to the branch B0,1. Then, at that moment, they are given the
new values of parameters α0,1 and β0,1 which, again remain constant until their exit
from the branch, and so on. This behaviour is justified as we assume that the con-
troller applies its controls at the beginning of the network branches and that the agents
make their decisions when they enter a new branch: then a possible change in the
parameters (αi, βi) is not perceived by the agents “on the road” along a branch. Con-
sequently, the considered time-dependence of the cost does not change the arguments
in previous sections. In particular, formulas Eqs. 7–13 remain true, and the existence
of a mean field equilibrium is guaranteed. Finally, the optimization problem (23) can
be successfully solved.
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5 Conclusions

In this paper we have introduced a mean field game model representing the flows of
tourists in the alleys of a heritage city. We then used this model to solve an optimiza-
tion problem where the controller is a local authority aiming to manage tourists’ flow
in the direction of a target congestion of the city.

Further refinements of both the model and the optimization problem are possible
from both a theoretical and an applicative perspective. As an example, the assumption
of the existence of surveillance cameras, to count people entering and leaving areas
of interest, may suggest variations of the model and justify the definition of a feed-
back control policy on the control parameters (α, β). In addition one may consider
different objectives of the controller, or the generalization of the model to a number
n of sites of interest. Note that, although in the latter case the number of alternative
paths would increase exponentially, the direct experience of the authors in Venice
suggests that the vast majority of tourists is interested in very few attractions in a city.
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Appendix A: On Functions g and gi,j

In this appendix, we discuss the relationship between the flow functions g and gi,j

and the components of M, and hence of ρ both from a spatial and a temporal per-
spective. We consider only the branch B1,1 as analogous arguments apply to the other
branches of our model.

The agents’ flow, represented by the time depending g, enters the branch B1,1 at
θS . Then g can be interpreted as number of agents per unit of time and represents
an incoming density with respect to time. Differently, the total mass ρ1,1 on branch
B1,1 using Eq. 17, is obtained integrating over the branch the density with respect to
space m1,1, representing the number of agents per space unit. The mass spread along
the branch reaches in time the switching points θ1, θ2, where it is again converted in
time dependent flows gi,j entering the subsequent branches, with gi,j again densities
with respect to time. The process repeats at every switching point.

We then describe the mathematical relationship between these two different kinds
of densities. Our argument is connected to what is called disintegration of a measure
(Ambrosio et al. 2008; Camilli et al. 2017).

Let us consider an agent at the position θ at time s and assume that it is going
towards θ1. It arrived in θS at time σ(θ, s) ≤ s and it will reach θ1 at a time
τ(θ, s) ≥ s. By Remark 1, in s and in all of the interval [σ , τ) the agent has a
constant velocity u1,1(s) = u1,1(σ ) such that |u1,1(σ )| = |θ1 − θS |/(τ − σ), until
leaving the branch. When the total mass ρ is given, then τ realizes the minimum

in infτ∈(σ ,T ]
{
1
2

(θ1−θS)2

τ−σ
+ ∫ τ

t
F1,1 ds + V (θ1, τ, 0, 1)

}
, i.e., the second argument of

the minimum in Eq. 13; the value of σ is evaluable using conditions Eqs. 7–13. In
addition, σ enjoys the properties linking g and gi,j which are described below.

Let us denote q(σ ) = 1/u1,1(σ ) and, for the sake of simplicity, let us suppose that
σ and q are differentiable (actually, they are Lipschitz and at least a.e. differentiable).
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Let us also assume θS = 0, θ > 0. We can implicitly define the value of σ(θ, s)

through the following equation:

s = σ(θ, s) + q(σ (θ, s))θ . (25)

Differentiating Eq. 25 with respect to s and θ we derive

σ s(θ, s) = 1

1 + q ′(σ (θ, s))θ
, σ θ (θ, s) = q(σ (θ, s))

1 + q ′(σ (θ, s))θ
⇒ σ s(θ, s)

= − σθ (θ, s)

q(σ (θ, s))

Now, suppose that all agents entering (θs, 1, 1) at any time move towards θ1. Then
the flow g of agents arriving in θS and moving towards θ1 is spread over B1,1, accord-
ing to the law m1,1(θ, s) = −g(σ (θ, s))σ θ (θ, s). In addition, the flow of agents
crossing θ in B1,1 at time s is given by m1,1(θ, s)u1,1(s) = g(σ (θ, s))σ s(θ, s).
Both relationships may be verified by standard mass balance/conservation arguments.
They obviously hold only if at time s agents have already arrived at θ , that is when
σ(θ, s) ≥ 0, otherwise the density m1,1(θ, s) is equal to zero. In particular, at the
switching point θ1 the arriving flow, coinciding with the flow g0,1(s) entering the
new branch B0,1 in time, is s �→ g0,1(s) = g(σ (θ1, s))σ s(θ1, s).

If differently, agents entering through (θs, 1, 1) split among different choices, and
the corresponding split fraction that moves towards θ1 is λ

(θS,1,1)
2 (see Eq. 20 and

Definition 3), then the entering flow in B0,1 through θ1 is s �→ g0,1(σ (θ1, s)) =
λ

(θS,1,1)
2 g(σ (θ1, s))σ s(θ1, s). This is also the flow g01 to be considered in Eq. 16.

Similar considerations (with different function σ and q) hold in the case of agents
moving towards θ2 in the branch B1,1 and for all other cases in the other branches
(with the corresponding flows gi,j ).

Let us finally argue on the uniqueness of σ and τ . Specifically, consider the agents
entering at time σ at (θS, 1, 1) and moving towards θ1, and that reach such state at
time τ . We claim: (1) any arrival time τ originates from a unique entering time σ ; (2)
any entering time σ generates a unique arrival time τ , for any nonzero flow of agents
at θ1. A sketch of the proofs follows:

(1) Let us suppose that the agents are optimally moving from θS to θ1 in the branch
B1,1,, and that the agents respectively starting at σ 1 and at σ 2 > σ 1 reach θ1
at the same time τ < T . This means that τ optimizes the second term inside
the minimum in Eq. 13 for both t = σ 1 and t = σ 2. Suppose that the function
τ �→ V (θS, τ, 1, 1) is differentiable at τ . Since τ is interior to ]σ 2, T [⊂]σ 1, T [,
first order conditions read as

0 = −1

2

(
θS − θ1

τ − σ 1

)2

+ F1,1(M(τ )) + V ′(θ1, τ , 1, 1)

−1

2

(
θS − θ1

τ − σ 2

)2

+ F1,1(M(τ )) + V ′(θ1, τ , 1, 1)

contradicting σ 1 �= σ 2. Note that V is not necessarily differentiable in time,
however it has a super-differential at any instant. Indeed it is easy to see that the
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value function for (w1, w2) = (0, 0) has such a property, and then obtain the
super-differentiability of the others arguing backward in Eqs. 7, 9, 11 and 13.
The super-differentiability at τ implies that, at least locally in time around τ <

T , one V (θ1, τ, 1, 1) ≤ h(τ) where h is a suitable differentiable function, with
equality holding at τ . Hence the argument above would hold with V replaced
by h.

(2) Let us suppose that agents arriving at time σ in (θS, 1, 1) and moving towards
θ1 may reach this latter significant state in more than one optimal time, say
τ 1, τ 2 with τ 1 < τ 2. This means that σ(θ1, τ 1) = σ(θ1, τ 2) = σ . We now
observe that only agents entering θS at time σ may reach θ1 between τ1 and
τ2, as agents cannot overtake each other (easy to prove). As a consequence
σ(θ1, s) is constant in the interval [τ1, τ2] and hence its time derivative σ s(θ1, s)

is null. This last fact in turn implies that the value of the entrance flow at σ ,
i.e., g(σ ), would uniformly spread over the interval [τ1, τ2] and hence would
become equal to 0.

Remark that the above arguments imply that no Dirac masses can arise at any point
and at any time, apart from the case of a significant point at the final time T , or, just
after a switching, when the new choice of the optimal control is u = 0, i.e. to not
move. Both situations do not affect the flow functions gi,j .

Appendix B: On HBJ and Transport Equations

For the reader convenience, we here recall the Hamilton-Jacob-Bellman (3)–(6) and
the transport equations (8a)–(8d) contained in Bagagiolo and Pesenti (2017). We
point out once again that the final cost in the present paper is different from that in
Bagagiolo and Pesenti (2017): here cSξθ=θS

(T ) replaces c3(θ − θS)2.
In Bagagiolo and Pesenti (2017, Theorem 1) was proved that the value function

V (θ, t, w1, w2) is a continuous and bounded viscosity solution of the following HJB
equations (subscript indicate derivatives).
In B1,1:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Vt (θ, t, 1, 1) + 1

2
|Vθ(θ, t, 1, 1)|2 = F (1,1)(M(t)) in ]θ1, θ2[×]0, T [

V (θ1, t, 1, 1) = V (θ1, t, 0, 1) in ]0, T ]
V (θ2, t, 1, 1) = V (θ2, t, 1, 0) in ]0, T ]
V (θ, T , 1, 1) = c1 + c2 + c3(θ − θS)2 in ]θ1, θ2[

(26a)

In B0,1:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Vt (θ, t, 0, 1) + 1

2
|Vθ(θ, t, 0, 1)|2 = F (0,1)(M(t)) in ]θ2 − 2π, θ2[×]0, T [

V (θ2 − 2π, t, 0, 1) = V (θ2, t, 0, 0) in ]0, T ]
V (θ2, t, 0, 1) = V (θ2, t, 0, 0) in ]0, T ]
V (θ, T , 0, 1) = c2 + c3(θ − θS)2 in ]θ2 − 2π, θ2[

(26b)
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In B1,0:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Vt (θ, t, 1, 0) + 1

2
|Vθ(θ, t, 1, 0)|2 = F (1,0)(M(t)) in ]θ1, θ1 + 2π [×]0, T [

V (θ1, t, 1, 0) = V (θ1, t, 0, 0) in ]0, T ]
V (θ1 + 2π, t, 1, 0) = V (θ1, t, 0, 0) in ]0, T ]
V (θ, T , 1, 0) = c1 + c3(θ − θS)2 in ]θ1, θ1 + 2π [

(26c)

and in B0,0:⎧⎨
⎩

−Vt(θ, t, 0, 0) + 1

2
|Vθ(θ, t, 0, 0)|2 = F (0,0)(M(t)) in R×]0, T [

V (θ, T , 0, 0) = c3(θ − θS)2 in [0, 2π ].
(26d)

Moreover, the four transport equations for the density m, one per every branch,
are {

m
1,1
t (θ, t) − [Vθ(θ, t, 1, 1)m1,1(θ, t)]θ = 0 in B1,1 × [0, T ]

m1,1(θS, t) = g(t)
(27a)

{
m

1,0
t (θ, t) − [Vθ(θ, t, 1, 0)m1,0(θ, t)]θ = 0 in B1,0 × [0, T ]

m1,0(θ2, t) = m1,1(θ2, t)
(27b)

{
m

0,1
t (θ, t) − [Vθ(θ, t, 0, 1)m0,1(θ, t)]θ = 0 in B0,1 × [0, T ]

m0,1(θ1, t) = m1,1(θ1, t)
(27c)

⎧⎨
⎩

m
0,0
t (θ, t) − [Vθ(θ, t, 0, 0)m0,0(θ, t)]θ = 0 in B0,0 × [0, T ]

m0,0(θ1, t) = m1,0(θ1, t) + m1,0(θ1 + 2π, t)

m0,0(θ2, t) = m0,1(θ2, t) + m0,1(θ2 − 2π, t).
(27d)

We recall that, consistently with Eq. 5, one has u∗ = −Vθ .
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