Angewandte Chemie

Supporting Information

Reductive Cyclization of Unactivated Alkyl Chlorides with Tethered Alkenes under Visible-Light Photoredox Catalysis
Miguel Claros, Felix Ungeheuer, Federico Franco, Vlad Martin-Diaconescu, Alicia Casitas, * and Julio Lloret-Fillol*

ange_201812702_sm_miscellaneous_information.pdf

Supporting Information

Spectra and Chromatograms

Contents

1. Spectra of ligands..SI.SC 2
2. Spectra of substrates..SI.SC 7
3. Spectra of products ..SI.SC 43
4. GC-FID chromatograms ...SI.SC 66

1. Spectra of Ligands

2. Spectra of substrates

$1 /$

C

／
$11 / 1$

$$
1
$$

9®o	の第	＊${ }_{\text {and }}$		¢0．	－í	
\checkmark	V	V	Y｜ 1	｜｜	Y	ソゾノ゙トざ，

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

[^0]

[^1]

ツ
N

| 20 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 | -2 |
| :--- |

〈\ゝ1/!

-

-

3. Spectra of products

$$
11111
$$

$\begin{array}{llllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

OOMOM

[^2]
 $\mathrm{NCH}_{4} \triangle$

$\underset{\sim}{1}$

[^3]

ソ
$\underbrace{\text { ăめ }}$

10
200
$\begin{array}{llll}190 & 180 & 170 & 160\end{array}$
$\begin{array}{llll}150 & 140 & 130 & 120\end{array}$
$110 \underset{\mathrm{f} 1(\mathrm{ppm})}{100} 90$
70
60
$50 \quad 40$

\qquad

[^4]

ジ

4. GC-FID chromatograms

Supporting Information

Experimental Procedures

Contents

1. General procedures SI.EP 3
1.1. In-house developed parallel photoreactor SI.EP 6
1.2. Parallel pressure transducer hardware SI.EP 7
2. Optimization of conditions for reductive cyclization reactions SI.EP 7
2.1. Solvent screening SI.EP 8
2.2. Photosensitizer screening SI.EP 9
2.3. Catalyst screening SI.EP 10
3. Single-point experiment monitoring SI.EP 13
3.1. Kinetic monitoring SI.EP 13
3.2. Single-point experiment through light-dark cycles SI.EP 14
4. H_{2} Evolution monitoring SI.EP 14
5. Competitive Studies SI.EP 15
6. Synthesis and characterization of complexes
6.1. Synthesis of ligand ${ }^{\mathrm{DMM}} \mathrm{Py}_{2}$ Tstacn SI.EP 17
6.2. Synthesis of $\left[\mathrm{Co}(\mathrm{OTf})\left(\mathrm{Ts}^{\mathrm{DMM}} \mathrm{Py}_{2} \mathrm{tacn}\right)\right](\mathrm{OTf})$ and [$\left.\mathrm{Ni}(\mathrm{OTf})\left(\mathrm{Ts}^{\text {DMM }}{ }^{\mathrm{P}} \mathrm{yy}_{2} \mathrm{tacn}\right)\right](\mathrm{OTf})$ SI.EP 18
6.3. Synthesis of ligand $\mathrm{Ts}^{\text {CO2EtPy }}$ 2tacn SI.EP 19
6.4. Synthesis of [Co(OTf)(Ts ${ }^{\text {CO2EtPy }}$ 2tacn)](OTf) SI.EP 20
6.5. Synthesis of [Ni(OTf)(N4Py)](OTf) SI.EP 20
6.6. Synthesis of $\left[\mathrm{Co}(\mathrm{MCP})(\mathrm{OTf})_{2}\right]$ SI.EP 21
6.7. Synthesis of [Co-Cyclam] SI.EP 21
6.8. Synthesis of [Ni-Cyclam] SI.EP 22
7. Synthesis and characterization of substrates SI.EP 22
8. General procedure for reductive cyclizations reactions SI.EP 39
9. Characterization of products SI.EP 41
10. Experiments with deuterated solvents SI.EP 50
11. Light-Sources experiments SI.EP 58
12. Gram Scale SI.EP 59
13. Mechanistic Studies
13.1. EPR Studies SI.EP 60
13.2. Spectroelectrochemistry Studies13.2.1 Cyclic VoltammetrySI.EP 61
13.2.2 UV-Vis Spectroelectrochemistry SI.EP 64
13.2.3 UV-Vis Spectroscopy SI.EP 68

1. General procedures

Reagents and solvents were used as received from the commercial supplier unless otherwise stated. Triethylamine and di-isopropylethylamine were distilled over potassium hydroxide and were stored under argon. Photosensitizers $\left[\operatorname{lr}(\mathrm{bpy})(\mathrm{ppy})_{2}\right]\left(\mathrm{PF}_{6}\right)\left(\mathrm{PC}_{\mathrm{Ir} 2}\right),{ }^{[1]}$
$\left[\operatorname{lr}(\mathrm{ppy})_{2}(\mathrm{dtbbpy})\right]\left(\mathrm{PF}_{6}\right) \quad\left(\mathrm{PC}_{\mathrm{rr} 3}\right),{ }^{[2]}$
[Cu(bathocuproine)(Xantphos)] $\left(\mathrm{PF}_{6}\right)^{[4]}$
$\left[\mathrm{Co}(\mathrm{OTf})\left(\mathrm{Py}_{2} \mathrm{Tstacn}\right)\right](\mathrm{OTf})^{[5]} \quad\left({ }^{\mathrm{H}} \mathrm{Co}\right)$,
$\operatorname{lr}\left[\mathrm{dF}(\mathrm{CF})_{3} \mathrm{ppy}\right]_{2}(\mathrm{dtbbpy})\left(\mathrm{PF}_{6}\right)$
($\mathrm{PC}_{\mathrm{cu}}$) and
[$\left.\mathrm{Ni}(\mathrm{OTf})\left(\mathrm{Py}_{2} \mathrm{Tstann}\right)\right](\mathrm{OTf})$
($\mathrm{PC}_{\mathrm{Ir} 4}$), ${ }^{[3]}$
complexes
$\left(1^{\mathrm{H} N i}\right),{ }^{[5]}$ $\left[\mathrm{Co}(\mathrm{OTf})\left({ }^{\mathrm{DMM}}{ }^{2} \mathrm{Py}_{2} \mathrm{Tstacn}\right)\right](\mathrm{OTf})\left(\mathbf{1}^{\mathrm{DMM}} \mathrm{Co}\right){ }^{[6]}\left[\mathrm{Co}(\mathrm{OTf})\left({ }^{\mathrm{CO2Et}} \mathrm{Py}_{2} \mathrm{Tstacn}\right)\right](\mathrm{OTf})\left(\mathbf{1}^{\mathrm{CO2Et}} \mathrm{Co}\right),{ }^{[6]}$
 (7 ${ }^{\text {DMM }} \mathrm{Co}$), ${ }^{[8]}$ [$\mathrm{Co}(\mathrm{OTf})_{2}\left(\mathrm{Me}_{2}{ }^{\mathrm{CO2EtP}}\right.$ Pytacn)] $\quad\left(7^{\mathrm{CO2Et}} \mathrm{Co}\right),{ }^{[8]} \quad\left[\mathrm{Co}(\mathrm{TPA})(\mathrm{OTf})_{2}\right] \quad$ (8Co-OTf), ${ }^{[9]}$ [Co(TPA)Cl $]$ (8Co-CI), ${ }^{[9]}\left[\mathrm{Co}(\mathrm{MCP}) \mathrm{Cl}_{2}\right](9 \mathrm{Co}-\mathrm{Cl}),{ }^{[10]} \mathrm{Co}-(\mathrm{PDP}) \mathrm{OTf}_{2}(\mathbf{1 0 C o - O T f}),{ }^{[11]} \mathrm{Co}-$ TPP (11Co), ${ }^{[12]} \mathrm{Ni}-\mathrm{TTP}$ ($\mathbf{1 1 N i}$), ${ }^{[13]} \mathrm{Co}$-Salen (13Co), ${ }^{[14]} \mathrm{Ni}$-Salen ($\left.\mathbf{1 3 N i}\right)^{[15]}$ were synthesized according to the literature procedures.

For the synthesis of reagents the solvents (hexane, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN}, \mathrm{DMF}$ and toluene) were used from a SPS-400, Innovative Technology solvent purification system and stored under argon with activated 4 Å molecular sieves.

Anhydrous acetonitrile was purchased from Sigma-Aldrich ${ }^{\circledR}$ and water was purified with a Milli-Q Millipore Gradient AIS system. Water, methanol, ethanol, isopropanol, butironitrile, isobutironitrile and trimethylacetonitrile used for photoreactions were degassed by freeze-pump-thaw method (repeated 3 cycles) and were stored under argon.

[^5]The synthesis of air sensitive reagents as well as the preparation of visible light photocatalytic reactions were conducted inside a nitrogen-filled glove box (mBraun Unilab) with concentrations of O_{2} and $\mathrm{H}_{2} \mathrm{O}$ lower than 0.5 ppm and using Schlenk techniques under argon atmosphere.

NMR spectra were recorded on a Bruker $300 \mathrm{MHz}, 400 \mathrm{MHz}$ or 500 MHz spectrometers at room temperature. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in parts per million (ppm), relative to the residual solvent peak as internal reference. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublet (dd), triplet of doublets (td), triplet (t), broad signal (br) and multiplet (m). Deuterated solvents ($\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{CN}$, EtOD) were stored with activated 4 A molecular sieves and they were degassed by freeze-pump-thaw method when it was required for photocatalytic reactions.

High resolution Mass Spectrometry (HRMS) data was collected on a HPLCQqTOF (Maxis Impact, Bruker Daltonics) or HPLC-TOF (MicroTOF Focus, Bruker Daltonics) mass spectrometer using 1 mM solution of the analyzed compound.

The analysis and quantification of the starting materials and products were carried out on an Agilent 7820A gas chromatograph (HP5 capillary column, $30 \mathrm{~m} \times 320 \mu \mathrm{~m} \times 0.25$ $\mu \mathrm{m}$ or Sapiens 5MS capillary column, $30 \mathrm{~m} \times 250 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$) and a flame ionization detector (FID). GC-MS spectral analyses were performed on an Agilent 7890A gas chromatograph interfaced (HP5 capillary column, $30 \mathrm{~m} \times 320 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$) with an Agilent 5975c MS mass spectrometer.

Electron Paramagnetic Resonance (EPR) was collected on solutions of $1 \mathrm{mM} \mathbf{1}^{\mathbf{H} N i}$ complex with or without substrate $\mathbf{2 h}(10 \mathrm{mM})$ in a reaction mixture containing $\mathrm{PC}_{\mathrm{Cu}}$ (0.4 mM), DIPEA (114.5 mM) as sacrificial electron donor and a 3:2 ratio ethanol:butyronitrile solvent mixture. Samples were prepared anaerobically under dark conditions and investigated before and after irradiation with a 476 nm lamp (40 W) at room temperature. An EMX Micro X-band EPR spectrometer from Bruker was used to collect the data using a finger dewar for measurements at 77 K . Data was acquired in perpendicular mode with a modulation frequency of 100 KHz , a modulation amplitude of 10 G , a 5.1 ms time constant and 21.4 ms conversion time and a microwave power of 0.18 mW . Spectra was simulated using the EasySpin software package. ${ }^{[16]}$

Cyclic Voltammetry (CV) measurements were carried out with a VSP potentiostat from Bio-Logic, equipped with the EC-Lab software. The experiments were performed under inert (Ar) atmosphere in a custom double-wall jacketed single-compartment cell.
0.1 M TBAH electrolyte solutions were employed using $\mathrm{CH}_{3} \mathrm{CN}$ or $\mathrm{CH}_{3} \mathrm{CN}$: $\mathrm{EtOH}(2: 3)$ as a solvent mixture. A 3 mm diameter glassy carbon (GC) disk and a Pt wire were used as working and counter electrodes, respectively. An Ag wire was employed as a pseudoreference, immerged in a bridge tube containing the same electrolyte solution as the main compartment ($0.1 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}$) and separated from it by a porous tip. Ferrocene (Fc) was used as an internal standard and all the potentials are referenced vs. the $\mathrm{Fc}^{+/ 0}$ redox couple. ${ }^{[17]}$

UV-Vis spectra were recorded on an Agilent 8453 diode array spectrophotometer (190-1100 nm range) in a 1 cm quartz cells.

UV-Vis measurements with on-line irradiation were performed in a house-built apparatus using 1 cm quartz fluorescence cuvette in a fluorescence cuvette holder. LED (Royal blue, 447 nm .) was placed perpendicular to the optical pathway of the Agilent 8453 diode array spectrophotometer (190-1100 nm range).

Figure SI.EP.EP-1. Setup for UV-Vis measurement with on-line irradiation.

The solutions of $\mathrm{PC}_{\mathrm{Cu}}$ were prepared in ethanol acetonitrile mixture (3:2). The concentraton of $\mathrm{PC}_{\mathrm{cu}}$ was fixed to $20 \mu \mathrm{M}$. As a blank the same ethanol-acetonitrile mixture was used. The absorption kinetics were studied on an Agilent 8453 diode array spectrophotometer (190-1100 nm range) in 1cm quartz cell.

UV-Vis Spectroelectrochemistry (UV-Vis SEC) experiments were performed by using a SP-50 potentiostat from Bio-Logic under an Ar atmosphere. A 4 mM solution of complex in $0.2 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}$ or solvent mixture is introduced in an optically transparent thin-layer electrode (OTTLE) cell, equipped with Pt minigrid working and auxiliary electrodes, an Ag microwire pseudo-reference electrode and a CaF_{2} window. ${ }^{[18]}$ Blank 0.2 M TBAH/CH $\mathrm{CH}_{3} \mathrm{CN}$ solutions were used for solvent subtractions. UV/Vis spectra

[^6]were measured with an Agilent 8453 diode array spectrophotometer ($\lambda=190-1100 \mathrm{~nm}$ range), with a cycle time equal to 2 s .

1.1. In-house developed parallel photoreactor

Light source: The reactions were performed using Royal-Blue ($\lambda=447 \pm 20 \mathrm{~nm}$) LUXEON Rebel ES LED, mounted on a 20 mm Square Saber - 1030 mW @ 700mA (Datasheet: https://www.luxeonstar.com/assets/downloads/ds68.pdf) as a light source.
Temperature Control: Reaction temperature was controlled by a high precision thermoregulation Hubber K6 cryostat. Likewise, aiming at ensuring a stable irradiation the temperature of the LEDs was controlled and set at $22{ }^{\circ} \mathrm{C}$.

Figure SI.EP.EP-2. In-house developed parallel photoreactors.

1.2. Parallel pressure transducer hardware

The parallel pressure transducer device is composed of 8 differential pressure transducers (Honeywell-ASCX15DN, $\pm 15 \mathrm{psi}$) connected to a hardware data-acquisition system (based on an Atmega microcontroller) controlled by a home-developed software program. The differential pressure transducer Honeywell-ASCX15DN gives a 100 microseconds response with a signal-conditioned output (high level span, 4.5 V), and contains a calibrated sensor that is temperature compensated (from $0{ }^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$). The differential sensor has two sensing ports that can be used for differential pressure measurements.

The pressure calibration device was offset within ± 0.5 matm and the span adjusted via software with a high precision pressure transducer (PX409-030GUSB, 0.08% of accuracy). Each of the 8 differential 4 pressure transducers (Honeywell-ASCX15DN, ± 15 psi) produce a voltage output that can be directly transformed to a pressure difference between two measuring ports. The voltage output is digitalized with a resolution of 0.25 matm from 0 to 175 matm, and 1 matm from 176 to 1000 matm using an Atmega microcontroller with an independent voltage auto-calibration. The firmware for the Atmega microcontroller and the control software were developed in-house.

Gases at the headspace were analyzed with an Agilent 7820A GC System equipped with columns Washed Molecular Sieve 5Å, $2 \mathrm{~m} \times 1 / 8$ " OD, Mesh 60/80 SS and Porapak Q, $4 m \times 1 / 8^{\prime \prime}$ OD, SS. Mesh: 80/100 SS and a Thermal Conductivity Detector. The quantification of the H_{2} obtained was measured through the interpolation of a previous calibration using different $\mathrm{H}_{2} / \mathrm{N}_{2}$ mixtures.

2. Optimization of conditions for reductive cyclization reactions

General procedure for optimization screening: Inside an anaerobic box, aliquots from stock solutions of dimethyl allyl chloroethylmalonate ($0.2 \mathrm{~mL}, 0.02 \mathrm{mmol}, 1.0 \mathrm{eq}.), \mathbf{1}^{\mathrm{H}} \mathbf{M}$ catalyst ($\mathrm{M}=\mathrm{Co}$ or $\mathrm{Ni}, 0.1 \mathrm{~mL}, 0.001 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathrm{PC}_{\mathrm{cu}}\left(0.1 \mathrm{~mL}, 4 \times 10^{-4} \mathrm{mmol}, 2 \mathrm{~mol}\right.$ $\%$) and acetonitrile (0.4 mL) were equally distributed into a vial (10 mL of headspace) that contained glass beads. The vial was sealed with a septum and removed from the anaerobic box. Degassed protic solvent was added to the vial to reach a total volume of

2 mL (total concentration of substrate 10 mM). $\mathrm{Et}_{3} \mathrm{~N}(40 \mu \mathrm{~L}, 0.286 \mathrm{mmol}, 14.4 \mathrm{eq}$.) or $i-$ $\operatorname{Pr}_{2} \mathrm{NEt}(40 \mu \mathrm{~L}, 0.229 \mathrm{mmol}, 11.4 \mathrm{eq}$.) was added to each vial, which was placed in the photoreactor at the indicated temperature ($30{ }^{\circ} \mathrm{C}$). After irradiating for 24 h with blue LEDs ($\lambda=447 \mathrm{~nm}$), the sample was diluted with ethyl acetate (2 mL). A solution of biphenyl in ethyl acetate was added as internal standard ($8.7 \times 10^{-3} \mathrm{mmol}$ in 0.25 mL). Then, addition of 1 mL of $\mathrm{H}_{2} \mathrm{O}$ formed a biphasic solution and an aliquot of the organic phase was passed through a plug of MgSO_{4} and eluted with EtOAc . The resulting solution was analyzed by gas chromatography. The yields reported for each reaction are given as an average of at least two runs.

2.1. Solvent screening

Table SI.EP-1.

Catalyst (mol\%)	PC (\%)	Solvent (mL)	ED	Conv. $(\%)^{\mathbf{a}}$	Yield $(\%)^{a}$
[$\mathrm{Co}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py} \mathrm{y}_{2} \mathrm{tacn}\right) \mathrm{]}, 1{ }^{\mathrm{H}} \mathrm{Co}(5)$	PC $\mathrm{Cu}^{\text {(2) }}$	MeCN	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	24	17
[$\mathrm{Ni}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2}\right.$ tacn) $], 1^{\mathrm{H}} \mathrm{Ni}(5)$	$\mathrm{PC}_{\mathrm{Cu}}(2)$	MeCN	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	19	6
[$\mathrm{Co}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\left.\left.\mathrm{H} P y_{2} t a c n\right)\right], ~} 1^{\mathrm{H}} \mathrm{Co}(5)\right.$	$\mathrm{PC}_{\mathrm{Cu}}(2)$	$\mathrm{H}_{2} \mathrm{O}: \mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	67	22
[$\mathrm{Ni}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2}\right.$ tacn) $], 1{ }^{\mathrm{H}} \mathrm{Ni}(5)$	PC $\mathrm{Cu}^{\text {(2) }}$	$\mathrm{H}_{2} \mathrm{O}: \mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	56	4
[$\mathrm{Co}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2}\right.$ tacn) $], 1{ }^{\mathrm{H}} \mathrm{Co}(5)$	$\mathrm{PC}_{\mathrm{cu}}(2)$	MeOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	39	27
[$\mathrm{Ni}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2}\right.$ tacn) $], 1{ }^{\mathrm{H}} \mathrm{Ni}(5)$	PC $\mathrm{Cu}^{\text {(2) }}$	MeOH : $\mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	17	9
[$\mathrm{Co}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2}\right.$ tacn) $], 1{ }^{\mathrm{H}} \mathrm{Co}(5)$	$\mathrm{PC}_{\mathrm{Cu}}(2)$	$i-\mathrm{PrOH}: \mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	75	61
[$\mathrm{Ni}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2}\right.$ tacn) $], 1{ }^{\mathrm{H}} \mathrm{Ni}(5)$	$\mathrm{PC}_{\mathrm{Cu}}(2)$	$i-\mathrm{PrOH}: \mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	76	62
[Co(OTf) $\left.)_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right)\right], 1{ }^{\mathrm{H}} \mathrm{Co}(5)$	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	96	83
$\left[\mathrm{Co}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right)\right], 1{ }^{\mathrm{H}} \mathrm{Co}(5)$	PC $\mathrm{Cu}^{\text {(2) }}$	$\mathrm{EtOH}: \mathrm{MeCN}(3: 2)$	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	93	78
[$\mathrm{Co}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right) \mathrm{]}, 1{ }^{\mathrm{H}} \mathrm{Co}(5)$	$\mathrm{PC}_{\mathrm{cu}}(2)$	EtOH : i-BuCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	84	74
[Co(OTf) $)_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2}\right.$ tacn) $], 1{ }^{\mathrm{H}} \mathrm{Co}(5)$	PC $\mathrm{Cu}^{(2)}$	EtOH: n-BuCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	98	85
[Co(OTf) $)_{2}\left(\mathrm{Ts}^{\left.\mathrm{H} P y_{2} \text { tacn }\right)}\right.$], $1^{\mathrm{H}} \mathrm{Co}$ (5)	$\mathrm{PC}_{\mathrm{cu}}(2)$	EtOH : t-BuCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	68	58
[$\left.\mathrm{Ni}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right)\right], 1{ }^{\mathrm{H}} \mathrm{Ni}(5)$	$\mathrm{PC}_{\mathrm{cu}}(2)$	$\mathrm{EtOH}: \mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	100	74
[$\left.\mathrm{Ni}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right)\right], 1{ }^{\mathrm{H}} \mathrm{Ni}(5)$	$\mathrm{PC}_{\mathrm{Cu}}(2)$	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	99	96

a) Conversion and yield were determined by GC using biphenyl as internal standard. PC = photoredox catalyst. ED = electron donor.

2.2. Photosensitizer screening

Table SI.EP-2.

PS (\%)	$\mathrm{E}_{1 / 2}\left(\mathrm{PS}^{\mathrm{n}} / \mathrm{PS}^{\mathrm{n}-1}\right)$ (V vs SCE)	Catalyst (mol\%)	$E D$ (equiv)	Conv. (\%) ${ }^{\text {a }}$	Yield (\%) ${ }^{\text {a }}$
PC ${ }_{\text {cu }}(2)$	$-1.6{ }^{[11]}$	[Co(OTf) $\left.2\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py} \mathrm{y}_{2} \mathrm{tacn}\right)\right], 1^{\mathrm{H}} \mathrm{Co}(5)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	96	83
PC $\mathrm{Cu}^{(2)}$	$-1.6{ }^{[11]}$	$\left[\mathrm{Ni}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right)\right], 1^{\mathrm{H}} \mathbf{N i}(5)$	$i-\mathrm{Pr}_{2} \mathrm{NEt}(11.4)$	99	96
PC ${ }_{1 r 1}$ (2)	$-1.37{ }^{[19]}$	$\left[\mathrm{Co}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\left.\mathrm{H} P y_{2} \mathrm{tacn}\right)}\right]\right.$, $\mathbf{1}^{\mathrm{H}} \mathrm{Co}$ (5)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	63	46
PC ${ }_{\text {Ir1 }}$ (2)	$-1.37{ }^{[16]}$	$\left[\mathrm{Ni}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right)\right], 1^{\mathrm{H}} \mathrm{Ni}$ (5)	$i-\mathrm{Pr}_{2} \mathrm{NEt}(11.4)$	100	73
PC ${ }_{12}$ (2)	$-1.42^{[20]}$	[Co(OTf) $\left.2\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py} \mathrm{y}_{2} \mathrm{tacn}\right)\right], 1^{\mathrm{H}} \mathrm{Co}(5)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	17	12
PC $\mathrm{lr}^{(2)}$	$-1.42^{[17]}$	$\left[\mathrm{Ni}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right)\right], \mathbf{1}^{\mathrm{H}} \mathbf{N i}(5)$	$i-\mathrm{Pr}_{2} \mathrm{NEt}(11.4)$	86	72
PC $\mathrm{lr}^{\text {2 }}$ (2)	$-1.42^{[17]}$	----	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	13	6
PC $\mathrm{lr3}^{(2)}$	$-1.51^{[21]}$	$\left[\mathrm{Co}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py} \mathrm{y}_{2} \mathrm{tacn}\right)\right], 1^{\mathrm{H}} \mathrm{Co}(5)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	45	37
$\mathrm{PC}_{1 \mathrm{r} 3}(2)$	$-1.51{ }^{[18]}$	$\left[\mathrm{Ni}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right)\right], 1^{\mathrm{H}} \mathrm{Ni}(5)$	$i-\mathrm{Pr}_{2} \mathrm{NEt}(11.4)$	29	21
PC $\mathrm{lra}^{\text {(2) }}$	$-1.37^{[22]}$	[Co(OTf) 2 ($\left.\left.\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right)\right], 1^{\mathrm{H}} \mathrm{Co}$ (5)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	46	37
PC $\mathrm{lr}^{\text {(2) }}$	$-1.37{ }^{[19]}$	$\left[\mathrm{Ni}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right)\right], 1^{\mathrm{H}} \mathbf{N i}(5)$	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	100	76
PC $\mathrm{Ru}^{\text {(2) }}$	$-1.33^{[23]}$	$\left[\mathrm{Co}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right)\right], 1^{\mathrm{H}} \mathrm{Co}(5)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	5	5
PC $\mathrm{Ru}^{\text {(2) }}$	$-1.33^{[20]}$	$\left[\mathrm{Ni}(\mathrm{OTf})_{2}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right)\right], 1^{\mathrm{H}} \mathrm{Ni}$ (5)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	13	1

a) Conversion and yield were determined by GC using biphenyl as internal standard. PC = photoredox catalyst. ED = electron donor.

2.3. Catalyst screening

[19] Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
[20] Goldsmith, J. I.; Hudson, R. W.; Lowry, M. S.; Anderson, T. H.; Bernhard, S., J. Am. Chem. Soc. 2005, 127, 7502.
[21] Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.; Parker, S.; Rohl, R.; Bernhard, S.; Malliaras, G. G.S. J. Am. Chem. Soc. 2004, 126, 2763.
[22] Koike, T; Akita, M; Inorg. Chem. Front., 2014, 1, 562.
[23] Tokel-Takvoryan, N. E.; Hemingway, R. E.; Bard, A. J. J. Am. Chem. Soc. 1973, 95, 6582.

Table SI.EP-3.

Catalyst (mol\%)	PS (\%)	Solvent	ED (equiv)	Conv. (\%) ${ }^{\text {a }}$	Yield (\%) ${ }^{\text {a }}$
[Co(OTf)(](OTf)), $1^{\mathrm{H}} \mathrm{Co}$ (5)	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	96	83
[$\mathrm{Ni}(\mathrm{OTf})\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{P} \mathrm{y}_{2}\right.$ tacn) $](\mathrm{OTf}), 1^{\mathrm{H}} \mathrm{Ni}(5)$	PC ${ }_{\text {Cu }}$ (2)	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	99	96
[$\mathrm{Ni}(\mathrm{OTf})\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2}\right.$ tacn) $](\mathrm{OTf}), 1^{\mathrm{H}} \mathrm{Ni}(5)^{\text {b }}$	PC $\mathrm{Cu}_{\text {(}}$ (2)	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	100	91
[$\mathrm{Ni}(\mathrm{OTf})\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2}\right.$ tacn) $](\mathrm{OTf}), 1^{\mathrm{H}} \mathrm{Ni}(5)^{\text {c }}$	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	100	90
[Co(OTf)(Ts ${ }^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}$)],(OTf) $1^{\mathrm{H}} \mathrm{Co}$ (10)	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.3)	84	80
[$\left.\mathrm{Co}(\mathrm{OTf})\left(\mathrm{Ts}^{\text {DMM }} \mathrm{Py} \mathrm{y}_{2} \mathrm{tacn}\right)\right](\mathrm{OTf}), 1{ }^{\text {DMM }} \mathrm{Co}$ (5)	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	87	80
$\left[\mathrm{Ni}(\mathrm{OTf})\left(\mathrm{Ts}^{\text {DMM }} \mathrm{Py} \mathrm{y}_{2} \mathrm{tacn}\right)\right](\mathrm{OTf}), 1^{\text {DMM }} \mathrm{Ni}$ (5)	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	70	52
[Co(OTf)(Ts ${ }^{\text {CO2Et }} \mathrm{Py}_{2}$ tacn) $]$ (OTf), $1^{\text {co2Et }} \mathrm{Co}$ (5)	PC ${ }_{\text {Cu }}$ (2)	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	83	70
[$\mathrm{Ni}(\mathrm{OTf})\left(\mathrm{Ts}{ }^{\text {cO2Et }} \mathrm{Py}_{2}\right.$ tacn) $],(\mathrm{OTf}) 1^{\text {co2Et }} \mathrm{Ni}(5){ }^{\text {b }}$	PC ${ }_{\text {cu }}$ (2)	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	73	63
[CoN4Py], 5Co (5)	$\mathrm{PC}_{\mathrm{Cu}}(2)$	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.3)	43	36
[NiN4Py], 5Ni (5)	PC ${ }_{\text {Cu }}$ (2)	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	73	33

[$\mathrm{Co}(\mathrm{OTf})_{2}\left(\mathrm{Me}_{2}{ }^{\mathrm{H}}\right.$ Pytacn) $], 6{ }^{\mathrm{H}} \mathrm{Co}(5)$	$\mathrm{PC}_{\mathrm{Cu}}(2)$	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	42	30
$\left[\mathrm{Co}(\mathrm{OTf})_{2}\left(\mathrm{Me}_{2}{ }^{\text {DMM }}\right.\right.$ Pytacn)], $6^{\text {DMM }} \mathrm{Co}$ (5)	PC ${ }_{\text {cu }}(2)$	EtOH : $\mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	22	18
[Co(OTf) 2 ($\mathrm{Me}_{2}{ }^{\text {cO2Et }}$ Pytacn)], $6^{\text {co2Et }} \mathrm{Co}$ (5)	PC $\mathrm{Cu}^{(2)}$	$\mathrm{EtOH}: \mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	50	41
[Co-(MCP)OTf 2], 7Co-OTf (5)	$\mathrm{PC}_{\mathrm{Cu}}(2)$	EtOH : $\mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.3)	71	68
[Co-(MCP) Cl_{2}], 7Co-Cl (5)	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.3)	71	64
[$\mathrm{Ni}-\left(\mathrm{MCP}\right.$) OTf_{2}], 7Ni-OTf (5) ${ }^{\text {b }}$	$\mathrm{PC}_{\mathrm{Cu}}$ (2)	$\mathrm{EtOH}: \mathrm{MeCN}(3: 2)$	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.3)	90	55
[Co-(PDP)OTf ${ }_{2}$], 8Co-OTf (5)	PCCu (2)	$\mathrm{EtOH}: \mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.3)	67	60
[$\mathrm{Ni}-\left(\mathrm{PDP}\right.$) OTf_{2}], 8Ni-OTf (5) ${ }^{\text {b }}$	PC ${ }_{\text {Cu }}$ (2)	$\mathrm{EtOH}: \mathrm{MeCN}(3: 2)$	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.3)	94	68
[Co-TPA_OTf ${ }_{2}$], 9Co-OTf (5)	$\mathrm{PC}_{\mathrm{Cu}}(2)$	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.3)	16	16
[Co-TPA_Cl ${ }_{2}$], 9Co-Cl (5)	PC ${ }_{\text {cu }}(2)$	EtOH : $\mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.3)	13	11
[Ni-TPA_OTf ${ }_{2}$], 9Ni-OTf (5) ${ }^{\text {b }}$	PC ${ }_{\text {Cu }}$ (2)	$\mathrm{EtOH}: \mathrm{MeCN}(3: 2)$	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.3)	96	54
[Co-Cyclam], 10Co (5)	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : $\mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.3)	18	10
[Ni-Cyclam], 10Ni (5)	PC ${ }_{\text {cu }}$ (2)	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.3)	100	82
[Co-tacnMe $\left.{ }_{3}(\mathrm{MeCN})_{3}\right](\mathrm{OTf})_{2}, 11 \mathrm{Co}-\mathrm{OTf}(5)^{\text {b }}$	PC ${ }_{\text {cu }}(2)$	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.3)	48	36
$\left[\mathrm{Ni}-\right.$ tacnMe $\left.{ }_{3}(\mathrm{MeCN})_{3}\right](\mathrm{OTf})_{2}, 11 \mathrm{Ni}-\mathrm{OTf}(5)^{\text {b }}$	$\mathrm{PC}_{\mathrm{Cu}}(2)$	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.3)	19	2
[Co(dtbbpy)(OTf) ${ }_{2}$], 12Co-OTf (5)	$\mathrm{PC}_{\mathrm{cu}}(2)$	$\mathrm{EtOH}: \mathrm{MeCN}$ (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	21	10
[Co(dtbbpy)(OTf) ${ }_{2}$], 12Co-OTf (5) ${ }^{\text {d }}$	PC $\mathrm{Cu}^{(2)}$	EtOH : $\mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	87	80
[Co(dtbbpy)(OTf) ${ }_{2}$], 12Co-OTf (5)	$\mathrm{PC}_{\mathrm{Cu}}(2)$	EtOH : DMF (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	25	4
[Co(dtbbpy)(OTf) ${ }_{2}$], 12Co-OTf (5)	PC ${ }_{\text {Ir1 }}$ (2)	EtOH : $\mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	38	13
[Co(dtbbpy)(OTf) ${ }_{2}$], 12Co-OTf (5) ${ }^{\text {d }}$	PC $\mathrm{lrr}^{\text {(2) }}$	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	100	88
[Co(dtbbpy)(OTf) ${ }_{2}$], 12Co-OTf (5)	PC ${ }_{\text {Ir1 }}$ (2)	EtOH : DMF (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	52	2
[Ni(dtbbpy)(OTf) ${ }_{2}$], 12Ni-OTf (5)	PC ${ }_{\text {Cu }}$ (2)	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	13	3
[$\left.\mathrm{Ni}(\mathrm{dtbbpy})(\mathrm{OTf})_{2}\right], 12 \mathrm{Ni}-\mathrm{OTf}(5)^{\text {d }}$	PC ${ }_{\text {cu }}$ (2)	EtOH : $\mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	55	8
[Ni(dtbbpy)(OTf) ${ }_{2}$], 12Ni-OTf (5)	PC ${ }_{\text {Cu }}$ (2)	EtOH : DMF (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	21	3
[Ni (dtbbpy)(OTf) ${ }_{2}$], 12Ni-OTf (5)	PC $\mathrm{lrl}_{\text {(}}$ (2)	EtOH: $\mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	11	4
[Ni (dtbbpy)(OTf) ${ }_{2}$], 12Ni-OTf (5) ${ }^{\text {d }}$	PC ${ }_{\text {Ir4 }}$ (2)	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	72	58
[$\mathrm{Ni}($ dtbbpy $)(\mathrm{OTf})_{2}$], 12Ni-OTf (5)	PC ${ }_{\text {Ir4 }}$ (2)	EtOH : DMF (3:2))	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	17	3
[Co(DMG)PyCl], 17Co (5)	$\mathrm{PC}_{\mathrm{Cu}}(2)$	EtOH: $\mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	7	6
[Co(DMG)PyCl], 17Co (5)	PC $\mathrm{Cu}^{\text {(2) }}$	MeCN	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	21	6
[Co-TTP], 18Co (5)	PC ${ }_{\text {cu }}(2)$	EtOH : $\mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.3)	100	74
[Co-TTP], 18Co (5)	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}(11.3$	100	80
[$\mathrm{Ni}-\mathrm{TTP}$], 18Ni (5)	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : $\mathrm{MeCN}(3: 2)$	$\mathrm{Et}_{3} \mathrm{~N}$ (14.3)	13	7
[Ni -TTP], 18Ni (5)	PC ${ }_{\text {Cu }}$ (2)	EtOH : $\mathrm{MeCN}(3: 2)$	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.3)	30	19
[Co-Salem], 19Co (5)	$\mathrm{PC}_{\mathrm{Cu}}(2)$	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.3)	33	12
[Ni-Salem], 19Ni (5)	$\mathrm{PC}_{\mathrm{Cu}}$ (2)	$\mathrm{EtOH}: \mathrm{MeCN}(3: 2)$	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.3)	20	10

[Co-Terpyridine(MeCN) $]_{3}$ (OTf)2 20Co-OTf (5) ${ }^{\text {b }}$	$\mathrm{PC}_{\mathrm{Cu}}(2)$	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.3)	57	42
[Ni -Terpyridine $\left.(\mathrm{MeCN})_{3}\right](\mathrm{OTf})_{2}{ }^{\text {20Ni-OTf }}(5)^{\text {b }}$	PC $\mathrm{Cu}_{\text {(}}$ (2)	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.3)	29	12
[Co-Terpyridine ${ }_{2}$] 21Co (5) ${ }^{\text {e }}$	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.3)	57	42
[Ni -Terpyridine ${ }_{2}$] 21 Ni (5) ${ }^{\text {e }}$	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.3)	29	12
[$\mathrm{Ni}-\mathrm{Cod}_{2}$] 22Ni (5)	$\mathrm{PC}_{\mathrm{Cu}}(2)$	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.3)	19	5
[$\mathrm{Ni}-\mathrm{Cod}_{2}{ }^{\text {2 }} 22 \mathrm{Ni}(5){ }^{\text {¢ }}$	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.3)	26	13
--	PC ${ }_{\text {Cu }}$ (2)	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	10	1
[Co(OTf)(](OTf)), $1^{\mathrm{H}} \mathrm{Co}$ (5)	--	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	0	0
[$\left.\mathrm{Ni}(\mathrm{OTf})\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right)\right](\mathrm{OTf}), 1^{\mathrm{H}} \mathrm{Ni}(5)$	--	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	0	0
[Co(OTf)(Ts ${ }^{\left.\mathrm{H} P y_{2} \text { tacn) }\right](\mathrm{OTf}), 1{ }^{\mathrm{H}} \mathrm{Co}(5)}$	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : MeCN (3:2)	--	0	0
[$\mathrm{Ni}(\mathrm{OTf})\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2}\right.$ tacn) $](\mathrm{OTf}), 1{ }^{\mathrm{H}} \mathrm{Ni}$ (5)	$\mathrm{PC}_{\mathrm{Cu}}$ (2)	EtOH : MeCN (3:2)	--	2	2
	--	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	20	14
	--	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	7	0
[$\mathrm{Ni}(\mathrm{OTf})\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py} \mathrm{y}_{2}\right.$ tacn) $](\mathrm{OTf}), 1^{\mathrm{H}} \mathrm{Ni}(5){ }^{\mathrm{i}}$	--	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	15	0
[$\mathrm{Ni}(\mathrm{OTf})\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2}\right.$ tacn) $](\mathrm{OTf}), 1^{\mathrm{H}} \mathrm{Ni}(5){ }^{\mathrm{i}}$	--	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	13	0

a) Conversion and yield were determined by GC using biphenyl as internal standard. dtbbpy = 4,4'-Di-tert-butyl-2,2'-dipyridyl. DMG = Dimethylglyoximato. b) Complex formed in situ by reacting equimolar amounts of ligand and the triflate metal salt. c) Reactions was carried out in presence of 500 eq oh mercury. d) Using 3a as substrate. e) Complex formed in situ by reacting two equivalents of the ligand with one equivalent of the triflate metal salt. f) Reaction was carried out with one equivalent of the ${ }^{\mathrm{H}} \mathrm{Py}_{2}$ tacn ligand. g) Reaction was carried out using two equivalents of zinc as reductant in presence of light. h) Reaction was carried out using two equivalents of zinc as reductant in absence of light. i) Reaction was carried out using two equivalents of manganese as reductant in presence of light. j) Reaction was carried out using two equivalents of manganese as reductant in absence of light.

Table SI.EP-4.

Catalyst (mol\%)	PS (\%)	Solvent	ED (equiv)	Conv. (\%) ${ }^{\text {a }}$	Yield (\%) ${ }^{\text {a }}$
[Co(OTf)($\mathrm{Ts}^{\left.\left.\mathrm{H} P y_{2} \mathrm{tacn}\right)\right](\mathrm{OTf}), 1{ }^{\mathrm{H}} \mathrm{Co}(5)}$	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	42	23
[Co-TTP], 18Co (5)	PC $\mathrm{Cu}_{\text {(}}$ (2)	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	83	39
[](OTf) tacn), $1^{\mathrm{H}} \mathrm{Ni}$ (5)	$\mathrm{PC}_{\mathrm{Cu}}$ (2)	EtOH : MeCN (3:2)	$\mathrm{Et}_{3} \mathrm{~N}$ (14.4)	94	87
[Ni-Cyclam], 10Ni (5)	PC $\mathrm{Cu}^{\text {(2) }}$	EtOH : MeCN (3:2)	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4)	100	73

a) Conversion and yield were determined by GC using biphenyl as internal standard. PS = photosensitizer

3. Single-point experiment monitoring

General Procedure A: Cobalt (5 mol\%), PCCu ($2 \mathrm{~mol} \%$), $E t_{3} \mathrm{~N}$ (14.4 eq). General Procedure B: Nickel (5 mol\%), PCcu (2 mol\%), i-Pr ${ }_{2}$ NEt (11.4 eq).

Inside an anaerobic box, aliquots from stock solutions of dimethyl allyl chloroethylmalonate ($0.2 \mathrm{~mL}, 0.02 \mathrm{mmol}, 1.0$ eq.) , complex $1^{\mathrm{H}} \mathbf{C o}$ or $1^{\mathrm{H}} \mathrm{Ni}(0.1 \mathrm{~mL}, 0.002$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathrm{PC}_{\mathrm{cu}}\left(0.1 \mathrm{~mL}, 4 \times 10^{-4} \mathrm{mmol}, 2 \mathrm{~mol} \%\right.$) and acetonitrile (0.4 mL) were equally distributed into 8 vials (10 mL of headspace) that contained glass beads. The vials were sealed with a septum and removed from the anaerobic box. Degassed ethanol was added to each vial to reach a total volume of 2 mL (total concentration of substrate 10 mM). $\mathrm{Et}_{3} \mathrm{~N}\left(40 \mu \mathrm{~L}, 0.29 \mathrm{mmol}, 14.4 \mathrm{eq}\right.$.) or $i-\mathrm{Pr}_{2} \mathrm{NEt}(40 \mu \mathrm{~L}, 0.23 \mathrm{mmol}, 11.4 \mathrm{eq}$.) was added to each vial, which was placed in the photoreactor at the indicated temperature $\left(30^{\circ} \mathrm{C}\right)$. At specific points of time (see plot), aliquots of $100 \mu \mathrm{~L}$ were taken from the sealed vials and mixed with $29 \mu \mathrm{~L}$ of solution of biphenyl in EtOAc (34.8 mM) and the resulting mixture was analyzed by GC-FID. Light irradiation was switched off and on at specific points of the single-point monitoring experiment, which indicates that the reaction stops when the vial is not irradiated with visible light.

3.1. Kinetic monitoring

Figure SI.EP-3. Single-point monitoring experiments.

3.2. Single-point experiment through light-dark cycles

Figure SI.EP-4. Single-point monitoring experiment throughout light-dark cycles.

4. H_{2} evolution monitoring

General Procedure A: Cobalt (5 mol\%), PC $C_{c u}$ ($2 \mathrm{~mol} \%$), $E t_{3} \mathrm{~N}$ (14.4 eq). General Procedure B: Nickel (5 mol\%), PCCu (2 mol\%), i-Pr ${ }_{2}$ NEt (11.4 eq).

General procedure: Inside an anaerobic box, aliquots from stock solutions of dimethyl allyl chloroethylmalonate ($\mathbf{2 a}, 1.5 \mathrm{~mL}, 0.15 \mathrm{mmol}, 1.0 \mathrm{eq}$) , complex $\mathbf{1}^{\mathrm{H}} \mathbf{C o}$ or $\mathbf{1}^{\mathrm{H}} \mathbf{N i}(0.75$ $\left.\mathrm{mL}, 7.5 \times 10^{-3} \mathrm{mmol}, 5 \mathrm{~mol} \%\right)$, photosensitizer $\mathrm{PC}_{\mathrm{cu}}\left(0.75 \mathrm{~mL}, 3 \times 10^{-3} \mathrm{mmol}, 2 \mathrm{~mol} \%\right.$) and acetonitrile (3 mL) were equally distributed into 3 vials (22 mL of headspace) that contained glass beads. The vials were sealed with a septum and removed from the anaerobic box. Degassed ethanol was added to each vial to reach a total volume of 15 mL (total concentration of substrate 10 mM$). \mathrm{Et}_{3} \mathrm{~N}(300 \mu \mathrm{~L}, 2.16 \mathrm{mmol}, 14.4 \mathrm{eq}$.) or $i-$ $\operatorname{Pr}_{2} \mathrm{NEt}(300 \mu \mathrm{~L}, 1.72 \mathrm{mmol}, 11.4 \mathrm{eq}$.) was added to each vial, which was placed in the photoreactor at $30{ }^{\circ} \mathrm{C}$. Each reaction vial was connected to a differential pressure transducer sensor (Honeywell-ASCX15DN) with a reference vial that contains only PCcu, electron donor and solvents. The reaction and reference vials were kept under the same experimental conditions to compensate the noise due to temperature-pressure fluctuations. The dihydrogen generated in the reaction vessels were monitored by recording the increase of pressure in the headspace, which is measured as the difference in pressure between the reaction and the reference vial. Also blank experiments in order to monitor the dihydrogen evolution in the absence of substrate 2a were performed at the same reaction conditions.

Figure SI.EP-5. Hydrogen evolution monitoring

5. Competitive Studies

Figure SI.EP-6. Single-point monitoring experiment of bromine/chlorine selectivity.

Figure SI.EP-7. Single-point monitoring experiment of bromine/chlorine selectivity.

Figure SI.EP-8. Single-point monitoring experiment of bromine/chlorine selectivity.

Figure SI.EP-9. Single-point monitoring experiment of bromine/chlorine selectivity.

6. Synthesis and characterization of complexes

6.1. Synthesis of ligand $\mathrm{Ts}^{\mathrm{DMM}} \mathrm{Py}_{2}$ tacn

Ts ${ }^{\text {DMM }}{ }^{2} \mathrm{Py}_{2}$ tacn was synthesized following a reported procedure with the introduction of small modifications in the purification steps. ${ }^{[6]}$ 2-Chloromethyl-4-methoxy-3,5dimethylpyridine hydrochloride ($2.59 \mathrm{~g}, 11.64 \mathrm{mmol}$), Tstacn ($1.5 \mathrm{~g}, 5.29 \mathrm{mmol}$) and anhydrous acetonitrile (80 mL) were mixed in a 150 mL flask. $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 \mathrm{~g}, 28.3 \mathrm{mmol})$ and tetrabutylammonium bromide (TBABr, $130 \mathrm{mg}, 0.54 \mathrm{mmol}$) were added directly as solids and the resulting mixture was heated at reflux for 24 h under N_{2} atmosphere. After cooling at room temperature, the resulting orange mixture was filtered and the filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were evaporated under reduce pressure. Then, a solution of $\mathrm{HCl} 1 \mathrm{M}(20 \mathrm{~mL})$ was added to the residue and the aqueous phase was washed with dichloromethane ($3 \times 20 \mathrm{~mL}$). The aqueous phase was basified to pH 10 with a solution of NaOH 2 M and dichloromethane (30 mL) was added. The organic layer was separated and the aqueous phase was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was
removed under reduced pressure. Finally, the oil residue was dissolved with 5 mL of dichloromethane and the addition of hexane (20 mL) caused the precipitation of a brownish oil. The solution was decanted and the solvent was removed under reduced pressure, which gave 1.78 g of the title compound. The remaining brownish oil was redissolved again in 3 mL of dichloromethane and addition of hexane (10 mL) caused the formation of an oil residue. The organic solution was decanted, the solvent removed and another fraction of 1.10 g of the title compound was obtained (overall yield of the reaction 96\%).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.11(\mathrm{~s}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.72$ (s, 10H), 3.09-2.97 (m, 8H), 2.64 (s, 4H), 2.39 (s, 3H), 2.29 (s, 6H), 2.21 (s, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.2,157.4,148.5,143.0,135.9,129.6$, 127.2, 126.2, 125.2, 63.0, 59.9, 56.3, 56.1, 50.3, 21.6, 13.4, 11.3 ppm. IR (film): 2925, 2832, 1563, 1450, 1334, 1252, 1156, 1090, 998, $711,694,547 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 582,3114$, found 582.3109 . The spectroscopic data is in agreement with previously reported data for this compound. ${ }^{[6]}$

6.2. Synthesis of [Co(OTf)(Ts $\left.\left.{ }^{\text {DMM }}{ }^{P} y_{2} t a c n\right)\right](O T f)$ and $\left[\mathrm{Ni}(O T f)\left(\mathrm{Ts}^{\mathrm{DMM}} \mathrm{Py}_{2}\right.\right.$ tacn $\left.)\right](\mathrm{OTf})$

 A solution of $\mathrm{Co}(\mathrm{OTf})_{2}(\mathrm{MeCN})_{2}(374 \mathrm{mg}, 0.851 \mathrm{mmol})$ in anhydrous tetrahydrofuran (THF) (1 mL) was added dropwise to a vigorously stirred solution of ${ }^{\mathrm{DMM}} \mathrm{Py}_{2}$ Tstacn ($550 \mathrm{mg}, 0.945 \mathrm{mmol}$) in THF (1 mL). After stirring for 2 h the solution was filtered off and the resulting solid dried under vacuum. This solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the slow diffusion of diethyl ether into this solution gave 0.672 g of the title complex as a pale pink solid (76%). Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{CoF}_{6} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{~S}_{3}$: C , 40.69; N, 7.19; H, 4.86 \%. Found: C, 41.04; N, 7.20; H, 4.46 \%. HR-ESI-MS (m/z): 789.1882 [M - OTf] ${ }^{+}$.

$1^{\text {DMM }} \mathrm{Ni}$ was synthesized following an analogous synthetic procedure as described for complex $\mathbf{1}^{\text {DMM }} \mathbf{C o}$, obtaining 0.213 g of the targeted complex as a pale blue solid (68\%). Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{NiF}_{6} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{~S}_{3}$: C, 41.50 ; N, 7.33; H, 4.75 \%. Found: C, 41.77; N, 7.28; H, 4.56 \%. HR-ESI-MS (m/z): 788.1904 [M - OTf] ${ }^{+}$.

6.3. Synthesis of ligand $\mathrm{Ts}^{\text {CO2EtPy }}$ Pacn

4-ethoxycarbonyl-2-chloromethylpyridine hydrochloride was synthesized following the reported procedure starting from 2,4-Pyridine dicarboxylic acid. ${ }^{[24]}$

1,4-dimethyl-7-(4-ethoxycarbonyl-2-pyridylmethyl)-1,4,7-triazacyclononane,
(Ts ${ }^{\text {CO2Et }} \mathrm{Py}_{2}$ tacn) was synthesized following a reported procedure with slight modifications in the purification steps. ${ }^{[6]}$ Ethyl 2-(chloromethyl)isonicotinatehydrochloride $(2,17 \mathrm{~g}, 9.25 \mathrm{mmol})$, Tstacn ($1.31 \mathrm{~g}, 4.63 \mathrm{mmol}$) and anhydrous acetonitrile (80 mL) were mixed in a 250 mL flask. $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.4 \mathrm{~g})$ and tetrabutylammonium bromide ($\mathrm{TBABr}, 160$ mg) were added directly as solids and the resulting mixture was heated at reflux for 22 hours under N_{2}. After cooling at room temperature, the resulting orange mixture was filtered and the filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were evaporated under reduce pressure. To the resulting residue, $2 \mathrm{M} \mathrm{NaOH} \mathrm{(15} \mathrm{mL)} \mathrm{was}$ added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 40 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The remaining oil residue was dissolved with 5 mL of dichloromethane and the addition of hexane (20 mL) caused the precipitation of a yellowish oil that was dried under reduced pressure to yield 3.8 g of a pale yellow oil ($6.4 \mathrm{mmol}, 67 \%$).
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.68-8-64(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{~s}, 2 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 2 \mathrm{H})$, $7.67-7.61$ (m, 2H), $7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.94(\mathrm{~s}, 4 \mathrm{H}), 3.31-3.12$ (m, 8H), 2.85 (s, 4H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta=165.2$ (2C), 161.1 (2C), 149.8 (2C), 143.0, 138.14 (2C), 135.8, 129.6 (2C), 127.0 (2C), 122.4 (2C), 121.2 (2C), 63.1 (br, 2C), 61.7 (2C), 55.5 (br, 4C), 50.5 (br, 2C), 21.4, 14.6 (2C) ppm. IR (film): 2929, 1723, 1599, 1562, 1287, 1203, 1156, 1902, 1018, 914, 763, $728,694,548 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 610,2699$, found
610.2694. The spectroscopic data is in agreement with previously reported data for this compound. ${ }^{[6]}$

6.4. Synthesis of $\left[\mathrm{Co}(\mathrm{OTf})\left(\mathrm{Ts}^{\mathrm{CO2Et}} \mathrm{Py}_{2}\right.\right.$ tacn $\left.)\right](\mathrm{OTf})$

$1^{\text {CO2Et }} \mathrm{Co}$ was synthesized following the analogous procedure to the described for complex $1^{\text {DMM }}$ Co obtaining 0.210 g of the desired product as a brown crystalline solid (66 \%). HR-ESI-MS (m/z): 817.1468 [M -OTf] ${ }^{+}$. The spectroscopic data is in agreement with previously reported data for this compound. ${ }^{[6]}$

6.5. Synthesis of [$\mathrm{Ni}(\mathrm{OTf})(\mathrm{N} 4 \mathrm{Py})](\mathrm{OTf})$

Inside a glovebox, a suspension of $\mathrm{Ni}(\mathrm{OTf})_{2}(\mathrm{MeCN})_{2}(269 \mathrm{mg}$, 0.612 mmol) in anhydrous THF (2 mL) was added dropwise to a vigorously stirred solution of N4Py ligand ${ }^{[25]}$ ($250 \mathrm{mg}, 0.680$ $\mathrm{mmol})$ in THF (2 mL), causing a colour change from light yellow to brown after few minutes. After stirring overnight, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added causing the precipitation of a brown solid. The solution was siphoned off and the solid was dried under vacuum. This solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through Celite ${ }^{\circledR}$, and the slow diffusion of diethyl ether into a saturated solution of complex caused the formation of a pale brown solid, which was dried under vacuum to give 282 mg of the title compound ($0.489 \mathrm{mmol}, 72 \%$).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NiF}_{6} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}_{2}$: C, 40.84; N, 9.52; H, 3.04; S, 8.72 \%. Found: C, 40.84; N, 10.05; H, 3.23; S, 8.35 \%. HR-ESI-MS (m/z): 574.0665 [M - OTf] ${ }^{+}$.

6.6. Synthesis of $\left[\mathrm{Co}(\mathrm{MCP})(\mathrm{OTf})_{2}\right]$

[^7]

Complex $\left[\mathbf{C o}(\mathbf{M C P}) \mathrm{Cl}_{2}\right]$ was synthesized following a reported procedure with slight modifications. ${ }^{[10]}$ In a glovebox, a solution of MCP ligand ${ }^{[26]}(357 \mathrm{mg}, 1.1 \mathrm{mmol})$ in THF (1 mL) was added dropwise to a vigorously stirred suspension of $\mathrm{CoCl}_{2}(130 \mathrm{mg}, 1$ mmol) in THF (1 mL). After few minutes, a purple solid precipitated. After stirring for an additional 2 hours, the solid was allowed to settle down and the solution was filtered washed with dichloromethane (3x2 mL) and dried under vacuum. This solid was dissolved in dichloromethane, filtered through Celite ${ }^{\circledR}$, and the slow diffusion of diethyl ether into a solution of the complex produced a crystalline pink solid, which was dried under vacuum to give 447 mg of the title compound ($0.889 \mathrm{mmol}, 89$ \%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.91,101.2,62.66,50.65,23.76,21.23,18.40,8.23$, $6.45,2.14,0.22,-16.95 \mathrm{ppm}$. MS: m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{ClCoN}_{4}[\mathrm{M}-\mathrm{Cl}]^{+}: 418.1329$, found 418.1321. Anal. Calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{CoN}_{4}$: C, 52.87 ; $\mathrm{H}, 6.21$; $\mathrm{N}, 12.33$. Found: C , $52.37 ; \mathrm{H}, 6.04 ; \mathrm{N}, 12.08$. The spectroscopic data is in agreement with that reported. ${ }^{[10]}$

[Co(MCP)(OTf) $)_{2}$ In a glovebox, to a stirred suspension of AgOTf ($0.71 \mathrm{~g}, 0.660 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added a solution of [Co(MCP) Cl_{2}] complex ($0.1 \mathrm{~g}, 0.220 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at room temperature. After stirring overnight, the solution was filtered to remove the silver salts. The resulting pale pink solution was evaporated under vacuum to give 118 mg of the title compound asas a pink solid ($0.173 \mathrm{mmol}, 79 \%$).

HR-ESI-MS (m/z): 532.1161 [M - OTf] ${ }^{+}$. Anal. Calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{CoF}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$: C, 38.77; H, 4.14; N, 8.22. Found: C, 38.28; H, 4.06; N, 8.05.

6.7. Synthesis of [Co-Cyclam]

[Co-Cyclam]. Compound has been synthesized according to the procedure described in the literature with slight modifications. ${ }^{[27]}$ $\mathrm{Co}(\mathrm{OTf})_{2}(0.7 \mathrm{~g}, 1.598 \mathrm{mmol})$ dissolved in warm ethanol $(20 \mathrm{~mL})$ was added to a solution of the ligand ($0.326 \mathrm{~g}, 1.630 \mathrm{mmol}$) in ethanol (10 mL). The resulting light brown solution was warmed for a one hour in a sealed tube before ether was added. The resultant mauve precipitate
[26]Maity, N. C.; Kumar Bera, P.; Ghosh, D.; Abdi, S. H. R.; Kureshy, R. I.; Khan, N.-u. H.; Bajaj, H. C.; Suresh, E. Catal. Sci. Technol. 2014, 4, 208.
[27] Bosnich, B.; Poon, C. K.; Tobe, M.L. Inorganic Chemistry 1965, 4, 1102.
was filtered off and washed with ether yielded a brown solid ($496 \mathrm{mg}, 0.897 \mathrm{mmol}, 56$ \%).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{CoO}_{6} \mathrm{~S}_{2}$: C, 25.86; $\mathrm{N}, 10.05$; $\mathrm{H}, 4.33$ \%. Found: $\mathrm{C}, 25.69$; N , 10.10; H, 4.23 \%. ESI-MS (m/z): 408.0 [M - OTf] ${ }^{+}$.

6.8. Synthesis of [Ni-Cyclam]

[Ni-Cyclam]. Compound has been synthesized according to the procedure described in the literature with slight modifications. ${ }^{[24]}$ $\mathrm{Ni}(\mathrm{OTf})_{2}(\mathrm{MeCN})_{2}(0.65 \mathrm{~g}, 1.415 \mathrm{mmol})$ was dissolved in warm ethanol (20 mL) and added to a solution of the ligand $(0.289 \mathrm{~g}, 1.443$ mmol) in ethanol (10 mL). The resulting light brown solution was warmed for a one hour in a sealed tube before ether was added. The resultant dark yellow precipitate was filtered off and washed with ether yielded a yellow solid (597 mg , $1.115 \mathrm{mmol}, 76$ \%).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{NiO}_{6} \mathrm{~S}_{2}$: C, 26.05; $\mathrm{N}, 10.13 ; \mathrm{H}, 4.37 \%$. Found: $\mathrm{C}, 25.94 ; \mathrm{N}$, 10.18; H, 4.24 \%. ESI-MS (m/z): 407.1 [M - OTf] ${ }^{+}$, 129.1 [M-2.OTf] ${ }^{2+}$.

7. Synthesis and characterization of substrates

Substrate (2a): To a suspension of NaH ($176 \mathrm{mg}, 7.32 \mathrm{mmol}, 1.1 \mathrm{eq}$.) in DMF (10 mL) was added at $0{ }^{\circ} \mathrm{C}$ a solution of dimethyl allylmalonate ($1.2 \mathrm{~g}, 6.97 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (5 mL). The mixture was stirred at room temperature for 30 min in which it became a clear solution. To this solution was added dropwise a solution of freshly distilled 1-bromo-2-chloroethane ($1.5 \mathrm{~g}, 10.45$ $\mathrm{mmol}, 1.5 \mathrm{eq}$.) in THF (2 mL). The solution was stirred overnight at room temperature. The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15$ mL). The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography ($\mathrm{SiO}_{2}, 10 \%$ diethyl ether in hexane) to yield 1.05 g (64%) of the title compound as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.73-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.02(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H})$, 3.53 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.68 (dt, $J=7.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.37 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.9$ (2C), 131.8, 119.9, 56.7, 52.8 (2C), 39.9, 38.0, 36.0
ppm. IR (film): 2955, 1730, 1435, 1208, 1172, $925,648 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 257.0551$, found 257.0549.
$\mathrm{EtO}_{2} \mathrm{C}^{\mathbf{C O}} \mathrm{CO}_{2} \mathrm{Et}$ Substrate (2b): A solution of dimethyl allylmalonate ($1.59 \mathrm{~g}, 7.98 \mathrm{mmol}, 1$ eq.) in THF (30 mL) was added dropwise to a suspension of NaH (286 mg , 11.91 mmol, 1.5 eq.) in THF at $0{ }^{\circ} \mathrm{C}$. The cooling bath was removed and the mixture was stirred for 60 min at room temperature. Freshly distilled 1-bromo-2chloroethane ($3.4 \mathrm{~g}, 23.82 \mathrm{mmol}, 3.0 \mathrm{eq}$.) was added over 15 min and the resulting mixture was stirred for 48 h at rt . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$ and the combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography ($\mathrm{SiO}_{2}, 3$ \% ethyl acetate in hexane) to yield $1.6 \mathrm{~g}(75 \%)$ of title compound as a colorless oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=5.71-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{qd}, \mathrm{J}=$ $7.1,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.53(\mathrm{t}, \mathrm{J}=7.80 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{dt}, \mathrm{J}=7.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{t}, \mathrm{J}=8.14$ $\mathrm{Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.5(2 \mathrm{C}), 132.0$, 119.8, 61.7 (2C), 56.7, 40.0, 37.9, 35.9, 14.2 (2C) ppm. IR (film): 2981, 1727, 1641, 1203, 1177, $923,858 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{ClNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 285.0864$, found 285.0877.
$\mathrm{EtO}_{2} \mathrm{C} \mathrm{CO}^{\mathrm{CO}_{2} \mathrm{Et}}$ Substrate (2c): A solution of diethyl (E)-2-(hex-2-en-1-yl)malonate ${ }^{[28]}$ ($0.69 \mathrm{~g}, 2,9 \mathrm{mmol}$. 1.0 eq .) in THF (5 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$ to a suspension of $\mathrm{NaH}(72.5 \mathrm{mg}, 2,9 \mathrm{mmol}$. 1.1 eq .) in DMF (10 mL). The cooling bath was removed and the mixture was stirred at room temperature for 1 h . The suspension was again cooled to $0{ }^{\circ} \mathrm{C}$ and 1 -bromo- 2 -chloroethane ($0.49 \mathrm{~g}, 3.4 \mathrm{mmol}$, 1.2 eq.) was added and stirring was continued overnight at room temperature. The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 2 \%\right.$ $\rightarrow 5 \% \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) to yield $0.48 \mathrm{~g}(55 \%)$ of title compound as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.53$ (dtt, $\left.J=15.0,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.23$ (dtt, $J=15.0$, 7.4, 1.4 Hz, 1H), 4.19 (qd, $J=7.1,0.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.56-3.43$ (m, 2H), 2.61 (dt, $J=7.4,1.1$

Hz, 2H), 2.37-2.31 (m, 2H), 2.01-1.91 (m, 2H), 1.35 (q, J= $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.1$ $\mathrm{Hz}, 6 \mathrm{H}), 0.87 \mathrm{ppm}(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.1$ (2C), 136.0, 123.2, 61.6 (2C), 56.9, 40.1, 36.8, 35.9, 34.8, 22.6, 14.2 (2C), 13.7 ppm . IR (film): 2960, 1728, 1446, 1367, 1229, 1176, $971,859,731 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{ClNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 327.1334$, found 327.1349
$\mathrm{EtO}_{2} \mathrm{C}^{\mathbf{C O}} \mathrm{CO}_{2} \mathrm{Et}$ Substrate (2d): A solution of diethyl cinnamylmalonate ${ }^{[29]}(0.82 \mathrm{~g}, 3,0$ mmol. 1.0 eq.) in THF (3 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$ to a suspension of NaH ($78.1 \mathrm{mg}, 3.3 \mathrm{mmol}$. 1.1 eq.) in DMF (12 mL). The cooling bath was removed and the mixture was stirred at room temperature for 1 h . The suspension was again cooled to $0{ }^{\circ} \mathrm{C}$ and 1 -bromo-2-chloroethane ($0.55 \mathrm{~g}, 3.9 \mathrm{mmol}$, 1.3 eq.) was added and the mixture was stirred overnight at room temperature. After 24 h another portion of $\mathrm{NaH}(78.1 \mathrm{mg}, 3.3 \mathrm{mmol} .1 .1 \mathrm{eq}$.) and 1-bromo-2-chloroethane (0.55 $\mathrm{g}, 3.9 \mathrm{mmol}, 1.3$ eq.) was added since TLC revealed incomplete conversion. Stirring was continued for additional 18 h and the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 2 \% \rightarrow 5 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane) to yield $0.48 \mathrm{~g}(78 \%)$ of title compound as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.47(\mathrm{dt}, J=15.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (dt, $J=15.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 4 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 170.5 (2C), 137.0, 134.6, 128.7 (2C), 127.7, 126.4 (2C), 123.4, 61.8 (2C), 57.1, 40.1, 37.4, 36.3, 14.2 (2C) ppm. IR (film): 2980, 1726, 1447, 1367, 1177, 1094, 967, 739, 693 cm^{-1}. MS: m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{CINaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 361.1177$, found 361.1191.

Substrate (2e): Thionyl chloride ($0.35 \mathrm{~mL}, 4.8 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added dropwise to a solution of 1-(2-hydroxyethyl)-5-vinylpyrrolidin-2-one ${ }^{[30]}$ (0.5 $\mathrm{g}, 3.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The cooling bath was removed and the mixture was warmed to $40{ }^{\circ} \mathrm{C}$ and maintained at this temperature for 2 h. The reaction was carefully quenched by addition of saturated aqueous NaHCO_{3} (10 mL) and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The organic layer was separated and the aqueous

[^8]layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 80 \% \rightarrow 90 \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane) to yield $0.49 \mathrm{~g}(88 \%)$ of the desired product as light yellow liquid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.67$ (ddd, $\left.J=17.1,9.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.38-5.11$ (m, 2H), 4.19 (td, $J=8.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dt}, J=14.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.36-$ $3.17 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.71(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=175.6,137.6,118.8,62.5,42.7,41.4,29.9,25.8 \mathrm{ppm}$. IR (film) cm^{-} ${ }^{1}$: $2971,1682,1408,1258,929,666,564,506 \mathrm{~cm}^{-1}$. MS: m/z calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{CINO}[\mathrm{M}+$ H] ${ }^{+}$: 174.0680, found 174.0680.

Substrate (2f): N-Chlorosuccinimide ($0.43 \mathrm{~g}, 3.2 \mathrm{mmol}, 1.4 \mathrm{eq}$.) was added to a solution of (R, R)-carveol ${ }^{[31]}(0.35 \mathrm{~g}, 2.3 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and ethyl vinyl ether ($0.55 \mathrm{~mL}, 5.8 \mathrm{mmol}, 2.5 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $-45{ }^{\circ} \mathrm{C}$. The solution was allowed to reach room temperature over the course of 2 h . Stirring was continued until no further conversion was observed as judged by TLC. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(10$ $\mathrm{mL})$. The organic layer was separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 10 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane) to yield $0.25 \mathrm{~g}(42 \%)$ as a $1: 1$ diastereomeric mixture of title compound and $0.16 \mathrm{~g}(47 \%)$ of recovered starting material.
(1:1 mixture of diastereoisomers) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.56-5.55(\mathrm{~m}, 1 \mathrm{H}$ \{isomer A\}), 5.53-5.52, (m, 1H \{isomer B\}) 4.81-4.73 (m, 3 H, each), 4.26 (s, 1 H \{isomer $\mathrm{A}\}$), 4.13 (s, 1H \{isomer B\}), 3.73-3.61 (m, 2H, each), 3.58-3.47 (m, 2H, each) 2.26 2.16 (m, 2H, each), 2.07-1.88 (m, 2H, each), 1.76-1.73 (m, 6H, each), 1.63-1.43 (m, 1 H , each), $1.27-1.22$ (td, $J=7.0,2.4 \mathrm{~Hz}, 3 \mathrm{H}$ each) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ = 149.0, 148.9, 134.9, 134.7, 125.4, 125.2, 109.4, 109.3, 103.0, 99.9, 78.6, 75.8, 61.6, $61.4,44.4,44.3,40.9,40.7,36.2,34.8,31.0,31.0,20.5,20.5,19.6,19.6,15.5,15.4 \mathrm{ppm}$. IR (film): 2971, 2918, 2885, 1112, 1035, 889, $759 \mathrm{~cm}^{-1}$. MS: m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{CINaO}_{2}$ [M + Na] ${ }^{+}$: 281.1279, found 281.1283.
[31] Elamparuthi, E.; Fellay, C.; Neuburger, M.; Gardemann K. Angew. Chem. Int. Ed. 2012, 51, 4071.

Int-1: A Schlenk flask was charged with dicyclohexylborane (55 mg , $0.31 \mathrm{mmol}, 7 \mathrm{~mol} \%$) and to this flask was added pinacolborane (0.67 $\mathrm{mL}, 4.82 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and 4-(methoxy)but-1-yne ($0.5 \mathrm{~g}, 4.38 \mathrm{mmol}, 1.0 \mathrm{eq}$.) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 24 h at room temperature, diluted with hexane (25 mL) followed by bubbling air through the solution for 2 h . The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and the solvent was removed under reduced pressure to yield 0.61 g (58%) of title compound as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.62(\mathrm{dt}, J=18.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dt}, J=18.1,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.62$ (s, 2H), $3.62(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.35$ (s, 3H), 2.46 (qd, $J=6.6,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, 1.26 (s, 12H) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.5,96.5,83.2(2 \mathrm{C}), 66.5,55.3$, 36.2, 24.9 (4C) ppm. IR (film): 2979, 1641, 1361, $1146 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NaO}_{4} \mathrm{~B}[\mathrm{M}+\mathrm{Na}]^{+}: 264.1618$, found 264.1611.

Int-2: Inside an anaerobic box, a Schlenk flask was charged with PdCl_{2} (dppf). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($91 \mathrm{mg}, 0.11 \mathrm{mmol}, 0.05 \mathrm{eq}$.). The flask was removed from the glovebox and degassed 1,4-dioxane/ $\mathrm{H}_{2} \mathrm{O}$ (5:1, 18 mL), intermediate 1 ($0.59 \mathrm{~g}, 2.4 \mathrm{mmol}, 1.1 \mathrm{eq}$.), aryl bromide ($0.45 \mathrm{~g}, 2.24 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.93$ $\mathrm{g}, 6.71 \mathrm{mmol}, 3.0$ eq.) were successively added. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 18 h. After reaching room temperature the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 5 \% \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane $)$ to yield $0.48 \mathrm{~g}(91 \%)$ of the title compound as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.74(\mathrm{dt}, \mathrm{J}=$ $15.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.11 (dt, $J=15.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.85-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.67$ (t, J=6.6 Hz, 2H), 3.38 (s, 3H), 2.96 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.54 (qd, $J=6.7,1.5 \mathrm{~Hz}, 2 \mathrm{H})$ ppm. ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.1,135.4,130.3,129.4,129.3,127.4,127.0$, 126.4, 96.6, 67.4, 63.3, 55.4, 36.6, 33.8 ppm. IR (film): 2934, 2881, 1148, 1108, 1037, $966 \mathrm{~cm}^{-1}$. MS: m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{3} 259.1305$, found 259.1303.

Substrate (2g): N-Chlorosuccinimide ($0.37 \mathrm{~g}, 2.81 \mathrm{mmol}, 1.4 \mathrm{eq}$.) was added at $0{ }^{\circ} \mathrm{C}$ to a solution of $\mathrm{PPh}_{3}(0.74 \mathrm{~g}, 2.81 \mathrm{mmol}, 1.4$ eq.) and alcohol ($0.47 \mathrm{~g}, 2.0 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 h until complete consumption of starting material was observed on TLC. Hexane (10 mL) was added and the suspension was stirred for additional 10 min and then filtered. The solvent was removed under reduced pressure and the crude material was purified by flash chromatography ($10 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) to yield 287 mg (56%) of title compound as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.47-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{dt}, \mathrm{J}=$ $15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dt}, J=15.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.83-3.60(\mathrm{~m}, 4 \mathrm{H}), 3.38$ (s, 3H), 3.14 (dd, $J=8.5,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.55 (qd, $J=6.6,1.5 \mathrm{~Hz}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=136.9,135.0,130.2,130.0,128.8,127.5,127.5,126.5,96.6,67.3$, 55.4, 44.2, 36.9, 33.9 ppm . IR (film): 2932, 2883, 1149, 1110, 1035, $965 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClNaO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 277.0966 , found 277.0975 .
 was added pinacolborane ($3.35 \mathrm{~mL}, 23.10 \mathrm{mmol}, 1.05 \mathrm{eq}$.) and 6 -chlorohex-1-yne (2.67 $\mathrm{mL}, 22 \mathrm{mmol}, 1.0 \mathrm{eq}$.) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 24 h at room temperature, diluted hexane (25 mL) followed by bubbling air through the solution for 2 h . The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and the solvent was removed under reduced pressure to yield 5.01 g (93%) of title compound as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.60(\mathrm{dt}, J=18.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45$ (dt, $J=18.0,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.52(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.51(\mathrm{~m}, 2 \mathrm{H})$, 1.26 (s, 12H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.6,83.2(2 \mathrm{C}), 45.0,35.0,32.1$, 25.5, 24.9 (4C) ppm. IR (film): 2978, 2905, 1639, 1357, 1319, 1144, 968, $849 \mathrm{~cm}^{-1}$. MS: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{BCl}[\mathrm{M}+\mathrm{Na}]^{+}$: 266.1330, found 266.1325.

$\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.11 \mathrm{~g}, 0.13 \mathrm{mmol}, 0.05 \mathrm{eq}\right.$.), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.1 \mathrm{~g}$, $7.98 \mathrm{mmol}, 3.0$ eq.) benzyl bromide ($0.54 \mathrm{~g}, 2,66 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and substrate $\mathbf{2 q}(0.72$ $\mathrm{g}, 2,93 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) and 1,4$-dioxane $/ \mathrm{H}_{2} \mathrm{O}(4: 1,15 \mathrm{~mL})$. The mixture was stirred at 70 ${ }^{\circ} \mathrm{C}$ for 18 h . After cooling down to room temperature the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed under
reduced pressure. The crude material was purified by flash chromatography (5 \% $\mathrm{Et}_{2} \mathrm{O}$ in hexane) to yield 0.315 g (49%) of title compound.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.65-5.52$ (m, 1H), $5.52-5.42(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 2H), 2.23-1.94 (m, 2H), 1.82-1.73 (m, 2H), $1.53(\mathrm{dt}, J=10.1,7.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=158.0,133.1,130.8,130.1,129.5,113.9,55.4,45.1,38.2$, 32.2, 31.8, 26.8 ppm . IR (film): 2932, 2835, 1509, 1243, $1036 \mathrm{~cm}^{-1}$. MS: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}: 239.1197$, found 239,1195.

Substrates $\mathbf{2 i - 2 m}$: A slightly modified procedure from Nishibara and co-workers was followed for Suzuki-Miyaura Cross-Coupling reaction of (E-6-chloro-1-hexen-1ylboronic acid pinacol ester (2q) with alkyl bromides. ${ }^{[32]}$ To a solution of bis(dibenzylidene)palladium $\left(\mathrm{Pd}(\mathrm{dba})_{2}\right)(5 \mathrm{~mol} \%)$, $\left[\mathrm{HPt} t \mathrm{Bu}_{2} \mathrm{Me}^{2} \mathrm{BF}_{4}\right.$ ($10 \mathrm{~mol} \%$), and substrate 2q (1.5 eq.) in THF (3.5 mL) in a 25 mL Schlenk flask were added the corresponding alkyl bromide (1 eq.) and KOH (3 eq .) at room temperature under argon atmosphere. After stirring for 24 h , the reaction mixture was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. Column chromatography in silica gel gave the corresponding crosscoupling products.

Substrate (2i): Isolated as colorless liquid in 65% yield ($236 \mathrm{mg}, 1.1$ $\mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.43-5.35(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{t}, \mathrm{J}$ $=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.07-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.71-$ $1.60(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.33(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=130.5,130.3$, 119.9, 45.2, 32.3, 32.2, 31.9, 28.8, 28.2, 26.9, 25.4, 17.3 ppm. IR (film): 2930, 2856, 2244, 1457, 1457, 968, 724, $649 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ClNNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 236.1176, found 236.1172.

Substrate (2j): Isolated as colorless liquid in 45% yield ($560 \mathrm{mg}, 1.85$ mmol). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.47-5.32(\mathrm{~m}, 2 \mathrm{H}), 3.68-$ $3.65(\mathrm{~m}, 4 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{t}, \mathrm{J}$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.06-1.95 (m, 4H), 1.82-1.72 (m, 2H), 1.68-1.59 (m, 2H), 1.54-1.44 $(\mathrm{m}, 2 \mathrm{H}), 1.41-1.29(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.9,131.0,129.8$,
[32] Nishihara, Y.; Okada, Y.; Jiao, J.; Suetsugu, M.; Lan, M.-T.; Kinoshita, M.; Iwasaki, M.; Takagi, K. Angew. Chem. Int. Ed. 2011, 50, 8660.
67.1, 66.8, 46.2, 45.2, 42.0, 33.2, 32.5, 32.2, 31.9, 29.5, 29.1, 26.9, 25.2 ppm. IR (film): 2923, 2853, 1641, 1441, 1429, 1228, 1115, $967,848 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{ClNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 324.1701$, found 324.1699.

Substrate (2k): Isolated as light yellow liquid in 74% yield (662 mg , $3 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.53-5.39(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{t}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-$ $2.10(\mathrm{~m}, 2 \mathrm{H})$, 2.08-1.98(m, 2H), 1.84-1.70(m, 4H), 1.59-1.46 (m, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=130.2,130.0,104.3,65.0$ (2C), 45.1, 33.9, 32.1, 31.8, 27.2, 26.8 ppm. IR (film): 2933, 2882, 1446, 1407, 1133, 1034, $967 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{ClO} 2[\mathrm{M}+\mathrm{H}]^{+}: 219.1146$, found 219.1152 .

Substrate (21)

Int-3. Isolated as light yellow liquid in 70% yield ($320 \mathrm{mg}, 1.06$
mmol). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.47-5.32(\mathrm{~m}, 2 \mathrm{H}), 4.05$ (t, J=6.5 Hz, 2H), $3.53(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.68$ - 1.57 (m, 2H), $1.56-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.19(\mathrm{~s}+\mathrm{m}, 9+1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $_{3}$) $\delta=178.8,131.1,129.7,64.5,45.1,38.9,32.5,32.2,31.9,29.5$, 28.8, 28.7, 27.3 (3C), 26.9, 25.9 ppm. IR (film): 2931, 1728, 1284, $1154 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{ClNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 325.1905$, found 325.1901.
 mmol, 1.0 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added at $-78{ }^{\circ} \mathrm{C}$ dropwise DIBAL-H (1 M in THF, $1.98 \mathrm{~mL}, 1.98 \mathrm{mmol}, 2.0$ eq.) and the mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 30 min . The reaction was quenched by addition of aqueous saturated Na / K tartrate $(10 \mathrm{~mL})$. The suspension was allowed to reach room temperature, stirred at room temperature for 30 min and then filtered through Celite ${ }^{\circledR}$, which was rinsed several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL). The solvent was removed under reduced pressure and the crude material was purified via flash chromatography $\left(\mathrm{SiO}_{2}, 20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane) to yield 177 mg (82%) of title compound as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.46-5.32(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.46(\mathrm{~m}$,

2H), 1.39-1.29 (m, 7H) ppm. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=131.2,129.6,63.2,45.1$, 32.9, 32.6, 32.2, 31.9, 29.6, 29.0, 26.9, 25.7 ppm. IR (film): 2927, 2855, 1456, 1055, 967 cm^{-1}. MS: m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}: 219.1510$, found 219.1501.

Substrate (2m): Isolated as pale yellow liquid in 66% yield (383 mg , $1.4 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.55(\mathrm{t}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.03(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.35-5.22(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.12(\mathrm{~m}, 6 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=131.1,129.7,120.6,107.9,49.7,45.2,32.6,32.2$, 31.9, 31.7, 29.5, 28.8, 26.9, 26.8 ppm. IR (film): 2978, 2931, 2857, 1638, 1358, 1318, 1144, 968, 849, 717, $640 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{CIN}:[\mathrm{M}+\mathrm{H}]^{+}: 268.1827$, found 268.1838.

Substrate (2n): A Schlenk flask was charged with $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($0.1 \mathrm{~g}, 0.122 \mathrm{mmol}, 0.1 \mathrm{eq}$.), $\mathrm{NaOH}(0.245 \mathrm{~g}, 6.12 \mathrm{mmol}, 2.0 \mathrm{eq}$.) aryl bromide ($0.615 \mathrm{~g}, 3,06 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and substrate $4 \mathrm{q}(0.86 \mathrm{~g}, 3,52 \mathrm{mmol}, 1.15 \mathrm{eq}$.) and 1,4 -dioxane $/ \mathrm{H}_{2} \mathrm{O}(4: 1,15 \mathrm{~mL})$. The mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 18 h . After reaching room temperature the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) to yield 0.68 g (93 $\%$) of title compound.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{dt}, \mathrm{J}=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dt}, J=15.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.98(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.30(\mathrm{qd}, J=7.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.94-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.71-$ 1.62 (m, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.2,135.2,132.5,130.3,128.0$, 127.3, 127.0, 126.4, 63.3, 45.0, 36.6, 32.6, 32.2, 26.7 ppm. IR (film): 3321, 2933, 1447, $1041 \mathrm{~cm}^{-1}$. MS: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{CINaO}[\mathrm{M}+\mathrm{Na}]^{+}: 261.1017$, found 261.1025.
 removed from the anaerobic box and degassed 1,4-dioxane/ $\mathrm{H}_{2} \mathrm{O}(5: 1,24 \mathrm{~mL})$, substrate $4 q\left(0.716 \mathrm{~g}, 2.93 \mathrm{mmol}, 1.1 \mathrm{eq}\right.$.), aryl bromide ${ }^{[33]}\left(0.84 \mathrm{~g}, 2.66 \mathrm{mmol}, 1.0\right.$ eq.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$
($1.1 \mathrm{~g}, 7.98 \mathrm{mmol}, 3.0$ eq.) were added. The reaction mixture was stirred for 6 h at 70 ${ }^{\circ} \mathrm{C}$. After reaching room temperature the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane) to yield 0.47 $\mathrm{g}(50 \%)$ of the title compound as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{dt}, \mathrm{J}=$ $15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dt}, J=15.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27$ (qd, $J=7.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.71$ $-1.59(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.1$, 135.8, 132.0, 130.6, 128.3, 127.1, 126.7, 126.0, 64.0, 45.0, 37.1, 32.6, 32.2, 26.8, 26.1 (3C), 18.5, -5.3 (2C) ppm. IR (film): 2928, 2856, 1461, 1252, 1089, $834 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{CINaOSi}[\mathrm{M}+\mathrm{Na}]^{+}: 375.1881$, found 375.1900.

Substrate (2p): N,N-Dicyclohexylcarbodiimide (145 mg, 0.7 mmol , 1.2 eq.) and DMAP ($21 \mathrm{mg}, 0,17 \mathrm{mmol}, 0,3 \mathrm{eq}$.) were added to a solution of alcohol 4 n ($140 \mathrm{mg}, 0.58 \mathrm{mmol}, 1.0$ eq.) and $5-$ methylfuran-2-carboxylic acid ($89 \mathrm{mg}, 0.7 \mathrm{mmol}, 1.2$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$). The mixture was stirred overnight and the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography ($5 \% \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) to yield 160 mg (79%) of title compound as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15-6.04(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{dd}, J=8.0,7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.57 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.11 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.39 (s, 3H), 2.29 (qd, $J=7.2,1.5 \mathrm{~Hz}$, 2 H), 1.85 (dq, J=8.7, $6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.69-1.60(\mathrm{~m}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.9,157.4,143.2,137.3,134.3,132.7,130.3,127.8,127.3,127.2,126.2,119.6$, 108.5, 64.7, 45.1, 32.8, 32.6, 32.2, 26.7, 14.1 ppm. IR (film): 1712, 1530, 1297, 1208, $1182 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 369.1228$, found 369.1236.

Substrate (2r)

Int-4: Over a solution of dec-9-yn-5-ol ${ }^{[34]}$ ($1.4 \mathrm{~g}, 9.08 \mathrm{mmol}$) and pyridine ($0.1 \mathrm{~mL}, 1.24 \mathrm{mmol}$) in dichloromethane (10 mL) is added dropwise a solution of thionyl chloride $(6.6 \mathrm{~mL}, 90 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Then, the reaction mixture was allowed to warm up to room temperature and it is stirred overnight. The crude was diluted with dichloromethane $(30 \mathrm{~mL})$ and the residual thionyl chloride was quenched by adding slowly ice/water into the flask. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography (5 \% AcOEt in hexane) to yield $0.66 \mathrm{~g}(42 \%)$ of title compound.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.96-3.86(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{td}, J=6.8,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{t}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.59-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=84.0,68.9,63.6,38.5,37.5,28.8,25.5,22.4,18.1,14.1$ ppm. MS: m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{17}[\mathrm{M}-\mathrm{Cl}]^{+}: 137.1325$, found 137.1321.
pinB Int-5: Following the procedure above described for substrate $\mathbf{2 q}$ with intermediate Int-4 gave intermediate Int-5: as a white solid that was used without further purification.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.61(\mathrm{dt}, J=18.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dt}, J=17.9,1.6 \mathrm{~Hz}$, $1 \mathrm{H})$, 3.93-3.83 (m, 1H), 2.24-2.11 (m, 2H), 1.80-1.63 (m, 6H), 1.60-1.44 (m, 2H), 1.441.19 (m, 14H), $0.91(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

Substrate (2r): Isolated as colorless liquid in 73% yield (261 mg , 0.7 mmol) following the analogous procedure to $\mathbf{2 j}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.46-4.30(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 4 \mathrm{H})$, 3.63-3.57 (m, 2H), 3.49-3.41 (m, 2H), 2.30 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.08-1.92 (m, 4H), 1.78$1.24(\mathrm{~m}, 16 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0$, 130.9, 130.0, 67.1, 66.8, 64.3, 46.2, 42.0, 38.4, 38.1, 33.2, 32.5, 32.2, 29.5, 29.1, 28.8,
26.5, 25.2, 22.4, 14.1 ppm. IR (film): 3452, 2961, 2921, 2855, 1638, 1429, 1271, 1235, 1113, 1068, 1028, 913, 847, 701, $571 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{CINNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 380.2332 , found 380.2327 .

Substrate (2s)

隹
Int-6: Triflic anhydride ($0.36 \mathrm{~mL}, 2.17 \mathrm{mmol}, 1.15$ eq.) was added at $0^{\circ} \mathrm{C}$ to a Schlenk flask containing estrone ($0.5 \mathrm{~g}, 1,85 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and NEt_{3} ($0.52 \mathrm{~mL}, 3.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~mL}\right.$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h before the reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(20$ $\mathrm{mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 10 \% \rightarrow 20 \% \rightarrow 30 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane) to yield $0.65 \mathrm{~g}(87 \%)$ of title compound as an off-white solid. Spectral data is in agreement with previously reported data for this compound. ${ }^{[35]}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34$ (dd, $\left.J=8.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.07-6.96(\mathrm{~m}, 2 \mathrm{H}), 2.98$ - 2.88 (m, 2H), 2.57-2.48 (m, 1H), 2.46-2.37 (m, 1H), $2.30(t d, J=10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.22-1.95 (m, 4H), 1.70-1.39 (m, 6H), $0.92(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=220.6,147.7,140.4,139.4,127.3,121.4,118.4$ (2C), 50.5, 48.0, 44.2, 37.9, 35.9, 31.6, 29.5, 26.2, 25.8, 21.7, 13.9 ppm.

Substrate (2s): $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($103 \mathrm{mg}, 0.75 \mathrm{mmol}, 3.0$ eq.) was added to a solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(29 \mathrm{mg}, 0.025 \mathrm{mmol}, 10$ $\mathrm{mol} \%$), estrone derivate Int-6 ($100 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and substrate $4 \mathbf{q}\left(73 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.2 \mathrm{eq}\right.$) in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}(4: 1,3.5 \mathrm{~mL})$. The mixture was heated for 18 h at $100{ }^{\circ} \mathrm{C}$ in a sealed flask. The reaction was allowed to reach room temperature and the solvent was removed under reduced pressure. The

[^9]crude material was directly purified by flash chromatography ($10 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) to yield $89 \mathrm{mg}(97 \%)$ of title compound as a white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=8.2,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.08 (s, 1H), $6.34(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dt}, J=15.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=6.7 \mathrm{~Hz}$, 2H), 2.90 (dd, $J=9.1,4.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.51 (dd, $J=19.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H})$, $2.33-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.15(\mathrm{dt}, J=18.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.94(\mathrm{~m}$, $1 \mathrm{H}), 1.83(\mathrm{dt}, \mathrm{J}=14.5,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.39$ (m, 1H), 0.91 ($\mathrm{s}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=221.0,138.8,136.6,135.4$, 130.2, 129.6, 126.7, 125.6, 123.5, 50.6, 48.1, 45.1, 44.5, 38.3, 36.0, 32.3, 32.2, 31.7, 29.5, 26.7, 26.7, 25.9, 21.7, 14.0 ppm. IR (film): 2931, 2860, 1739, $966 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{ClNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 393.1956$, found 393.1956.
$\mathrm{EtO}_{2} \mathrm{C}^{\mathrm{CO}_{2} \mathrm{Et}}$ Substrate (2t): To a suspension of $\mathrm{NaH}(0.09 \mathrm{~g}, 3.61 \mathrm{mmol})$ in DMF (5 mL) was added at rt a solution of diethyl 2-(3-(4-methoxyphenyl)prop-2-yn-1yl)malonate ($3.3 \mathrm{mmol}, 1 \mathrm{~g}$) in DMF (3 mL). The mixture was stirred at rt for 30 min in which it became a clear solution. To this solution was added dropwise a solution of 1-bromo-2-chloroethane ($6.6 \mathrm{mmol}, 0.9 \mathrm{~g}$) in THF (3 mL). The mixture was stirring at room temperature overnight. Them, the reaction was quenched by addition of 15 mL of water and extracted with diethyl ether ($3 * 15 \mathrm{~mL}$). The combined organic extracts were dried over MgSO 4 , the solvent was removed under reduce pressure. The crude material was directly purified by flash chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) to yield 569 mg (60 $\%$) of title compound as a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.20(\mathrm{qd}, ~ J=7.1,2.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.60-3.51(\mathrm{~m}, 2 \mathrm{H}), 2.78$ ($\mathrm{q}, \mathrm{J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.58-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{t}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$ ppm. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.9$ (2C), 79.5, 72.9, 61.9 (2C), 56.3, 40.1, 35.6, 23.8, 14.1 (2C), 3.6 ppm. IR (film): 2981, 2937, 1730, 1446, 1327, 1300, 1264, 1230, 1195, 1179, 1066, 1030, 859, $751,526 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{ClNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 297.0870, found 297.0864.

Substrates 2u-2w:

SI.EP 34
$\mathrm{EtO}_{2} \mathrm{C}_{4}^{\mathrm{CO}_{2} \mathrm{Et}}$ Int-7: Diethyl malonate (25.9 g ; 161 mmol) was added dropwise to an icecold suspension of sodium hydride ($6.46 \mathrm{~g}, 60 \mathrm{wt} \%$ in mineral oil, 161 mmol) in dry THF. The reaciton mixture was allowed to stir for 2 h at room temperature. To this solution propargyl bromide ($8 \mathrm{~g} ; 53.8 \mathrm{mmol}$) were added dropwise at $0^{\circ} \mathrm{C}$ and the solution was allowed to warm to room temperature with continuous stirring 24 h . The solvent was removed under reduce pressure. The reaction was quenched by addition of 50 mL of water, extracted with AcOEt ($3 \times 15 \mathrm{~mL}$). The combines organic layer were the concentrated in redced pressure. The required product was purified by fractional distillation in vifreux column at $80^{\circ} \mathrm{C}$ ($\left.1.6 \times 10^{-1} \mathrm{mbar}\right)$, yielding 9.75 g (91%) of the desired product as a colourless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.23(\mathrm{q}, ~ J=7.1,0.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.64-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.78$ (ddd, $J=7.7,2.7,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{td}, J=7.1,0.7 \mathrm{~Hz}, 6 \mathrm{H})$ ppm. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.9$ (2C), 78.0, 70.4, 61.8 (2C), 51.2, 22.5, 18.1, 14.0 (2C). ppm.

Int-8: Diethyl 2-(prop-2-yn-1-yl)malonate ($2.0 \mathrm{~g} ; 10.09 \mathrm{mmol}$) and 1-iodo-4methoxybenzene ($2.66 \mathrm{~g} ; 11.37 \mathrm{mmol}$) were added to a stirring solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.583 \mathrm{~g} ; 0.504 \mathrm{mmol}), \mathrm{Cul}(0.288 \mathrm{~g} ; 1.513 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.021$ $\mathrm{g} ; 10.09 \mathrm{mmol})$ in THF (20 mL). The mixture was heated for 15 h at $50{ }^{\circ} \mathrm{C}$. The reaction was quenched by addition of 15 mL of water, extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 15 \mathrm{~mL})$. The crude materiasl was purifies by flash chroatography (10% of AcOEt in hexane) yo wield 1.46 g (48%) of title compound as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.69(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{qd}, \mathrm{J}=$ 7.1, $0.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 6 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.1$ (2C), 159.3, 133.0 (2C), 115.4, 113.8 (2C), 83.9, 82.2, 61.7 (2C), 55.3, 51.6, 19.5, 14.1 (2C) ppm. IR (film): 2981, 1731, 1606, 1509, 1464, 1369, 1290, 1244, 1172, 1030, 832, $539 \mathrm{~cm}^{-1}$.

Int-9: Diethyl 2-(prop-2-yn-1-yl)malonate ($0.650 \mathrm{~g} ; 3.28 \mathrm{mmol}$) and 1-chloro-4-iodobenzene ($0.860 \mathrm{~g} ; 3.61 \mathrm{mmol}$) were added to a stirring solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.094 \mathrm{~g} ; 0.492 \mathrm{mmol}), \mathrm{Cul}(0.094 \mathrm{~g} ; 0.492 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.332$ $\mathrm{g} ; 3.28 \mathrm{mmol})$ in THF (10 mL). The mixture was heated for 15 h at $50^{\circ} \mathrm{C}$. The eraction was quenched by addition of 15 mL of water, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 15 mL). The crude materiasl was purifies by flash chroatography (10% of AcOEt in hexane) yo wield 605 mg (78%) of title compound as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.59-7.14(\mathrm{~m}, 4 \mathrm{H}), 4.42-4.09(\mathrm{~m}, 4 \mathrm{H}), 3.65(\mathrm{t}, \mathrm{J}=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.01$ (dd, $J=7.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta=168.0$ (2C), 133.0, 132.8 (2C), 128.5 (2C), 121.7, 86.6, 81.4, 61.8 (2C), 51.4, 19.41, 14.1 (2C) ppm. IR (film): 2982, 1731, 1489, 1639, 1231, 1153, 1059, 1032, 1015, $828,526 \mathrm{~cm}^{-1}$. MS: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClNaO}_{4}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 331.0713 , found 331.0708.

Int-10: Diethyl 2-(prop-2-yn-1-yl)malonate ($0.50 \mathrm{~g} ; 2.52 \mathrm{mmol}$) and 1-fluoro-4-iodobenzene ($0.618 \mathrm{~g} ; 2.77 \mathrm{mmol}$) were added to a stirring solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.146 \mathrm{~g} ; 0.126 \mathrm{mmol}), \mathrm{Cul}(0.037 \mathrm{~g} ; 0.376 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.255$ $\mathrm{g} ; 2.52 \mathrm{mmol})$ in THF (10 mL). The mixture was heated for 15 h at $50{ }^{\circ} \mathrm{C}$. The eraction was quenched by addition of 15 mL of water, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 15 mL). The crude materiasl was purifies by flash chroatography (10% of AcOEt in hexane) yo wield 632 mg (86%) of title compound as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34$ (dd, $\left.J=8.9,5.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.96(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.24$ (qd, $J=7.1,0.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.63(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$ ppm. ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.0,163.5,161.1,133.5,133.40,119.3,119.3$ (2C), 115.5, 115.3, 85.1, 81.4, 61.8, 51.4, 19.4, 14.1 ppm IR (film): 2982, 1731, 1601, 1507, 1335, 1221, 1154, 1032, 837, $532 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 315.1009 , found 315.1003 .
$\mathrm{EtO}_{2} \mathrm{C} \mathrm{X}^{\mathrm{CO}_{2} \mathrm{Et}}$ Substrate (2u): To a suspension of $\mathrm{NaH}(0.06 \mathrm{~g}, 2.30 \mathrm{mmol})$ in DMF (5 mL) was added at it a solution of diethyl 2-(3-(4-methoxyphenyl)prop-2-yn-1$\mathrm{yl})$ malonate ($2.3 \mathrm{mmol}, 0,7 \mathrm{~g}$) in DMF (3 mL). The mixture was stirred at rt for 30 min in which it became a clear solution. To this solution was added dropwise a solution of 1-bromo-2-chloroethane ($4.6 \mathrm{mmol}, 0.67 \mathrm{~g}$) in DMF (3 $\mathrm{mL})$. The mixture was stirring at room temperature overnight. Them, the reaction was quenched by addition of 15 mL of water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were dried over MgSO4, the solvent was removed under reduce pressure and the crude material was purified by Column Cromatography (5 \% of $\mathrm{Et}_{2} \mathrm{O}$ in hexane) to yield 533 mg (63%) of title compound as a white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.24$ (qd, $J=7.1,5.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H}), 2.61$ (m, 7.2 Hz, $2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.7,159.5,133.0$, 115.1, 113.9, 83.8, 82.0, 61.9, 56.3, 55.38, 40.0, 35.7, 24.4, 14.0 ppm. IR (film): 2980, 2937, 2906, 2838, 1730, 1606, 1509, 0444, 1289, 1245, 1173, 1030, 832, $537 \mathrm{~cm}^{-1}$. MS: m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{CINaO}[\mathrm{M}+\mathrm{Na}]^{+}: 389.1132$, found 389.1126.

Substrate (2v): To a suspension of $\mathrm{NaH}(0.09 \mathrm{~g}, 3.61 \mathrm{mmol})$ in DMF (5 mL) was added at rt a solution of diethyl 2-(3-(4-methoxyphenyl)prop-2-yn-1$\mathrm{yl})$ malonate ($3.3 \mathrm{mmol}, 1 \mathrm{~g}$) in DMF (3 mL). The mixture was stirred at rt for 30 min in which it became a clear solution. To this solution was added dropwise a solution of 1-bromo-2-chloroethane ($6.6 \mathrm{mmol}, 0.9 \mathrm{~g}$) in DMF (3 $\mathrm{mL})$. The mixture was stirring at room temperature overnight. Them, the reaction was quenched by addition of 15 mL of water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were dried over MgSO4, the solvent was removed under reduce pressure and the crude material was purified by Column Cromatography (5 \% of $\mathrm{Et}_{2} \mathrm{O}$ in hexane) to yield 543 mg (77 \%) of title compound as a white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-7.25(\mathrm{~m}, 4 \mathrm{H}), 4.33-4.20(\mathrm{~m}, 4 \mathrm{H}), 3.68-3.62(\mathrm{~m}$, 2H), $3.09(\mathrm{~s}, 2 \mathrm{H}), 2.66-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.30\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H} p \mathrm{~m} .{ }^{13} \mathrm{C}\right.$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=169.5,134.2,132.8,128.6,121.4,84.8,82.9,62.0,56.2,39.9,35.6,24.48$, 14.0.ppm. IR (film): 2980, 2935, 2873, 1730, 1489, 1367, 1327, 1299, 1264, 1230, 1193, 1179, 1088, 1067, 1015, 828, $526 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 393.0636, found 393.0631.

Substrate (2w): To a suspension of $\mathrm{NaH}(0.05 \mathrm{~g}, 2.05 \mathrm{mmol})$ in DMF (5 mL) was added at rt a solution of diethyl 2-(3-(4-fluoroyphenyl)prop-2-yn-1$\mathrm{yl})$ malonate ($1.7 \mathrm{mmol}, 0.5 \mathrm{~g}$) in DMF (3 mL). The mixture was stirred at rt for 30 min in which it became a clear solution. To this solution was added dropwise a solution of 1-bromo-2-chloroethane ($3.4 \mathrm{mmol}, 0.5 \mathrm{~g}$) in DMF (3 $\mathrm{mL})$. The mixture was stirring at room temperature overnight. Them, the reaction was quenched by addition of 15 mL of water and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried over MgSO4, the solvent was removed under reduce pressure and the crude material was purified by Column Cromatography (5 \% of $\mathrm{Et}_{2} \mathrm{O}$ in hexane) to yield to yield 237 mg (40%) of title compound as a white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33(\mathrm{dd}, J=8.8,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 4.24 (qd, J = 7.1, $5.0 \mathrm{~Hz}, 4 \mathrm{H}$), $3.74-3.54$ (m, 2H), 3.06 (s, 2H), $2.68-2.53$ (m, 2H), 1.27 (t, J=7.1 Hz, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.5$ (2C), 163.6, 161.2, 133.5 (2C), 119.0 (2C), 115.4, 83.4, 82.9, 62.0 (2C), 56.2, 39.9, 35.6, 24.3, 14.0 (2C) ppm. IR (film): 2981, 1730, 1601, 1507, 1220, 1179, 1067, 1015, 836, 653, $531 \mathrm{~cm}^{-1}$. MS: m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{CIFNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 377.0932$, found 377.0926 .

Substrate (2x): A solution of the corresponding alcohol ${ }^{[36]}(1 \mathrm{~g}, 5.81 \mathrm{mmol})$ in dry acetonitrile was added triphenylphosphine ($1.83 \mathrm{~g}, 6.97 \mathrm{mmol}$) and tetraclorocarbon ($1.54 \mathrm{~mL}, 11.62 \mathrm{mmol}, 2 \mathrm{eq}$.). The resulting mixture was stirred for 48 h at room temperature. Then, the solvent was removed under vacuum and the residue was extracted with pentane ($3 \times 40 \mathrm{~mL}$) and filtered through Celite ${ }^{\circledR}$. The organic solvent was removed under reduced pressure and the crude material was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 15 \%\right.$ EtOAc in hexane) to yield $1.1 \mathrm{~g}(31 \%)$ of title compound as a light yellow liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.87(\mathrm{q}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.43(\mathrm{~m}, 2 \mathrm{H})$, $2.40-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.18-1.99(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=212.0$, 169.6, 61.5, 53.1, 45.5, 38.6, 31.3, 19.7 ppm. IR (film): 2957, 1754, 1724, 1434, 1225, 1152, 1098, 1010, $516 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{ClNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 213.0284$, found 213.0289.

Substrate (2y): 3-Bromomethyl pyridine hydrobromide ($0.37 \mathrm{~g}, 1,46$ mmol, 1.0 eq.) was added to a Schlenk flask containing, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($0.74 \mathrm{~g}, 7,02 \mathrm{mmol}, 4.8 \mathrm{eq}$.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.15 \mathrm{~g}, 0,13 \mathrm{mmol}, 9 \mathrm{~mol} \%$) and ((E)-6-chloro-1-hexen-1-ylboronic acid pinacol ester ($0.36 \mathrm{~g}, 1,46 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}$ ($4: 1,5 \mathrm{~mL}$). The mixture was stirred for 18 h at $80{ }^{\circ} \mathrm{C}$. After reaching room temperature the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous $\mathrm{NaCl}(2 \times 10 \mathrm{~mL})$ and dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude material was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, $10 \% \mathrm{Et}_{2} \mathrm{O} \rightarrow 20$ \% $\mathrm{Et}_{2} \mathrm{O}$) to yield 130 mg (42 \%) of title compound as yellow oil which darkens on standing.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.44$ (dd, $J=5.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.52-7.43$ (m, 1H), 7.21 (ddd, $J=7.8,4.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.62-5.44$ (m, 2H), 3.53 (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.33 (d, $J=$ $5.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.12-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=150.1,147.6,136.2,136.1,132.3,128.4,123.4,45.0,36.2,32.1,31.8,26.6 \mathrm{ppm}$. IR (film): 2937, 1478, 1422, $970 \mathrm{~cm}^{-1}$. MS: m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{CIN}[\mathrm{M}+\mathrm{H}]+: 210.1044$, found 210.1047.

Substrate (3a): A solution of dimethyl allylmalonate (500 mg, 2.90 mmol) in THF (5 mL) was added dropwise to a suspension of $\mathrm{NaH}(60 \%$ in mineral oil, $139 \mathrm{mg}, 3.48 \mathrm{mmol})$ in THF (10 mL) at $0{ }^{\circ} \mathrm{C}$ under Ar. The ice bath was removed and the mixture was stirred for 60 min at ambient temperature. Then, freshly distilled 1,2-dibromoethane ($0.36 \mathrm{~mL}, 3.78 \mathrm{mmol}$) was added via syringe slowly over 15 min and the resulting mixture was stirred overnight. The reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous solution was extracted with dichloromethane and the combined filtrates were dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, 2% EtOAc in hexane) to give 600 mg (74\%) of the title compound as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.69-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.10(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H})$, 2.67 (dt, J=7.4, 1.2 Hz, 2H), $2.48-2.42 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=$ 170.8 (2C), 131.8, 119.9, 57.8, 52.8 (2C), 38.1, 36.4, 27.1 ppm. IR (film): 2953, 1729, 1640, 1434, 1208, 1162, 925, 643, $545 \mathrm{~cm}^{-1}$. MS: m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{BrNaO}_{4}$: 301.0046, found 301.0049 .

8. General Procedure for reductive cyclization reactions

General Procedure A: $1^{\mathrm{H}} \mathrm{Co}$ (5 mol\%), $\mathrm{PCCu}^{\text {(2 mol\%), } E t_{3} N(14.4 \mathrm{eq}) .}$

General Procedure B: $1^{H} \mathrm{Ni}(5 \mathrm{~mol} \%), \mathrm{PC}_{\mathrm{Cu}}$ (2 mol\%), i-Pr$r_{2} \mathrm{NEt}(11.4 \mathrm{eq})$.

A solution of chloroalkane $\mathbf{2 b - y}(0.6 \mathrm{~mL}, 0.06 \mathrm{mmol}, 1.0 \mathrm{eq}),. \mathbf{1}^{\mathrm{H}} \mathrm{Co}$ or $\mathbf{1}^{\mathrm{H}} \mathrm{Ni}(0.3 \mathrm{~mL}$, $0.003 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathrm{PC}_{\mathrm{Cu}}\left(0.3 \mathrm{~mL}, 1.2 \times 10^{-3} \mathrm{mmol}, 2 \mathrm{~mol} \%\right.$) and acetonitrile (1.2 mL) was equally distributed into vials (10 mL of headspace) containing glass beads. The vials were sealed with a septum and removed from the glovebox. Degased EtOH was added to each vial to reach a total volume of 6 mL (total concentration of substrate 10 mM). To these vials $\mathrm{Et}_{3} \mathrm{~N}\left(120 \mu \mathrm{~L}, 0.865 \mathrm{mmol}, 14.4\right.$ eq.) or $i-\mathrm{Pr}_{2} \mathrm{NEt}(120 \mu \mathrm{~L}, 0.687 \mathrm{mmol}, 11.4$ eq.) was added and the vials were placed in the photoreactor at the indicated temperature $\left(30^{\circ} \mathrm{C}\right)$ and stirring was switched on. After irradiating the vials for 24 h with visible light (blue LED, 447 nm), they were opened and the content was combined in a separatory funnel. $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added and the organic layer was separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$, and the combined organic extracts were washed with brine (15 mL) and dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude material was purified via column chromatography.

Table SI.EP.EP-5.

Alkenes

$1^{H} C o: R=H, 88 \%(4 b)^{a}$
$\mathrm{Bu}, 50$ \% (4c) ${ }^{\mathrm{a}}$
Ph, 73 \% (4d) ${ }^{\text {a }}$
$1^{\mathrm{H}} \mathrm{Ni}: \mathbf{R}=\mathrm{H}, 93$ \% (4b) ${ }^{\mathrm{a}}$
Bu, 79 \% (4c) ${ }^{\text {a }}$
Ph, 93 \% (4d) ${ }^{\text {a }}$

$1^{\mathrm{H}} \mathrm{Co}: 37 \%(4 h)^{\text {c }}$
$1^{\mathrm{H}} \mathrm{Ni}: 76 \%(4 h)^{\mathrm{a}}$

$1^{\mathrm{H}} \mathrm{Co}: 43 \%(4 \mathrm{I})^{\mathrm{C}}$
$1^{\mathrm{H}} \mathrm{Ni}: 77 \%(4 \mathrm{I})^{\mathrm{a}}$

$1^{\mathrm{H}} \mathrm{Co}: 83$ \% (4e) ${ }^{\mathrm{a}}$ $1^{\mathrm{H}} \mathrm{Ni}: 83 \%(4 e)^{\mathrm{a}}$

$1^{\mathrm{H}} \mathrm{Co}: 62 \%(4 f)^{\mathrm{b}}$ $1^{\mathrm{H}} \mathrm{Ni}$: 66 \% (4f) ${ }^{\text {b }}$

$1^{\mathrm{H}} \mathrm{Co}: 65 \%(4 \mathrm{~g})^{\mathrm{c}}$ $1^{\mathrm{H}} \mathrm{Ni}: 52 \%(4 \mathrm{~g})^{\mathrm{b}}$

$1^{\mathrm{H}} \mathrm{Co}: 26$ \% (4i) ${ }^{\mathrm{C}}$
$1^{H} \mathrm{Ni}: 52 \%(4 i)^{a}$

$1^{\mathrm{H}} \mathrm{Co}: 21 \%(4 \mathrm{~m})^{\mathrm{c}}$ $1^{\mathrm{H}} \mathrm{Ni}: 48 \%(4 \mathrm{~m})^{\mathrm{a}}$

$1^{\mathrm{H}} \mathrm{Co}: 23 \%(4 \mathrm{j})^{\mathrm{C}}$ $1^{\mathrm{H}} \mathrm{Ni}: 81 \%(4 \mathrm{j})^{\mathrm{a}}$

$1^{H} \mathrm{Co}: ~ R=H, 15 \%(4 n)^{c}$
TBS, 23\% (4o) ${ }^{\text {c }}$
$1^{H} \mathrm{Ni}: \mathbf{R}=\mathrm{H}, 90 \%(4 n)^{\mathrm{a}}$
TBS, $91 \%(40)^{a}$

$1^{\mathrm{H}} \mathrm{Co}: 5 \%(4 \mathrm{k})^{\mathrm{c}}$ $1^{\mathrm{H}} \mathrm{Ni}: 40 \%(4 k)^{\mathrm{a}}$

$1^{\mathrm{H}} \mathrm{Co}: 38 \%(4 p)^{\mathrm{C}}$ $1^{\mathrm{H}} \mathrm{Ni}: 88 \%(4 p)^{\mathrm{a}}$

$1^{\mathrm{H}} \mathrm{Co}: 14 \%(4 q)^{\mathrm{c}}$ $1^{\mathrm{H}} \mathrm{Ni}: 61 \%(4 q)^{\mathrm{a}}$

$1^{\mathrm{H}} \mathrm{Co}: 18 \%(4 \mathrm{r})^{\mathrm{c}}$ $1^{\mathrm{H}} \mathrm{Ni}: 67 \%(4 \mathrm{r})^{\mathrm{a}}$

$1^{\mathrm{H}} \mathrm{Co}: 43$ \% (4s) ${ }^{\text {c }}$
$1^{\mathrm{H}} \mathrm{Ni}: 79 \%(4 s)^{a}$

Alkynes

$1^{\mathrm{H}} \mathrm{Co}: \mathrm{X}=\mathrm{Cl} ; 76 \%(4 \mathrm{u})^{\mathrm{a}} \quad 1^{\mathrm{H}} \mathrm{Ni}: \mathrm{X}=\mathrm{Cl} ; 72 \%(4 \mathrm{u})^{\mathrm{a}}$ $X=$ OMe; $82 \%(4 v)^{a} \quad X=O M e ; 78 \%(4 v)^{a}$ $X=F ; 80 \%(4 w)^{a}$
$X=F ; 82 \%(4 w)^{\text {a }}$

Standard conditions: substrate (10 mM), $\mathrm{PC}_{\mathrm{Cu}}(2 \mathrm{~mol} \%), 1^{\mathrm{H}} \mathrm{Co}$ or $\mathbf{1}^{\mathrm{H}} \mathrm{Ni}$ catalyst ($5 \mathrm{~mol} \%$), $\mathrm{ED}\left[\mathrm{Et}_{3} \mathrm{~N}\right.$ (14.4 eq.) or $i-\mathrm{Pr}_{2} \mathrm{NEt}$ (11.4 eq.)], EtOH:MeCN (3:2), visible light irradiation with blue LEDs ($\lambda=447 \mathrm{~nm}$) at $30{ }^{\circ} \mathrm{C}$ for 24 h . a) Isolated yield. b) Isolated yield over two steps. c) Yield was determined by GC using biphenyl as internal standard.

9. Characterization of products

Product (4b): Cyclization according to general procedure A: scale 0.4 mmol, flash chromatography ($\mathrm{SiO}_{2}, 100 \%$ hexane) yielded 85 mg (88%) of the title compound as a colorless liquid. The same substrate was also tested according to general procedure B: scale 0.3 mmol , flash chromatography $\left(\mathrm{SiO}_{2}\right.$, 100% hexane) yielded $64 \mathrm{mg}(93 \%)$ of the title compound as a colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.19$ ($\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}$), $2.51-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.33$ (ddd, $J=13.6,8.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 1 \mathrm{H})$, $1.72-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=172.8$ (2C), 61.2 (2C), 60.5, 42.5, 34.5, 34.2, 34.0, 29.7, 19.6, 14.0 (2C) ppm. IR (film): 2955, 2928, 2871, 1728, 1446, 1252, 1158, $859 \mathrm{~cm}^{-1}$. MS (ESI-pos): m/z $229.1\left[\mathrm{M}+\mathrm{H}^{+}\right]$. The spectroscopic characterization is in agreement with the literature reported. ${ }^{[37]}$
$\mathrm{EtO}_{2} \mathrm{C}^{\mathrm{CO}_{2} \mathrm{Et}}$ Product (4c): Cyclization according to general procedure A: scale 0.3 mmol, flash chromatography $\left(\mathrm{SiO}_{2}, 100 \%\right.$ hexane) yielded 69 mg (71%) of the title compound as a light yellow liquid. The same substrate was also tested according to general procedure \mathbf{B} : scale 0.3 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 0 \% \rightarrow 2 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane) yielded 79 mg (79 \%) of the title compound as a light yellow liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.19$ (qd, $J=7.1,1.6 \mathrm{~Hz}, 4 \mathrm{H}$), $2.50-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.31$ (ddd, $J=13.5,8.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.14 (ddd, $J=13.5,9.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.83(\mathrm{~m}$, 2 H), 1.70 (dd, $J=13.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 1 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 9 \mathrm{H}), 0.96-0.85(\mathrm{~m}, 3 \mathrm{H})$ ppm. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.8(2 \mathrm{C}), 61.2(2 \mathrm{C}), 60.0,40.8,39.8,35.0,33.8$, 32.2, 30.7, 22.8, 14.1, 14.0 (2C) ppm. IR (film): 2957, 2927, 1728, 1465, 1446, 1253, 1175, 1157, $860 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 293.1729, found 293.1723.
$\mathrm{EtO}_{2} \mathrm{C}^{\mathbf{C O}}{ }^{\mathrm{Et}}$ Product (4d): Cyclization according to general procedure A: scale 0.3 mmol, flash chromatography $\left(\mathrm{SiO}_{2}, 2 \%\right.$ of $\mathrm{Et}_{2} \mathrm{O}$ in hexane) yielded 80 mg (73%) of the title compound as a light yellow liquid. The same substrate was also tested according to general procedure B: scale 0.2 mmol , flash chromatography
$\left(\mathrm{SiO}_{2}, 0 \% \rightarrow 5 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane) yielded 73 mg (93 \%) of the title compound as a light yellow liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.19(\mathrm{dq}, J=$ $11.5,7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.67(\mathrm{qd}, J=13.5,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.25(\mathrm{~m}$, 2H), 2.23-2.10 (m, 1H), 1.85 (dd, J=13.3, $9.6 \mathrm{~Hz}, 2 \mathrm{H}$), $1.47-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.25$ (dt, J $=10.0,7.5 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=172.7,172.7,141.2,128.7$, 128.3, 125.8, 61.3, 61.3, 60.0, 41.5, 41.3, 40.4, 33.7, 32.0, 14.0 (2C) ppm. IR (film): 3027, 2981, 2937, 1726, 1603, 1496, 1453, 1366, 1248, 1207, 1176, 1097, 1029, 860, $745,700 \mathrm{~cm}^{-1}$. MS: m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 327.1572$, found 327.1567.

Product (4e): Cyclization according to general procedure A: scale 0.3 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 100 \%\right.$ hexane) yielded 49 mg (83%) of the title compound as an orange/brown liquid. The same substrate was also tested according to general procedure \mathbf{B} : scale 0.24 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 90 \%\right.$ $\mathrm{Et}_{2} \mathrm{O} \rightarrow 100$ \% in hexane, then $10 \% \mathrm{MeOH}$ in $\mathrm{Et}_{2} \mathrm{O}$) yielded 27.7 mg (83 \%) of title compound as an orange/brown liquid, which darkens rapidly on standing.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.60-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.15$ (ddt, $\left.J=11.5,9.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.72 (dddt, $J=16.7,10.7,9.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (ddd, $J=16.7,9.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-$ $2.19(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.04 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=174.8,68.3,41.1,40.7,35.7,35.0,25.3,15.4 \mathrm{ppm}$. IR (film): 3458, 2957, 2930, 2872, 1679, 1562, 1409, $1250 \mathrm{~cm}^{-1}$. MS: m/z calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 140.1070, found 140.1071 .

Product (4f): Cyclization according to general procedure A: scale 0.3 mmol , yielded 48 mg (62% over 2 steps) of the title compound as a light yellow liquid. The same substrate was also tested according to general procedure B: scale 0.24 mmol yielded 41 mg (66% over 2 steps) of the title compound a light yellow liquid. The reaction crude containing a mixture of diastereoisomeric hemiacetals was dissolved in acetone (4 mL), cooled to $0{ }^{\circ} \mathrm{C}$ and Jones reagent ($2 \mathrm{M} \mathrm{CrO}_{3}$ in aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}, 0.26 \mathrm{~mL}, 0.53 \mathrm{mmol}, 2.2$ eq.) was added dropwise. The mixture was stirred for 90 min at $0{ }^{\circ} \mathrm{C}$. After complete conversion of starting material as judged by TLC the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and carefully quenched by addition of 2-propanol (1 mL). Saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added and the organic layer was separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and the combined
organic extracts were dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude material was purified by column chromatography ($\mathrm{SiO}_{2}, 5 \% \rightarrow$ $10 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=4.78-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{dd}, \mathrm{J}=10.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (dd, $J=17.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.21 (ddt, $J=13.3,6.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.93-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{t}, \mathrm{J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.21(\mathrm{~m}, 1 \mathrm{H})$, $1.18(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.82 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 176.8, 148.1, 109.6, 85.2, 41.5, 38.5, 38.1, 35.3, 33.6, 28.5, 26.9, 21.0 ppm. IR (film): 2931, 2858, 1774, 1456, 1158, 979, $886 \mathrm{~cm}^{-1}$. MS: m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 217.1199, found 217.1199.

Product (4g): Cyclization according to general procedure B (Scale $0.24 \mathrm{mmol})$. Flash chromatography $\left(\mathrm{SiO}_{2}, 5 \% \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane) yielded 27.3 mg (52%) of title compound as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H})$, 3.59 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.14$ (m, 1H), 2.94 (ddd, $J=15.1,8.5,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.86 (m, 1H), 2.31 (dtd, $J=12.6,7.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.04-1.90 (m, 1H), $1.85-1.65$ (m, 3H), 1.55-1.43 (m, 1H) ppm. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=147.5,144.1,126.4,126.1$, 124.5, 123.7, 96.6, 68.1, 55.2, 44.7, 32.2, 31.7, 31.5, 28.0 ppm. IR (film): 2930, 1146, 1109, 1041, $918 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 243.1356$, found 243.1350.

Product (4h): Cyclization according to general procedure B: scale 0.3 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 5 \% \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane $)$ yielded 46 mg (76%) of the title compound as a light liquid yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.79(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, 2.86-2.45 (m, 2H), 1.95-1.73 (m, 3H), 1.64-1.48 (m, 6H), 1.20-1.06 (m, 2H) ppm. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.7,135.1,129.3$ (2C), 113.8 (2C), 55.4, 39.7, 38.5, 34.3, 32.8 (2C), 25.4 (2C) ppm. IR (film): 2946, 1511, 1246, $1039 \mathrm{~cm}^{-1}$. MS: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 205.1587$, found 205.1585 .

Product (4i): Cyclization according to general procedure B: scale 0.24 mmol, flash chromatography $\left(\mathrm{SiO}_{2}, 5 \% \rightarrow 10 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane $)$ yielded 22.3 mg (52%) of title compound as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.61$ (m, 2H), 1.61-1.53 (m, 2H), 1.53-1.39 (m, 4H), 1.37-1.25 (m, 6H), 1.11-0.99 (m, 2H) ppm. ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=120.0,40.2,36.2,32.8(2 \mathrm{C}), 29.2,28.8,28.6,25.5$, 25.3 (2C), 17.3 ppm. IR (film): 2927, 2857, 1818, $1452,1064 \mathrm{~cm}^{-1}$. MS: m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}$ 180.1747, found 180.1750 .

Product (4j): Cyclization according to general procedure B: scale 0.24 mmol, flash chromatography $\left(\mathrm{SiO}_{2,5} \% \rightarrow 10 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane) yielded 52.2 mg (81%) of title compound as a light liquid yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.70-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.61(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.54-1.46$ ($\mathrm{m}, 2 \mathrm{H}$), 1.37-1.25 (m, 7H), 1.10-1.00 (m, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 172.1, 67.1, 66.8, 46.2, 42.0, 40.3, 36.3, 33.3, 32.8 (2C), 29.8, 29.6, 28.8, 25.4, 25.3 (2C) ppm. IR (film): 2922, 2853, 1649, 1430, $1116 \mathrm{~cm}^{-1}$. MS: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NNaO}_{2}$ [M + Na] ${ }^{+}$: 290.2091, found 290.2093.

Product (4k): Cyclization according to general procedure B: 0.3 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 5 \%\right.$ of $\mathrm{Et}_{2} \mathrm{O}$ in hexane) yielded 22 mg (40 $\%+36 \%$ of the starting material) of title compound as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.84(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.81$ (m, 2H), 1.83-1.69 (m, 3H), 1.69-1.61 (m, 2H), 1.61-1.54 (m, 2H), 1.53-1.46 (m, $2 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.01(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=104.7,64.8,40.1,36.1,34.2,32.6,25.2,23.3 \mathrm{ppm}$. IR (film): 2945, 2864, 1737, 1454, 1409, 1260, 1130, 1033, 943, $805 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{2}$ [$M+H]^{+}: 185.1$, found 185.2.

Product (4I): Cyclization according to general procedure B: scale 0.3 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 5 \% \rightarrow 10 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane) yielded 42.5 mg (77%) of title compound as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.64(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.44$ ($\mathrm{m}, 6 \mathrm{H}$), 1.31 ($\mathrm{d}, \mathrm{J}=20.7 \mathrm{~Hz}, 11 \mathrm{H}$), $1.12-1.00(\mathrm{~m}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=63.2,40.3,36.4,33.0,32.9$ (2C), 30.0, 29.6, 28.8, 25.9, 25.3 (2C) ppm. IR (film): 2922, 2854, 1453, $1057 \mathrm{~cm}^{-1}$. IR (film): 2922, 2854, 1453, $1057 \mathrm{~cm}^{-1}$. MS: m/z calcd. For $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 185.1905$, found 185.1888.

Product (4m): Cyclization according to general procedure B: 0.24 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 5 \%\right.$ of $\mathrm{Et}_{2} \mathrm{O}$ in hexane) yielded 27 mg (48 \%) of title compound as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.65(\mathrm{t}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{dq}, J=7.2,2.9,2.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 10 \mathrm{H}), 1.11-1.00(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 120.6, 107.9, 49.8, 40.3, 36.3, 32.9, 31.7, 29.9, 29.4, 28.8, 26.9, 25.3 ppm. IR (film): 3114, 2922, 2853, 1705, 1499, 1451, 1356, 1281, 1088, 1062, 967, 717, $616 \mathrm{~cm}^{-1}$. MS: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 234.2222$, found 234,2216 .

Product (4n): Cyclization according to general procedure B: 0.24 mmol . Aqueous work up including several washings with saturated aqueous NaCl $(4 \times 10 \mathrm{~mL})$, drying over MgSO_{4} and removal of the solvent under reduced pressure yielded $44 \mathrm{mg}(90 \%)$ of title compound as a light liquid yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.20-7.13(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.62$ (m, 2H), 1.56-1.49 (m, 3H), 1.28-1.17 (m, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 140.8, 136.0, 130.2, 129.8, 126.5, 126.1, 63.5, 41.5, 38.7, 35.9, 32.8 (2C), 25.0 (2C) ppm. IR (film): 2948, 2867, 1450, 1043, $750 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{19}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]$: 187.1481, found 187.1481.

Product (4o): Cyclization according to general procedure B: 0.24 mmol . Aqueous work up including several washings with saturated aqueous NaCl $(4 \times 10 \mathrm{~mL})$, drying over MgSO_{4} and removal of the solvent under reduced pressure yielded 70 mg (91%) of title compound as a light liquid yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.18-7.04(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{p}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.68$ - 1.62 (m, 2H), $1.54-1.49$ (m, 2H), 1.27-1.19 (m, 2H), 0.89 (s, 9H), 0.02 (s, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.6,136.7,130.1,129.8,126.2,125.8,64.5,41.5$, 38.8, 36.4, 32.8 (2C), 26.1 (3C), 25.0 (2C), 18.5, -5.2 (2C) ppm. IR (film): 2952, 2858, 1471, 1254, $1093 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NaOSi}[\mathrm{M}+\mathrm{Na}]^{+}: 341.2277$ found 341.2273.

Product (4p): Cyclization according to general procedure B: 0.04 mmol. Aqueous work up including several washings with saturated aqueous $\mathrm{NaCl}(3 \times 10 \mathrm{~mL})$, drying over MgSO_{4} and removal of the solvent under reduced pressure yielded $11 \mathrm{mg}(88 \%)$ of title compound as a light liquid yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{dd}, \mathrm{J}=3.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ (dt, $J=3.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.45 (dd, $J=8.0,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.39 (s, 3H), 2.09 (dtd, $J=14.6,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 2 \mathrm{H})$, 1.69-1.59 (m, 2H), 1.56-1.47 (m, 2H), 1.28-1.18 (m, 2H) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.9,157.3,143.2,140.8,135.3,130.1,129.9,126.7,126.1,119.5,108.5,65.1$, $41.5,38.6,32.8$ (2C), 32.1, 25.0 (2C), 14.1. IR (film): $\mathrm{cm}^{-1} 2949,2860,1718,1530,1298$, 1134, 755 . MS: m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 335.1618$, found 335.1616 .

Product (4q): Cyclization according to general procedure B: 0.3 mmol . Aqueous work up including several washings with saturated aqueous NaCl $(3 \times 10 \mathrm{~mL})$ and filtration through a short pad of Celite ${ }^{\circledR}$ yielded $37.8 \mathrm{mg}(61 \%)$ of title compound as a yellow/brownish oil. Spectral data is in agreement with previously reported data for this compound. ${ }^{[38]}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=1.99-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.56(\mathrm{~m}$, 2H), 1.49 (ddq, J= 7.5, 4.6, 2.3, 1.8 Hz, 2H), 1.23 (s, 12H), 1.10-1.02 (m, 2H), 0.83 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=82.9$ (2C), 36.2, 35.2 (2C), 25.2 (2C), 24.9 (4C) ppm.

Product (4r): Cyclization according to general procedure B: 0.11 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 10 \% \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane) yielded 23.1 mg (67%) of title compound as a light brown oil.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 3.69$ (dd, $J=5.7,4.0 \mathrm{~Hz}, 4 \mathrm{H}$), 3.64 (d, $J=5.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.49(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 4 \mathrm{H})$, $1.56-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.26(\mathrm{~m}, 14 \mathrm{H}), 1.24-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{td}, \mathrm{J}=7.3,5.6,2.7$ $\mathrm{Hz}, 2 \mathrm{H}), 0.93-0.86(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9$ \{mayor and minor\}, 67.0 \{mayor\}, 66.7 \{mayor\}, 46.1 \{mayor\}, 46.0 \{mayor\}, 42.6 \{mayor and minor\}, 41.8 \{mayor\}, 35.3 \{minor\}, 35.0 \{minor\}, 33.2 \{mayor\}, 32.3 \{mayor\}, 30.9 \{mayor\}, 30.8 \{minor\}, 30.2 \{mayor and minor\}, 29.9 \{mayor\}, 29.8 \{minor\}, 29.6 \{mayor\}, 29.5 \{minor\},
29.3 \{mayor\}, 29.0 \{mayor\}, 28.5 \{mayor\}, 28.4 \{minor\}, 25.3 \{mayor and minor\}, 25.3 \{minor\}, 23.9 \{minor\}, 23.1 \{mayor\}, 23.1 \{minor\}, 22.5 \{mayor\}, 14.2 \{mayor\}. IR (film): 2958, 2924, 2854, 1720, 1643, 1458, 1361, 1258, 1175, 1084, 1010, 791, 682, 661, 570 cm^{-1}. MS: m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 324.2903$ found 324.2897.

Product (4s): Cyclization according to general procedure B: scale 0.06 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 5 \% \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexane) yielded 15.9 mg (79%) of title compound as a white solid, which darkens at room temperature.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (s, 1H), 2.93-2.85 (m, 2H), 2.55 (d, J=7.3 Hz, 2H), 2.53-2.46(m, 1H), 2.45-2.39 (m, $1 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 2 \mathrm{H})$, 1.67-1.59 (m, 4H), 1.58-1.46 (m, 6H), 1.24-1.15 (m, 2H), $0.91(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=221.0,140.0,137.0,136.2,129.5,126.4,125.2,50.7,48.1,44.5$, 42.0, 41.7, 38.4, 36.0, 32.7, 31.8, 29.6, 26.8, 25.9, 25.1, 21.7, 19.5, 14.0, 1.1 ppm. IR (film): 2928, 2864, 1741, $1453 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 359.2345$, found 359.2337.
$\mathrm{EtO}_{2} \mathrm{C}^{\mathbf{C O}} \mathrm{CO}_{2} \mathrm{Et}$ Product (4t): Cyclization according to general procedure \mathbf{A} : scale 0.3 mmol , flash chromatography ($\mathrm{SiO}_{2}, 100$ \% hexane) yielded 61 mg (84 \%) of the title compound as a colourless oil as a mixure of E / Z isomers (1:1). The same substrate was also tested according to general procedure B: scale 0.36 mmol , flash chromatography ($\mathrm{SiO}_{2}, 2 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) yielded $70 \mathrm{mg}(83 \%)$ of title compound as a colourless oil as a mixure of E / Z isomers (1:1).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.35(\mathrm{dq}, \mathrm{J}=6.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.17$ - 2.69 (m, 2H), 2.56-1.96 (m, 4H), 1.72-1.38 (m, 3H), $1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,139.3,139.1,116.4,116.2,61.4,61.3,60.1,59.9$, 41.0, 36.6, 33.6, 33.4, 31.6, 27.0, 14.7, 14.6, 14.0 ppm. IR (film): 2980, 2931, 29007, 2838, 1726, 1607, 1510, 1443, 1366, 1245, 1157, 1034, 833, $530 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 263.1259$, found 263.1254 .
$\mathrm{EtO}_{2} \mathrm{C} \times \mathrm{CO}_{2} \mathrm{Et} \quad$ Product (4u): Cyclization according to general procedure A: scale 0.3 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 100 \%\right.$ hexane to 2% of AcOEt in hexane) yielded 88 mg (82%) of the title compound as a yellow oil as a mixure of E / Z isomers (1:1). The same substrate was also tested according to general procedure \mathbf{B} : scale 0.3 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 2 \%\right.$ $\mathrm{Et}_{2} \mathrm{O}$ in hexane) yielded 78 mg (78%) of title compound as a colourless oil as a mixure of E / Z isomers (1:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.21$ (dd, $J=8.9,7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.86 (dd, $J=8.7,6.0 \mathrm{~Hz}$, 2H), $6.33-6.27$ (m, 1H), $4.24-4.14$ (m, 4H), 3.80 (d, J = $2.6 \mathrm{~Hz}, 3 \mathrm{H}$), $3.21-3.15$ (m, $1 \mathrm{H}), 3.11$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{td}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{td}, J=7.1,5.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.6,157.9,139.5,130.9,129.3,129.2,121.8,113.7,61.4$, $61.0,59.2,55.3,43.0,38.4,34.4,33.9,32.9,31.6,29.5,22.7,14.1 \mathrm{ppm}$. IR (film): 2980, 2937, 2907, 2838, 1726, 1607, 1510, 1443, 1245, 1157, 1034, 833, $530 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 355.1521$, found 355.1516 .
$\mathrm{EtO}_{2} \mathrm{C}^{\mathrm{CO}} \mathrm{CO}_{2} \mathrm{Et} \quad$ Product (4v): Cyclization according to general procedure A : scale 0.27 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 100\right.$ \% hexane to 2% of AcOEt in hexane) yielded 77 mg (76%) of the title compound as a yellow oil as a mixure of E / Z isomers (1:1). The same substrate was also tested according to general procedure \mathbf{B} : scale 0.24 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 2 \%\right.$ $\mathrm{Et}_{2} \mathrm{O}$ in hexane) yielded $65 \mathrm{mg}(72 \%)$ of title compound as a yellow oil as a mixure of E / Z isomers (1:1).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.63-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{dt}, J$ $=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.08(\mathrm{~m}, 4 \mathrm{H}), 3.39-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.57(\mathrm{~m}, 24 \mathrm{H}), 2.40(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{dt}, J=8.2,7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.6,171.5,142.7,142.6,136.5,136.4,131.8,131.7,129.3$, $129.3,128.4,128.4,121.5,121.4,61.6,61.5,60.9,59.1,43.0,38.5,34.2,33.9,32.7$, 29.7, 14.0, 14.0 ppm. MS: m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{CINaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 359.1026$, found 359.1021 .
$\mathrm{EtO}_{2} \mathrm{C} \mathbf{C O}_{2} \mathrm{Et} \quad$ Product ($\mathbf{4 w}$): Cyclization according to general procedure A : scale 0.33 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 100 \%\right.$ hexane to 2% of AcOEt in hexane) yielded 93 mg (80%) of the title compound as a pale-yellow oil as a mixure of E / Z isomers (1:1). The same substrate was also tested
according to general procedure \mathbf{B} : scale 0.3 mmol , flash chromatography $\left(\mathrm{SiO}_{2}, 2 \%\right.$ $\mathrm{Et}_{2} \mathrm{O}$ in hexane) yielded 85 mg (82%) of title compound as a pale-yellow oil as a mixure of E / Z isomers (1:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{td}, J=8.7,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.35$ - $6.28(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.14(\mathrm{~m}, 4 \mathrm{H}), 3.17-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{dt}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=171.6,171.5,162.4,162.4,159.9,141.4,141.4,141.4,141.4,134.2,134.1$, 129.6, 129.6, 129.5, 129.5, 121.4, 121.4, 115.2, 115.2, 115.0, 114.9, 61.6, 61.5, 60.9, 59.1, 42.9, 38.4, 34.2, 33.8, 32.8, 29.5, 14.1, 14.0 ppm. IR (film): 2980, 2937, 2873, 1727, 1602, 1508, 1446, 1272, 1245, 1221, 1157, 1065, 862, $522 \mathrm{~cm}^{-1}$. MS: m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{FNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 343.1322$, found 343.1316.

Product ($\mathbf{4} \mathbf{x}$):The reductive cyclization reaction of substrate 2t was carried out following the general procedure \mathbf{B} obtaining the ring expansion product. Scale: 0.3 mmol , flash chromatography $\left(\mathrm{SiO}_{2}\right.$, ($5 \% \rightarrow 10 \%$ of $\mathrm{Et}_{2} \mathrm{O}$ in hexane) yielded 15 mg (33 \%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.73(\mathrm{~s}, 3 \mathrm{H}), 2.89-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 2H), 2.46-2.28 (m, 2H), 2.22-2.04 (m, 2H), 1.95-1.82 (m, 1H), 1.82-1.71 (m, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.1,174.2,52.1,43.1,43.1,40.9,27.8,24.5$ ppm. IR (film): 2950, 2870, $1740,1720 \mathrm{~cm}^{-1}$. MS: m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 157.2$, found 157.2. The spectroscopic characterization is in agreement with the literature reported. ${ }^{[39]}$

[^10]
10. Experiments with deuterated solvents

The reductive cyclization reaction of substrate $\mathbf{2 j}$ was carried out following the general procedure B but using EtOD as protic solvent. Scale: 0.024 mmol , flash chromatography $\left(\mathrm{SiO}_{2}\right.$, (10% of $\mathrm{Et}_{2} \mathrm{O}$ in hexane) yielded 46 mg (71%) of the pure product with a deuterium insertion of 10% and 15 mg of the starting material (80% of conversion). See Figure SI.EP-5 and SI-6 for the detailed ${ }^{1} \mathrm{H}-$ NMR and ${ }^{2} \mathrm{H}-\mathrm{NMR}$ spectra and Figure SI.EP7 for the ${ }^{13} \mathrm{C}$-NMR spectrum of the mixture $\mathbf{4 j} /[\mathrm{D}]-4 \mathrm{j}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.66(\mathrm{dd}, J=5.8,3.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.62(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.52-3.37$ (m, 2H), $2.67-2.16$ (m, 2H), $2.00-1.65$ (m, 2H), $1.65-1.52$ (m, 4H), 1.51 - 1.43 (m, 2H), 1.40 - 1.21 (m, 8H), 1.04 (td, $J=4.2,2.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{2} \mathbf{H}$ NMR (500 MHz , CHCl_{3}): $\delta=0.92 \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(10 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.9,67.0,66.7,46.1,41.9,40.1$, 36.2, 33.2 (singlet of the non-deuterated product and t of the deuterated product), 32.7 (singlet of the non-deuterated product and t of the deuterated product), 29.7, 29.5, 29.5, 28.6, 25.3, 25.2, 25.2 ppm.

As control experiment, the reductive cyclization reaction of substrate $\mathbf{2 j}$ was carried out following the general procedure \mathbf{B} but using deuterated acetonitrile in this case. Scale: 0.21 mmol, flash chromatography (SiO_{2}, (10% of $\mathrm{Et}_{2} \mathrm{O}$ in hexane) yielded 23 mg (41%) of the pure product 4 j without deuterium insertion and 28 mg of the starting material (55 \% of conversion). See Figure SI.EP-8 and SI-9 for the detailed ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{2} \mathrm{H}-\mathrm{NMR}$ spectra of the product $\mathbf{4 j}$.

The reductive cyclization reaction of substrate $\mathbf{2 n}$ was carried out following the general procedure B but using $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OD}$ as protic solvent. Scale: 0.24 mmol , flash chromatography $\left(\mathrm{SiO}_{2}\right.$, (20% of $\mathrm{Et}_{2} \mathrm{O}$ in hexane) yielded 38 mg (79%) of the pure product with a deuterium insertion of 100 \%. See Figure SI.EP-11 and SI-12 for the detailed ${ }^{1} \mathrm{H}$-NMR and ${ }^{2} \mathrm{H}$-NMR spectra and Figure SI .EP-13 for the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of product [D]-4n.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.22-7.09(\mathrm{~m}, 4 \mathrm{H}), 4.28-3.75(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{t}, \mathrm{J}=6.9$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.63(\mathrm{dd}, J=5.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.59$ $-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.12(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{2} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CHCl}_{3}$): $\delta=2.62 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=140.7,135.9,130.0,129.7,126.4,125.9,63.4,41.3,38.2$ (t), 35.8, 32.6, 32.6, 24.9 ppm .

As a control experiment, the reductive cyclization reaction of substrate $\mathbf{2 n}$ was carried out following the general procedure B but using deuterated acetonitrile instead. Scale: 0.24 mmol, flash chromatography $\left(\mathrm{SiO}_{2}\right.$, (10% of $\mathrm{Et}_{2} \mathrm{O}$ in hexane) yielded $12 \mathrm{mg}(40 \%)$ of the pure product $\mathbf{4 n}$ without deuterium insertion and 12 mg of the starting material (75 \% of conversion). See Figure SI.EP-14 and SI-15 for the detailed ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{2} \mathrm{H}-\mathrm{NMR}$ spectra of the product $\mathbf{4 n}$ and Figure SI.EP-16 for the ${ }^{13} \mathrm{C}$-NMR spectrum of product $\mathbf{4 n}$.

Figure SI.EP-10: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of isolated product [D]-4j.

Figure SI.EP-11: ${ }^{2} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of isolated product [D]-4j.

Figure SI.EP-12: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of isolated product [D]-4j.

Figure SI.EP-13: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of isolated product $\mathbf{4 j}$.

Figure SI.EP-14: ${ }^{2} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of isolated product $\mathbf{4 j}$.

Figure SI.EP-15: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of isolated product $\mathbf{4 j}$.

Figure SI.EP-16: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of product [D]-4n.
$\stackrel{\cong}{1}$

$$
\stackrel{\check{i}}{\stackrel{\circ}{i}}
$$

Figure SI.EP-17: ${ }^{2} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of isolated product [D]-4n.

Figure SI.EP-18: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of isolated product [D]-4n.

Figure SI.EP-19: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 298\right)$ of product $\mathbf{4 n}$.

Figure SI.EP-20: ${ }^{2} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298\right)$ of product $\mathbf{4 n}$.

Figure SI.EP-21: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 298\right)$ of product $\mathbf{4 n}$.

11. Light-Sources Experiments

We have compared four different light irradiation sources, an in-house built parallel photoreactor, the commercial available KESSIL® lamp, a blue LEDs tape and a whitelight desk lamp. The reactions were carried out with $\mathbf{2 a}(20 \mu \mathrm{~mol}, 1.0 \mathrm{eq}),. 1^{\mathrm{H}} \mathbf{N i}(1 \mu \mathrm{~mol}$, $5 \mathrm{~mol} \%$), $\mathrm{PC}_{\mathrm{cu}}\left(0.4 \mu \mathrm{~mol}, 2 \mathrm{~mol} \%\right.$) and $\mathrm{CH}_{3} \mathrm{CN}$:EtOH:i-Pr $2 \mathrm{NEt}(0.8: 1.2: 0.04 \mathrm{~mL})$ in crimped vials. The obtained conversion (and yield) were $91 \%(91 \%), 92 \%(85 \%)$, $84 \%(64 \%)$ and $69 \%(52 \%)$ for the in-house built parallel photoreactor (24 h irradiation), KESSIL® lamp (24 h irradiation), conventional LEDs tape (48 h irradiation) and common flexo-desk lamp (48 h irradiation), respectively.

Figure SI.EP-22. KESSIL® lamp irradiation experiments

Figure SI.EP-23. LEDs tape irradiation experiment

Figure SI.EP-24. Desk lamp irradiation experiment
12. Gram Scale

Inside an anaerobic box, 1.2 g of dimethyl allyl chloroethylmalonate ($5.12 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $1^{\mathrm{H}} \mathrm{Ni}$ catalyst ($210 \mathrm{mg}, 0.255 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathrm{PC}_{\mathrm{cu}}$ ($117 \mathrm{mg}, 0.102 \mathrm{mmol}, 2 \mathrm{~mol} \%$) and acetonitrile (204.7 mL) were equally distributed into a 1 L 2 -necked round bottom flask. Degassed ethanol (307.1 mL) was added (out of the anaerobic box) to the flask (total concentration of substrate 10 mM). $i-\mathrm{Pr}_{2} \mathrm{NEt}$ ($10 \mathrm{~mL}, 58.6 \mathrm{mmol}, 11.4$ eq.) was finally added to the solution flask, which was placed between 2 KESSIL lamps ($\lambda=467 \mathrm{~nm}$), separated 7 cm from each other (to maintain a temperature close to $30^{\circ} \mathrm{C}$). After irradiating for $48 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ were added and the organic layer was separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, and the combined organic extracts were washed with brine (150 mL) and dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude material was purified via column chromatography yielding 0.83 g (81% yield) of the pure cyclic product.

Figure SI.EP-25. Gram Scale experiment

13. Spectroscopic and electrochemical studies

13.1. EPR Studies

Control experiments performed in the absence of the $\mathbf{1}^{\mathbf{H}} \mathbf{N i}$ complex ($\mathrm{PC}_{\mathrm{Cu}}, 4$ mol\% in ${ }^{n} B u N: E t O H:$ 'PrNEt 2 2:3:0.2) before and after irradiation did not yield any EPR signal. However, 3 min of irradiation (at 467 nm with a KESIL® lamp) of an EPR tube containing the $1^{\mathrm{H}} \mathrm{Ni}$ complex ($10 \mathrm{~mol} \%$), the photoredox catalyst $\mathrm{PC}_{\mathrm{Cu}}(4 \mathrm{~mol} \%)$ in the reaction mixture of ${ }^{n} B u N: E t O H: P^{\prime}$ PNEt $_{2}$ (2:3:0.2) gave an EPR signal with an almost axial symmetry consistent with a unpaired electron predominantly localized in the $d_{x} 2-y 2$ orbital. Spectra simulations yield g-values centered at 2.06, 2.08 and 2.29. The obtained values combined with the performed UV-Vis experiments (an absorption band at 535 $\mathrm{nm})$, is consistent with the presence of $\mathrm{Ni}(\mathrm{I})$ species as previously reported. ${ }^{[40]}$

Figure SI.EP-26. EPR spectra and simulations of (top) reaction mixture without $1^{\text {H }} \mathrm{Ni}$ complex, (bottom) reaction mixture with $1^{\mathrm{H}} \mathrm{Ni}$ complex. Reaction conditions: $1^{H} \mathrm{Ni}$ complex (10 mol\%), the photoredox catalyst PCu (4 mol\%) in the reaction mixture of ${ }^{n} \mathrm{BuN}: E t O H:^{i} \mathrm{PrNEt}_{2}(2: 3: 0.2)$.

[^11]
13.2. Spectroelectrochemical Studies

13.2.1. Cyclic Voltammetry

Figure SI.EP-27. CVs of $1^{H} \mathrm{Ni}(0.5 \mathrm{mM})$ in $0.1 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}$ electrolyte at $0.1 \mathrm{~V} \mathrm{~s}^{-1} . E_{1 / 2}\left(\mathrm{Ni}^{\prime / / I}\right)=-1.46 \mathrm{~V}$ vs. $F c / F c^{+}(-1.08 \mathrm{~V}$ vs. $S C E), \Delta E_{p}=91 \mathrm{mV} ; E_{p}\left(N i^{/ 0}\right)=-2.44 \mathrm{~V}$ vs. $F c / F c^{+}(-2.06 \mathrm{~V}$ vs. SCE).

Figure SI.EP-28. CVs of $\mathbf{1}^{\mathrm{H}} \mathrm{Ni}(0.5 \mathrm{mM})$ in $0.1 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}$ electrolyte at varying scan rates ($0.1-1.5 \mathrm{~V} \mathrm{~s}^{-1}$). Plot of the peak current (ip) as a function of the square root of the scan rate ($v^{1 / 2}$).

Figure SI.EP-29. CVs of $1^{\mathrm{H}} \mathrm{Ni}(0.5 \mathrm{mM})$ in $0.1 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}: E t O H(2: 3)$ electrolyte at $0.1 \mathrm{~V} \mathrm{~s} \mathrm{~s}^{-1} . E_{1 / 2}\left(\mathrm{Nil}^{i / l}\right)=-1.45$ V vs. $F c / F c^{+}(-1.07 \mathrm{~V}$ vs. $S C E), \Delta E_{p}=89 \mathrm{mV}$. Catalytic current increase due to H_{2} evolution starts to be observed at -2.15 V vs. $\mathrm{Fc} / \mathrm{Fc}^{+}(-1.77 \mathrm{~V}$ vs. SCE$)$.

Figure SI.EP-30. CVs of $1^{H} \mathrm{Ni}(0.5 \mathrm{mM})$ in $0.1 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}: E t O H(2: 3)$ electrolyte at $0.1 \mathrm{~V} \mathrm{~s}^{-1}$ in the absence of substrate (pink) and upon the addition of 2 (magenta), 5 (green), 10 (violet), 15 (cyan) and 20 (orange) eq. of substrate 2a. The Nill/ wave tends to lose reversibility by increasing the amount of added organic substrate, whereas a new anodic oxidation appears at -0.66 V vs . $F c / F c^{+}(-0.28 \mathrm{~V}$ vs. SCE) and progressively increases.

Figure SI.EP-31. CVs of $1^{H} \mathrm{Ni}(0.5 \mathrm{mM})$ in $0.1 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}: E t O H$ (2:3) electrolyte at $0.1 \mathrm{~V} \mathrm{~s}^{-1}$ in the absence (black) and presence (red) of 20 eq. of substrate 2a. The increase in current starting at the Ni(I/II) redox potential in the presence of 20 eq. of $\mathbf{2 a}$ when compared with the CV without $\mathbf{2 a}$, stand for a Ni(I)-2a reaction. In addition, the new reoxidation feature at -0.66 V vs $\mathrm{Fc} / \mathrm{Fc}^{+}$is consistent with the DFT calculated redox potential for the $\left[\mathrm{Ni}^{\prime \prime}\left(\mathrm{Ts}^{H} \mathrm{Py}_{2} \text { tacn }\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}\right]^{2+}$ oxidation $\left(-0.7 \mathrm{~V}\right.$ vs $\left.\mathrm{Fc}_{\mathrm{C}} / \mathrm{Fc}^{+}\right)$.

Figure SI.EP-32. CVs of PCCu (1.0 mM) in $0.1 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}: E t O H$ (2:3) electrolyte with 114.5 mM DIPEA at 0.1 $V s^{-1} . E_{1 / 2}\left(\mathrm{Cu}^{1 / 0}\right)=-1.69 \mathrm{~V}$ vs. SCE, (-2.07 vs Fc/Fc $\left.{ }^{+}\right) \Delta E_{p}=69 \mathrm{mV}$. Blank electrolyte is represented by dashed black curve.

Figure SI.EP-33. CVs of substrate $\mathbf{2 a}(10 \mathrm{mM})$ in $0.1 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}$ at $0.1 \mathrm{~V} \mathrm{~s}^{-1}$. Blank electrolyte is represented by dashed black curve.

Figure SI.EP-34. CVs of substrate 2a (10 mM, green), PC Cu (1.0 mM, yellow), $\mathbf{1 H}^{\mathrm{H}} \mathbf{N i}(0.5 \mathrm{mM})$ and DIPEA (114.5 mM) in the absence (black) and presence (red) of 20 eq. of 2 a in in $0.1 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}: \mathrm{EtOH}$ (2:3) electrolyte at 0.1 V . Blank electrolyte is represented by dashed black curve.

13.2.2. UV-Vis Spectroelectrochemistry

The initial UV-Vis spectrum of $\mathbf{1}^{\mathrm{H}} \mathbf{N i}$ shows intense absorptions at $\lambda_{\text {max }}$ of 235 and 260 nm . In the absence of substrate, a broad band starts to grow in the visible region ($\lambda_{\max }=535 \mathrm{~nm}$) when the applied reduction potential matches the $\mathrm{Ni}^{\| / 1 /}$ wave (ca. 1.5 V vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$), indicating the bulk formation of a Ni' species (Figure SI.EP-35, up). Other minor features also appear at $\lambda_{\max }=299$ and 361 nm . In agreement with CV data, the $\mathrm{Ni}^{1 / 1 /}$ transition is reversible, since the initial spectrum of $\mathbf{1}^{\mathrm{H}} \mathrm{Ni}$ is recovered upon reoxidation by switching the potential after the $\mathrm{Ni}^{1 / 1 /}$ wave (Figure SI.EP-35, bottom).

The evidence of Ni^{1} formation is also observed during reduction of $1^{\mathrm{H}} \mathbf{N i}$ in the presence of 20 equivalents of the substrate $\mathbf{2 h}$, as indicated by the growth of characteristic bands at $\lambda_{\max }=535$ and 361 nm (Figure SI.EP-36). However, the strong absorption at 278 nm of $\mathbf{2 h}$ slowly decreases in the course of reduction, suggesting a slow reaction between the Ni^{1} species and $\mathbf{2 h}$. Interestingly, SEC of $\mathbf{1}^{\mathrm{H}} \mathrm{Ni}$ in the presence of the more reactive substrate $\mathbf{2 a}$ shows that only a small amount of unreacted Ni^{1} is accumulated during reduction, whereas new intense bands at $\lambda_{\max }=290$ and 359 nm appear in the final spectrum (Figure SI.EP-37, up), likely corresponding to an adduct derived from reaction of the electrogenerated Ni^{1} species and 2a. The spectral changes observed during the backward scan confirm the presence of a mixture of species in solution. Indeed, as suggested by CV data (Figure SI.EP-30), at the Ni' reoxidation potential the band at $\lambda_{\max }=535 \mathrm{~nm}$ rapidly decrease, while the features at $\lambda_{\max }=290$ and 359 nm only disappear at a more positive applied potential (Figure SI.EP-37, bottom).

The results of SEC experiments on $\mathbf{1}^{\mathbf{H}} \mathbf{N i}$ in the $0.2 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}$:EtOH (2:3) electrolyte are analogous to the ones obtained in pure $\mathrm{CH}_{3} \mathrm{CN}$, showing the reversible formation of a Ni' species in the absence of substrates (Figure SI.EP-38). While maintaining the applied potential close to the $\mathrm{Nil}^{1 / / 1}$ wave (ca. -1.5 V vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$) in the presence of 20 equivalents of substrate $\mathbf{2 h}$, after an initial accumulation of the Ni^{1} species the band at $\lambda_{\max }=535 \mathrm{~nm}$ starts to decrease concomitantly to the absorption at 278 nm . This suggests that a slow reaction between Ni^{\prime} and $\mathbf{2 h}$ occurs in solution (Figure SI.EP-39). Conversely, the enhanced reactivity of the electrogenerated Ni^{1} species with the substrate 2a is indicated by the lack of free Ni^{1} in the final spectrum and the appearance of new bands at $\lambda_{\max }=290$ and 359 nm (Figure SI.EP-40). Analogous results are obtained repeating the experiment by using the solvent mixture employed under catalytic conditions (Figure SI.EP-41).

Figure SI.EP-35. UV-Vis SEC of $\mathbf{1}^{\mathrm{H}} \mathrm{Ni}(4 \mathrm{mM})$ in $0.2 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}$ electrolyte. The applied potential is slowly increased from the open circuit voltage (black) to the value corresponding to the Nill/ wave (ca. -1.5 Vvs . $\mathrm{Fc} / \mathrm{Fc}^{+}$, red) and finally back to zero again (blue). The intermediate spectra are depicted in grey.

Figure SI.EP-36. UV-Vis SEC of ${ }^{14} \mathrm{Ni}(4 \mathrm{mM})$ in $0.2 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}$ electrolyte in the presence of 20 equivalents of substrate $2 \boldsymbol{h}(80 \mathrm{mM})$. The applied potential is slowly increased from the open circuit voltage (black) to the value corresponding to the $\mathrm{Ni}^{\text {IIII }}$ wave (ca. -1.5 V vs. $\mathrm{Fc}_{\mathrm{c}} / \mathrm{Fc}^{+}$, red). The intermediate spectra are depicted in grey.

Figure SI.EP-37. UV-Vis SEC of $\mathbf{1}^{\mathrm{H}} \mathbf{N i}(4 \mathrm{mM})$ in $0.2 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}$ electrolyte in the presence of 20 equivalents of substrate $2 \mathbf{a}(80 \mathrm{mM})$. The applied potential is slowly increased from the open circuit voltage (black) to the value corresponding to the Nill/l wave (ca. -1.5 V vs. $\mathrm{Fc}_{\mathrm{I}} / \mathrm{Fc}^{+}$, red) and finally back to zero again (blue). The intermediate spectra are depicted in grey.

Figure SI.EP-38. UV-Vis SEC of $\mathbf{1}^{\mathrm{H}} \mathbf{N i}(4 \mathrm{mM})$ in $0.2 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}: E t O H$ (2:3) electrolyte. The applied potential is slowly increased from the open circuit voltage (black) to the value corresponding to the Nill/ wave (ca. -1.5 V vs. $F c / F c^{+}$, red) and finally back to zero again (blue). The intermediate spectra are depicted in grey.

Figure SI.EP-39. UV-Vis SEC of $\mathbf{1 H}^{\mathrm{H}} \mathrm{Ni}(4 \mathrm{mM})$ in $0.2 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}: E t O H$ (2:3) electrolyte in the presence of 20 equivalents of substrate $2 \boldsymbol{h}(80 \mathrm{mM})$. The applied potential is slowly increased from the open circuit voltage (black) to the value corresponding to the $\mathrm{Ni}^{\prime \prime / I}$ wave (ca. -1.5 V vs. $\mathrm{Fc}_{\mathrm{c}} / \mathrm{Fc}^{+}$, red). The intermediate spectra are depicted in grey.

Figure SI.EP-40. UV-Vis SEC of $\mathbf{1}^{\mathbf{H}} \mathbf{N i}(4 \mathrm{mM})$ in $0.2 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}$:EtOH (2:3) electrolyte in the presence of 20 equivalents of substrate $\mathbf{2 a}$ (80 mM) monitoring the reduction at a potential corresponding to the $\mathrm{Ni}^{1 / I I}$ wave (ca. 1.5 V vs. Fc/Fc ${ }^{+}$). The starting and final spectra are described by black and red curves, respectively, whereas the intermediate spectra are depicted in grey.

Figure SI.EP-41. UV-Vis SEC of $\mathbf{1}^{\mathbf{H}} \mathbf{N i}(4 \mathrm{mM})$ in $0.2 \mathrm{M} \mathrm{TBAH/CH} \mathrm{Cl}_{3} \mathrm{CN}$:EtOH (2:3) electrolyte with 114.5 mM DIPEA in the presence of 20 equivalents of substrate $\mathbf{2 a}(80 \mathrm{mM})$ monitoring the reduction at a potential corresponding to the $N i^{i l / I}$ wave (ca. -1.5 V vs. $\mathrm{Fc} / F c^{+}$). The starting and final spectra are described by black and red curves, respectively, whereas the intermediate spectra are depicted in grey.

13.2.3. UV-Vis Spectroscopy

UV-Vis monitoring with on-line continuous irradiation (LED $\lambda_{\max } 447 \mathrm{~nm}$) shows the generation of an intense band with a $\lambda_{\max }$ at 536 nm that corresponds with the photogeneration of Ni^{1} species which drastically decreases with the addition of substrate 2a. Analogous results are obtained in ethanol-acetonitrile mixture and in pure acetonitrile.

Figure SI.EP-42. UV-Vis of $1^{H} \mathbf{N i}(50 \mu M)$ in a solution of $\mathrm{PC}_{C u}(20 \mu \mathrm{M})$ in $\mathrm{CH}_{3} \mathrm{CN}$:EtOH (2:3) with 11.4 mM DIPEA. 20 equivalents of substrate $2 \mathbf{a}(1 \mathrm{mM})$ were added after 218 s of monitoring. The starting and final spectra are described by black and red curves, respectively, whereas the intermediate spectra are depicted in grey. Blue lines corresponds to the spectra after the addition of the substrate, and the dark-blue line is the final spectra. Insert: Absorbance monitored at 536 nm .

Figure SI-43. Absorbance monitored at 536 nm of an irradiated (447 nm) solution containing $\mathrm{PC}_{\mathrm{Cu}}(20 \mu \mathrm{M}$) in $\mathrm{CH}_{3} \mathrm{CN}: E t O H$ (2:3) with DIPEA (11.4 mM) after the addition of $\mathbf{1}^{\mathrm{H}} \mathrm{Ni}(50 \mu \mathrm{M})(40 \mathrm{~s}$ from irradiation started). After the addition of $\mathbf{1}^{\mathbf{H}} \mathbf{N i}$ the UV-Vis features corresponding to the $\mathbf{1}^{\mathbf{H}} \mathbf{N i}$ complex progressively increase. After 80 s from the $\mathbf{1}^{\mathbf{H}} \mathbf{N i}$ the light is switch off. At this point the addition of 20 eq. of $\mathbf{2 a}(1 \mathrm{mM})$ triggers a rapid drop of the $\mathbf{1}^{\boldsymbol{H}} \mathbf{N i}^{\mathbf{l}}$ band. In comparison, in the absence of substrate $\mathbf{2 a}$ the decay in the dark of the $\mathbf{1}^{\mathrm{H}} \mathbf{N i}$ complex is significantly slower (orange trace).

Figure SI.EP-44. UV-Vis of PCCu $(0.1 \mathrm{mM})$ with 28.6 mM DIPEA in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure SI.EP-45. UV-Vis of $1^{H} \mathrm{Ni}(0.4 \mathrm{mM})$ in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure SI.EP-46. $\mathbf{1}^{\mathrm{H}} \mathbf{N i}(0.4 \mathrm{mM})$ with 28.6 mM DIPEA in $\mathrm{CH}_{3} \mathrm{CN}$.

Supporting Information Experimental Procedures for

Figure SI.EP-47. UV-Vis of PC ${ }_{C u}(0.4 \mathrm{mM})$ with 28.6 mM DIPEA in $\mathrm{CH}_{3} \mathrm{CN}: E t O H$ (2:3).

Figure SI.EP-48. UV-Vis of $\mathrm{PC}_{\mathrm{Cu}}(0.4 \mathrm{mM})$ and $\mathbf{1}^{\mathrm{H}} \mathbf{N i}(1 \mathrm{mM})$ in $\mathrm{CH}_{3} \mathrm{CN}$:EtOH (2:3).

Supporting Information

Theoretical Studies

Contents

1. Computational details SI.TS 2
1.1. Redox potentials SI.TS 3
1.2. Bond dissociation energies (BDE) SI.TS 5
1.3. Computational study of the reactivity of $\left[\mathrm{Ni}^{\prime}\left(\mathrm{Ts}^{H} \mathrm{Py}_{2} \operatorname{tacn}\right)\right]^{+}$with (3-chloropropyl)benzene SI.TS 7
1.4. Cartesian Coordinates of optimized geometries for molecules related to redox potentials and BDE calculations SI.TS 11
1.5. Cartesian coordinates of optimized geometries for the $\mathrm{Ni}(\mathrm{l})$ reaction mechanism with (3-chloropropyl)benzene SI.TS 19

1. Computational Details.

DFT calculations have been performed with the Gaussian09 software package. ${ }^{[1]}$ Geometry optimizations and frequency calculations of the ground state structure have been performed at the B3LYP/6-31+G* level of theory. Solvent effects $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ and London interactions are considered through the SMD model ${ }^{[2]}$ and Grimme-D D_{3} dispersion correction, ${ }^{[3]}$ respectively.

Redox potentials (E°) have been evaluated through the Nernst equation in standard state conditions using the Standard Hydrogen Electrode (SHE) as reference following the equation.

$$
\mathrm{E}^{\mathrm{o}}(\mathrm{~V})=-\left(\frac{\Delta \mathrm{G}^{\circ}}{\mathrm{nF}}-\frac{\Delta \mathrm{G}_{\mathrm{SHE}}^{\circ}}{\mathrm{F}}\right)
$$

where n is the number of electrons involved in the reduction step, F is the Faraday constant, $\Delta \mathrm{G}^{\circ}{ }_{\text {SHE }}=-4.24 \mathrm{eV}$.

Bond dissociation energy/enthalpy (BDE) is defined as the enthalpy change of the dissociation reaction of homolytic bonds at $298.15 \mathrm{~K}, 1 \mathrm{~atm}$.

$$
\begin{gathered}
R-X \rightarrow R^{\bullet}+X^{\bullet} \\
B D E(R-X)=H\left(R^{\bullet}\right)+H\left(X^{\bullet}\right)-H(R-X)
\end{gathered}
$$

where $H\left(R^{\bullet}\right)$ and $H\left(X^{\bullet}\right)$ and $H(R-X)$ are enthalpies of the radicals and the molecule. The experimental data was obtained from bibliography. ${ }^{[4]}$

For the molecules involving the modeling of the reaction mechanism, the energy of the geometry optimized molecules at B3LYP-D $/ 6-31 \mathrm{G}^{*}$ was refined by single point calculation at $6-311+G^{* *}$ level of theory.

[^12]
1.1. Redox potentials.

We have found that the level of theory B3LYP/6-31+G*, including solvent (SMD, $\mathrm{CH}_{3} \mathrm{CN}$) and dispersion effects reproduce correctly reported experimental values of reduction potentials for para substituted benzyl radicals to benzyl anions (Table SI.TS-1 and Figure SI.TS-2.). Based on this finding, we have estimated the redox potential of the reduction of the radicals $\mathbf{2 j}$ and $\mathbf{2 n}$.

$$
\text { Theoretical } \mathrm{E}_{(1 / 2)}=-1.6 \mathrm{~V} \text { vs } \mathrm{SCE}
$$

Figure SI.TS-1. Calculate redox potentials for benzyl radicals $\mathbf{2 j}$ and $\mathbf{2 n}$.
Table SI.TS-1. Calculate and experimental redox potentials of substituted benzyl radicals.

$$
\mathrm{R}^{\bullet}+\mathrm{e}^{-} \quad \rightarrow \quad \mathrm{R}^{-}
$$

Entry	R	$\mathrm{E}_{1 / 2}{ }^{(0 /-1)}$ exp. ${ }^{\text {a }}$	$\mathrm{E}_{1 / 2}{ }^{(0 /-1)}$ theo. ${ }^{\text {b }}$
1	[$p-\mathrm{MeO}-\mathrm{PhCH}_{2}{ }^{\text { }}$]	-1.75	-1.75
2	[p - $\mathrm{Me}-\mathrm{PhCH}_{2}{ }^{\circ}$]	-1.62	-1.59
3	[$p-\mathrm{F}-\mathrm{PhCH}_{2}{ }^{\text {® }}$]	-1.50	-1.50
4	[$\mathrm{PhCH}_{2}{ }^{\text { }}$]	-1.43	-1.50
5	[$p-\mathrm{Cl}-\mathrm{PhCH}_{2}{ }^{\circ}$]	-1.40	-1.42
6	[$0-\mathrm{NC}-\mathrm{PhCH}_{2}{ }^{\circ}$]	-1.11	-1.28
7	[$p-\mathrm{NC}-\mathrm{PhCH}_{2}{ }^{\circ}$]	-0.77	-0.97
8	$\left[p-\mathrm{C}(0) \mathrm{CH}_{3}-\mathrm{PhCH}_{2}{ }^{\bullet}\right]$	-0.71	-1.03
9	[2j-Cl]		-1.6
10	[2n-Cl]		-2.0

All redox potentials are given in V vs SCE. a) Redox potentials obtained from reference: J. Am. Chem. Soc. 1989, 111, 755-757. b) Theoretical redox potentials calculated at B3LYP/6-31+g* level including solvent effects (SMD) and Grimme- D_{3} dispersion correction.

Figure SI.TS-2. Correlation between experimental and calculate redox potentials of benzyl radicals in Table SI.TS-1.

1.2. Bond Dissociation Energies BDE.

The level of theory B3LYP/6-31+G*, including solvent (SMD, $\mathrm{CH}_{3} \mathrm{CN}$) and dispersion effects reproduce correctly reported experimental values of DBE for para substituted toluenes, CH_{4} and ethanol (Table SI.TS-1 and Figure SI.TS-.2.). Therefore, the methodology is reliable to estimate the BDE of $\mathbf{4 j}$ and $\mathbf{4 n}$.

Table SI.TS-2. Calculate and experimental bond dissociation energies (BDE).

Entry	R-H	BDE reported. ${ }^{\text {a }}$	BDE theo. ${ }^{\text {b }}$
1	[p - $\mathrm{MeO}-\mathrm{PhCH}_{3}$]	86.6	84.3
2	[p - Me - PhCH_{3}]	87.7	87.5
3	[$p-\mathrm{F}-\mathrm{PhCH}_{3}$]	87.6	88.1
4	[PhCH_{3}]	88.5	88.0
5	[p - Cl - PhCH_{3}]	87.5	88.0
6	[o-NC- PhCH_{3}]	88.7	88.9
7	[p - $\mathrm{NC}-\mathrm{PhCH}_{3}$]	88.0	87.5
8	CH_{4}	105.0	104.7
9	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	95.9	93.4
10	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OD}$	-	93.4
11	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	100.8	101.4
12	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	105.4	-
13	$\mathrm{CH}_{3} \mathrm{CN}$	97	-
14	[4j]	-	96.5
15	[4n]	-	83.6

Figure SI.TS-3. Calculate BDE for 4 j and the energy balance of HAT reaction with $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OD}$. Energies do not include correction by concentration, which should favor the products. The energy value for the HAT reaction from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OD}$ to 2 j benzyl radical ($-3.1 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$) is clearly thermodynamically favor.

Figure SI.TS-4. Calculate BDE for $\mathbf{4 n}$ and the energy balance of HAT reaction with $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OD}$. Energies do not include correction by concentration, which should favor the products. The energy value for the HAT reaction from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OD}$ to $\mathbf{2 n}$ benzyl radical (9.8 $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$) is thermodynamically unfavorable.

1.3. Computational study of the reactivity of $\left[\mathrm{Ni}^{1}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tann}^{2}\right)\right]^{+}$with (3chloropropyl)benzene.

In order to determine the feasibility of the $\mathrm{Ni}(\mathrm{I})$ species based on the $\mathrm{TsPy}_{2}{ }^{H}$ tacn ligand to activate $\mathrm{C}_{\text {sp3 }}-\mathrm{Cl}$ bonds, we have computed the reaction of the low valent intermediate $\mathrm{Ni}(\mathrm{I})\left(d^{9}, S=1 / 2\right)$ species, formed by single electron reduction starting from the $1^{\mathbf{H}} \mathbf{N i}$ complex, with a model substrate ((3-chloropropyl)benzene). First we examined the thermodynamics of both the Cl^{-}and $\mathrm{CH}_{3} \mathrm{CN}$ coordination to the pentacoordinate [$\left.\mathbf{N i}^{1}\left(\mathbf{T s}^{H}{ }^{H} y_{2} \mathbf{t a c n}\right)\right]^{+}$species (I1), which is endergonic in both cases (Figure SI.TS-4). Experimental studies based on cyclic voltammetry are in agreement with the endergonic coordination of Cl^{-}to the $\mathrm{Ni}(\mathrm{I})$ metal center (See Figure SI.TS-5).

<Figure SI.TS-5. Thermodynamics of the coordination of $\mathrm{CH}_{3} \mathrm{CN}$ and Cl^{-}to [$\left.\mathrm{Ni}^{\mathbf{1}}\left(\mathrm{Ts}^{\mathrm{H}}{ }^{(P y} \mathrm{y}_{2} \mathrm{tacn}\right)\right]^{+}$. Energies are given in $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$.

$E_{p}=-1.89 \mathrm{~V}$ vs. $\mathrm{Fc}^{+/ 0}$
$\left(\mathrm{E}_{\mathrm{p}}=-1.51 \mathrm{~V}\right.$ vs. SCE $)$

Figure SI.TS-6. CVs of $1^{\mathrm{H}} \mathrm{Ni}(0.5 \mathrm{mM})$ in $0.1 \mathrm{M} \mathrm{TBAH} / \mathrm{CH}_{3} \mathrm{CN}$ electrolyte at $0.1 \mathrm{~V} \mathrm{~s}^{-1}$ in the absence (black) and presence of 0.25 mM (0.5 eq, cyan), 0.49 mM (1 eq, brown), 0.73 mM (1.4 eq, green), 1.0 mM (1.9 eq , violet), 1.2 mM (2.4 eq , blue) and 1.6 mM (3.2 eq , red) of TBACI.

Figure SI.TS-7. CVs of $1^{\mathrm{H}} \mathrm{Ni}(0.5 \mathrm{mM})$ in 0.1 M TBAH/ $\mathrm{CH}_{3} \mathrm{CN}$ electrolyte at $0.1 \mathrm{~V} \mathrm{~s}^{-1}$ in the absence (black) and presence (red) of $1.6 \mathrm{mM}(3.2 \mathrm{eq})$ of TBACI. Doted CV are done under the same conditions using a potential window from the open circuit potential to the first reduction wave.

Upon the addition of increasing aliquots of TBACI to a solution of $1^{\mathrm{H}} \mathbf{N i}$, the $\mathrm{Ni}^{1 / / /}$ reduction peak progressively disappears, giving rise to a new peak at $E_{p}=-1.89 \mathrm{~V}$ vs. $\mathrm{Fc}^{+/ 0}\left(-1.51 \mathrm{~V} \text { vs. SCE) which describes the [} \mathrm{Ni}^{11}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} t \mathrm{tacn}\right) \mathrm{Cl}\right]^{+} /\left[\mathrm{Ni}^{i}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} t a c n\right) \mathrm{Cl}\right]$ event. The irreversibility of the latter suggests a fast Cl^{-}dissociation after reduction, which is also consistent with the anodic peak at -1.41 V vs. $\mathrm{Fc}^{+/ 0}$ upon the backward scan representing the $\left[\mathrm{Ni}^{\prime}\left(\mathbf{T s}^{H} \mathrm{Py}_{2} \text { tacn }\right)(\mathrm{S})\right]^{+}$reoxidation. In line with this interpretation, the $\mathrm{Ni}^{1 / 0}$ process occurring at a more cathodic potential, remains almost unchanged after the addition of TBACI.

Therefore, we started to model the reaction from the pentacoordinate $\left[\mathrm{Ni}^{1}\left(\mathrm{Ts}^{\mathrm{H}}{ }^{2} y_{2} t a c n\right)\right]^{+}$species (l1). Along the reaction pathway of $\mathbf{I 1}$ with (3chloropropyl)benzene we found two different mechanisms. The lowest in energy ($\Delta \mathrm{G}^{\ddagger}=$ $12.9 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$) can be described as an oxidative $\mathrm{S}_{\mathrm{N}} 2$-type attack of the $\mathrm{Ni}(\mathrm{I})$ center to the aliphatic carbon center bearing the chlorine atom to give an organometallic $\mathrm{Ni}($ III $) \mathrm{S}$ $=3 / 2$ species ($\mathbf{I}_{\mathrm{Ni}(\mathrm{IIII})-\mathrm{c} \ldots \mathrm{co}}$) and chloride anion (Figure SI.TS-7, green energy profile). At the transition state the $\mathrm{Ni}-\mathrm{C}(1)-\mathrm{Cl}$ angle is 151° and the carbon center has a close sp^{2}-hybridation. The second mechanism ($\Delta \mathrm{G}^{\ddagger}=19.3 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$) can be described as a concerted halogen atom abstraction (Figure SI.TS-7, red energy profile) leading to the formation of $\left[\mathrm{Ni}^{\prime \prime}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathbf{t a c n}\right) \mathrm{Cl}\right]\left(\mathbf{1}^{\mathrm{H} N i} \mathbf{- C I}\right)$ complex and the free radical. Both mechanisms can be accessible at room temperature, nevertheless for this substrate the formed is favored by $6.4 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$. The next step is the reaction of $\mathbf{I}_{3_{\mathrm{Ni}}(I I I)-\mathrm{c} \cdots .} \mathrm{cI}$. A direct C-Ni homolytic cleavage of $\left[\mathrm{Ni}^{\prime \prime \prime}\left(\mathbf{T s}^{H} \mathrm{Py}_{2} t a c n\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}\right]^{2+}$ is slightly endergonic (1.7 $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$), and just considering acetonitrile coordination is virtually isoenergetic (-0.5 kcal $\cdot \mathrm{mol}^{-1}$). Further reduction of the formed organic radical $\left(\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3}{ }^{\circ}\right)$ and $\left[\mathrm{Ni}^{11}\left(\mathrm{Ts}^{\left.\left.\mathrm{H} P y_{2} t a c n\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}\right]^{+} \text {act as an expected large driving force, regenerating the } \mathrm{Ni}(\mathrm{I}), ~() ~}\right.\right.$ catalytically active species.

Figure SI.TS-8. Comparison between DFT(uB3LYP/6-31g*//uB3LYP/6-311+g**) calculated free energy barriers for the reaction of $\left[\mathrm{Ni}^{1}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathbf{t a c n}\right)\right]$ (11) with the model substrates (3chloropropyl)benzene as an oxidative $\mathrm{S}_{\mathrm{N}} 2$-type reaction (green profile) or concerted halogen atom abstraction (red). Energies are given in $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$.

Figure SI.TS-8. B3LYP- $\mathrm{D}_{3} / 6-311+\mathrm{G}^{* *}$ spin densities of intermediates $\mathrm{I}_{\mathrm{Ni} \text { i(III)-c...cí (left) and }}$ $13_{\text {Ni(ll)-Cl.... }}{ }^{\circ}$ (right). Hydrogen atoms have been omitted for clarity. Isosurfaces calculated at values of 0.01 . Alfa and beta spin density is represented by the green and blue colors. Relevant spin densities are represented in the figure.

On the other hand, one can expect that the reduction of the formed organometallic [$\left.\mathrm{Nil}^{11}\left(\mathrm{Ts}^{H} \mathrm{P} \mathbf{y}_{2} \mathbf{t a c n}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}\right]^{+}$species is quickly reduced to $\left[\mathrm{Ni}^{11}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathbf{t a c n}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}\right]^{+}$ ($\mathrm{E}_{\text {theo }}=-0.12 \mathrm{~V}$ vs NHE, -0.36 vs SCE) in the reaction medium, which also leads to a significant thermodynamic stabilization (considering the experimental redox potential of the $\mathbf{P C}_{c u}$ of -1.45 V vs NHE (-1.69 V vs SCE) the driving force is $-30.7 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$. Now, the $\mathrm{C}-\mathrm{Ni}$ homolytic cleavage in $\left[\mathrm{Ni}^{11}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{P} \mathbf{y}_{2} \mathbf{t a c n}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}\right]^{+}$is endergonic, but still thermodynamically accessible at room temperature ($22.1 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$), which leads to the formation of $\mathrm{Ni}(\mathrm{I})$ species, regenerating the $\mathrm{Ni}(\mathrm{I})$ catalytically active species.

Figure SI.TS-9. Summary of the DFT data. Values represent thermodynamic energies respect $\left[\mathrm{Ni}^{1}\left(\mathrm{Ts}^{H} \mathrm{Py} \mathrm{y}_{2} \mathrm{tacn}\right)\right]^{+}$and are given in $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$.

T.1.4. Cartesian Coordinates of optimized geometries for molecules

 related to redox potentials and BDE calculationsFORMAT

Name			
E; Ezp; H; G in hartrees			
Charge, multiplicity			
Element		x	y
[$\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]^{-}$			
E =-154.4866539; Ezp =-154.423297; $\mathrm{H}=-$			
154.417776; G = -154.448994			
-1,1			
C	+0.06603	+0.48780	-0.13406
H	+0.34156	+0.90874	-1.11665
H	+0.05710	+1.31724	+0.59433
C	-1.20904	-0.27358	-0.16436
H	-1.95240	+0.06701	+0.56856
H	-1.66490	-0.34572	-1.16071
O	+1.24637	-0.36244	+0.26526
	+2.03236	+0.21878	+0.25709

[$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}{ }^{\text {e }}$

E = -154.3830054; Ezp =-154.318596; H = 154.312998; G = -154.34488

0,2
C +0.08544 +0.58097-0.02477
H +0.26292 +1.29909-0.84954
H +0.09803 +1.16879 +0.90779
C -1.22326 -0.09248 -0.19603
H -2.13720 +0.42727 +0.07663
H -1.28849 -1.01796 -0.76218
O +1.13240 -0.40637-0.01588
H +1.98724 +0.05852 -0.02653

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

$\mathrm{E}=-155.0567653 ; \mathrm{Ezp}=-154.977155 ; \mathrm{H}=-$
154.97193; G = -155.002532

0,1
C $+1.402 \mathrm{e}-\mathbf{- 0 . 0 0 7 6 0}+0.00118$
H +0.88994 -0.53240 -0.37703
H $-0.88994-0.53241-0.37703$
C $-2.14 \mathrm{e}-0+0.00658+1.51817$
H $-0.89054+0.51907+1.90294$
H +2.68e-0 -1.02025 +1.90446
H $+0.89054+0.51907+1.90294$
O -4.5e-08 +1.35682 -0.45887
H +4.221e- +1.35389 -1.43183
[$\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right]^{-}$
$\mathrm{E}=-154.539947 ; \mathrm{Ezp}=-154.474624 ; \mathrm{H}=-$
154.469905; G = -154.499544
-1,1
C +0.14821 +0.49616 +2.14821
H +0.12438 +1.19579 -0.88521
H +0.12549 +1.19369 +0.88695
C -1.22396 -0.21935 -1.85942

H $-2.06471+0.49522+0.00183$
H $-1.32087-0.86057-0.88887$
O +1.22547 -0.34106 -0.00167
H -1.31932 $-0.86338+0.88697$

$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right]^{\circ}$

E =-154.3901362; Ezp =-154.325843; H = 154.320459; G = - 154.352127

0,2
C $+0.09247+0.49866-1.41809$
H +0.18211 +1.19197-0.86539
H +0.18298 +1.19028 +0.86665
C -1.24111 -0.23737-2.37362
H -2.07003 +0.48179 +0.00229
H -1.33385 -0.86877-0.89196
O +1.21398 -0.28777 -0.00118
H $-1.33186-0.87227+0.88962$

$\left[\mathrm{CH}_{3} \mathrm{CHOH}\right]^{\bullet}$

$\mathrm{E}=-154.3967257 ; \mathrm{Ezp}=-154.33103 ; \mathrm{H}=-$ 154.32572; G = -154.356996 0,2
C $-0.09585+0.07500+0.04901$
H $-0.76323-0.58856-0.50189$
C $-0.01859+0.02076+1.53255$
H $-0.85652+0.55815+2.01478$
H -0.05140 -1.01939 +1.87612
H +0.90992 +0.47710 +1.90268
O +0.07521 +1.33899 -0.48192
H -0.09397 +1.31710 -1.44066

CH_{4}

$\mathrm{E}=-40.5201554 ;$ Ezp $=-40.47549 ; \mathrm{H}=-$
40.471678; G = -40.494129

0,1
C +2.45578-1.0001e -0.00052
H $+2.82189+0.89402+0.51651$
H +2.82189 -0.89488 +0.51504
H +2.82142 +0.00085 -1.03346
H +1.36017 -9.881e- -0.00018

$\left[\mathrm{CH}_{3}\right]^{\circ}$

E = -39.8411813; Ezp = -39.811433; H = -
39.807434; G = -39.830196

0,2
C +2.70470 -1.0003e -0.00059
H $+2.70494+0.93975+0.54300$
H +2.70494 -0.94065 +0.54145
H +2.70444 +0.00089 -1.08625
[p-Cl-PhCH2] ${ }^{-}$

Supporting Information Theoretical Studies

E = -730.6526127; Ezp =-730.550003; H = -
730.54158; G = -730.582028
-1,1
C $+1.04104-1.21481+2.76605$
C $-0.34834-1.21263-0.00017$
C $-1.05442-7.5971 \mathrm{e}-0.00026$
C $-0.34834+1.21262-0.00017$
C $+1.04103+1.21481+2.75148$
C +1.82993 +4.39e-0 +0.00010
H $+1.55940+2.17327+0.00014$
C $+3.23005+4.6531 \mathrm{e}+0.00023$
H +3.79348 -0.93168 +0.00022
H +1.55942 -2.17327 +0.00015
H -0.88812 -2.15763 -0.00022
H $-0.88813+2.15762-0.00021$
H $+3.79347+0.93169+0.00022$
Cl -2.84000 -1.36731 -0.00059

[p - $\mathrm{Cl}-\mathrm{PhCH}_{2}$] ${ }^{\text {e }}$

$\mathrm{E}=-730.542558 ;$ Ezp $=-730.437447 ; \mathrm{H}=-$
$730.429638 ;$ G = -730.469437
0,2
C +1.04644 -1.22063 -1.21883
C $-0.34114-1.22316-0.00015$
C - $-1.02758-7.6711 \mathrm{e}-0.00018$
C $-0.34115+1.22315-0.00015$
C $+1.04643+1.22062-1.49501$
C $+1.79111+4.417 \mathrm{e}-+9.14724$
H +1.58233 +2.16654 +8.6959e
C $+3.19897+4.6544 \mathrm{e}+0.00025$
H +3.75753 -0.93188 +0.00032
H +1.58235 -2.16654 +1.10876
H -0.89039 -2.15996 -0.00025
H $-0.89040+2.15995-0.00025$
H $+3.75753+0.93190+0.00032$
Cl -2.79155 -1.34341 -0.00048

[p - $\mathrm{Cl}-\mathrm{PhCH}_{3}$]

$\mathrm{E}=-731.1938875 ; \mathrm{Ezp}=-731.075489 ; \mathrm{H}=-$ 731.067221; G = -731.107897

0,1
C +1.09055 -1.20551 -0.02263
C -0.30878 -1.21759 -0.02063
C $-0.99089-0.00234-0.00275$
C $-0.30671+1.21443+0.01222$
C $+1.09013+1.20153+0.00998$
C +1.81253 -0.00322 -0.00608
H +1.62536 +2.14865 +0.02018
C $+3.32228+0.00529+0.01448$
H +3.73087-0.98546 -0.21124
H +1.62415 -2.15311 -0.03834
H -0.85211 -2.15768 -0.03486
H $-0.85042+2.15437+0.02344$
H $+3.72690+0.71825-0.71413$
$\mathrm{Cl}-2.76262-0.00035-0.00234$
H $+3.69841+0.30524+1.00196$

```
[p-F-PhCH2]
E =-370.2911651; Ezp = -370.188054; H = -
370.179649; G = -370.220049
-1,1
C +0.69995 -1.21518 -0.05593
C -0.69244 -1.21366 -0.00681
C -1.37622 +3.80316 +0.01776
C -0.69237 +1.21369 -0.00686
C +0.70002 +1.21513 -0.05598
C +1.48555 -4.66005 -0.08231
H +1.21988 +2.17238-0.07449
C +2.89094 -8.79103 -0.12623
H +3.45260 -0.93202 -0.16707
H +1.21975 -2.17245 -0.07440
H -1.24794 -2.14934 +0.01202
H -1.24781 +2.14941 +0.01193
H +3.45265 +0.93181 -0.16711
F -2.77335 +7.94577 +0.06663
```


[p - $\mathrm{F}-\mathrm{PhCH}_{2}{ }^{\text {® }}$

$\mathrm{E}=-370.1855713 ; \mathrm{Ezp}=-370.079359 ; \mathrm{H}=-$ 370.071888; G = -370.110419

0,2
C $+0.35557+1.28765+0.14360$
C $-0.37418+2.45802+0.30754$
C $-1.74282+2.42911+0.04161$
C $-2.40969+1.27924-0.38043$
C $-1.67510+0.11173-0.54250$
C $-0.26805+0.07446-0.28715$
H -2.17567 -0.79561 -0.87090
C +0.47496 -1.11191 -0.45255
H +1.54333 -1.13329 -0.25614
H +1.42369 +1.28905 +0.34546
H $+0.09505+3.38145+0.63399$
H $-3.47790+1.31240-0.57350$
H -0.00420 -2.03045 -0.77961
F -2.46463 +3.58174 +0.20264

[p - -PhCH 3]

E = -370.8371651; Ezp =-370.717621; $\mathrm{H}=-$ 370.709703; G = -370.749113

0,1
C +0.64511 -1.20155 +0.03498
C $-0.75269-1.21657+0.03910$
C $-1.41974+0.00128-0.00010$
C $-0.75760+1.21909-0.04415$
C $+0.64274+1.20780-0.04746$
C $+1.36481+0.00515-0.00693$
H +1.17733 +2.15415 -0.08329
C $+2.87565-0.00115+0.01281$
H +3.28155 -0.72787 -0.70141
H +1.18346 -2.14637 +0.06412
H $-1.31338-2.14616+0.06977$
H $-1.32004+2.14753-0.07705$
H +3.28231 +0.98524 -0.23497
F -2.79358 -0.00219 +0.00156
H +3.25498 -0.27856 +1.00564

Supporting Information Theoretical Studies

[$\left.p-\mathrm{MeO}-\mathrm{PhCH}_{2}\right]^{*}$

$\mathrm{E}=-385.4764362 ; \mathrm{Ezp}=-385.329275 ; \mathrm{H}=-$
385.319997; G = -385.362793

0,2
$-0.06683+2.43465$
C $-1.46181+2.47170+0.55794$
C $-2.22948+1.31200+0.33850$
C $-1.60935+0.14279-0.08915$
C $-0.20162+0.07147-0.31808$
H -2.21415 $-0.74604-0.25486$
C +0.42017 -1.11520 -0.75093
H +1.49259 -1.15627 -0.92159
$+1.62179+1.26038-0.24674$

H $-3.30201+1.31574+0.49840$
H -0.15898 -2.01821 -0.92442
O -1.96437 +3.66715 +0.97587
C $-3.37339+3.77505+1.21514$
-3.69190 +3.08741 +2.00801
H -3.53917 +4.80509 +1.53591

[$p-\mathrm{MeO}-\mathrm{PhCH}_{3}$]

E = -386.1217118; Ezp = -385.961696; H = 385.951809; G = -385.996434

C -1.14321 -1.20003 -0.03597
C +0.24184 -1.20575 -0.22457
C $+0.93513+0.00609-0.30787$
C $+0.24433+1.21565-0.19593$
C $-1.14197+1.20752-0.00688$
C $-1.85958+0.00367+0.07372$
$-1.67273+2.15380+0.07741$

H -1.67597 -2.14714 +0.02534
H +0.78935 -2.14098 -0.31046
H +0.79278 +2.15208 -0.25974
H -3.71910 +0.94182 +0.67024
+2.30008 +0.00705-0.54013
C $+3.09787-0.00569+0.65559$
H +4.14247 -0.00432 +0.33386

H -3.86726 -0.13927 -0.72202

Supporting Information Theoretical Studies

```
[p-Me-PhCH2]-
E =-310.3675685; Ezp = -310.228434; H = -
310.219294; G = -310.261635
-1,1
C +0.75622 +1.20963 -0.03867
C -0.63660 +1.19627 -0.02845
C -1.38697 +0.00215 -0.02158
C -0.63721 -1.19400 -0.02904
C +0.75421 -1.20821 -0.03906
C +1.54637 +0.00061 -0.03976
H +1.27284 -2.16779 -0.05095
C +2.95410 -0.00249 -0.03590
H +3.51779 +0.92743 -0.10201
H +1.27516 +2.16902 -0.05058
H -1.16605 +2.15101 -0.02851
H -1.16748 -2.14840 -0.02933
H +3.51354 -0.93492 -0.10260
C -2.89823 -0.00131 +0.04238
H -3.33280 -0.79834 -0.57728
H -3.28150 -0.15594 +1.06453
H -3.31523 +0.95146 -0.31004
[p-CH3-PhCH2]
E = -310.2649402; Ezp = -310.122917; H = -
310.114485; G = -310.155286
0,2
C +0.34983 +1.28490 +0.14972
C -0.38772 +2.45288 +0.29748
C -1.77047 +2.48943 +0.02687
C -2.38957 +1.29541 -0.40462
C -1.66925 +0.12064 -0.55769
C -0.26539 +0.07039 -0.28476
H -2.17095 -0.78476 -0.89301
C +0.47356 -1.11836 -0.43919
H +1.53965 -1.14587 -0.22971
H +1.41649 +1.28590 +0.36438
H +0.11147 +3.36152 +0.62886
H -3.45642 +1.30111 -0.62162
H -0.00508 -2.03597 -0.77088
C -2.57597 +3.75049 +0.21101
H -3.22745 +3.93931 -0.65178
H -3.22876 +3.67625 +1.09255
H -1.92882 +4.62348 +0.34976
```


[$p-\mathrm{CH}_{3}-\mathrm{PhCH}_{3}$]

```
E =-310.9155769; Ezp = -310.760279; H = -
310.751365; G = -310.793254
0,1
C +0.73757 +1.20571 +0.02902
C -0.66353 +1.20651 +0.01759
C -1.38929 +0.00790 -0.00651
C -0.66213 -1.19549 -0.02117
C +0.73406 -1.19629 -0.01009
C +1.46228 +0.00630 +0.01425
H +1.26957 -2.14433 -0.02182
C +2.97327 -0.00421 +0.00155
```

H	+3.38207	+0.98788	+0.22339
H	+1.27211	+2.15378	+0.04837
H	-1.19723	+2.15519	+0.02900
H	-1.19848	-2.14294	-0.04018
H	+3.37550	-0.71143	+0.73771
C	-2.90029	-0.00168	+0.00583
H	-3.30313	-0.68427	-0.75290
H	-3.28562	-0.33930	+0.97783
H	-3.30821	+0.99745	-0.18366
H	+3.35831	-0.31042	-0.98090

[$\mathrm{O}-\mathrm{NC}-\mathrm{PhCH} 2$] ${ }^{-}$

$\mathrm{E}=-363.3115393 ; \mathrm{Ezp}=-363.200194 ; \mathrm{H}=-$
363.191531; G = -363.2323
-1,1
C +1.04495 -1.23127 -4.1576e
C $-0.35229-1.21017-0.00024$
C $-1.10152-0.00787-0.00033$
C $-0.36027+1.18949-0.00022$
C $+1.02622+1.19914-2.6556 e$
C +1.82395 -0.01392 +9.30182
H +1.54917 +2.15500 +5.36674
C +3.21947 -0.01018 +0.00034
H +3.78610 -0.93957 +0.00035
H +1.56138 -2.18907 +2.20631
H $-0.89295+2.13976-0.00029$
H +3.77854 +0.92373 +0.00036
H $-2.18630-0.01943-0.00048$
C $-1.05430-2.46035-0.00034$
N -1.63268 -3.47356 -0.00042

[o-NC-PhCH ${ }^{\circ}{ }^{\circ}$

$\mathrm{E}=-363.1956484 ; \mathrm{Ezp}=-363.082184 ; \mathrm{H}=-$ 363.073833; G = -363.114629

0,2
C +1.05319 -1.23520 -2.63914
C $-0.34372-1.22242-0.00023$
C $-1.06538-0.00783-0.00033$
C $-0.35522+1.19913-0.00022$
C $+1.03419+1.20538-1.67234$
C $+1.78348-0.01203+8.39284$
H $+1.57274+2.14973+6.78928$
C $+3.19323-0.00984+0.00028$
H +3.75283 -0.94076 +0.00035
H +1.58930 -2.17998 +4.66842
H $-0.90073+2.13885-0.00029$
H +3.74752 +0.92428 +0.00036
H -2.15067 -0.01861 -0.00049
C -1.05906 -2.46553 -0.00034
N -1.64224 $-3.47343-0.00043$

[o-NC-PhCH3]

$\mathrm{E}=-363.8484213 ;$ Ezp $=-363.721721 ; \mathrm{H}=-$
363.712873; G = -363.754769

0,1
C +1.02848 -1.22400 -0.04275
C -0.37998 -1.21886 -0.03117

H	+1.58038	-2.17205	-0.00031
H	-0.89174	-2.14239	-0.00043
H	-0.84571	+2.17652	+0.00043
H	+3.76256	+0.91788	+0.00051
C	-2.54082	-0.02204	-5.93761
O	-3.14647	-1.09878	+0.00040
C	-3.30537	+1.28387	-0.00068
H	-3.05262	+1.88381	+0.88246
H	-3.05262	+1.88320	-0.88422
H	-4.37814	+1.07585	-0.00056

[$p-\mathrm{MeC}(\mathrm{O})-\mathrm{PhCH}_{3}$]

$\mathrm{E}=-424.2608946 ; \mathrm{Ezp}=-424.095429 ; \mathrm{H}=-$
424.084907; G = -424.130855

0,1
C $-1.46347+1.18607+0.06369$
C $-0.07389+1.24552+0.06836$
C $+0.69763+0.06889+0.00416$
C +0.03024 -1.16606 -0.06558
C -1.36546 -1.21930 -0.07055
C - $2.13613-0.04890-0.00459$
H -1.86273 -2.18493 -0.12719
C $-3.64294-0.10147+0.01151$
H $-4.07231+0.60694-0.70755$
H -2.04216 +2.10625 +0.11319
H +0.43202 +2.20503 +0.12074
H +0.58931 -2.09503 -0.11851
H -4.01332 -1.10401 -0.22674
C $+2.18823+0.17157+0.01126$
$0+2.74212+1.27101+0.06736$
C +3.01057-1.09651 -0.05067
H +2.78019 -1.75073 +0.79932
H +2.78642 -1.66002 -0.96488
H $+4.07308-0.84183-0.03407$
H $-4.02970+0.17363+1.00224$

[PhCH_{3}]

$\mathrm{E}=-271.5943509 ; \mathrm{Ezp}=-271.466398 ; \mathrm{H}=-$
271.459311; G = -271.49654

0,1
C $+0.19785-1.20160+0.03513$
C $-1.20028-1.20712+0.04201$
C $-1.90970+0.00021+0.00527$
C $-1.20644+1.20835-0.03911$
C $+0.19409+1.20796-0.04590$
C $+0.91713+0.00552-0.00748$
H $+0.73237+2.15315-0.08248$
C $+2.42803-1.19192+0.00942$
H +2.83338 -0.72972 -0.70234
H +0.74085 -2.14477 +0.06235
H -1.73642 -2.15302 +0.07395
H -2.99713 $-0.00244+0.00880$
H $-1.74551+2.15258-0.07066$
H +2.83534 +0.98552 -0.24157
H +2.80866 -0.27477 +1.00272

[4j]

$\mathrm{E}=-832.4790949 ; \mathrm{Ezp}=-832.040483 ; \mathrm{H}=-$
832.019701; G = -832.092849

0,1
C -3.94037 -3.59307 -2.42036
C $-4.01092-2.07406-2.30084$
N -2.65933 -1.51608 -2.19073
C $-1.76444-1.96263-3.26371$
C $-1.77726-3.48814-3.34785$
O $-3.10403-3.99617-3.51030$
C $-2.39104-0.51852-1.29589$
O $-3.25242-0.12111-0.49437$
C $-0.98894+0.08519-1.31148$
C $-0.78105+1.16078-0.24339$
C $+0.64024+1.73736-0.27918$
C $+0.87162+2.88976+0.71302$
C $+0.64536+2.53855+2.19552$
C $+1.47084+1.35111+2.72291$
C $+2.98903+1.50023+2.57948$
C $+3.79123+0.32112+3.16411$
C $+5.24013+0.84966+3.30865$
C $+5.11919+2.40558+3.34009$
C $+3.60391+2.70513+3.31533$
H -4.93430 -4.00328 -2.62108
H -3.55815 -4.02688 -1.48217
H -4.58718 -1.79217 -1.41878
H -4.50196 -1.65456 -3.19153
H -0.74343 -1.62707 -3.08631
H -2.10844 -1.53746 -4.21814
H -1.32551 -3.91511 -2.43764
H -1.20494 -3.82171 -4.21832
H $-0.25084-0.71713-1.17679$
H $-0.79899+0.50705-2.30839$
H -1.50947 +1.96935 -0.38932
H $-0.99008+0.73124+0.74289$
H +1.36391 +0.93211 -0.08820
H +0.85319 +2.10363 -1.29457
H +1.89578 +3.26565 +0.58242
H $+0.20433+3.72360+0.44836$
H +0.87147 +3.42875 +2.79910
H $-0.41947+2.32442+2.36148$
H +1.23588 +1.20953 +3.78912
H +1.15252 +0.42864 +2.21595
H +3.24274 +1.58803 +1.51155
H $+3.72594-0.58303+2.54597$
H $+3.37948+0.06942+4.15268$
H +5.85384 +0.53139 +2.45710
H $+5.72324+0.45694+4.21124$
H $+5.59802+2.83888+2.45270$
H $+5.61261+2.84597+4.21454$
H $+3.37085+3.66598+2.84175$
H +3.20186 +2.73806 +4.33960

[2j] ${ }^{-}$

$\mathrm{E}=-831.8956303 ; \mathrm{Ezp}=-831.472969 ; \mathrm{H}=-$ 831.452254; G = -831.524875
$-1,1$

C	-3.98360	-3.55878	-2.50441
C	-4.00001	-2.04171	-2.35159
N	-2.63429	-1.53706	-2.17235
C	-1.70524	-2.00360	-3.20762
C	-1.77978	-3.52441	-3.32827
O	-3.11712	-3.97042	-3.56706
C	-2.38805	-0.51427	-1.29755
O	-3.28043	-0.07258	-0.55597
C	-0.97258	+0.05576	-1.25919
C	-0.78845	+1.16422	-0.22042
C	+0.64386	+1.71502	-0.21587
C	+0.85649	+2.88956	+0.75244
C	+0.62133	+2.56246	+2.25731
C	+1.42231	+1.40757	+2.88913
C	+2.92907	+1.53937	+2.66334
C	+3.78208	+0.36362	+3.18402
C	+5.24408	+0.87935	+3.20936
C	+5.13538	+2.43604	+3.24016
C	+3.62328	+2.73682	+3.34712
H	-4.98354	-3.92339	-2.75672
H	-3.65953	-4.02943	-1.56210
H	-4.60125	-1.75755	-1.48705
H	-4.43900	-1.58334	-3.25061
H	-0.68081	-1.72153	-2.96749
H	-1.97612	-1.54304	-4.16953
H	-1.39245	-3.99183	-2.40849
H	-1.17970	-3.86257	-4.17796
H	-0.26301	-0.75897	-1.06014
H	-0.72149	+0.43776	-2.25890
H	-1.49559	+1.97929	-0.42517
H	-1.04524	+0.77483	+0.77117
H	+1.34058	+0.90256	+0.03549
H	+0.90416	+2.03852	-1.23580
H	+1.88159	+3.26601	+0.62107
H	+0.18950	+3.71698	+0.45526
H	+0.81156	+3.50242	+2.80510
H	-0.45635	+2.37407	+2.39285
H	+1.10073	+0.46914	+2.39146
H	+3.18809	+1.63477	+1.58040
H	+3.66418	-0.54569	+2.57880
H	+3.44669	+0.11737	+4.20388
H	+5.79221	+0.54969	+2.31749
H	+5.79407	+0.49128	+4.07610
H	+5.54037	+2.86245	+2.31285
H	+5.70752	+2.87766	+4.06592
H	+3.35448	+3.70460	+2.90398
H	+3.30941	+2.76352	+4.40354

[2j-Cl] ${ }^{\circ}$

$E=-831.8134828 ;$ Ezp $=-831.389835 ; H=-$ 831.368532; G = -831.44387

0,2
C -3.94092 -3.59958 -2.40126 C -4.02849 -2.07853 -2.32215 N -2.68370 $-1.50447-2.21576$ C -1.77868 -1.96663 -3.27331 C -1.77258 -3.49407 -3.31779
$\begin{array}{llll}\text { O } & -3.09228 & -4.02207 & -3.47437\end{array}$
C $-2.42405-0.49941-1.32713$
O -3.29101 -0.09941 -0.53285
C $-1.02471+0.11081-1.34134$
C $-0.82389+1.19001-0.27543$
C $+0.59343+1.77592-0.31533$
C $+0.82864+2.91564+0.68757$
C $+0.66216+2.51404+2.17967$
C $+1.55530+1.39125+2.61269$
C $+3.04359+1.51523+2.56092$
C $+3.82218+0.33764+3.18192$
C $+5.26271+0.86900+3.39777$
C $+5.15401+2.42494+3.35376$
C $+3.64389+2.73324+3.30539$
H -4.92884 -4.02617 -2.59769
H -3.56039 -4.00378 -1.44925
H -4.61517 -1.77989 -1.45254
H -4.51567 -1.68726 -3.22757
H $-0.76324-1.61193-3.10178$
H -2.12530 -1.57106 -4.23936
H -1.32107 -3.89135 -2.39413
H -1.19119 -3.84326 -4.17608
H -0.28302 -0.68726 -1.20215
H $-0.83488+0.52991-2.33945$
H $-1.55854+1.99293-0.42084$
H $-1.02725+0.75962+0.71179$
H +1.32312 +0.97343-0.13201
H +0.79713 +2.15332 -1.32843
H +1.84307 +3.31199 +0.54384
H +0.13557 +3.74195 +0.47130
H +0.87447 +3.41422 +2.77945
H $-0.38581+2.25330+2.37204$
H $+1.12524+0.40047+2.75774$
H +3.36016 +1.61030 +1.50264
H +3.78789 -0.56308 +2.55722
H $+3.36141+0.08254+4.14677$
H $+5.93475+0.50909+2.60951$
H $+5.67577+0.51762+4.35052$
H +5.63820 +2.81044 +2.44735
H $+5.64640+2.90426+4.20789$
H $+3.41702+3.68789+2.81714$
H $+3.22397+2.77077+4.32114$

[4n]

$E=-620.8235323 ;$ Ezp $=-620.511108 ; H=-$
620.495727; G = -620.553302

0,1
C $+0.18515+0.10980-1.72315$
C $-0.29501+0.62849-2.93088$
C $-1.42099+0.06348-3.53154$
C -2.05160 -1.01516 -2.90588
C $-1.58230-1.54167-1.69256$
C $-0.43479-0.97407-1.07933$
C $-2.36076-2.68123-1.06194$
C $-3.46243-2.16763-0.13358$
O -4.12149 $-3.30837+0.44155$
C $+0.07136-1.56700+0.23256$

Supporting Information Theoretical Studies

C	+1.28926	-0.96628	+0.95882
C	+1.18597	+0.53453	+1.38653
C	+2.55723	+1.17231	+1.04431
C	+3.52376	-0.02152	+0.91246
C	+2.65914	-1.10627	+0.24902
H	+1.06160	+0.57112	-1.28693
H	+0.21572	+1.46884	-3.39569
H	-1.80371	+0.45181	-4.47248
H	-2.92966	-1.46495	-3.36621
H	-2.83212	-3.28387	-1.84793
H	-1.70831	-3.35001	-0.49161
H	-3.03687	-1.53444	+0.65762
H	-4.17865	-1.56098	-0.70651
H	-4.83149	-2.99059	+1.02561
H	+0.29190	-2.63026	+0.05584
H	-0.76569	-1.56829	+0.94405
H	+1.36947	-1.55381	+1.88370
H	+0.98610	+0.60016	+2.46293
H	+0.36210	+1.05326	+0.88426
H	+2.88315	+1.90438	+1.79284
H	+2.50036	+1.69874	+0.08182
H	+3.84183	-0.35871	+1.90979
H	+4.42851	+0.22155	+0.34179
H	+3.07159	-2.11649	+0.36378
H	+2.57667	-0.91232	-0.82717

[$2 \mathrm{n}-\mathrm{Cl}]^{-}$
$\mathrm{E}=-620.2821762 ; \mathrm{Ezp}=-619.985069 ; \mathrm{H}=-$ 619.970169; G = -620.026062
-1,1
C $+0.23986+1.73073-0.01183$
C $-0.73490+2.71957+0.10599$ C $-2.08322+2.45383-0.17730$ C $-2.41136+1.13879-0.57057$ C $-1.46960+0.11914-0.67985$ C $-0.05793+0.37440-0.41313$ C -1.95694 -1.28267 -1.00335 C $-2.13661-2.17972+0.23311$ O $-0.92520-2.50225+0.93066$ C +0.92038 $-0.64841-0.49595$ C $+2.41190-0.46113-0.29354$ C $+2.87648+0.04718+1.12264$ C $+3.97816+1.10826+0.87933$ C $+4.46494+0.84453-0.55994$ C $+3.17204+0.46423-1.29584$ H +1.26838 +2.00293 +0.19990 H $-0.43154+3.72116+0.41294$ H $-2.84630+3.22459-0.09932$ H $-3.45351+0.89853-0.78799$ H -2.94405 -1.22050 -1.48218 H -1.29534 -1.78910 -1.72160 H -2.83142 -1.68151 +0.92936 H -2.59993 -3.13027 -0.07049 H $-0.21747-1.85904+0.65980$ H +0.65700 -1.53784 -1.06706 H +2.86238 -1.45638 -0.42201 H +3.26882 -0.79574 +1.70659

```
H +2.03925 +0.46115 +1.69489
H +4.78757 +1.06553 +1.61897
H +3.54643 +2.11764 +0.93143
H +5.16290 -0.00616 -0.56996
H +4.98724 +1.70460 -0.99928
H +3.34921 -0.04193 -2.25387
H +2.58350 +1.36655 -1.50688
```


[2n-Cl] ${ }^{\text {. }}$

E = -620.1798578; Ezp =-619.88038; H = -
619.865172; G = -619.922513

0,2
C $+0.18236+0.17299-1.77710$
C $-0.30368+0.68611-2.97277$
C $-1.42574+0.10764-3.58365$
C -2.04318 -0.99259 -2.97187
C $-1.58022-1.53288-1.77072$
C $-0.42797-0.94623-1.12550$
C $-2.33080-2.70312-1.16870$
C $-3.29294-2.27153-0.06030$
O $-3.93104-3.45414+0.44990$
C $+0.06725-1.46615+0.10116$
C $+1.23483-0.97262+0.90815$
C $+1.20262+0.53651+1.35821$
C $+2.61850+1.10020+1.08164$
C $+3.52219-0.14178+0.98215$
C $+2.63732-1.16001+0.24820$
H +1.05415 +0.63807 -1.33351
H +0.19222 +1.53772 -3.43324
H $-1.81244+0.50122-4.52025$
H -2.91205 -1.44546 -3.44610
H -2.91634 -3.19995 -1.95116
H -1.64211 -3.45317 -0.76191
H $-2.75066-1.75461+0.74330$
H -4.04218 -1.57736 -0.46794
H -4.55942 -3.18880 +1.14349
H $-0.43971-2.33507+0.50800$
H +1.24878 -1.57591 +1.82322
H +0.96497 +0.58497 +2.42727
H $+0.42713+1.10626+0.83692$
H $+2.94695+1.80850+1.85153$
H $+2.63133+1.63383+0.12163$
H +3.76444 -0.51454 +1.98777
H +4.46841 +0.05607 +0.46369
H +2.98901 -2.19419 +0.34074
H +2.59659 -0.91984 -0.82092

T.1.5 Cartesian coordinates of optimized geometries for the $\mathbf{N i}(\mathrm{I})$ reaction mechanism with (3-chloropropyl)benzene.

The geometries were optimized at the B3LYP-D $/ 6-31 \mathrm{G}^{*}$ level of theory for different spin states and only the lowest in energy structures are considered. The associated free energy values $\left(G=E_{\text {elec }}\left(6-311+G^{* *}\right)+\Delta G_{\text {corr }}\left(6-31 G^{*}\right)\right.$, in Hartrees) are indicated.

| ----FORMAT--- | | |
| :--- | :--- | :--- | :--- |
| Name | | |
| G, in Hartrees | | |
| Charge, multiplicity | | |
| Element \quad x | y | z |

$\mathrm{CH}_{3} \mathrm{CN}$

$\mathrm{G}=-132.787307$			
$\mathrm{O}, 1$			
C	-1.810932	-1.154317	0.8411222
N	-1.810932	-0.129039	0.2959727
C	-1.810933	-2.440822	1.5251684
H	-0.902585	-2.544904	2.1275145
H	-2.683376	-2.515709	2.1824224
H	-1.846836	-3.254330	0.7932777

$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl}$

$\mathrm{G}=-809.8081101$
0, 1
C $\quad 3.6956235$-2.427245 -0.929970
$\begin{array}{lllll}\mathrm{H} & 3.5257357 & -2.305099 & 0.1460488\end{array}$
H $\quad 3.5141322$-1.455929 -1.404511
C $\quad 5.1566773$-2.860070 -1.176259
H $\quad 5.3247367$-3.835341 -0.702276
H $\quad 5.3169584-2.991609-2.253359$
C $\quad 6.1384104-1.846573-0.629660$
C $\quad 6.6578684 \quad-0.833503-1.448044$
$\begin{array}{lllll}\text { C } & 6.5139032 & -1.872616 & 0.7219341\end{array}$
$\begin{array}{lllll}C & 7.5307468 & 0.1281703 & -0.932201\end{array}$
H $\quad 6.3763509$-0.800267 -2.498484
$\begin{array}{lllll}\text { C } & 7.3858576 & -0.913529 & 1.2422023\end{array}$
$\begin{array}{lllll}\text { H } & 6.1208675 & -2.654212 & 1.3688582\end{array}$
$\begin{array}{lllll}\text { C } & 7.8978688 & 0.0913507 & 0.4157954\end{array}$
$\begin{array}{lllll}\mathrm{H} & 7.9258767 & 0.9035917 & -1.583842\end{array}$
$\begin{array}{lllll}\mathrm{H} & 7.6689779 & -0.953303 & 2.2911908\end{array}$
$\begin{array}{lllll}\mathrm{H} & 8.5786253 & 0.8369550 & 0.8183823\end{array}$
H $\quad 2.8530314-4.435630-1.014396$
$\begin{array}{lllll}\mathrm{H} & 2.8285859 & -3.569146 & -2.571272\end{array}$
C $\quad 2.7320124$-3.459823 -1.489145
$\mathrm{Cl} \quad 0.9833400$-2.971514 -1.189887

[$\mathrm{Ni}^{\mathbf{1}}$ (Ts ${ }^{\text {H}}{ }^{\text {Py }}$ 2tacn $)$]Cl			
$\mathrm{G}=-3762.361183$			
0, 2			
S	1.9183079	-0.030442	0.8341984
N	1.1461054	-0.416194	-0.643279
O	1.6888223	1.3992932	1.0744131
N	-1.242297	1.8956157	-0.070080
N	-2.857413	-0.617205	0.6583876
N	-1.053441	0.3683171	-2.357488
N	-1.187453	-2.131553	-0.940035
0	1.4428656	-1.030876	1.8007451
C	1.3697122	0.5699764	-1.734514
H	2.3784509	0.4707535	-2.155854
H	1.2689239	1.5613958	-1.294005
C	-2.274116	-2.815395	-0.194198
H	-1.821857	-3.286790	0.6859603
H	-2.728340	-3.617640	-0.787127
C	-1.371319	2.5511852	-1.246433
C	-3.739651	0.2302601	1.2562621
H	-3.341861	1.2021635	1.5260204
C	-1.022086	2.6110724	1.0469454
H	-0.917158	2.0365258	1.9603801
C	-1.715133	1.6846095	-2.437498
H	-2.800489	1.5163907	-2.420362
H	-1.477466	2.2069587	-3.373753
C	-4.643832	-2.238298	0.5068768
H	-4.959991	-3.229350	0.1930721
C	0.3391681	0.3949674	-2.856292
H	0.4817630	1.2183230	-3.567571
H	0.5370017	-0.525285	-3.408314
C	-5.542089	-1.354041	1.1152720
H	-6.577156	-1.636599	1.2803709
C	1.3095043	-1.846998	-1.032818
H	2.2283592	-2.272488	-0.617006

H	1.4360500	-1.878017	-2.114380	C	1.1756420	2.6955264	0.9030109
C	3.6702889	-0.276797	0.5918961	C	4.6858132	0.3126594	0.0293643
C	-1.873721	-0.728384	-2.918004	H	4.4991955	1.3821694	0.0487837
H	-1.859420	-0.729809	-4.018705	C	0.7947495	2.8227714	-1.403422
H	-2.904405	-0.549083	-2.601430	H	0.7962228	2.2981436	-2.352093
C	-1.414414	-2.103908	-2.416426	C	1.6827187	1.8088181	2.0098136
H	-2.173104	-2.842106	-2.697716	H	2.7701827	1.6971481	1.9089987
H	-0.492994	-2.405609	-2.918868	H	1.4786018	2.2379085	3.0005979
C	4.2641225	-1.475686	0.9924850	C	5.0104227	-2.402512	-0.006326
H	3.6741201	-2.238916	1.4882835	H	5.0953771	-3.484739	-0.016049
C	-3.325022	-1.854843	0.3101088	C	-0.328464	0.4286989	2.2598768
C	0.1312123	-2.702378	-0.575806	H	-0.521921	1.2493509	2.9625987
H	0.2566771	-3.716882	-0.982746	H	-0.514669	-0.488750	2.8196276
H	0.1634402	-2.761797	0.5125469	C	6.1402325	-1.589256	0.0783761
C	4.4181008	0.7299758	-0.031688	H	7.1310712	-2.030246	0.1363876
H	3.9493167	1.6639570	-0.322688	C	-1.196885	-1.886338	0.5035356
C	-5.063285	-0.097760	1.5043558	H	-2.037099	-2.470296	0.1171243
H	-5.710930	0.6276761	1.9876492	H	-1.278384	-1.947053	1.5891224
C	-1.038240	4.6741891	-0.168582	C	-4.020768	-0.370032	-0.559578
H	-0.953122	5.7562202	-0.211454	C	1.8736175	-0.608190	2.5117396
C	-0.922928	3.9982684	1.0466088	H	1.7075810	-0.628581	3.5990137
H	-0.748943	4.5302392	1.9762131	H	2.9292833	-0.395564	2.3432107
C	-1.262668	3.9373570	-1.331828	C	1.5163527	-1.982156	1.9167525
H	-1.356108	4.4244699	-2.297579	H	2.3026719	-2.695389	2.1870120
C	5.6267662	-1.664787	0.7611499	H	0.5978772	-2.358164	2.3703231
H	6.0952795	-2.593162	1.0763931	C	-4.662368	-1.608971	-0.629704
C	6.3997986	-0.677745	0.1346705	H	-4.181299	-2.446633	-1.122898
C	5.7750800	0.5201112	-0.254171	C	3.7524422	-1.806128	-0.079045
H	6.3630596	1.2989694	-0.733032	C	0.0794021	-2.548991	-0.019202
C	7.8719753	-0.881707	-0.117197	H	0.0433159	-3.614051	0.2630417
H	8.2108202	-1.855334	0.2491611	H	0.0662548	-2.482324	-1.109439
H	8.4653344	-0.103654	0.3787676	C	-4.642749	0.7276389	0.0480062
H	8.0976255	-0.820973	-1.189086	H	-4.143611	1.6902121	0.0789275
Ni	-1.257997	-0.104092	-0.259787	C	5.9766543	-0.202963	0.0948119
Cl	-5.369780	0.8756571	-2.581967	H	6.8272278	0.4671816	0.1637219
				C	0.4100890	4.7828569	-0.040459
[$\left.\mathrm{Ni}^{\prime}\left(\mathrm{Ts}^{4} \mathrm{P} \mathrm{y}_{2} \mathrm{tacn}\right) \mathrm{Cl}\right]$				H	0.1142099	5.8212804	0.0694939
$\mathrm{G}=-3762.34688$				C	0.4283315	4.1513218	-1.299738
0, 2				H	0.1447840	4.6926372	-2.198826
S	-2.355247	-0.195808	-1.196656	C	0.7986659	4.0131256	1.0724517
N	-1.310184	-0.468095	0.0992719	H	0.8172095	4.4419637	2.0715151
0	-2.185202	1.2050927	-1.606796	C	-5.937592	-1.745759	-0.080440
N	1.1505805	2.0544045	-0.324277	H	-6.442029	-2.706615	-0.139851
N	3.5963806	-0.468321	-0.054778	C	-6.580654	-0.665041	0.5388089
N	1.0995760	0.4566118	1.8521622	C	-5.914867	0.5710941	0.5907145
N	1.3474489	-1.934314	0.4332673	H	-6.403427	1.4223176	1.0584060
0	-2.132938	-1.288645	-2.154565	C	-7.957715	-0.810848	1.1353416
C	-1.367840	0.5759034	1.1483749	H	-8.351501	-1.822272	0.9964521
H	-2.348790	0.5713367	1.6471814	H	-8.660794	-0.103906	0.6777977
H	-1.240820	1.5335258	0.6472856	H	-7.942938	-0.595119	2.2110858
C	2.4788603	-2.597093	-0.246640	Ni	1.6550150	0.2126430	-0.232644
H	2.2473207	-2.618795	-1.316696	Cl	1.8019705	-0.271933	-2.749927
H	2.616647	-3.631174	0.1001243				

				C	-0.654412	4.8036823	0.3056605
[$\mathrm{Ni}^{\prime}\left(\mathrm{Ts}^{\mathrm{H}} \mathrm{Py}_{2} \mathrm{tacn}\right) \mathrm{NCCH}_{3}{ }^{+}$				H	-0.363492	5.8486477	0.2546207
$G=-3434.713652$				C	-0.662477	4.1197027	1.5225760
1, 2				H	-0.383724	4.6120863	2.4489851
S	2.3215605	-0.209511	0.9923899	C	-1.025486	4.1104919	-0.849856
N	1.2839901	-0.412958	-0.309743	H	-1.032022	4.5965431	-1.820768
0	2.1368461	1.1603538	1.4940339	C	5.9077730	-1.649711	-0.249087
N	-1.378147	2.0980015	0.4276206	H	6.4227985	-2.606782	-0.253347
N	-3.640490	-0.464859	0.1356837	C	6.5277421	-0.528860	-0.818671
N	-1.222612	0.6028682	-1.856308	C	5.8488574	0.7009414	-0.787573
N	-1.395018	-1.881958	-0.610472	H	6.3198245	1.5827265	-1.214810
0	2.1186786	-1.362865	1.8839407	C	7.8919771	-0.626653	-1.453557
C	1.2676159	0.7138160	-1.269071	H	8.3119044	-1.632206	-1.353570
H	2.2270481	0.7838606	-1.803660	H	8.5909506	0.0838465	-0.995588
H	1.1355705	1.6247739	-0.685762	H	7.8434019	-0.383012	-2.522439
C	-2.497427	-2.587773	0.0788052	C	-0.551302	-0.644482	3.0141492
H	-2.222086	-2.665593	1.1370650	N	-0.996121	-0.342132	1.9837928
H	-2.636445	-3.607944	-0.306775	C	0.0713416	-1.021517	4.2719873
C	-1.390813	2.7736748	-0.750379	H	1.0178264	-0.483947	4.3860872
C	-4.744805	0.3032998	0.0924831	H	-0.585953	-0.785001	5.1152089
H	-4.582604	1.3698719	0.2209765	H	0.2784321	-2.096447	4.2710188
C	-1.026734	2.7775403	1.5382306	Ni	-1.658448	0.1326708	0.2435164
H	-1.023441	2.2034124	2.4580196				
C	-1.849068	1.9385779	-1.918913				
H	-2.931929	1.7948106	-1.826515	[$\mathrm{Ni}^{\mathbf{l}}$ (Ts ${ }^{\text {H Py }}$ 2tacn) ${ }^{+}$			
H	-1.658268	2.4498789	-2.872503	$\mathrm{G}=-3301.941763$			
C	-5.023203	-2.395977	-0.239101	1, 2			
H	-5.088209	-3.471258	-0.374479	S	-1.976087	-0.071895	-0.879784
C	0.1817021	0.6273496	-2.341349	N	-1.139445	-0.420179	0.5772953
H	0.3321963	1.4956175	-2.995975	0	-1.764485	1.3532614	-1.159612
H	0.3528688	-0.247225	-2.970542	N	1.1619252	1.9448760	-0.083320
C	-6.164032	-1.591896	-0.282110	N	2.9175026	-0.511396	-0.650399
H	-7.142056	-2.032554	-0.451777	N	1.0919499	0.4267920	2.2219386
C	1.1487531	-1.800601	-0.795111	N	1.2030595	-2.090165	0.8360329
H	2.0090915	-2.403392	-0.488252	0	-1.529310	-1.090880	-1.839968
H	1.1802911	-1.789329	-1.884819	C	-1.352412	0.5789462	1.6603602
C	3.9860031	-0.324792	0.3404885	H	-2.346289	0.4640964	2.1110980
C	-2.017994	-0.425052	-2.555950	H	-1.288420	1.5640470	1.2002611
H	-1.905540	-0.361534	-3.648751	C	2.2905221	-2.733412	0.0580664
H	-3.066735	-0.240638	-2.321822	H	1.8481938	-3.069233	-0.887283
C	-1.624910	-1.833020	-2.083806	H	2.6917086	-3.617135	0.5692848
H	-2.415656	-2.533975	-2.373332	C	1.3296463	2.6081315	1.0831133
H	-0.723137	-2.165697	-2.599852	C	3.8480479	0.3914577	-1.072116
C	4.6409739	-1.558610	0.3287243	H	3.4559918	1.3571327	-1.372720
H	4.1759100	-2.428502	0.7798163	C	0.8896411	2.6507668	-1.194085
C	-3.783392	-1.801187	-0.021193	H	0.7596466	2.0716291	-2.101005
C	-0.100904	-2.511820	-0.262655	C	1.7409717	1.7500758	2.2616671
H	-0.069378	-3.551833	-0.626335	H	2.8223705	1.5930480	2.1818366
H	-0.033344	-2.531089	0.8262905	H	1.5542370	2.2752032	3.2073037
C	4.5852092	0.8124471	-0.214772	C	4.7273516	-2.076962	-0.281362
H	4.0752230	1.7694149	-0.183852	H	5.0306372	-3.069192	0.0408588
C	-6.020929	-0.213924	-0.111637	C	-0.288266	0.4478658	2.7578713
H	-6.877561	0.4519182	-0.141711	H	-0.422389	1.2904355	3.4472391

SI.TS 21

H	9.071998	-1.669532	-1.150889	H	2.7867795	3.1457717	-1.608118
H	8.842343	-3.306713	-0.518501	H	2.5913308	1.8092850	-2.723781
Ni	0.166923	0.856801	-0.333229	C	-4.487924	0.8071331	-1.302308
C	-3.668926	-2.407326	0.96075	H	-5.541447	0.8419192	-1.560660
H	-3.456838	-2.236704	-0.100771	C	2.4833367	-0.904942	-1.868825
H	-3.500697	-1.457889	1.481823	H	3.2123247	-1.713319	-1.777764
C	-5.137161	-2.851033	1.138025	H	2.8645406	-0.246149	-2.647702
H	-5.281537	-3.811419	0.627334	C	4.7368341	-1.205339	0.5355208
H	-5.330944	-3.021813	2.204346	C	0.1354456	1.9962661	-2.806310
C	-6.120634	-1.836639	0.597569	H	0.4766906	2.6806461	-3.595912
C	-6.619873	-0.812657	1.415545	H	-0.908855	2.2281280	-2.593270
C	-6.532424	-1.881492	-0.742497	C	0.2401470	0.5503584	-3.316452
C	-7.514383	0.135456	0.912581	H	-0.519138	0.3965696	-4.090596
H	-6.307943	-0.762755	2.456578	H	1.2073806	0.3898015	-3.795755
C	-7.427057	-0.936421	-1.250479	C	5.2368144	-2.362129	-0.069717
H	-6.152514	-2.668997	-1.38997	H	4.5643650	-3.158169	-0.370219
C	-7.923576	0.075028	-0.422756	C	-2.276032	-0.083969	-1.611589
H	-7.894378	0.918384	1.564165	C	1.1279724	-1.495637	-2.240801
H	-7.738502	-0.991893	-2.290556	H	1.2028947	-1.987153	-3.221187
H	-8.62346	$0.808597-0$	0.814413	H	0.8606737	-2.243070	-1.492209
H	-2.861676	-4.427565	0.992933	C	5.5933036	-0.184653	0.9637950
H	-2.884688	-3.629116	2.582901	H	5.1964760	0.6970630	1.4552493
C	-2.736559	-3.474542	1.511772	C	-3.977421	1.6005954	-0.271987
Cl	-0.975273	-3.014811	1.301833	H	-4.616185	2.2742413	0.2899465
				C	0.8469365	3.8441790	3.0019230
TS ${ }_{\text {Ni-Cl }}$				H	1.0216183	4.6368571	3.7235916
$\mathrm{G}=-41$	719074			C	0.6437434	2.5300010	3.4230719
1,2				H	0.6506802	2.2652891	4.4752925
S	2.9732191	-1.024001	0.7613066	C	0.8215413	4.1276469	1.6364530
N	2.3867291	-0.104431	-0.601761	H	0.9710843	5.1377470	1.2681925
0	2.7501401	-0.189086	1.9466786	C	6.6123990	-2.485935	-0.255603
N	0.4195994	1.8139333	1.1447974	H	7.0069846	-3.386486	-0.718245
N	-1.779164	0.6928473	-0.621535	C	7.4942175	-1.473313	0.1505310
N	0.8863942	2.1839700	-1.547201	C	6.9637260	-0.327939	0.7666866
N	0.0734036	-0.459757	-2.224072	H	7.6340159	0.4586545	1.1028511
0	2.3586182	-2.348840	0.6358288	C	8.9776379	-1.598929	-0.084747
C	3.0407266	1.2394011	-0.682657	H	9.5502510	-1.134930	0.7253753
H	4.0988395	1.1431994	-0.951749	H	9.2629733	-1.091941	-1.016354
H	2.9706768	1.6838853	0.3096110	H	9.2828460	-2.646428	-0.172947
C	-1.281922	-1.049731	-2.207372	Ni	0.2119941	0.5115870	-0.384664
H	-1.246301	-1.920903	-1.545068	C	-3.820414	-1.870765	1.4109967
H	-1.597025	-1.384599	-3.203625	H	-3.693353	-1.976120	0.3261756
C	0.5931928	3.0905557	0.7350710	H	-3.791267	-0.794743	1.6232980
C	-2.622414	1.5165137	0.0298462	C	-5.220478	-2.408327	1.7966280
H	-2.179058	2.1182208	0.8165027	H	-5.272269	-3.482225	1.5797983
C	0.4414403	1.5456118	2.4613539	H	-5.373943	-2.283967	2.8756402
H	0.2971962	0.5060809	2.7264610	C	-6.289948	-1.666123	1.0250884
C	0.4293630	3.3351128	-0.751523	C	-6.806662	-0.453055	1.5049847
H	-0.642240	3.4643806	-0.938826	C	-6.715529	-2.120745	-0.231944
H	0.9280480	4.2672953	-1.046937	C	-7.723807	0.2849321	0.7529409
C	-3.617032	-0.047536	-1.981823	H	-6.483136	-0.083970	2.4760363
H	-3.970135	-0.687139	-2.784978	C	-7.633547	-1.387321	-0.987969
C	2.3557178	2.1425412	-1.712126	H	-6.321194	-3.057283	-0.620963

C	-8.140429	-0.179507	-0.498505	H	-4.960299	-3.031652	0.6660252
H	-8.113724	1.2214087	1.1441702	C	2.3225700	-0.183813	1.2288457
H	-7.953426	-1.758652	-1.958491	C	-1.026936	-1.679753	2.0042234
H	-8.855869	0.3917627	-1.084292	H	-0.999665	-2.212198	2.9645894
H	-2.516955	-3.594719	1.8602844	H	-0.820546	-2.387188	1.1988583
H	-2.597990	-2.359258	3.1836036	C	-5.815687	-0.059065	-0.788592
C	-2.675298	-2.545947	2.1123030	H	-5.380707	0.7440631	-1.373631
Cl	-0.978416	-1.573139	1.2996362	C	3.9232898	1.6285609	-0.076009
				H	4.5208454	2.3531145	-0.618925
				C	-1.316233	3.7758348	-3.112332
$13_{\text {Ni(1) }}$-Cl...r.				H	-1.588334	4.5813990	-3.788073
$\mathrm{G}=-4111$.	752100			C	-1.167397	2.4717973	-3.585020
1, 2				H	-1.315778	2.2298480	-4.632115
S	-3.281364	-1.151047	-0.762166	C	-1.115159	4.0338202	-1.756220
N	-2.473901	-0.277890	0.5312294	H	-1.222930	5.0340052	-1.349074
O	-3.088067	-0.344570	-1.971303	C	-6.932405	-2.157944	0.6825391
N	-0.638319	1.7162404	-1.376329	H	-7.367128	-2.981389	1.2428587
N	1.7754872	0.6408550	0.3111743	C	-7.747538	-1.088927	0.2791934
N	-0.815100	1.9771281	1.3301697	C	-7.170017	-0.048108	-0.465400
N	0.0173692	-0.631433	1.9347594	H	-7.789648	0.7792145	-0.800773
0	-2.817227	-2.537005	-0.672013	C	-9.206387	-1.048119	0.6559724
C	-3.078846	1.0789864	0.6963158	H	-9.797566	-0.506693	-0.089799
H	-4.101137	1.0104568	1.0842192	H	-9.339547	-0.533097	1.6168640
H	-3.110171	1.5305850	-0.295008	H	-9.619650	-2.056060	0.7658065
C	1.3785249	-1.199758	1.8274308	Ni	-0.265692	0.3343313	0.0915547
H	1.3281529	-2.047615	1.1380581	C	4.5555438	-1.656182	-1.923469
H	1.7458051	-1.559608	2.7955997	H	3.9980230	-1.769853	-0.984810
C	-0.766563	2.9793812	-0.916911	H	4.6768224	-0.578091	-2.094073
C	2.5599383	1.5188235	-0.331755	C	5.9777384	-2.267765	-1.717608
H	2.0667465	2.1503591	-1.063901	H	5.8729152	-3.341898	-1.524463
C	-0.834543	1.4681909	-2.681113	H	6.5435343	-2.157683	-2.650518
H	-0.725455	0.4318968	-2.975116	C	6.7188577	-1.605169	-0.579103
C	-0.437324	3.1728195	0.5451753	C	7.4858042	-0.450799	-0.797116
H	0.6464648	3.2997362	0.6293426	C	6.6102424	-2.095302	0.7308226
H	-0.905527	4.0825828	0.9382983	C	8.1326225	0.1925407	0.2610168
C	3.6761487	-0.126788	1.5485610	H	7.5783065	-0.056399	-1.806911
H	4.0835489	-0.796385	2.2986380	C	7.2532031	-1.455411	1.7932774
C	-2.269579	1.9545019	1.6468141	H	6.0162533	-2.987528	0.9172544
H	-2.684172	2.9674669	1.6026101	C	8.0177210	-0.307667	1.5619872
H	-2.398368	1.6122175	2.6737443	H	8.7267994	1.0827995	0.0702321
C	4.4894052	0.7933092	0.8870327	H	7.1597262	-1.853941	2.8005155
H	5.5484033	0.8483160	1.1156896	H	8.5221245	0.1897471	2.3862854
C	-2.421881	-1.097597	1.7891165	H	3.2373267	-3.192249	-2.899773
H	-3.136007	-1.921942	1.7531143	H	4.0153850	-1.984049	-4.078434
H	-2.736262	-0.465234	2.6181893	C	3.8162016	-2.285271	-3.052730
C	-5.025402	-1.130988	-0.361087	Cl	0.2896180	-1.527027	-1.373195
C	0.0121891	1.8060096	2.5494171				
H	-0.300401	2.4949620	3.3446017				
H	1.0402348	2.0488128	2.2836245				
C	-0.071622	0.3597754	3.0544584		747352		
H	0.7348865	0.1866350	3.7738091	1,			
H	-1.005969	0.1976784	3.5920596	S	-1.322744	0.3121659	-0.384923
C	-5.575366	-2.189244	0.3689822	N	-0.764552	-0.079181	1.1843057

SI.TS 24

0	-0.836117	1.6667940	-0.678895	C	-5.237678	-0.712036	-0.578602
N	1.8951949	2.0132647	0.9063829	H	-5.821056	-1.582866	-0.865154
N	3.4216192	-0.617613	0.6140730	C	-5.893709	0.4413983	-0.125405
N	1.2441266	0.5805081	3.1739220	C	-5.120235	1.5617503	0.2234619
N	1.3373708	-1.958616	1.8368293	H	-5.614380	2.4677548	0.5645957
0	-0.924760	-0.818509	-1.234817	C	-7.395004	0.4845248	0.0026263
C	-1.039155	0.9667054	2.2063275	H	-7.867410	-0.354368	-0.517322
H	-2.100515	0.9746710	2.4850923	H	-7.801060	1.4181543	-0.403256
H	-0.788351	1.9265661	1.7548529	H	-7.693499	0.4367220	1.0581647
C	2.4640493	-2.736072	1.2653610	Ni	1.6957543	0.0247827	1.1299044
H	2.1512664	-3.077433	0.2721770	C	2.4826154	-0.193952	-3.098365
H	2.6909733	-3.626859	1.8633474	H	3.0635369	-0.402821	-4.002892
C	1.9019862	2.6924749	2.0760242	H	3.1262915	0.3772798	-2.418818
C	4.4850523	0.1568804	0.2716239	C	1.2209995	0.6153479	-3.452945
H	4.2402979	1.1469514	-0.097389	H	0.6498390	0.0497235	-4.203638
C	1.9146002	2.7107830	-0.242003	H	0.5773714	0.6825260	-2.573083
H	1.9112262	2.1215182	-1.149579	C	1.4884314	2.0138989	-3.973600
C	2.0075071	1.8324580	3.3173860	C	0.7138754	3.0887003	-3.509913
H	3.0640885	1.5658443	3.4331365	C	2.4789123	2.2753881	-4.933237
H	1.7115490	2.3990097	4.2098490	C	0.9206246	4.3857624	-3.987879
C	4.9809082	-2.358910	1.2254231	H	-0.050066	2.9040610	-2.759034
H	5.1312895	-3.366342	1.6030593	C	2.6916761	3.5712177	-5.409896
C	-0.195377	0.7516714	3.4685077	H	3.0904122	1.4619625	-5.315132
H	-0.358359	1.6168431	4.1232133	C	1.9136135	4.6330749	-4.939163
H	-0.553126	-0.120517	4.0174421	H	0.3083310	5.2018927	-3.612030
C	6.0685884	-1.546080	0.8838635	H	3.4662417	3.7515940	-6.151275
H	7.0876377	-1.902731	0.9975332	H	2.0801739	5.6411332	-5.309838
C	-1.108209	-1.474605	1.5882563	H	1.3324266	-2.045367	-3.011363
H	-2.003105	-1.833305	1.0704918	H	1.7288261	-1.350767	-1.414303
H	-1.368161	-1.453498	2.6460136	C	2.0844705	-1.503310	-2.434868
C	-3.105152	0.3671933	-0.317046	Cl	3.5195461	-2.647288	-2.303588
C	1.8740573	-0.566861	3.8627201				
H	1.7209111	-0.531114	4.9514355				
H	2.9482115	-0.498857	3.6729463	TS			
C	1.3625715	-1.911030	3.3290112		2926		
H	2.0048699	-2.705266	3.7250026	1,2			
H	0.3581983	-2.111964	3.7059074	S	2.4190907	-0.946101	-0.541659
C	-3.847403	-0.760817	-0.675943	N	2.1384806	0.6542649	0.0676006
H	-3.348564	-1.651995	-1.041330	0	1.7335836	-1.863992	0.3751061
C	3.6893251	-1.880317	1.0655052	N	-0.590940	-0.171425	1.7701951
C	0.0409611	-2.439636	1.3068792	N	-1.967131	1.8821442	-0.130437
H	-0.220128	-3.427291	1.7149551	N	0.5854820	2.3304002	1.8780116
H	0.1514811	-2.530560	0.2256560	N	0.4666141	2.7739534	-0.945741
C	-3.732353	1.5359142	0.1320100	0	2.0415453	-0.891961	-1.958860
H	-3.145609	2.4113326	0.3889053	C	2.5399271	0.7905303	1.5007271
C	5.8014441	-0.266177	0.3851472	H	3.6310314	0.7633728	1.6034759
H	6.6044996	0.4028227	0.0902849	H	2.1178641	-0.065625	2.0261360
C	1.9061207	4.8017237	0.9253039	C	-0.699448	3.0905964	-1.800265
H	1.9003748	5.8878118	0.9365238	H	-0.692861	2.3976755	-2.649249
C	1.9303512	4.1013439	-0.280432	H	-0.640780	4.1053581	-2.212160
H	1.9456660	4.6128299	-1.236772	C	-0.490253	0.4056757	2.9903483
C	1.8912238	4.0835239	2.1222800	C	-3.089332	1.6338736	0.5790346
H	1.8766227	4.5890957	3.0828019	H	-3.019008	0.8294389	1.3030865

SI.TS 25

C	-0.850926	-1.487881	1.6996036	H	-2.040908	-3.041818	-0.902506
H	-0.898608	-1.907141	0.7045323	C	-4.178843	-2.845249	-0.762778
C	-0.276615	1.9043803	2.9938816	C	-4.297920	-2.801104	0.6355081
H	-1.257083	2.3718017	2.8500772	C	-5.323492	-3.131750	-1.519413
H	0.1081965	2.2373615	3.9661401	C	-5.523579	-3.040278	1.2596468
C	-3.125817	3.6568494	-1.263359	H	-3.420830	-2.575383	1.2373346
H	-3.094786	4.4586440	-1.994642	C	-6.553502	-3.371963	-0.899428
C	2.0252258	2.0908781	2.1266854	H	-5.249440	-3.168055	-2.604336
H	2.2260919	2.0341031	3.2032225	C	-6.657811	-3.327036	0.4930559
H	2.5962771	2.9422054	1.7528489	H	-5.593182	-3.004607	2.3442146
C	-4.292125	3.3765452	-0.545805	H	-7.428607	-3.595003	-1.504961
H	-5.194250	3.9574250	-0.711894	H	-7.612596	-3.515398	0.9772594
C	2.7074895	1.6966374	-0.848520	H	-1.048280	0.4042670	-2.204534
H	3.4898695	1.2806781	-1.487920	H	-0.362346	-1.194315	-1.661039
H	3.1990668	2.4484955	-0.232948	C	-1.232699	-0.631356	-1.973649
C	4.1749124	-1.246582	-0.436369	Cl	-1.240713	-1.291969	-4.119907
C	0.2836414	3.6927488	1.3934802				
H	0.7026778	4.4662348	2.0524345				
H	-0.802432	3.8019178	1.3994286				
C	0.8066289	3.9096020	-0.031805		54635		
H	0.3864051	4.8436780	-0.419108	1,			
H	1.8888828	4.0409650	-0.022331	S	2.3483631	-1.378779	-0.143164
C	4.9794896	-1.019932	-1.558238	N	2.0374717	0.3519166	-0.052368
H	4.5362760	-0.702732	-2.495988	O	1.7840507	-1.939866	1.0905974
C	-1.986506	2.8955714	-1.033157	N	-0.374670	0.2625605	2.1845107
C	1.6279860	2.3098269	-1.735995	N	-1.993128	1.9361457	0.1116710
H	2.0719219	3.1261741	-2.323336	N	0.7263596	2.5682808	1.3051237
H	1.2655193	1.5426264	-2.422597	N	0.2223081	2.1188884	-1.388540
C	4.7240178	-1.679627	0.7749259	O	1.8492909	-1.792344	-1.457816
H	4.0884976	-1.867639	1.6337269	C	2.6448439	0.9259661	1.1896224
C	-4.267702	2.3468576	0.3965677	H	3.7388863	0.9062460	1.1360783
H	-5.143439	2.0996732	0.9878152	H	2.3237122	0.2970298	2.0195595
C	-0.915526	-1.690805	4.0852440	C	-1.071666	2.2170822	-2.106985
H	-1.035341	-2.281337	4.9887861	H	-1.256098	1.2741988	-2.638624
C	-1.028926	-2.282269	2.8276649	H	-1.043415	3.0116885	-2.860339
H	-1.241980	-3.339813	2.7137288	C	-0.128774	1.1945983	3.1397502
C	-0.636360	-0.326484	4.1656483	C	-2.973736	2.0186485	1.0260910
H	-0.532194	0.1715715	5.1242903	H	-2.767297	1.5726955	1.9928167
C	6.3522571	-1.227186	-1.454365	C	-0.648102	-0.997110	2.5694384
H	6.9824681	-1.056563	-2.323141	H	-0.829128	-1.717890	1.7851509
C	6.9339781	-1.655363	-0.250362	C	0.0799006	2.5984375	2.6396975
C	6.1005112	-1.877687	0.8568443	H	-0.899356	3.0745790	2.5315362
H	6.5335739	-2.214488	1.7947653	H	0.6558710	3.1964511	3.3531125
C	8.4185427	-1.901857	-0.165222	C	-3.379644	3.0793722	-1.466553
H	8.9805022	-1.141546	-0.718758	H	-3.500457	3.4864298	-2.465147
H	8.6722097	-2.875462	-0.605215	C	2.2078156	2.3665951	1.4161419
H	8.7663504	-1.906325	0.8724315	H	2.5492893	2.6683203	2.4107339
Ni	-0.184029	1.1185314	0.2429970	H	2.6994932	3.0297225	0.7060616
C	-2.577101	-1.019265	-1.438628	C	-4.396102	3.1693482	-0.517764
H	-3.364228	-0.492627	-1.991623	H	-5.334808	3.6555146	-0.765581
H	-2.643096	-0.663659	-0.403099	C	2.4601062	1.0381242	-1.322694
C	-2.858342	-2.533962	-1.431469	H	3.1193167	0.4007030	-1.913861
H	-2.854627	-2.905413	-2.460164	H	3.0547047	1.9088133	-1.049573

SI.TS 26

C	4.1170893	-1.591647	-0.110469
C	0.4097192	3.7771652	0.4981353
H	0.9931416	4.6408789	0.8379911
H	-0.644862	4.0041124	0.6456673
C	0.6963258	3.4934148	-0.973374
H	0.2076917	4.2503799	-1.592302
H	1.7638142	3.5640723	-1.177409
C	4.8158384	-1.700581	-1.317792
H	4.2875175	-1.681124	-2.264714
C	-2.187378	2.4471302	-1.121002
C	1.2577224	1.4129586	-2.185896
H	1.5967656	2.0405980	-3.019292
H	0.8034202	0.5149608	-2.606005

[^0]: $\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \left.\begin{array}{l}100 \\ f 1\end{array}\right)\end{array}$

[^1]:

[^2]: | 10 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 1 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | - |
 | :--- |

[^3]: $\begin{array}{lllllllllllllllllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

[^4]: 10
 200 $190 \quad 180$ ${ }^{110} \underset{\mathrm{f} 1(\mathrm{ppm})}{100} 90$

[^5]: [1] Lowry, M. S.; Hudson, W. R.; Pascal, R. A., Jr.; Bernhard, S. J. Am. Chem. Soc. 2004, 126, 14129.
 [2]Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.; Parker, S.; Rohl, R.; Bernhard, S.; Malliaras, G. G. J. Am. Chem. Soc. 2004, 126, 2763.
 [3]Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, Jr. R. A.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
 [4] Luo, S.-P.; Mejía, E.; Friedrich, A.; Pazidis, A.; Junge, H.; Surkus, A.-E.; Jackstell, R.; Denurra, S.; Gladiali, S.; Lochbrunner, S.; Beller, M. Angew. Chem. Int. Ed. 2013, 52, 419.
 [5] Call, A.; Codolà, Z.; Acuña-Parés, F.; Lloret-Fillol, J. Chem. Eur. J. 2014, 20, 6171
 [6] Call, A. Thesis Dissertation. Development of structurally and electronically versatile aminopyridine cobalt complexes for photo(electro)reduction of water and ketones. Universitat de Girona, Girona (2016).
 [7] Xie, J.; Zhou, Q.; Li, C.; Wang, W.; Hou, Y.; Zhang, B.; Wang, X. Chem. Commun. 2014, 50, 6520.
 [8] Call, A.; Franco, F.; Kandoth, N.; Fernández, S.; González-Béjar, M.; Pérez-Prieto, J.; Luis, J.M.; LloretFillol, J. Chem. Sci. 2018, 9, 2609.
 [9] Davies, C. J.; Solan, G. A.; Fawcett, J. Polyhedron 2004, 23, 3105.
 [10] Kooistra, T. M.; Hekking, K. F. W.; Knijnenburg, Q.; Bruin, B. d.; Budzelaar, P. H. M.; Gelder, R. d.; Smits, J. M. M.; Gal, A. W. Eur. J. Inorg. Chem. 2003, 648.
 [11] Call, A.; Casadevall, C.; Acuña-Parrés, F.; Casitas, A; Lloret-Fillol, J. Chem. Sci. 2017, 8, 4739
 [12] Fu, L.; Chen, Y.; Liu, Z. Journal of Molecular Catalysis A: Chemical 2015, 408, 91.
 [13] Schlabach, M.; Wehrle, B.; Rumpel, H.; Braun, J.; Scherer, G.; Limbach, H-H. - Berichte der BunsenGesellschaft 1992, 6, 821.
 [14] Jayaseeli, M. I.; Ramdass, A.; Rajagopal, S. Polyhedron 2015, 100, 59.
 [15] Shehata; M.; Khalil; A-G. Journal of Molecular Liquids 2014, 194, 149.

[^6]: [17] V. V. Pavlishchuk, A.W. Addison, Inorg. Chim. Acta 2000, 298, 97-102.
 [18] M. Krejcik, M. Danek, F. Hartl, J. Electroanal. Chem. Interfacial Electrochem. 1991, 317, 179.

[^7]: [22] Lubben, M.; Meetsma, A.; Wilkinson, E. C.;Feringa, B.;Lawrence Que Jr, L. Angew. Chem. Int. Ed. 1995, 34, 1512.

[^8]: [29] Yip, K.-T.; Zhu, N.-Y.; Yang, D. Org. Lett., 2009, 11, 1911.
 [30] a) Toja, E.; Gorini, C.; Zirotti, C.; Barzaghi, F.; Galliani, G. Eur. J. Med. Chem. 1991, 26, 403;
 b) Z. Y. Wei, E. E. Knaus, Org. Prep.Proc. Int. 1993, 25, 255;
 c) P. F. Keusenkothen, M. B. Smith, J. Chem. Soc. Perkin. Trans.1, 1994, 2485.

[^9]: [35] Van der Born, D.; Sewing, C.; Herscheid, J. D. M.; Windhorst, A. D.; Orru, R. V. A.; Vugts, D. J. Angew. Chem. Int. Ed. 2014, 53, 11046.

[^10]: [39] Moteki, S.A.; Usui,A.; Zhang, T; Solorio-Alvarado, C.R.; Maruoka, K. Angew. Chem. Int. Ed. 2013, 52, 1.

[^11]: [40] Mishra, V.; Mishra, H.; Mukherjee, R. Eur. J. Inorg. Chem. 2009, 2973.

[^12]: [1] Gaussian 09, Revision E.01, Frisch et. al. Gaussian, Inc., Wallingford CT, 2009.
 [2] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B, 2009, 113, 6378.
 [3] Grimme, S.; Ehrlich S.; Goerigk, L. J. Comp. Chem. 2011, 32, 1456.
 [4] Y.-R. Luo, Y.-R. Luo, Comprehensive handbook of chemical bond energies, CRC Press, Boca Raton, 2007.

