
Mobile botnets detection based on machine learning
over system calls

Victor G. Turrisi da Costa* and
Sylvio Barbon Junior
Computer Science Department,
Londrina State University,
Londrina, PR, Brazil
Email: victorturrisi@uel.br
Email: barbon@uel.br
*Corresponding author

Rodrigo S. Miani
School of Computer Science,
Federal University of Uberlândia,
Uberlândia, MG, Brazil
Email: miani@ufu.br

Joel J.P.C. Rodrigues
National Institute of Telecommunications (Inatel),
Santa Rita do Sapucaí, MG, Brazil
and
Instituto de Telecomunicações,
Lisboa, Portugal
Email: joeljr@ieee.org

Bruno Bogaz Zarpelão
Computer Science Department,
Londrina State University,
Londrina, PR, Brazil
Email: brunozarpelao@uel.br

Abstract: Mobile botnets are a growing threat to the internet security field. These botnets target
less secure devices with lower computational power, while sometimes taking advantage of
features specific to them, e.g., SMS messages. We propose a host-based approach using machine
learning techniques to detect mobile botnets with features derived from system calls. Patterns
created tend to be shared among applications with similar actions. Therefore, different botnets
are likely to share similar system call patterns. To measure the effectiveness of our approach, a
dataset containing multiple botnets and legitimate applications was created. We carried out three
experiments, namely finding out the best time-window, and performing feature selection and
hyperparameter tuning. A high performance (over 84%) was achieved in multiple metrics across
multiple machine learning algorithms. An in-depth analysis of the features is also presented to
help future work with a solid discussion about system call-based features.

Keywords: mobile botnet detection; feature selection; host-based approach.

Reference to this paper should be made as follows: Turrisi da Costa, V.G., Barbon Jr., S.,
Miani, R.S., Rodrigues, J.J.P.C. and Zarpelão, B.B. (2019) ‘Mobile botnets detection based on
machine learning over system calls’, Int. J. Security and Networks, Vol. 14, No. 2, pp.103–118.

Biographical notes: Victor G. Turrisi da Costa is an MSc student in the Computer Science
Department at Londrina State University (UEL), Brazil. In 2017, he received his BSc in
Computer Science at the same university. His research interests include deep learning, data
stream mining, network security and computer vision.

Sylvio Barbon Junior is an Associate Professor and leader of the research group that studies
machine learning in the Computer Science Department at State University of Londrina (UEL),
Brazil. He received his Master degree in Computational Physics from University of São Paulo

1

(2007), degree in Computational Engineering during 2008 and PhD (2011) from IFSC/USP such
as the Master degree. During 2017, he was a Visiting Researcher at the University of Modena
and Reggio Emilia (Italy) and Università Degli Studi Di Milano (Italy). He is currently a
Professor in postgraduate and graduate programs. His research interests include digital signal
processing, pattern recognition and machine learning.

Rodrigo Sanches Miani received his BS in Mathematics from the Federal University of São
Carlos, Brazil, his MSc and PhD in Electrical Engineering from the University of Campinas,
Brazil. In 2011, he stayed six months as a Visiting PhD student under the supervision of Prof.
Michel Cukier at the Cybersecurity Quantification Lab (CyQL), University of Maryland, USA.
Since 2013, he is a Professor at the School of Computer Science of the Federal University of
Uberlandia. His research interests are related to cybersecurity issues such as intrusion detection
systems, security analytics and human aspects of cyber attacks.

Joel J.P.C. Rodrigues is a Professor at the National Institute of Telecommunications (Inatel),
Brazil and a Senior Researcher at IT, Portugal. He is the leader of the Internet of Things
Research Group (CNPq), Director for Conference Development – IEEE ComSoc Board of
Governors, IEEE Distinguished Lecturer, Technical Activities Committee Chair – IEEE ComSoc
Latin America Region Board, the Past-Chair of the IEEE ComSoc TCs on eHealth and on
Communications Software. He is the Editor-in-Chief of the IJEHMC. He has authored or co-
authored over 700 papers in refereed international journals and conferences, three books, and two
patents.

Bruno Bogaz Zarpelão received, in 2004, his BS in Computer Science from State University of
Londrina, Brazil, and, in 2010, his PhD in Electrical Engineering from University of Campinas,
Brazil. In 2018, he carried out research at post-doctoral level at city, University of London, UK.
He is currently an Assistant Professor at the Computer Science Department of the State
University of Londrina (UEL), Brazil, which he joined in 2012. His research interests include
security analytics, intrusion detection, and internet of things.

This paper is a revised and expanded version of a paper entitled ‘Detecting mobile botnets
through machine learning and system calls analysis’ presented at The Proceedings of the 2017
IEEE International Conference on Communications (ICC), Paris, France, May 2017.

1 Introduction

Botnets are responsible for a number of complex and
coordinated attacks, such as, click-fraud, distributed denial
of service (DDoS) attacks, spam generation, distribution of
multiple types of malware and sensitive information stealing
(Stevanovic and Pedersen, 2014; Saad et al., 2011;
Alparslan et al., 2012; Silva et al., 2013; Mahmoud et al.,
2015). One of the most recent botnets attacks was
conducted by the internet of things (IoT) botnet dubbed as
Mirai, which performed a high-profile DDoS attack that
showed unprecedented traffic volumes (Elzen and Heugten,
2017).

Many traditional devices, e.g., mobile phones,
televisions, cars and home appliances, evolved to have
constant access to the internet as well as connection to
multiple applications, such as social networks and e-mail
applications. The new features and the increase in
computational capabilities on those devices created a realm
of new opportunities for botmasters, allowing the migration
of bots from traditional PC-based botnets to those devices
(Silva et al., 2013). Another interesting point to make is
that, with the increasing of those devices capabilities, users
tend to store more sensitive information, e.g., photos and
videos, SMS messages, and credit card and bank
information, on their mobile devices than on their PCs
(Ariyapala et al., 2016).

Botnets are composed of three main parts: the bots, the
botmaster and the command and control (C&C)
infrastructure. Bots are vulnerable devices compromised by
malicious software called bot malware that work under the
control of a malicious user, the botmaster. Lastly, the C&C
infrastructure is the most critical component of a botnet.
The botmaster uses it to communicate with bots, giving
them instructions and receiving information from them
(Silva et al., 2013).

According to Silva et al. (2013), the C&C infrastructure
can have different architectures: centralised, decentralised,
and hybrid. The first one is more common in older botnets
and acts similar to a simple client-server network, where all
bots communicate with the botmaster through one or a few
servers. The main advantages of this infrastructure are the
communication speed and the ease in monitoring the
infected devices. On the contrary, its main problem is a
central point of failure. Due to this characteristic, this kind
of botnet can be easily disrupted by interrupting the
communication between the bots and the centralised C&C
servers. The decentralised approach uses peer-to-peer (P2P)
protocols to exchange messages among the servers and the
bots, meaning that discovering and neutralising some
members of the P2P network does not compromise the
botnet as a whole. P2P networks are designed around the
idea that members of the network operate both as clients
and servers, suppressing the need for central servers. The

2

hybrid infrastructure combines features from both the
centralised and decentralised architectures.

The different types of architectures (centralised,
decentralised and hybrid) greatly increase the difficulty to
use network-based defence tools against botnets since
network patterns generated by botnets may differ a lot.
Likewise, network-based approaches might not be adequate
for mobile botnets due to the inherent portability of mobile
devices, which will constantly move among different
networks. This implicates in need of protecting the host
itself, even while in transit.

To neutralise the threat imposed by botnets, one of the
approaches is to first use an efficient technique to detect the
bot malware. This approach must combine high detection
rates, with a low false positive rate, while requiring minimal
time to identify the malware. Additionally, it must be
considered whether the approach will be host or network-
based, or combine aspects of both. Host-based approaches
are capable of monitoring particular actions of a single
device. On the other hand, network-based approaches are
often restricted to monitoring the network, which only
contains, when considering data concerning botnets, traces
of the communication between the bot and the C&C
infrastructure and from attacks performed by the bots.

Machine learning (ML) algorithms have been
consistently employed for pattern recognition tasks, which
consist of automatically discovering regularities in data
(Bishop, 2013). Botnet and mobile malware detection
applications are no exceptions. Proposals, such as
Stevanovic and Pedersen (2014), Ariyapala et al. (2016),
Singh et al. (2014) and Chen et al. (2017) have a superior
performance by employing ML techniques than signature-
based solutions. Stevanovic and Pedersen (2014) used
multiple ML algorithms to analyse statistical features
extracted from network flows, obtaining a f-measure of
95.96% when using a random forest. Similarly, in Singh et
al. (2014) presented a distributed solution to pre-process
packets, extract features based on them and, by using a
random forest, to detect malicious traffic, achieving high
detection rates. Likewise, Chen et al. (2017) propose an
algorithm to deal with high imbalance rates (IRs) between
malware and legitimate network flows, obtaining an area
under the curve (AUC) always greater than 90%. In this
sense, ML has proved to be a great tool when identifying
botnets. However, the existing solutions may lack
generalisation power when considering multiple botnets
with diverse behaviours. To address this, we used features
with very low abstraction (directly from system call
invocations) to capture actions that botnets usually do, i.e.,
steal sensitive data and communicate with the C&C
infrastructure. By using features extracted from system
calls, it is possible to analyse the botnet actions as a
collection of multiple sequential low level operations, which
may likely reflect botnets data gathering and
communication behaviours (core actions of those
malwares).

This work proposes an approach for mobile botnet
detection based on features extracted from system calls. The

features are analysed by supervised ML algorithms with the
intent of identifying patterns generated by bot malware. The
main contributions of this paper are the following:

• Eight ML algorithms from different theoretical
perspectives were used and evaluated. Additionally, all
hyperparameters were tuned for a fairer comparison
and to achieve better results.

• Using χ2 and information gain (IG), the dimensionality
of the problem was reduced from 133 to 19 features
without significant impact to predictive performance.

• An analysis of the features importance was performed.
The resulting selected features represent a group of
basic indicators of botnet behaviours that can be used to
detect them in many scenarios.

This paper is an extension of a previous work published by
the same authors (da Costa et al., 2017). The previous work
focused on the possibility of detecting mobile botnets using
system calls, presenting initial results for only two ML
algorithms and a ranking of feature importance. The current
work explores more algorithms and provides an in-depth
analysis of the features used. The experiments carried out
here were designed to evaluate the impact of selecting the
best time-window, performing feature selection and tuning
the ML algorithms. Lastly, this work also provides a
reduced set of features that can be used without
compromising predictive performance.

The rest of the paper is organised as follows: in Section
2, related work is presented, while a comparative relation
between each of them and this work is also established. In
Section 3, the proposed approach and the features used are
presented. Section 4 presents the data gathering process and
details the dataset creation. The performance metrics are
presented in Section 5. Section 6 shows the experiments
performed to evaluate the approach. In Section 7, a
discussion about the features per botnet family is presented.
Section 8 provides a general discussion. Section 9 contains
the conclusion and future work.

2 Related work

The related work is divided into two main groups:

1 PC-based botnets

2 mobile-based botnets.

Given the multiple similarities between them, the
contributions and insights of papers from both groups can
be taken into account when developing a mobile botnet
detection approach. The latter group can be further divided
into two kinds of approach: one that aims to detect mobile
malware, regardless of they are botnets or not; and the other
that focus on detecting only malware related to mobile
botnets.

On the PC-based botnets domain, Saad et al. (2011)
merged different honeynet-generated datasets, containing
traffic from P2P botnets, with a general traffic dataset,

3

which ranged from web browsing to P2P gaming. The
features used by them were partially host-based but mainly
network-based. One of the network-based features was
byte-related and counted the number of bytes per network
flow, which was an inspiration to part of our features. They
obtained almost 98% of recall by using a support vector
machine (SVM) with linear kernel, while also maintaining a
false discovery rate (FDR) around 6%. Nevertheless, their
dataset contained only a small sample of P2P botnets,
resulting in a very narrow range of behaviours across the
botnets.

Stevanovic and Pedersen (2014) proposed a network-
based botnet detection system using features extracted from
network flows. Using the dataset generated by Saad et al.
(2011), they compared different ML algorithms. Their best
result was achieved by using a random forest, obtaining
around 95% of precision and recall. While their results are
very significant, they are also limited by having only two
different botnets in their testing dataset.

With the goal of detecting C&C domains from
HTTP-based botnets, Sakib and Huang (2016) proposed
a framework that combined unsupervised and semi-
supervised ML techniques. They used features based on
HTTP and responses from DNS servers since they claimed
that, by evaluating those features, it would be difficult for a
botnet to mimic a legitimate application. They combined
multiple HTTP and DNS responses datasets and later
evaluated the amount of detected C&C servers. They
achieved a high recall, detecting around 93% of the C&C
domains but with precision around 27%.

Singh et al. (2014) developed a framework which uses
the random forest algorithm to detect P2P botnets. The
proposed framework consists of three parts: one responsible
for pre-processing network packets, the second is
responsible for extracting statistical features from network
flows formed by those packets, and the last one is a
distributed version of the random forest algorithm. This
work had a high prediction performance but the solution
proposed was not employed to mobile botnet detection.

On the mobile-based domain, Burguera et al. (2011)
research focus on using system calls to detect mobile
malware. Their approach applied the k-means algorithm
using as features the number of occurrences of each
different system call. Their experiments revolved around
clustering the system call logs and checking whether the
algorithm was capable of grouping the logs into two
separate groups, one containing malware logs and the other
legitimate application logs. The malicious application
dataset used contained only two real-world malware and
one self-written malware, resulting in a very narrow scope
of possible botnet actions.

To detect HTTP-based mobile botnets, Geiri and Shah
(2016) proposed the analysis of mobile applications with
Logcat files. Logcat is an android-specific logging
application that collects system messages, which consist of
stack traces when the device throws an error, messages
written by the developer and information sent through the
network (Android Studio Development Team, 2017). In

their experiments, by filtering those log files, they were able
to observe leaked information about the device, which
means that the malware was sending information about the
device to the C&C infrastructure, leaving as future work the
automation of the identification process.

Ariyapala et al. (2016) proposed a hybrid (host and
network-based) model to detect mobile botnet applications.
The features employed by them were derived from logs
collected with Android Logger application. This application
collects host-based data from the processes (applications) on
the device, network data from them, e.g., the number of
bytes sent through the interfaces and other statistical data,
and general system information (CPU, battery and memory
statistics). Also, they employed the Wireshark tool to collect
network-based data. After a discretisation process, a
Markov-Chain-based method was used to train a ML
algorithm, leaving the proposed model validation as future
work.

Handling as a binary classification problem, Karim et al.
(2016) focused on recognising a mobile application between
a general malware or a bot malware, ignoring legitimate
applications in the scenario. The applications were
evaluated in a sandbox using host-based features, ranging
from file activity to network operations. Their problem
proved to be linearly separable, since the best performing
algorithm was the logistic regression, achieving close to
100% performance across the metrics. Although the results
are good, the proposed approach was employed to a
relatively small number of malware samples with similar
behaviours, being closely connected to SMS messages.

Yuan et al. (2016) combined various legitimate android
applications and malware to validate an approach to detect
mobile malware with host-based features by deep learning
algorithms. They combined static-analysis and dynamic
features collected by using a sandbox environment.
Static-analysis features were extracted directly from
applications’ source code, while dynamic features were
created based on their actions. By using those two types of
features, they were able to achieve high performance using
a deep belief network (DBN) and a SVM, but, when using
only dynamic features, both algorithms performed poorly.

Another novel solution was proposed by Chen et al.
(2017) by observing the pattern of the network flows
generated by malware. Considering the real life, the authors
stated that the number of malware to legitimate applications
network flows would have an approximated IR of 1 to
4,565, resulting in a highly imbalanced problem. When
traditional ML algorithms were employed, e.g., random
forest, and even including algorithms for imbalanced
problems, their performance was low. However, the authors
proposed a modified version of the imbalanced data
gravitation-based classification (IDGC) algorithm, replacing
its optimisation mechanism for a more lightweight one.
This modified approach was able to achieve AUC greater
than 90%, even when the IR reached 1 to 7,000.

Some works focused on comparing the performance of
different supervised classification algorithms on mobile
malware detection. Narudin et al. (2016) proposed a

4

network-based approach to detect mobile malware. The
proposed approach selected six out of eleven TCP packet
features using the ClassifierSubsetEval method. Then, the
features were extracted and the following classification
algorithms were evaluated: J48, Bayes network, multilayer
perceptron (MLP), k-nearest neighbours (k-NN), and
random forest. The results pointed out that random forest
and Bayes network reached the best performances. Our
work has some differences to the work by Narudin et al.
(2016). We evaluated some classification algorithms that
are not present on their work such as SVM, gradient
boosting and extreme gradient boosting. Besides, our work
aims to detect only botnet malware and relies on host-based
data, while Narudin et al.’s (2016) is based on network data
analysis to detect any type of malware.

Mas’ud et al. (2014) used five different groups of
features and evaluated five classification algorithms over
them. Four groups of features were based on previous work.
The fifth group was generated using χ2 and IG. The five
classification algorithms evaluated were the following:
naive Bayes (NB), k-NN, J48, MLP and random forest.
According to their results, the best accuracy was reached
with the combination of IG, χ2, and MLP. The work by
Mas’ud et al. (2014) has similarities to our work. It also
uses system call features and employs IG and χ2. However,
it is not focused on botnet malware and did not evaluate

some algorithms such as SVM and extreme gradient
boosting.

In Table 1 a summary of all the related work is
presented.

Despite many similarities between PC-based and
mobile-based botnets, there is still a need for studies
focusing on the latter, since the devices from these two
types of botnets operate differently and have different
computational power and capabilities. Also, mobile botnets
steal different kinds of information, which also tend to be
far more available for them (Ariyapala et al., 2016).

The lack of studies focusing on mobile botnet detection,
with the few ones validating their solutions in relatively
simple scenarios, is another key motivating factor. Another
point is that the majority of works proposed a network-
based approach. While this kind of approach scales better
and is more lightweight, it is not feasible to assume that user
devices would be connected all the time to a network
monitoring system, such as an intrusion detection system
(IDS). Likewise, those mobile devices are, as the name
implies, mobile, and will constantly be connecting to
different networks, creating the need for protecting
themselves without relying on network methods. Lastly,
when considering the ML algorithms employed on those
works, some state-of-the-art algorithms were not used, e.g.,
the extreme gradient boosting, which tends to outperform
other algorithms (Chen and Guestrin, 2016).

Table 1 Summary of related work

Work Detection objective Features type Modelling

Saad et al. (2011) P2P PC-based botnets Network and host-based from
flows

Used a SVM with RBF and one with linear kernel

Stevanovic and
Pedersen (2014)

P2P PC-based botnets Network-based from flows Used multiple supervised ML algorithms, achieving
the best performance using a RF

Singh et al. (2014) P2P PC-based botnets Network-based from flows Proposed a large scale distribute system to identify
P2P PC botnets using a RF

Sakib and Huang (2016) C&C domains from
HTTP PC-based botnets

Network-based on HTTP and
DNS servers responses

Proposed a framework that combined unsupervised
and semi-supervised ML techniques

Burguera et al. (2011) Mobile malware Host-based revolving around
system calls

Clustered instances and checked if the resulting
clusters contained only legitimate or only malicious

applications
Mas’ud et al. (2014) Mobile malware Host-based revolving around

system calls
Compared five traditional supervised ML

algorithms over five groups of features
Geiri and Shah (2016) HTTP-based mobile

botnets
Extracted from Logcat files Manual observation of information leak from the

device to the C&C infrastructure
Ariyapala et al. (2016) Mobile botnets Host and network-based Created a theoretical model based on the Markov-

chain algorithm to train a ML algorithm in the
future

Karim et al. (2016) Mobile botnets from
multiple types of

malicious applications

Host-based Multiple supervised ML algorithms, achieving the
best performance with a logistic regression

Yuan et al. (2016) Mobile botnets Static and dynamic analysis
of the applications

Used traditional supervised ML and deep learning

Narudin et al. (2016) Mobile malware Network-based from TCP
packets

Compared traditional supervised ML algorithms

Chen et al. (2017) Mobile malware Network-based from flows Proposed a new ML algorithm to deal with high
imbalanced problems

5

This work proposes a host-based approach to detect mobile
bot malware from legitimate applications that only use
host-based features, which better addresses the mobile
aspect of those devices. Also, the features used here were
selected by using heuristic metrics, such as the IG, resulting
in a small number of features. Multiple ML algorithms with
different theoretical foundations were employed, and their
performances were evaluated on a close-to-reality scenario
containing applications with a broad range of behaviours.
Furthermore, experiments were thoroughly created to
evaluate different aspects of our proposed approach.

Figure 1 Diagram of the proposed approach

3 Proposed approach

In this section, the proposed approach is discussed. Figure 1
is a general representation of the approach to identify
mobile android botnets by using a host-based approach. The
method combines three modules: the monitoring and
acquisition module (1); the instance creation module (2);
and the classification module (3). Module 1 is responsible
for collecting the data from the mobile android device.
Module 2 parses the data and pre-processes it with the intent
to generate the instances for the last module. This
pre-processing consists of grouping the system calls by
time-windows, creating the features for each window, and
performing the feature selection step. Therefore, each
instance is composed of the features corresponding to a
time-window of a given application. The last module is a
ML algorithm responsible for classifying the instances
generated by module 2.

3.1 Botnet detection descriptors

Detecting mobile malware in a host-based approach
involves features from multiple domains. Feizollah et al.
(2015) presented a deep research about features to be used
in mobile malware detection. Figure 2 presents the
taxonomy of those possible features. In the mobile domain,
the most used features from the dynamic branch are related
to system calls, which are defined as a fundamental
interface between applications and the kernel, and the
interaction with the lowest level of abstraction an
application can have with the kernel (Kerrisk, 2016). Our
features are directly linked to system calls, taking advantage
of analysing applications using one of the most generalising
host-based features.

In the proposed approach, at first, it is necessary to
collect data from system calls invoked by applications on an
android device. The device needs to be rooted, so it is
possible to install a tool for tracing the system calls invoked
by the running applications. In an Unix environment, the
most known tool for this purpose is the Strace tool. This

tool is used for application debugging and analysis, being
able to collect the invocations of system calls of a given
process (application, in the mobile domain). It generates a
log file where each line corresponds to a system call
invocation, containing its parameters, return value and a
timestamp. Module 1 continuously monitors the device,
starting Strace calls on a newly created process with user-
level permissions and redirecting its output to a text file.

To create each instance to be used in the classification
module, it is needed to group all system calls invoked
during a time-window period by an application. After that,
module 2 creates features for each window that can be
divided into three types, one being count-based, another
byte-based and the last one is generalising, which represent
actions with a higher abstraction level, e.g., observe the total
number of actions performed. The count-based features are
a mere counting of how many times a system call was
invoked during that period. The final amount of count-based
features depends on how many system calls are invoked
throughout the system monitoring. In our tests, for example,
100 system calls were invoked and 100 count-based features
were created. The byte-based features are more complex. In
network-based approaches (Livadas et al., 2006; Garg et al.,
2013; Stevanovic and Pedersen, 2014), some features are
related to bytes (number of bytes in a network flow, for
example), which granted good performance results on their
experiments. By extending this idea that the volume of
bytes involved in the operations performed by bot malware
are important, byte-based features were generated for the
system calls which the number of bytes would matter to.
These features are presented in Table 2. In these calls, the
return values of the system call invocation represent the
number of bytes handled by the operation.

Figure 2 Taxonomy of features for mobile malware detection
(see online version for colours)

Source: Adapted from Feizollah et al. (2015)

Based on the system calls presented in Table 2, different
byte-based features were generated. There are 31 byte-based
features, which are classified in the following seven
categories:

1 A count of the total number of bytes involved in all
invocations of a system call.

2 The average of bytes per system call.

3 The standard deviation of bytes per system call.

4 The number of bytes involved in all invocations of all
write-type operations.

6

5 The number of bytes involved in all invocations of all
read-type operations.

6 A ratio between the number of bytes wrote and read,
where values close to
0 represent more bytes involved in read operations,
while high values represent the opposite. Values close
to 1 represent the balance between the application
writing and reading bytes.

7 A ratio between network operations to send and receive
data, working the same way as the write-read ratio.

The third type of features are the most generalising and
contains two features. One that counts the number of
distinct system calls invoked during the time-window, and
the other that counts the total number of system calls
invoked. The combination of the three types of features
proposed resulted in a total of 133 features.

Table 2 System calls involving bytes

Type System call Action

Write write Writes on a file descriptor
writev Writes on multiple file descriptors
pwrite Performs the same action as the

write system call, but with an offset
Read read Reads a file descriptor

pread Performs the same action as the
read system call, but with an offset

Network
operations

sendto Sends bytes through a socket
sendmsg Sends action as the sendto system

call
recvfrom Receives bytes through a socket

Directory
operations

geetdents64 Reads entries in a directory

The generated instances are then fed to the module 3, which
is responsible for analysing the data and identifying whether
an instance belongs to a bot malware process. The
classification module is a supervised ML algorithm and, in
this sense, it needs to be previously induced using pre-
labelled instances.

3.2 ML algorithms

Next, a brief overview of the algorithms used here are
provided in this subsection, along with their strong and
weak points and the reason they were chosen.

3.2.1 Decision tree
Decision tree is an algorithm that creates a model (in the
format of a tree) by using a top-down approach. Each inner
node of the tree is a split node representing a feature and a
threshold value chosen as split condition. At the leaves of
the tree, it is possible to do predictions on new instances
based on previously labelled elements that fall on that leaf
(Breiman et al., 1984; Loh, 2008).

To create a tree, at each node of the tree, the best
features are selected according to a heuristic metric. IG and
Gini impurity are the most commonly used, with the first
being more broadly used in recent implementations of
decision trees. After choosing a feature, the node is
branched according to the data type of the feature. If the
feature is categorical, there will be m new branches, where
m is the number of possible values for that feature.
Otherwise, if the feature is numerical, the split factor is two,
and the split condition is in the form of xi ≤ c, where xi is the
value of the chosen feature i in a given instance, and c is the
chosen split point (Breiman et al., 1984; Loh, 2008).

The main advantages of using a decision tree algorithm
are the ease of interpreting trees with low depth and that
decision trees handle nonlinear problems while being a
fairly lightweight algorithm (Loh, 2008).

3.2.2 Gradient boosting machine

The gradient boosting machine is a framework for function
approximation proposed by Friedman (2001). When used as
a ML algorithm, the idea behind it is to learn by
consecutively fitting new models with the goal of providing
a more accurate estimation. This is done by making the
models to be maximally correlated to the negative gradient
of the loss function chosen by analysing the problem, i.e.,
each model will try to address the error of the previous
models. The models normally used are weak learners, given
the idea that, by combining weak learners, it is possible to
create a strong learner (Friedman, 2001; Natekin and Knoll,
2013). In theory, any ML algorithm can be used with the
framework, although in practice weak learners are used in
almost all cases.

The GBM is highly flexible since any function can be
used as the loss function, giving freedom to the researchers
to choose, or even create, a function that best fits any data-
driven task. There is also the possibility of using any weak
learner, such as, decision trees. This algorithm has had
success in real world problems and in ML and data-mining
competitions (Natekin and Knoll, 2013).

3.2.3 K-nearest neighbours

The k-NN is a classical algorithm for classification and
regression problems. For classification, the basic
implementation of the algorithm firstly loads all labelled
data in memory. After that, the distances among all labelled
data points and the unknown instances are computed. Any
distance metric can be used, with the most common one
being the Euclidean distance. The k, an empirical parameter,
closest labelled instances to the unknown instance are
chosen and used to perform the classification, selecting the
mode of the classes of the k elements (Jiang et al., 2007;
Cover and Hart, 2006).

This algorithm does not perform feature selection and
does not handle problems with very high dimensions.
Another problem of the algorithm is the need to properly
scale the features since features with high values would
dominate the computation of the distance values. Being a

7

pretty straightforward and simple algorithm, it was chosen
as to validate the quality of the features in the proposed
framework.

3.2.4 Multilayer perceptron

MLP is a general purpose feed-forward network (a class of
artificial neural networks). This algorithm is flexible,
handles nonlinear problems, and, given enough hidden
layers and neurons, can approximate virtually any function
to any desired accuracy, making it a universal approximator
(Ruck et al., 1990; Sarle, 1994).

The general architecture is composed of an input layer,
one or more hidden layers, and one output layer. The input
layer receives the real feature values and feeds the first layer
of hidden neurons. Then, those neurons do successive
computations with their input values and weights producing
output values that will be fed to the next layer. After all the
hidden layers, the output layer deals with computing the
prediction of the network. The training part of a MLP
consists of computing the gradients and adjusting the
weights at each layer according it. A common and very
successful algorithm for this purpose is the back-
propagation algorithm (Ruck et al., 1990; Sarle, 1994).

The idea behind MLP is to simulate brain connections to
learn models that deal with linear and nonlinear data. One
downside is the wide range of possible parameters
configurations and tuning, making the good parametrisation
of the network difficult and a problem-specific task (Sarle,
1994).

3.2.5 Naive Bayes

The NB algorithm is based on the Bayes’s theorem and it
works by making the naive assumption that all attributes are
independent, given the value of a class label. It computes
the frequency of occurrences of each feature for each class,
and then combines all the frequencies with the frequency of
the classes themselves, resulting in a set of probabilities
(Lewis, 1998; Patil, 2013).

Although it has a naive view of real world problems,
since the independence of attributes is rarely true, it tends to
perform well and fast in these problems. It is also capable of
dealing with missing values. Lastly, this is an on-line
algorithm, where one can feed more instances to an already
induced NB predictor (Lewis, 1998; Patil, 2013).

3.2.6 Random forest

Random forest, which was proposed by Breiman (2001), is
an ensemble algorithm that works by growing a forest of
decision trees and using the trees in conjunction to perform
classification and regression operations. It was also
introduced by Breiman the idea of bagging, a great part of
random forest’s success.

At first, the algorithm samples with replacement from
the training dataset n instances, n being the size of the
dataset. After that, the algorithm samples a number of
features, defined by the user, and builds a decision tree
using the sampled instances and features. This process is
repeated to create the number of trees desired. After
building the forest, it is used to perform classification
through a voting process or perform regression by averaging
the response values of each tree. Since it uses an ensemble
of decision trees, the feature selection capabilities of them
are inherited (Breiman, 2001).

The main advantages of this algorithm are its robustness
to deal with outliers and noise and that it does not overfit to
data (Breiman, 2001). Another interesting point is the
ability to use the examples left out of the sampling process,
called out-of-bag samples, to measure the performance of
the built trees.

3.2.7 Support vector machine

The SVM, as described in Hearst et al. (1998) and Cortes
and Vapnik (1995), is a traditional algorithm for binary
problems (later adapted for multi-class problems). The
objective of the SVM is to create the optimal separation
hyperplane that divides the two classes. The points used at
the boundaries of this hyperplane are called support vectors,
thus naming the algorithm.

When data is not linearly separable, the algorithm can
apply an operation called kernel trick. In that operation, the
input features are mapped to higher dimensional spaces,
based on a kernel function. This mapping has the intent to
make the problem simpler by creating a higher dimensional
space (Hearst et al., 1998; Cortes and Vapnik, 1995).

This algorithm handles high dimensional data, having
guaranteed performance, as it is based on the statistical
learning theory, and the training is very robust and efficient,
being a good generalising algorithm (Hearst et al., 1998;
Cortes and Vapnik, 1995).

3.2.8 Extreme gradient boosting

The extreme gradient boosting (XGBoost) is a variation of
the GBM algorithm that uses only trees. The two main
differences between them rely on modelling details and
speed-focus of the XGBoost. While modelling, the
XGBoost algorithm works with a regularisation parameter,
which makes it perform better on real-world problems than
GBM. When this regularisation parameter is zero, the
optimisation objective falls back to a traditional GBM using
trees (Chen and Guestrin, 2016).

Outperforming the traditional GBM algorithm, while
also being easily parallelisable, the XGBoost algorithm is a
state-of-the-art ML algorithm capable of dealing with
multiple real-world problems and winning multiple
competitions (Chen and Guestrin, 2016).

8

4 Data gathering and dataset creation

A Samsung tablet running android was used to carry out the
experiments. A total of 31 mobile botnet applications
selected across 13 different families were installed in this
device. Table 3 presents the number of applications per
botnet family and Table 4 presents some characteristics of
each botnet family. A total of 88 legitimate applications
were executed during the experiment, divided into core
android apps, e-mail services (Gmail), games, music
streaming applications (Spotify), navigation services
(Google Maps and Waze) and YouTube. The device also
included some preinstalled legitimate applications. Botnet
applications were downloaded from the ISCX android
botnet dataset generated by Abdul Kadir et al. (2015). As
described in da Costa et al. (2017), applications were
installed individually and also collectively, to create a
scenario where they would compete for resources. The
device was monitored during a non-sequential period of
seven days, in which the applications were installed and ran
on the device under different circumstances, i.e., without
any other CPU-intensive application or with many
applications competing for resources, and at different
periods of the day. After collecting the needed data, the
processes related to bot malware were manually labelled,
and the parsed Strace files were created. Manual labelling
was possible since we knew which processes corresponded
to the bot malwares. These parsed Strace files are in the
CSV format where each line corresponds to an invocation of
a system call, containing the timestamp, the system call
invoked and its returned value. After that, we created the

instances used for training and testing in the manner
described before, in Section 3, i.e., grouping system calls
invocations by time windows (1s, 5s and 10s) and extracting
the features. More details about these datasets can be found
in da Costa et al. (2017), as the same datasets created on this
previous work was used. Also, the datasets are publicly
available on the web (http://www.uel.br/grupopesquisa/
secmq/dataset-mobile-botnet.html).

Table 3 Applications per botnet family

Botnet family # of applications

Anserverbot 4

BMaster 2

DroidDream 3

Geinimi 5

MisoSMS 3

NickiSpy 2

NotCompatible 1

PJapps 2

Pletor 1

Rootsmart 1

Sandroid 4

Tigerbot 1

Zitmo 2

Table 4 Characteristics of botnet families

Propagation and attack types

Botnet family C&C infra Backdoor Download Exploit
technique

Infected
SMS

Repackaged
app

Social
engineering

Trojanised
app

Data
theft

Mobile
banking
attack

Ransomware

Anserverbot HTTP X X X
BMaster HTTP X X X
DroidDream HTTP X X X X X
Geinimi HTTP X X X
MisoSMS Email X X X
NickiSpy SMS X X
NotCompatible HTTP X X
PJapps HTTP X X X
Pletor SMS/HTTP X X
Rootsmart HTTP X X X
Sandroid SMS X X X
Tigerbot SMS X X X
Zitmo SMS X X X X X

Source: Adapted from Abdul Kadir et al. (2015)

9

Table 5 Resulting datasets after performing stratified
sampling

Dataset
Training Testing Percentage

of botnet
instances Legitimate Botnet Legitimate Botnet

1s 16,667 2,999 7,143 1,286 0.180
5s 8,105 743 3,475 319 0.092
10s 5,943 392 2,547 168 0.066

5 Performance metrics

To numerically measure the performance of our approach,
the following metrics were employed, as described in
Sokolova and Lapalme (2009):

1 accuracy (ACC): ,TP TNACC
TP FP TN FN

+
=

+ + +
 which

represents the percentage of instances correctly
classified

2 precision (PREC): ,TPPREC
TP FP

=
+

 which

represents the percentage of instances correctly
classified as botnet

3 recall (REC): ,TPREC
TP FN

=
+

 which represents the

effectiveness of the classifier to identify botnet
instances

4 specificity (SPEC): ,TNSPEC
TN FP

=
+

 which

represents the effectiveness of the classifier to identify
legitimate instances

5 area under the curve (AUC):
1 *()
2

AUC recall specificity= + which represents the

capability of the classifier, in percentage, to avoid false
classification

6 false positive rate (FPR): FPR = 1 – specificity.

6 Experiments

To perform the experiments, we first divided the three
datasets (one for each time-window) into training and
testing by randomly selecting instances while maintaining
the same botnet-legitimate ratio in the training and testing
datasets. The class distributions of the resulting datasets as
well as the amount of instances are presented in Table 5.

6.1 Experiment 1

The goal of the first experiment was to select the best time-
window, favouring a smaller and better performing window.
To do so, a RF with default hyperparameters (1,000 trees)
was induced on the training dataset and evaluated on the test

dataset. We only used the RF as it is not so highly
dependable on hyperparameter tuning as a MLP and yields a
high predictive performance.

In Table 6 the performance metrics for each time-
window are presented and Tables 7, 8 and 9 present their
respective confusion matrices.

At first, it is possible to see an increase in accuracy
proportionally to the time-window. However, this came at
the cost of reducing recall. When designing solutions to
detect malware applications, a balance between detecting
the majority of malwares while not classifying many
legitimate instances as botnet is needed. In this sense, it is
better to maximise both metrics. Although there is an
increase in FPR, it is minimal, when compared to the high
decrease in recall, of around 10%. So, while maximising
performance and striving to select the smallest possible
time-window, the best value is 1s.

Table 6 Performance metrics achieved by the RF for each
time-window

Dataset ACC PREC REC SPEC AUC FPR

1s 0.962 0.964 0.784 0.995 0.889 0.005
5s 0.976 0.945 0.755 0.996 0.875 0.004
10s 0.979 0.982 0.678 0.999 0.839 0.001

Table 7 Confusion matrix using a time-window of 1 second

Real/predicted Legitimate Botnet

Legitimate 7,106 38
Botnet 278 1,008

Table 8 Confusion matrix using a time-window of 5 seconds

Real/predicted Legitimate Botnet

Legitimate 3,461 14
Botnet 78 241

Table 9 Confusion matrix using a time-window of 10 seconds

Real/predicted Legitimate Botnet

Legitimate 2,545 2
Botnet 54 114

6.2 Experiment 2

After selecting the best performing time-window, a feature
selection process was employed considering only datasets
for the 1 second window. Using the training dataset, the
features were ranked using two heuristic metrics that
measure the importance of a feature in our classification
problem: IG and χ(chi)2.

IG is a metric that computes the amount of knowledge
gained about a problem related to a given feature. At first, to
compute the IG of a feature c, it is necessary to find all
possible split values for that feature. After that, for each
possible split value v, the original dataset T is divided into

10

two, one containing the instances where, for the feature c, it
has a value less or equal to v, and the other where the value
is greater than v. The entropy of each sub-dataset S is
computed using:

2
1

(,) log
J

i

H S c fi fi
=

= −∑ (1)

where fi is the probability of randomly picking an element
with the class i in the sub-dataset S and J is the total number
of classes in the problem, in our case, two (botnet or
legitimate instance).

Then, the weighted average entropy of the entropy of all
sub-datasets resulting from the split, where the datasets are
numbered from 1 to D, is computed by applying the
following:

() ()
1

1(,) ,
()

D

i i
i

H T c H S c μ S
μ T =

= ∑ (2)

where μ(X) is the size of a X dataset.
The IG is calculated by the difference between the

entropy of the dataset T and the entropy of T related to the
feature c:

(,) () (,)IG T c H T H T c= − (3)

After testing all the possible split values, the highest IG will
be assigned as the IG of that feature c.

The χ2 is a statistical metric that measures the
dependence between a given feature f and whether an
instance was generated from a botnet application or a
legitimate application. By verifying this dependence, it is
possible to rank the more dependent and statistically better
features.

To select the features, the values of IG and χ2 were first
scaled from 0 to 1 separately. This is done by applying the
following function to both separated ranks:

min()
max() min()scaled

X XX
X X
−

=
−

(4)

where X is the set of all IG or χ2 values.
Then, an empirical threshold was applied to each metric,

removing features with the importance value lower than the
threshold. Two sets of selected features were generated, one
per metric. After that, a full-join operation was performed
on the sets, meaning that features remaining in the IG, χ2 or
both sets were selected. The threshold value was varied
between 0.1 and 0.9 in steps of 0.1.

Considering each threshold value separately, a RF was
induced in the training dataset and evaluated in the test
dataset using only the remaining features according to each
threshold value. The performance metrics obtained are
presented in Figure 3.

Table 10 Rank of selected features using a 0.5 threshold ordered by average χ2 and IG

Feature Details Scaled χ2 Scaled IG Average

1 send_receive_ratiob Ratio between bytes sent and received. 0.545 0.144 0.344
2 recvfrom_bytes_avgb Average bytes received by recvfrom system call. 0.669 0.114 0.391
3 ioctla Manipulates underlying device for input/output

operations.
0.553 0.353 0.453

4 gettida Get the threads ID. 0.603 0.406 0.504
5 accessa Check if the caller can access a file. 0.819 0.320 0.569
6 fstat64a Get information about a file. 0.860 0.360 0.610
7 closea Closes a file descriptor. 0.864 0.367 0.615
8 gettimeofdaya Get the current time. 0.815 0.655 0.735
9 opena Opens a file descriptor. 1.000 0.472 0.736
10 getpida Get process ID. 0.828 0.700 0.764
11 getuid32a Get user ID. 0.845 0.757 0.801
12 read_bytes_sdb Standard deviation of bytes in read system call. 0.886 0.803 0.844
13 epoll_waita Waits for an event of the event poll. 0.883 0.823 0.853
14 read_bytes_avgb Average of bytes in read system call. 0.898 0.828 0.863
15 reada Read bytes from a file descriptor. 0.943 0.911 0.927
16 total_syscallsc Number of different system calls invoked. 0.930 0.939 0.934
17 clock_gettimea Get time of a specific clock. 0.958 0.945 0.951
18 total_readb Amount of bytes read by all

read-type system calls.
0.978 0.996 0.987

19 read_bytesb Amount of bytes read by read system call. 0.979 1.000 0.989

Note: aCount-based features. bByte-based features. cGeneralising features.

11

It is possible to see that there was no impact in removing the
majority of features contained in the dataset (from 133 to 19
features). In this sense, we chose the 0.5 threshold (denoted
by the black dotted line) as the best cutting point, since
there was no reduction in predictive performance.

The 19 features selected when using a threshold of 0.5
are presented in Table 10.

From the 19 features:

1 Two features (1 and 2) are related to network
communication, which is particularly relevant for
botnets: this is either related to the communication
between the botnet malware and its C&C infrastructure
or an attack being performed by the bots.
The malware is sending data gathered from the device
or receiving new instructions.

2 Two features (8 and 17) are linked to gathering
information about the current time. First, this can be
associated to botnet malwares going into sleep for an
amount of time to avoid being detected. Likewise, some
botnets only work in specific times of day, mostly
during the night, when the device will likely be on
standby.

3 Ten features are related to gathering information about
the device. An important part of botnets is to identify
vulnerabilities and to steal sensitive information. This is
reflected by the presence of ten features (3, 5, 6, 7, 9,
12, 14, 15, 18 and 19) related to these actions.

4 Four features regarding asynchronous code execution.
The features 4, 10, 11, 13 are related to the botnet
malware performing asynchronous actions.

5 Lastly, one feature (16) that captures the diversity of
actions performed by different applications.

Figure 3 Performance according to threshold value used for
feature selection (see online version for colours)

6.3 Experiment 3

After performing the feature selection step, the ML
algorithms presented previously (in Section 3.2) were
evaluated in the training and testing datasets. A total of
eight algorithms was used, those being: Scikitlearn’s CART,

a kind of decision tree; GBM; k-NN; MLP; NB; RF; SVM;
and XGBoost. The algorithm implementations from the
scikit-learn library (Pedregosa et al., 2011) were used,
except for the XGBoost algorithm. For that, the library
developed by Chen and Guestrin (2016) was used.

Grid search was used to optimise k-NN and CART due
to their low amount of hyperparameters. For NB, the default
hyperparameters were used. For the other algorithms, a
random search was employed. Bergstra and Bengio (2012)
provided a theoretical and empirical result that random
search performs the same or outperforms grid or manual
search taking less time to run than both the other strategies.
Note that the algorithms were tuned by performing a ten-
fold cross validation considering only the training dataset
focusing on maximising AUC. In this sense, the training
dataset is divided into ten parts. At the first iteration, the
parts from 1 to 9 are used for training, while part 10 is used
to evaluate the model. Then, at the second iteration, parts 1
to 8 and 10 are used for training, and the model is evaluated
on part 9. This process is repeated until all parts were used
for testing. The hyperparameters selected are the ones that
resulted in the highest mean AUC value after the ten-fold
cross validation. Table 11 shows the hyperparameters
optimised for each algorithm.

Table 11 Hyperparameters optimised for each ML algorithm

Algorithm Hyperparameters Optimisation
strategy

CART Split criterion (Gini or IG);
max depth

Grid search

GBM Max depth; max features when
search for the best split;

learning rate

Random search

k-NN Number of neighbours Grid search
MLP Number layers and neurons per

layer
Random search

NB No hyperparameters Nothing
RF Max depth; max features when

search for the best split; split
criterion

Random search

SVM Kernel (linear or rbf); C
(penalty parameter); class

weight (adjust C according to
class distribution); g (kernel

coefficient for RBF)

Random search

XGBoost Max depth; learning rate Random search

Table 12 contains the performance metrics (ACC, PREC,
REC, SPEC, AUC and FPR) obtained by the tuned
algorithms when trained on the training dataset and
evaluated on the testing dataset. Considering PREC and
SPEC, the best values were obtained by the RF algorithm.
For REC, the SVM outperforms the other algorithms,
followed close by the XGBoost. AUC values are the highest
for GBM, SVM and XGBoost. In general, ensemble
algorithms (GBM, RF and XGBoost) and SVM outperforms
the other algorithms across different metrics.

12

Table 12 Performance metrics for each ML algorithm

Algorithm ACC PREC REC SPEC AUC FPR

CART 0.945 0.927 0.696 0.990 0.843 0.009
GBM 0.959 0.927 0.793 0.988 0.891 0.012
k-NN 0.948 0.919 0.722 0.988 0.855 0.012
MLP 0.945 0.916 0.708 0.988 0.848 0.012
NB 0.795 0.369 0.481 0.851 0.666 0.149
RF 0.959 0.964 0.760 0.994 0.877 0.006
SVM 0.927 0.733 0.821 0.946 0.883 0.054
XGBoost 0.961 0.938 0.801 0.990 0.896 0.010

Lastly, the algorithms provide the probability of each
instance being legitimate or botnet. However, by default,
algorithms consider a 0.5 threshold, meaning that, when an
instance has more than 0.5 of probability of being botnet it
is classified as such. Since the class distributions are
imbalanced for the dataset used, the threshold applied to the
probabilities was also tuned for each algorithm using a
random search with the same ten-fold cross validation
strategy considering only the training dataset and striking
for a balance between precision and recall.

Table 13 presents the performance metrics for the
algorithms after tuning the probability threshold. Although
the ACC values for the algorithms decreased, PREC and
REC are more balanced. In this sense, although the majority
algorithms classify more legitimate instances as being
botnet (i.e., higher FPR), more botnet instances are being
detected, which is highly desired. Generaly, algorithms
traded a similar amount of PREC for an increase in REC.
However, considering that high values for both metrics are
desirable, the trade-off is beneficial.

Table 13 Performance metrics for each ML algorithm after
tuning the probability threshold

Algorithm ACC PREC REC SPEC AUC FPR

CART 0.936 0.795 0.782 0.963 0.873 0.037
GBM 0.958 0.880 0.842 0.979 0.910 0.020
k-NN 0.946 0.850 0.791 0.974 0.883 0.026
MLP 0.943 0.831 0.789 0.971 0.880 0.029
NB 0.775 0.339 0.497 0.825 0.661 0.175
RF 0.960 0.889 0.842 0.981 0.911 0.019
SVM 0.945 0.869 0.752 0.979 0.866 0.021
XGBoost 0.958 0.877 0.849 0.978 0.913 0.022

7 Features by botnet family
Our original problem was to detect whether an instance was
legitimate or botnet. However, to perform a deeper feature
analysis of which features are more important to identify an
specific botnet family, we changed our classification
problem. For each botnet family, a dataset was created,
where the label of instances belonging to that botnet family
is 1 and all the other instances (legitimate instances or from
a different botnet) have a label 0.

For each dataset, we calculated the χ2 and IG of all
features. After that, two heat maps were generated using the
importance factor metric. The y-axis of the heat map
represents the botnet families, and the x-axis represents the
features that have higher importance value than the
threshold. The colour of each block is related to the
importance of the feature and botnet family, where darker
colours represent higher importance values, in contrast to
brighter colours, which represent less important features.

Two heatmaps were created, one for IG (Figure 5) and
another for χ2 (Figure 4) considering the 19 features selected
by the 0.5 threshold. The y-axis corresponds to the botnet
family while the x-axis to the feature (ranked by worst to
best when trying to identify whether or not an application is
a botnet). First, let us consider only χ2. When trying to
identify botnet applications from an specific family, the
importance of the features gettimeofday, getpid, getuid32,
epoll_wait, read, total_syscalls, clock_gettime, total_read
and read_bytes is very high and the same. Read_bytes_sd
and read_bytes_avg are more important when trying to
identify some botnet families, e.g., Anserver, Bmaster,
Geinimi, Sandroid and Tigerbot. However, both features as
well as open have low importance factor. This means that,
when trying to classify an application as legitimate or
botnet, these features are important, but when trying to
identify a specific type of botnet, they do not help since they
reflect a behaviour shared by all botnets. To some scale, this
also happens for the remaining features, since they were
selected when the classification problem was to detect
botnet applications, but had importance values around 0.2–
0.4 when identifying a specific botnet family. Considering
IG, the patterns in the importance factors are very similar,
with the only difference being that IG assigns features with
lower importance values.

Figure 4 Heatmap of importance factor using χ2 of the features
selected using a threshold of
0.5 by botnet family

8 General discussion

This work focused on addressing the main weak points of
the host-based approaches in Burguera et al. (2011), Geiri
and Shah (2016), Ariyapala et al. (2016) and Karim et al.
(2016), while also proposing the use of byte-based features,

13

similarly to network-based approaches. Burguera et al.
(2011) used the same count-based features as ours, but they
were used in conjunction with an unsupervised ML
approach and their work needed a post analysis by a
specialist. Both Geiri and Shah (2016) and Ariyapala et al.
(2016) suggested a modelling approach, leaving the
detection of mobile botnets for future work. Karim et al.
(2016) did not include any legitimate applications in their
tests. Thus their solution was not evaluated in a close-to-
reality scenario. We addressed this by creating a dataset
composed of multiple botnet and legitimate applications.

This work showed that the RF algorithm had the best
performance among eight algorithms, even considering the
presence of newer algorithms, such as GBM and XGBoost.
It also reported for the first time a set of 19 features
extracted from system calls that when used could keep a
close performance to the original set with 133 features. It is
noteworthy that this analysis took into account algorithms
with optimised hyperparameters. Furthermore the decision
threshold was also tuned to strive for a balance between
high precision and high recall, i.e., detecting most botnet
applications without a high FP value.

Figure 5 Heatmap of importance factor using IG of the features
selected using a threshold of
0.5 by botnet family

The proposed approach is robust to different types of botnet
families, but to maintain performance in the real world, the
classifier will need to be rebuilt when a significant decrease
in performance is noted. This may occur with the creation of
very different botnets, which, for example, might use new
network protocols for communication or exploit new
services. To remove this need, it is also possible to use an
algorithm capable of being updated incrementally.

Finally, the used features have a very low abstraction
level and can capture core behaviours shared by all different
kinds of botnets, having a high generalisation capability.
These behaviours include: gathering data about the device
and its owner, sending data, receiving commands from the
C&C infrastructure, and monitoring time to decide when to
perform malicious actions without the owner of the device
noticing.

9 Conclusions and future work

In this work, a host-based approach to detect mobile botnets
was presented. By analysing the system calls the mobile
applications invoked during a 1s time-window and using
induced ML models, the approach achieved high
performance across different metrics. Another important
point to highlight is that reducing the dimensionality of the
problem, from 133 to 19 features, did not have a significant
negative impact on performance. Also, this granted greater
interpretability of the problem and higher abstraction.
Lastly, an insight of the best performing features was given
in detail, which can be used by future mobile botnet
detection works.

As future work, we will apply data stream mining
techniques, in which there are new challenges, e.g., memory
and computational time limitations, concept drifts, and
novel situations, to identify mobile botnets in real-time.
Also, in short to medium term, we intend to generate an
even more diverse scenario, containing more legitimate and
mobile botnet applications and using multiple mobile
devices.

Acknowledgements

This work was partially supported by the National Funding
from the FCT – Fundação para a Ciência e a Tecnologia
through the UID/EEA/50008/2019 project; by Finep, with
resources from Funttel, Grant No. 01.14.0231.00, under the
Centro de Referênda em Radiocomunicações – CRR project
of the Instituto Nacional de Telecomunicações (Inatel),
Brazil; by Finatel through the Inatel Smart Campus project;
by Brazilian National Council for Research and
Development (CNPq) via Grant No. 309335/2017-5; and by
the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior – Brasil (CAPES) – Finance Code 001.

References
Abdul Kadir, A.F., Stakhanova, N. and Ghorbani, A.A. (2015)

Android Botnets: What URLs are Telling Us, pp.78–91,
Springer International Publishing, Cham [online]
http://dx.doi.org/
10.1007/ 978-3-319-25645-0{_}6.

Alparslan, E., Karahoca, A. and Karahoc, D. (2012) ‘BotNet
detection: enhancing analysis by using data mining
techniques’, in Advances in Data Mining Knowledge
Discovery and Applications, InTech, Chapter 17, [online]
https://doi.org/10.5772/48804.

Android Studio Development Team (2017) Logcat Command-Line
Tool – Android Studio [online] https://developer.android.
com/studio/commandline/logcat.html?hl=en (accessed 8
February 2017).

Ariyapala, K., Do, H.G., Anh, H.N., Ng, W.K. and Conti, M.
(2016) ‘A host and network based intrusion detection for
android smartphones’, Proceedings – IEEE 30th International
Conference on Advanced Information Networking and
Applications Workshops, WAINA, pp.849–854.

14

Bergstra, J. and Bengio, Y. (2012) ‘Random search for hyper-
parameter optimization’, J. Mach. Learn. Res., Vol. 13, No. 1,
pp.281–305 [online] http://dl.acm.org/citation.cfm?id=
2503308.2188395.

Bishop, C.M. (2013) Pattern Recognition and Machine Learning,
Springer, New York.

Breiman, L. (2001) ‘Random forests’, Machine Learning, Vol. 45,
No. 1, pp.5–32.

Breiman, L., Friedman, J., Stone, C. and Olshen, R. (1984)
Classification and Regression Trees, Wadsworth, Monterey.

Burguera, I., Zurutuza, U. and Nadjm-Tehrani, S. (2011)
‘Crowdroid: behavior-based malware detection system for
android’, Proceedings of the 1st ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices – SPSM‘11,
p.15.

Chen, T. and Guestrin, C. (2016) ‘XGBoost: a scalable tree
boosting system’, ACM SIGKDD Conference on Knowledge
Discovery and Data Mining.

Chen, Z., Yan, Q., Han, H., Wang, S., Peng, L., Wang, L. and
Yang, B. (2017) ‘Machine learning based mobile malware
detection using highly imbalanced network traffic’,
Information Sciences, Vol.433–434, pp.346–364.

Cortes, C. and Vapnik, V. (1995) ‘Support-vector networks’,
Machine Learning, Vol. 20, No. 3, pp.273–297.

Cover, T. and Hart, P. (2006) ‘Nearest neighbor pattern
classification’, IEEE Trans. Inf. Theor., Vol. 13, No. 1,
pp.21–27 [online] http://dx.doi.org/10.1109/TIT.1967.
1053964.

da Costa, V.G.T., Barbon, S., Miani, R.S., Rodrigues, J.J.P.C. and
Zarpelao, B.B. (2017) ‘Detecting mobile botnets through
machine learning and system calls analysis’, in 2017 IEEE
International Conference on Communications (ICC), pp.1–6.

Elzen, I.v.d.E. and Heugten, J.v.H. (2017) MSc System and
Network Engineering Techniques for Detecting Compromised
IoT Devices, Tech. Rep., University of Amsterdam.

Feizollah, A., Anuar, N.B., Salleh, R. and Wahab, A.W.A. (2015)
‘A review on feature selection in mobile malware detection’,
Digital Investigation, Vol. 13, pp.22–37.

Friedman, J.H. (2001) ‘Greedy function approximation: a gradient
boosting machine’, The Annals of Statistics, Vol. 29, No. 5,
pp.1189–1232.

Garg, S., Singh, A.K., Sarje, A.K. and Peddoju, S.K. (2013)
‘Behaviour analysis of machine learning algorithms for
detecting P2P botnets’, 2013 15th International Conference
on Advanced Computing Technologies (ICACT), pp.1–4.

Geiri, D. and Shah, M.A. (2016) ‘An enhanced botnet detection
technique for mobile devices using log analysis’, The 22nd
International Conference on Automation and Computing.

Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J. and Scholkopf, B.
(1998) ‘Support vector machines’, IEEE Intelligent Systems
and their Applications, Vol. 13, No. 4, pp.18–28.

Jiang, L., Cai, Z., Wang, D. and Jiang, S. (2007) ‘Survey of
improving K-nearest-neighbor for classification’,
Proceedings – Fourth International Conference on Fuzzy
Systems and Knowledge Discovery, FSKD 2007, Vol. 1,
pp.679–683.

Karim, A., Salleh, R., Khan, M.K., Siddiqa, A. and Choo, K-K.R.
(2016) ‘On the analysis and detection of mobile botnet’,
Journal of Universal Computer Science, Vol. 22, No. 4,
pp.567–588.

Kerrisk, M. (2016) The Linux Man-Pages Project [online]
https://www.kernel.org/doc/man-pages/ (accessed 18 January
2017).

Lewis, D.D. (1998) Naive (Bayes) at Forty: the Independence
Assumption in Information Retrieval, pp.4–15, Springer
Berlin Heidelberg, Berlin, Heidelberg [online] https://doi.org/
10.1007/BFb0026666.

Lin, K-C., Chen, S-Y. and Hung, J.C. (2014) ‘Botnet detection
using support vector machines with artificial fish swarm
algorithm’, Journal of Applied Mathematics, No. 1.

Livadas, C., Walsh, R., Lapsley, D. and Strayer, W.T. (2006)
‘Using machine learning techniques to identify botnet traffic’,
Proceedings – Conference on Local Computer Networks,
LCN,
No. 1, pp.967–974.

Loh, W. (2008) ‘Classification and regression tree methods’,
Encyclopedia of Statistics in Quality and Reliability, Vol. 1,
pp.315–323 [online] http://onlinelibrary.wiley.com/doi/
10.1002/9780470061572.eqr492/full.

Mahmoud, M., Nir, M. and Matrawy, A. (2015) ‘A Survey on
botnet architectures, detection and defences’, International
Journal of Network Security, Vol. 17, No. 3, pp.272–289.

Mas’ud, M.Z., Sahib, S., Abdollah, M.F., Selamat, S.R. and Yusof,
R. (2014) ‘Analysis of features selection and machine
learning classifier in Android malware detection’, in 2014
International Conference on Information Science
Applications (ICISA), pp.1–5.

Narudin, F.A., Feizollah, A., Anuar, N.B. and Gani, A. (2016)
‘Evaluation of machine learning classifiers for mobile
malware detection’, Soft Computing, Vol. 20, No. 1,
pp.343–357 [online] https://doi.org/10.1007/ s00500-014-
1511-6.

Natekin, A. and Knoll, A. (2013) ‘Gradient boosting machines, a
tutorial’, Frontiers in Neurorobotics, Vol. 7, No. 1.

Patil, T.R. (2013) ‘Performance analysis of Naive Bayes and J48
classification algorithm for data classification’, International
Journal of Computer Science and Applications, Vol. 6, No. 2,
pp.256–261, ISSN: 0974-1011.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M. and Duchesnay, E. (2011) ‘Scikit-
learn: machine learning in Python’, Journal of Machine
Learning Research, Vol. 12, No. 1, pp.2825–2830.

Ruck, D.W., Rogers, S.K., Kabrisky, M., Oxley, M.E. and Suter,
B.W. (1990) ‘Letters: the multilayer perceptron as an
approximation to a Bayes optimal discriminant function’,
IEEE Transactions on Neural Networks, Vol. 1, No. 4,
pp.296–298.

Saad, S., Traore, I., Ghorbani, A., Sayed, B., Zhao, D., Lu, W.,
Felix, J. and Hakimian, P. (2011) ‘Detecting P2P botnets
through network behavior analysis and machine learning’,
2011 9th Annual International Conference on Privacy,
Security and Trust, PST, pp.174–180.

Sakib, M.N. and Huang, C.T. (2016) ‘Using anomaly detection
based techniques to detect HTTP-based botnet C&C traffic’,
in 2016 IEEE International Conference on Communications
(ICC), pp.1–6.

Sarle, W.S. (1994) ‘Neural networks and statistical models’,
Proceedings – Fourth International Conference on Fuzzy
Systems and Knowledge Discovery, FSKD 2007, pp.1–13.

15

Silva, S.S.C., Silva, R.M.P., Pinto, R.C.G. and Salles, R.M. (2013)
‘Botnets: a survey’, Computer Networks, Vol. 57, No. 2,
pp.378–403.

Singh, K., Guntuku, S.C., Thakur, A. and Hota, C. (2014) ‘Big
data analytics framework for peer-to-peer botnet detection
using random forests’, Information Sciences, Vol. 278,
pp.488–497 [online] http://dx.doi.org/10.1016/
j.ins.2014.03.066.

Sokolova, M. and Lapalme, G. (2009) ‘A systematic analysis of
performance measures for classification tasks’, Information
Processing and Management, Vol. 45, No. 4, pp.427–437
[online] http://dx.doi.org/10.1016/j-ipm.2009.03.002.

Stevanovic, M. and Pedersen, J.M. (2014) ‘An efficient flow-based
botnet detection using supervised machine learning’, 2014
International Conference on Computing, Networking and
Communications (ICNC), pp.797–801.

Yuan, Z., Lu, Y. and Xue, Y. (2016) ‘DroidDetector: android
malware characterization and detection using deep learning’,
Tsinghua Science and Technology, Vol. 21, No. 1,
pp.114–123.

16

