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Abstract: Mobile botnets are a growing threat to the internet security field. These botnets target 
less secure devices with lower computational power, while sometimes taking advantage of 
features specific to them, e.g., SMS messages. We propose a host-based approach using machine 
learning techniques to detect mobile botnets with features derived from system calls. Patterns 
created tend to be shared among applications with similar actions. Therefore, different botnets 
are likely to share similar system call patterns. To measure the effectiveness of our approach, a 
dataset containing multiple botnets and legitimate applications was created. We carried out three 
experiments, namely finding out the best time-window, and performing feature selection and 
hyperparameter tuning. A high performance (over 84%) was achieved in multiple metrics across 
multiple machine learning algorithms. An in-depth analysis of the features is also presented to 
help future work with a solid discussion about system call-based features. 
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1 Introduction 

Botnets are responsible for a number of complex and 
coordinated attacks, such as, click-fraud, distributed denial 
of service (DDoS) attacks, spam generation, distribution of 
multiple types of malware and sensitive information stealing 
(Stevanovic and Pedersen, 2014; Saad et al., 2011; 
Alparslan et al., 2012; Silva et al., 2013; Mahmoud et al., 
2015). One of the most recent botnets attacks was 
conducted by the internet of things (IoT) botnet dubbed as 
Mirai, which performed a high-profile DDoS attack that 
showed unprecedented traffic volumes (Elzen and Heugten, 
2017). 

Many traditional devices, e.g., mobile phones, 
televisions, cars and home appliances, evolved to have 
constant access to the internet as well as connection to 
multiple applications, such as social networks and e-mail 
applications. The new features and the increase in 
computational capabilities on those devices created a realm 
of new opportunities for botmasters, allowing the migration 
of bots from traditional PC-based botnets to those devices 
(Silva et al., 2013). Another interesting point to make is 
that, with the increasing of those devices capabilities, users 
tend to store more sensitive information, e.g., photos and 
videos, SMS messages, and credit card and bank 
information, on their mobile devices than on their PCs 
(Ariyapala et al., 2016). 

Botnets are composed of three main parts: the bots, the 
botmaster and the command and control (C&C) 
infrastructure. Bots are vulnerable devices compromised by 
malicious software called bot malware that work under the 
control of a malicious user, the botmaster. Lastly, the C&C 
infrastructure is the most critical component of a botnet. 
The botmaster uses it to communicate with bots, giving 
them instructions and receiving information from them 
(Silva et al., 2013). 

According to Silva et al. (2013), the C&C infrastructure 
can have different architectures: centralised, decentralised, 
and hybrid. The first one is more common in older botnets 
and acts similar to a simple client-server network, where all 
bots communicate with the botmaster through one or a few 
servers. The main advantages of this infrastructure are the 
communication speed and the ease in monitoring the 
infected devices. On the contrary, its main problem is a 
central point of failure. Due to this characteristic, this kind 
of botnet can be easily disrupted by interrupting the 
communication between the bots and the centralised C&C 
servers. The decentralised approach uses peer-to-peer (P2P) 
protocols to exchange messages among the servers and the 
bots, meaning that discovering and neutralising some 
members of the P2P network does not compromise the 
botnet as a whole. P2P networks are designed around the 
idea that members of the network operate both as clients 
and servers, suppressing the need for central servers. The 
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hybrid infrastructure combines features from both the 
centralised and decentralised architectures. 

The different types of architectures (centralised, 
decentralised and hybrid) greatly increase the difficulty to 
use network-based defence tools against botnets since 
network patterns generated by botnets may differ a lot. 
Likewise, network-based approaches might not be adequate 
for mobile botnets due to the inherent portability of mobile 
devices, which will constantly move among different 
networks. This implicates in need of protecting the host 
itself, even while in transit. 

To neutralise the threat imposed by botnets, one of the 
approaches is to first use an efficient technique to detect the 
bot malware. This approach must combine high detection 
rates, with a low false positive rate, while requiring minimal 
time to identify the malware. Additionally, it must be 
considered whether the approach will be host or network-
based, or combine aspects of both. Host-based approaches 
are capable of monitoring particular actions of a single 
device. On the other hand, network-based approaches are 
often restricted to monitoring the network, which only 
contains, when considering data concerning botnets, traces 
of the communication between the bot and the C&C 
infrastructure and from attacks performed by the bots. 

Machine learning (ML) algorithms have been 
consistently employed for pattern recognition tasks, which 
consist of automatically discovering regularities in data 
(Bishop, 2013). Botnet and mobile malware detection 
applications are no exceptions. Proposals, such as 
Stevanovic and Pedersen (2014), Ariyapala et al. (2016), 
Singh et al. (2014) and Chen et al. (2017) have a superior 
performance by employing ML techniques than signature-
based solutions. Stevanovic and Pedersen (2014) used 
multiple ML algorithms to analyse statistical features 
extracted from network flows, obtaining a f-measure of 
95.96% when using a random forest. Similarly, in Singh et 
al. (2014) presented a distributed solution to pre-process 
packets, extract features based on them and, by using a 
random forest, to detect malicious traffic, achieving high 
detection rates. Likewise, Chen et al. (2017) propose an 
algorithm to deal with high imbalance rates (IRs) between 
malware and legitimate network flows, obtaining an area 
under the curve (AUC) always greater than 90%. In this 
sense, ML has proved to be a great tool when identifying 
botnets. However, the existing solutions may lack 
generalisation power when considering multiple botnets 
with diverse behaviours. To address this, we used features 
with very low abstraction (directly from system call 
invocations) to capture actions that botnets usually do, i.e., 
steal sensitive data and communicate with the C&C 
infrastructure. By using features extracted from system 
calls, it is possible to analyse the botnet actions as a 
collection of multiple sequential low level operations, which 
may likely reflect botnets data gathering and 
communication behaviours (core actions of those 
malwares). 

This work proposes an approach for mobile botnet 
detection based on features extracted from system calls. The 

features are analysed by supervised ML algorithms with the 
intent of identifying patterns generated by bot malware. The 
main contributions of this paper are the following: 

• Eight ML algorithms from different theoretical
perspectives were used and evaluated. Additionally, all
hyperparameters were tuned for a fairer comparison
and to achieve better results.

• Using χ2 and information gain (IG), the dimensionality
of the problem was reduced from 133 to 19 features
without significant impact to predictive performance.

• An analysis of the features importance was performed.
The resulting selected features represent a group of
basic indicators of botnet behaviours that can be used to
detect them in many scenarios.

This paper is an extension of a previous work published by 
the same authors (da Costa et al., 2017). The previous work 
focused on the possibility of detecting mobile botnets using 
system calls, presenting initial results for only two ML 
algorithms and a ranking of feature importance. The current 
work explores more algorithms and provides an in-depth 
analysis of the features used. The experiments carried out 
here were designed to evaluate the impact of selecting the 
best time-window, performing feature selection and tuning 
the ML algorithms. Lastly, this work also provides a 
reduced set of features that can be used without 
compromising predictive performance. 

The rest of the paper is organised as follows: in Section 
2, related work is presented, while a comparative relation 
between each of them and this work is also established. In 
Section 3, the proposed approach and the features used are 
presented. Section 4 presents the data gathering process and 
details the dataset creation. The performance metrics are 
presented in Section 5. Section 6 shows the experiments 
performed to evaluate the approach. In Section 7, a 
discussion about the features per botnet family is presented. 
Section 8 provides a general discussion. Section 9 contains 
the conclusion and future work. 

2 Related work 

The related work is divided into two main groups: 

1 PC-based botnets 

2 mobile-based botnets. 

Given the multiple similarities between them, the 
contributions and insights of papers from both groups can 
be taken into account when developing a mobile botnet 
detection approach. The latter group can be further divided 
into two kinds of approach: one that aims to detect mobile 
malware, regardless of they are botnets or not; and the other 
that focus on detecting only malware related to mobile 
botnets. 

On the PC-based botnets domain, Saad et al. (2011) 
merged different honeynet-generated datasets, containing 
traffic from P2P botnets, with a general traffic dataset, 
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which ranged from web browsing to P2P gaming. The 
features used by them were partially host-based but mainly 
network-based. One of the network-based features was 
byte-related and counted the number of bytes per network 
flow, which was an inspiration to part of our features. They 
obtained almost 98% of recall by using a support vector 
machine (SVM) with linear kernel, while also maintaining a 
false discovery rate (FDR) around 6%. Nevertheless, their 
dataset contained only a small sample of P2P botnets, 
resulting in a very narrow range of behaviours across the 
botnets. 

Stevanovic and Pedersen (2014) proposed a network-
based botnet detection system using features extracted from 
network flows. Using the dataset generated by Saad et al. 
(2011), they compared different ML algorithms. Their best 
result was achieved by using a random forest, obtaining 
around 95% of precision and recall. While their results are 
very significant, they are also limited by having only two 
different botnets in their testing dataset. 

With the goal of detecting C&C domains from 
HTTP-based botnets, Sakib and Huang (2016) proposed 
a framework that combined unsupervised and semi-
supervised ML techniques. They used features based on 
HTTP and responses from DNS servers since they claimed 
that, by evaluating those features, it would be difficult for a 
botnet to mimic a legitimate application. They combined 
multiple HTTP and DNS responses datasets and later 
evaluated the amount of detected C&C servers. They 
achieved a high recall, detecting around 93% of the C&C 
domains but with precision around 27%. 

Singh et al. (2014) developed a framework which uses 
the random forest algorithm to detect P2P botnets. The 
proposed framework consists of three parts: one responsible 
for pre-processing network packets, the second is 
responsible for extracting statistical features from network 
flows formed by those packets, and the last one is a 
distributed version of the random forest algorithm. This 
work had a high prediction performance but the solution 
proposed was not employed to mobile botnet detection. 

On the mobile-based domain, Burguera et al. (2011) 
research focus on using system calls to detect mobile 
malware. Their approach applied the k-means algorithm 
using as features the number of occurrences of each 
different system call. Their experiments revolved around 
clustering the system call logs and checking whether the 
algorithm was capable of grouping the logs into two 
separate groups, one containing malware logs and the other 
legitimate application logs. The malicious application 
dataset used contained only two real-world malware and 
one self-written malware, resulting in a very narrow scope 
of possible botnet actions. 

To detect HTTP-based mobile botnets, Geiri and Shah 
(2016) proposed the analysis of mobile applications with 
Logcat files. Logcat is an android-specific logging 
application that collects system messages, which consist of 
stack traces when the device throws an error, messages 
written by the developer and information sent through the 
network (Android Studio Development Team, 2017). In 

their experiments, by filtering those log files, they were able 
to observe leaked information about the device, which 
means that the malware was sending information about the 
device to the C&C infrastructure, leaving as future work the 
automation of the identification process. 

Ariyapala et al. (2016) proposed a hybrid (host and 
network-based) model to detect mobile botnet applications. 
The features employed by them were derived from logs 
collected with Android Logger application. This application 
collects host-based data from the processes (applications) on 
the device, network data from them, e.g., the number of 
bytes sent through the interfaces and other statistical data, 
and general system information (CPU, battery and memory 
statistics). Also, they employed the Wireshark tool to collect 
network-based data. After a discretisation process, a 
Markov-Chain-based method was used to train a ML 
algorithm, leaving the proposed model validation as future 
work. 

Handling as a binary classification problem, Karim et al. 
(2016) focused on recognising a mobile application between 
a general malware or a bot malware, ignoring legitimate 
applications in the scenario. The applications were 
evaluated in a sandbox using host-based features, ranging 
from file activity to network operations. Their problem 
proved to be linearly separable, since the best performing 
algorithm was the logistic regression, achieving close to 
100% performance across the metrics. Although the results 
are good, the proposed approach was employed to a 
relatively small number of malware samples with similar 
behaviours, being closely connected to SMS messages. 

Yuan et al. (2016) combined various legitimate android 
applications and malware to validate an approach to detect 
mobile malware with host-based features by deep learning 
algorithms. They combined static-analysis and dynamic 
features collected by using a sandbox environment. 
Static-analysis features were extracted directly from 
applications’ source code, while dynamic features were 
created based on their actions. By using those two types of 
features, they were able to achieve high performance using 
a deep belief network (DBN) and a SVM, but, when using 
only dynamic features, both algorithms performed poorly. 

Another novel solution was proposed by Chen et al. 
(2017) by observing the pattern of the network flows 
generated by malware. Considering the real life, the authors 
stated that the number of malware to legitimate applications 
network flows would have an approximated IR of 1 to 
4,565, resulting in a highly imbalanced problem. When 
traditional ML algorithms were employed, e.g., random 
forest, and even including algorithms for imbalanced 
problems, their performance was low. However, the authors 
proposed a modified version of the imbalanced data 
gravitation-based classification (IDGC) algorithm, replacing 
its optimisation mechanism for a more lightweight one. 
This modified approach was able to achieve AUC greater 
than 90%, even when the IR reached 1 to 7,000. 

Some works focused on comparing the performance of 
different supervised classification algorithms on mobile 
malware detection. Narudin et al. (2016) proposed a 
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network-based approach to detect mobile malware. The 
proposed approach selected six out of eleven TCP packet 
features using the ClassifierSubsetEval method. Then, the 
features were extracted and the following classification 
algorithms were evaluated: J48, Bayes network, multilayer 
perceptron (MLP), k-nearest neighbours (k-NN), and 
random forest. The results pointed out that random forest 
and Bayes network reached the best performances. Our 
work has some differences to the work by Narudin et al. 
(2016). We evaluated some classification algorithms that 
are not present on their work such as SVM, gradient 
boosting and extreme gradient boosting. Besides, our work 
aims to detect only botnet malware and relies on host-based 
data, while Narudin et al.’s (2016) is based on network data 
analysis to detect any type of malware. 

Mas’ud et al. (2014) used five different groups of 
features and evaluated five classification algorithms over 
them. Four groups of features were based on previous work. 
The fifth group was generated using χ2 and IG. The five 
classification algorithms evaluated were the following: 
naive Bayes (NB), k-NN, J48, MLP and random forest. 
According to their results, the best accuracy was reached 
with the combination of IG, χ2, and MLP. The work by 
Mas’ud et al. (2014) has similarities to our work. It also 
uses system call features and employs IG and χ2. However, 
it is not focused on botnet malware and did not evaluate 

some algorithms such as SVM and extreme gradient 
boosting. 

In Table 1 a summary of all the related work is 
presented. 

Despite many similarities between PC-based and 
mobile-based botnets, there is still a need for studies 
focusing on the latter, since the devices from these two 
types of botnets operate differently and have different 
computational power and capabilities. Also, mobile botnets 
steal different kinds of information, which also tend to be 
far more available for them (Ariyapala et al., 2016). 

The lack of studies focusing on mobile botnet detection, 
with the few ones validating their solutions in relatively 
simple scenarios, is another key motivating factor. Another 
point is that the majority of works proposed a network-
based approach. While this kind of approach scales better 
and is more lightweight, it is not feasible to assume that user 
devices would be connected all the time to a network 
monitoring system, such as an intrusion detection system 
(IDS). Likewise, those mobile devices are, as the name 
implies, mobile, and will constantly be connecting to 
different networks, creating the need for protecting 
themselves without relying on network methods. Lastly, 
when considering the ML algorithms employed on those 
works, some state-of-the-art algorithms were not used, e.g., 
the extreme gradient boosting, which tends to outperform 
other algorithms (Chen and Guestrin, 2016). 

Table 1 Summary of related work 

Work Detection objective Features type Modelling 

Saad et al. (2011) P2P PC-based botnets Network and host-based from 
flows 

Used a SVM with RBF and one with linear kernel 

Stevanovic and 
Pedersen (2014) 

P2P PC-based botnets Network-based from flows Used multiple supervised ML algorithms, achieving 
the best performance using a RF 

Singh et al. (2014) P2P PC-based botnets Network-based from flows Proposed a large scale distribute system to identify 
P2P PC botnets using a RF 

Sakib and Huang (2016) C&C domains from 
HTTP PC-based botnets 

Network-based on HTTP and 
DNS servers responses 

Proposed a framework that combined unsupervised 
and semi-supervised ML techniques 

Burguera et al. (2011) Mobile malware Host-based revolving around 
system calls 

Clustered instances and checked if the resulting 
clusters contained only legitimate or only malicious 

applications 
Mas’ud et al. (2014) Mobile malware Host-based revolving around 

system calls 
Compared five traditional supervised ML 

algorithms over five groups of features 
Geiri and Shah (2016) HTTP-based mobile 

botnets 
Extracted from Logcat files Manual observation of information leak from the 

device to the C&C infrastructure 
Ariyapala et al. (2016) Mobile botnets Host and network-based Created a theoretical model based on the Markov-

chain algorithm to train a ML algorithm in the 
future 

Karim et al. (2016) Mobile botnets from 
multiple types of 

malicious applications 

Host-based Multiple supervised ML algorithms, achieving the 
best performance with a logistic regression 

Yuan et al. (2016) Mobile botnets Static and dynamic analysis 
of the applications 

Used traditional supervised ML and deep learning 

Narudin et al. (2016) Mobile malware Network-based from TCP 
packets 

Compared traditional supervised ML algorithms 

Chen et al. (2017) Mobile malware Network-based from flows Proposed a new ML algorithm to deal with high 
imbalanced problems 
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This work proposes a host-based approach to detect mobile 
bot malware from legitimate applications that only use 
host-based features, which better addresses the mobile 
aspect of those devices. Also, the features used here were 
selected by using heuristic metrics, such as the IG, resulting 
in a small number of features. Multiple ML algorithms with 
different theoretical foundations were employed, and their 
performances were evaluated on a close-to-reality scenario 
containing applications with a broad range of behaviours. 
Furthermore, experiments were thoroughly created to 
evaluate different aspects of our proposed approach. 

Figure 1 Diagram of the proposed approach 

3 Proposed approach 

In this section, the proposed approach is discussed. Figure 1 
is a general representation of the approach to identify 
mobile android botnets by using a host-based approach. The 
method combines three modules: the monitoring and 
acquisition module (1); the instance creation module (2); 
and the classification module (3). Module 1 is responsible 
for collecting the data from the mobile android device. 
Module 2 parses the data and pre-processes it with the intent 
to generate the instances for the last module. This 
pre-processing consists of grouping the system calls by 
time-windows, creating the features for each window, and 
performing the feature selection step. Therefore, each 
instance is composed of the features corresponding to a 
time-window of a given application. The last module is a 
ML algorithm responsible for classifying the instances 
generated by module 2. 

3.1 Botnet detection descriptors 

Detecting mobile malware in a host-based approach 
involves features from multiple domains. Feizollah et al. 
(2015) presented a deep research about features to be used 
in mobile malware detection. Figure 2 presents the 
taxonomy of those possible features. In the mobile domain, 
the most used features from the dynamic branch are related 
to system calls, which are defined as a fundamental 
interface between applications and the kernel, and the 
interaction with the lowest level of abstraction an 
application can have with the kernel (Kerrisk, 2016). Our 
features are directly linked to system calls, taking advantage 
of analysing applications using one of the most generalising 
host-based features. 

In the proposed approach, at first, it is necessary to 
collect data from system calls invoked by applications on an 
android device. The device needs to be rooted, so it is 
possible to install a tool for tracing the system calls invoked 
by the running applications. In an Unix environment, the 
most known tool for this purpose is the Strace tool. This 

tool is used for application debugging and analysis, being 
able to collect the invocations of system calls of a given 
process (application, in the mobile domain). It generates a 
log file where each line corresponds to a system call 
invocation, containing its parameters, return value and a 
timestamp. Module 1 continuously monitors the device, 
starting Strace calls on a newly created process with user-
level permissions and redirecting its output to a text file. 

To create each instance to be used in the classification 
module, it is needed to group all system calls invoked 
during a time-window period by an application. After that, 
module 2 creates features for each window that can be 
divided into three types, one being count-based, another 
byte-based and the last one is generalising, which represent 
actions with a higher abstraction level, e.g., observe the total 
number of actions performed. The count-based features are 
a mere counting of how many times a system call was 
invoked during that period. The final amount of count-based 
features depends on how many system calls are invoked 
throughout the system monitoring. In our tests, for example, 
100 system calls were invoked and 100 count-based features 
were created. The byte-based features are more complex. In 
network-based approaches (Livadas et al., 2006; Garg et al., 
2013; Stevanovic and Pedersen, 2014), some features are 
related to bytes (number of bytes in a network flow, for 
example), which granted good performance results on their 
experiments. By extending this idea that the volume of 
bytes involved in the operations performed by bot malware 
are important, byte-based features were generated for the 
system calls which the number of bytes would matter to. 
These features are presented in Table 2. In these calls, the 
return values of the system call invocation represent the 
number of bytes handled by the operation. 

Figure 2 Taxonomy of features for mobile malware detection 
(see online version for colours) 

Source: Adapted from Feizollah et al. (2015) 

Based on the system calls presented in Table 2, different 
byte-based features were generated. There are 31 byte-based 
features, which are classified in the following seven 
categories: 

1 A count of the total number of bytes involved in all 
invocations of a system call. 

2 The average of bytes per system call. 

3 The standard deviation of bytes per system call. 

4 The number of bytes involved in all invocations of all 
write-type operations. 
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5 The number of bytes involved in all invocations of all 
read-type operations. 

6 A ratio between the number of bytes wrote and read, 
where values close to  
0 represent more bytes involved in read operations, 
while high values represent the opposite. Values close 
to 1 represent the balance between the application 
writing and reading bytes. 

7 A ratio between network operations to send and receive 
data, working the same way as the write-read ratio. 

The third type of features are the most generalising and 
contains two features. One that counts the number of 
distinct system calls invoked during the time-window, and 
the other that counts the total number of system calls 
invoked. The combination of the three types of features 
proposed resulted in a total of 133 features. 

Table 2 System calls involving bytes 

Type System call Action 

Write write Writes on a file descriptor 
writev Writes on multiple file descriptors 
pwrite Performs the same action as the 

write system call, but with an offset 
Read read Reads a file descriptor 

pread Performs the same action as the 
read system call, but with an offset 

Network 
operations 

sendto Sends bytes through a socket 
sendmsg Sends action as the sendto system 

call 
recvfrom Receives bytes through a socket 

Directory 
operations 

geetdents64 Reads entries in a directory 

The generated instances are then fed to the module 3, which 
is responsible for analysing the data and identifying whether 
an instance belongs to a bot malware process. The 
classification module is a supervised ML algorithm and, in 
this sense, it needs to be previously induced using pre-
labelled instances. 

3.2 ML algorithms 

Next, a brief overview of the algorithms used here are 
provided in this subsection, along with their strong and 
weak points and the reason they were chosen. 

3.2.1 Decision tree 
Decision tree is an algorithm that creates a model (in the 
format of a tree) by using a top-down approach. Each inner 
node of the tree is a split node representing a feature and a 
threshold value chosen as split condition. At the leaves of 
the tree, it is possible to do predictions on new instances 
based on previously labelled elements that fall on that leaf 
(Breiman et al., 1984; Loh, 2008). 

To create a tree, at each node of the tree, the best 
features are selected according to a heuristic metric. IG and 
Gini impurity are the most commonly used, with the first 
being more broadly used in recent implementations of 
decision trees. After choosing a feature, the node is 
branched according to the data type of the feature. If the 
feature is categorical, there will be m new branches, where 
m is the number of possible values for that feature. 
Otherwise, if the feature is numerical, the split factor is two, 
and the split condition is in the form of xi ≤ c, where xi is the 
value of the chosen feature i in a given instance, and c is the 
chosen split point (Breiman et al., 1984; Loh, 2008). 

The main advantages of using a decision tree algorithm 
are the ease of interpreting trees with low depth and that 
decision trees handle nonlinear problems while being a 
fairly lightweight algorithm (Loh, 2008). 

3.2.2 Gradient boosting machine 

The gradient boosting machine is a framework for function 
approximation proposed by Friedman (2001). When used as 
a ML algorithm, the idea behind it is to learn by 
consecutively fitting new models with the goal of providing 
a more accurate estimation. This is done by making the 
models to be maximally correlated to the negative gradient 
of the loss function chosen by analysing the problem, i.e., 
each model will try to address the error of the previous 
models. The models normally used are weak learners, given 
the idea that, by combining weak learners, it is possible to 
create a strong learner (Friedman, 2001; Natekin and Knoll, 
2013). In theory, any ML algorithm can be used with the 
framework, although in practice weak learners are used in 
almost all cases. 

The GBM is highly flexible since any function can be 
used as the loss function, giving freedom to the researchers 
to choose, or even create, a function that best fits any data-
driven task. There is also the possibility of using any weak 
learner, such as, decision trees. This algorithm has had 
success in real world problems and in ML and data-mining 
competitions (Natekin and Knoll, 2013). 

3.2.3 K-nearest neighbours 

The k-NN is a classical algorithm for classification and 
regression problems. For classification, the basic 
implementation of the algorithm firstly loads all labelled 
data in memory. After that, the distances among all labelled 
data points and the unknown instances are computed. Any 
distance metric can be used, with the most common one 
being the Euclidean distance. The k, an empirical parameter, 
closest labelled instances to the unknown instance are 
chosen and used to perform the classification, selecting the 
mode of the classes of the k elements (Jiang et al., 2007; 
Cover and Hart, 2006). 

This algorithm does not perform feature selection and 
does not handle problems with very high dimensions. 
Another problem of the algorithm is the need to properly 
scale the features since features with high values would 
dominate the computation of the distance values. Being a 
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pretty straightforward and simple algorithm, it was chosen 
as to validate the quality of the features in the proposed 
framework. 

3.2.4 Multilayer perceptron 

MLP is a general purpose feed-forward network (a class of 
artificial neural networks). This algorithm is flexible, 
handles nonlinear problems, and, given enough hidden 
layers and neurons, can approximate virtually any function 
to any desired accuracy, making it a universal approximator 
(Ruck et al., 1990; Sarle, 1994). 

The general architecture is composed of an input layer, 
one or more hidden layers, and one output layer. The input 
layer receives the real feature values and feeds the first layer 
of hidden neurons. Then, those neurons do successive 
computations with their input values and weights producing 
output values that will be fed to the next layer. After all the 
hidden layers, the output layer deals with computing the 
prediction of the network. The training part of a MLP 
consists of computing the gradients and adjusting the 
weights at each layer according it. A common and very 
successful algorithm for this purpose is the back-
propagation algorithm (Ruck et al., 1990; Sarle, 1994). 

The idea behind MLP is to simulate brain connections to 
learn models that deal with linear and nonlinear data. One 
downside is the wide range of possible parameters 
configurations and tuning, making the good parametrisation 
of the network difficult and a problem-specific task (Sarle, 
1994). 

3.2.5 Naive Bayes 

The NB algorithm is based on the Bayes’s theorem and it 
works by making the naive assumption that all attributes are 
independent, given the value of a class label. It computes 
the frequency of occurrences of each feature for each class, 
and then combines all the frequencies with the frequency of 
the classes themselves, resulting in a set of probabilities 
(Lewis, 1998; Patil, 2013). 

Although it has a naive view of real world problems, 
since the independence of attributes is rarely true, it tends to 
perform well and fast in these problems. It is also capable of 
dealing with missing values. Lastly, this is an on-line 
algorithm, where one can feed more instances to an already 
induced NB predictor (Lewis, 1998; Patil, 2013). 

3.2.6 Random forest 

Random forest, which was proposed by Breiman (2001), is 
an ensemble algorithm that works by growing a forest of 
decision trees and using the trees in conjunction to perform 
classification and regression operations. It was also 
introduced by Breiman the idea of bagging, a great part of 
random forest’s success. 

At first, the algorithm samples with replacement from 
the training dataset n instances, n being the size of the 
dataset. After that, the algorithm samples a number of 
features, defined by the user, and builds a decision tree 
using the sampled instances and features. This process is 
repeated to create the number of trees desired. After 
building the forest, it is used to perform classification 
through a voting process or perform regression by averaging 
the response values of each tree. Since it uses an ensemble 
of decision trees, the feature selection capabilities of them 
are inherited (Breiman, 2001). 

The main advantages of this algorithm are its robustness 
to deal with outliers and noise and that it does not overfit to 
data (Breiman, 2001). Another interesting point is the 
ability to use the examples left out of the sampling process, 
called out-of-bag samples, to measure the performance of 
the built trees. 

3.2.7 Support vector machine 

The SVM, as described in Hearst et al. (1998) and Cortes 
and Vapnik (1995), is a traditional algorithm for binary 
problems (later adapted for multi-class problems). The 
objective of the SVM is to create the optimal separation 
hyperplane that divides the two classes. The points used at 
the boundaries of this hyperplane are called support vectors, 
thus naming the algorithm. 

When data is not linearly separable, the algorithm can 
apply an operation called kernel trick. In that operation, the 
input features are mapped to higher dimensional spaces, 
based on a kernel function. This mapping has the intent to 
make the problem simpler by creating a higher dimensional 
space (Hearst et al., 1998; Cortes and Vapnik, 1995). 

This algorithm handles high dimensional data, having 
guaranteed performance, as it is based on the statistical 
learning theory, and the training is very robust and efficient, 
being a good generalising algorithm (Hearst et al., 1998; 
Cortes and Vapnik, 1995). 

3.2.8 Extreme gradient boosting 

The extreme gradient boosting (XGBoost) is a variation of 
the GBM algorithm that uses only trees. The two main 
differences between them rely on modelling details and 
speed-focus of the XGBoost. While modelling, the 
XGBoost algorithm works with a regularisation parameter, 
which makes it perform better on real-world problems than 
GBM. When this regularisation parameter is zero, the 
optimisation objective falls back to a traditional GBM using 
trees (Chen and Guestrin, 2016). 

Outperforming the traditional GBM algorithm, while 
also being easily parallelisable, the XGBoost algorithm is a 
state-of-the-art ML algorithm capable of dealing with 
multiple real-world problems and winning multiple 
competitions (Chen and Guestrin, 2016). 
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4 Data gathering and dataset creation 

A Samsung tablet running android was used to carry out the 
experiments. A total of 31 mobile botnet applications 
selected across 13 different families were installed in this 
device. Table 3 presents the number of applications per 
botnet family and Table 4 presents some characteristics of 
each botnet family. A total of 88 legitimate applications 
were executed during the experiment, divided into core 
android apps, e-mail services (Gmail), games, music 
streaming applications (Spotify), navigation services 
(Google Maps and Waze) and YouTube. The device also 
included some preinstalled legitimate applications. Botnet 
applications were downloaded from the ISCX android 
botnet dataset generated by Abdul Kadir et al. (2015). As 
described in da Costa et al. (2017), applications were 
installed individually and also collectively, to create a 
scenario where they would compete for resources. The 
device was monitored during a non-sequential period of 
seven days, in which the applications were installed and ran 
on the device under different circumstances, i.e., without 
any other CPU-intensive application or with many 
applications competing for resources, and at different 
periods of the day. After collecting the needed data, the 
processes related to bot malware were manually labelled, 
and the parsed Strace files were created. Manual labelling 
was possible since we knew which processes corresponded 
to the bot malwares. These parsed Strace files are in the 
CSV format where each line corresponds to an invocation of 
a system call, containing the timestamp, the system call 
invoked and its returned value. After that, we created the 

instances used for training and testing in the manner 
described before, in Section 3, i.e., grouping system calls 
invocations by time windows (1s, 5s and 10s) and extracting 
the features. More details about these datasets can be found 
in da Costa et al. (2017), as the same datasets created on this 
previous work was used. Also, the datasets are publicly 
available on the web (http://www.uel.br/grupopesquisa/ 
secmq/dataset-mobile-botnet.html). 

Table 3 Applications per botnet family 

Botnet family # of applications 

Anserverbot 4 

BMaster 2 

DroidDream 3 

Geinimi 5 

MisoSMS 3 

NickiSpy 2 

NotCompatible 1 

PJapps 2 

Pletor 1 

Rootsmart 1 

Sandroid 4 

Tigerbot 1 

Zitmo 2 

Table 4 Characteristics of botnet families 

Propagation and attack types 

Botnet family C&C infra Backdoor Download Exploit
technique 

Infected 
SMS 

Repackaged 
app 

Social 
engineering 

Trojanised 
app 

Data 
theft 

Mobile 
banking 
attack 

Ransomware 

Anserverbot HTTP X X X 
BMaster HTTP X X X 
DroidDream HTTP X X X X X 
Geinimi HTTP X X X 
MisoSMS Email X X X 
NickiSpy SMS X X 
NotCompatible HTTP X X 
PJapps HTTP X X X 
Pletor SMS/HTTP X X 
Rootsmart HTTP X X X 
Sandroid SMS X X X 
Tigerbot SMS X X X 
Zitmo SMS X X X X X 

Source: Adapted from Abdul Kadir et al. (2015) 
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Table 5 Resulting datasets after performing stratified 
sampling 

Dataset 
Training Testing Percentage 

of botnet 
instances Legitimate Botnet Legitimate Botnet 

1s 16,667 2,999 7,143 1,286 0.180 
5s 8,105 743 3,475 319 0.092 
10s 5,943 392 2,547 168 0.066 

5 Performance metrics 

To numerically measure the performance of our approach, 
the following metrics were employed, as described in 
Sokolova and Lapalme (2009): 

1 accuracy (ACC): ,TP TNACC
TP FP TN FN

+
=

+ + +
 which 

represents the percentage of instances correctly 
classified 

2 precision (PREC): ,TPPREC
TP FP

=
+

 which 

represents the percentage of instances correctly 
classified as botnet 

3 recall (REC): ,TPREC
TP FN

=
+

 which represents the 

effectiveness of the classifier to identify botnet 
instances 

4 specificity (SPEC): ,TNSPEC
TN FP

=
+

 which 

represents the effectiveness of the classifier to identify 
legitimate instances 

5 area under the curve (AUC): 
1 *( )
2

AUC recall specificity= +  which represents the 

capability of the classifier, in percentage, to avoid false 
classification 

6 false positive rate (FPR): FPR = 1 – specificity. 

6 Experiments 

To perform the experiments, we first divided the three 
datasets (one for each time-window) into training and 
testing by randomly selecting instances while maintaining 
the same botnet-legitimate ratio in the training and testing 
datasets. The class distributions of the resulting datasets as 
well as the amount of instances are presented in Table 5. 

6.1 Experiment 1 

The goal of the first experiment was to select the best time-
window, favouring a smaller and better performing window. 
To do so, a RF with default hyperparameters (1,000 trees) 
was induced on the training dataset and evaluated on the test 

dataset. We only used the RF as it is not so highly 
dependable on hyperparameter tuning as a MLP and yields a 
high predictive performance. 

In Table 6 the performance metrics for each time-
window are presented and Tables 7, 8 and 9 present their 
respective confusion matrices. 

At first, it is possible to see an increase in accuracy 
proportionally to the time-window. However, this came at 
the cost of reducing recall. When designing solutions to 
detect malware applications, a balance between detecting 
the majority of malwares while not classifying many 
legitimate instances as botnet is needed. In this sense, it is 
better to maximise both metrics. Although there is an 
increase in FPR, it is minimal, when compared to the high 
decrease in recall, of around 10%. So, while maximising 
performance and striving to select the smallest possible 
time-window, the best value is 1s. 

Table 6 Performance metrics achieved by the RF for each 
time-window 

Dataset ACC PREC REC SPEC AUC FPR 

1s 0.962 0.964 0.784 0.995 0.889 0.005 
5s 0.976 0.945 0.755 0.996 0.875 0.004 
10s 0.979 0.982 0.678 0.999 0.839 0.001 

Table 7 Confusion matrix using a time-window of 1 second 

Real/predicted Legitimate Botnet 

Legitimate 7,106 38 
Botnet 278 1,008 

Table 8 Confusion matrix using a time-window of 5 seconds 

Real/predicted Legitimate Botnet 

Legitimate 3,461 14 
Botnet 78 241 

Table 9 Confusion matrix using a time-window of 10 seconds 

Real/predicted Legitimate Botnet 

Legitimate 2,545 2 
Botnet 54 114 

6.2 Experiment 2 

After selecting the best performing time-window, a feature 
selection process was employed considering only datasets 
for the 1 second window. Using the training dataset, the 
features were ranked using two heuristic metrics that 
measure the importance of a feature in our classification 
problem: IG and χ(chi)2. 

IG is a metric that computes the amount of knowledge 
gained about a problem related to a given feature. At first, to 
compute the IG of a feature c, it is necessary to find all 
possible split values for that feature. After that, for each 
possible split value v, the original dataset T is divided into 
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two, one containing the instances where, for the feature c, it 
has a value less or equal to v, and the other where the value 
is greater than v. The entropy of each sub-dataset S is 
computed using: 

2
1

( , ) log
J

i

H S c fi fi
=

= −∑ (1) 

where fi is the probability of randomly picking an element 
with the class i in the sub-dataset S and J is the total number 
of classes in the problem, in our case, two (botnet or 
legitimate instance). 

Then, the weighted average entropy of the entropy of all 
sub-datasets resulting from the split, where the datasets are 
numbered from 1 to D, is computed by applying the 
following: 

( ) ( )
1

1( , ) ,
( )

D

i i
i

H T c H S c μ S
μ T =

= ∑ (2) 

where μ(X) is the size of a X dataset. 
The IG is calculated by the difference between the 

entropy of the dataset T and the entropy of T related to the 
feature c: 

( , ) ( ) ( , )IG T c H T H T c= − (3) 

After testing all the possible split values, the highest IG will 
be assigned as the IG of that feature c. 

The χ2 is a statistical metric that measures the 
dependence between a given feature f and whether an 
instance was generated from a botnet application or a 
legitimate application. By verifying this dependence, it is 
possible to rank the more dependent and statistically better 
features. 

To select the features, the values of IG and χ2 were first 
scaled from 0 to 1 separately. This is done by applying the 
following function to both separated ranks: 

min( )
max( ) min( )scaled

X XX
X X
−

=
−

(4) 

where X is the set of all IG or χ2 values. 
Then, an empirical threshold was applied to each metric, 

removing features with the importance value lower than the 
threshold. Two sets of selected features were generated, one 
per metric. After that, a full-join operation was performed 
on the sets, meaning that features remaining in the IG, χ2 or 
both sets were selected. The threshold value was varied 
between 0.1 and 0.9 in steps of 0.1. 

Considering each threshold value separately, a RF was 
induced in the training dataset and evaluated in the test 
dataset using only the remaining features according to each 
threshold value. The performance metrics obtained are 
presented in Figure 3. 

Table 10 Rank of selected features using a 0.5 threshold ordered by average χ2 and IG 

# Feature Details Scaled χ2 Scaled IG Average 

1 send_receive_ratiob Ratio between bytes sent and received. 0.545 0.144 0.344 
2 recvfrom_bytes_avgb Average bytes received by recvfrom system call. 0.669 0.114 0.391 
3 ioctla Manipulates underlying device for input/output 

operations. 
0.553 0.353 0.453 

4 gettida Get the threads ID. 0.603 0.406 0.504 
5 accessa Check if the caller can access a file. 0.819 0.320 0.569 
6 fstat64a Get information about a file. 0.860 0.360 0.610 
7 closea Closes a file descriptor. 0.864 0.367 0.615 
8 gettimeofdaya Get the current time. 0.815 0.655 0.735 
9 opena Opens a file descriptor. 1.000 0.472 0.736 
10 getpida Get process ID. 0.828 0.700 0.764 
11 getuid32a Get user ID. 0.845 0.757 0.801 
12 read_bytes_sdb Standard deviation of bytes in read system call. 0.886 0.803 0.844 
13 epoll_waita Waits for an event of the event poll. 0.883 0.823 0.853 
14 read_bytes_avgb Average of bytes in read system call. 0.898 0.828 0.863 
15 reada Read bytes from a file descriptor. 0.943 0.911 0.927 
16 total_syscallsc Number of different system calls invoked. 0.930 0.939 0.934 
17 clock_gettimea Get time of a specific clock. 0.958 0.945 0.951 
18 total_readb Amount of bytes read by all  

read-type system calls. 
0.978 0.996 0.987 

19 read_bytesb Amount of bytes read by read system call. 0.979 1.000 0.989 

Note: aCount-based features. bByte-based features. cGeneralising features. 
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It is possible to see that there was no impact in removing the 
majority of features contained in the dataset (from 133 to 19 
features). In this sense, we chose the 0.5 threshold (denoted 
by the black dotted line) as the best cutting point, since 
there was no reduction in predictive performance. 

The 19 features selected when using a threshold of 0.5 
are presented in Table 10. 

From the 19 features: 

1 Two features (1 and 2) are related to network 
communication, which is particularly relevant for 
botnets: this is either related to the communication 
between the botnet malware and its C&C infrastructure 
or an attack being performed by the bots.  
The malware is sending data gathered from the device 
or receiving new instructions. 

2 Two features (8 and 17) are linked to gathering 
information about the current time. First, this can be 
associated to botnet malwares going into sleep for an 
amount of time to avoid being detected. Likewise, some 
botnets only work in specific times of day, mostly 
during the night, when the device will likely be on 
standby. 

3 Ten features are related to gathering information about 
the device. An important part of botnets is to identify 
vulnerabilities and to steal sensitive information. This is 
reflected by the presence of ten features (3, 5, 6, 7, 9, 
12, 14, 15, 18 and 19) related to these actions. 

4 Four features regarding asynchronous code execution. 
The features 4, 10, 11, 13 are related to the botnet 
malware performing asynchronous actions. 

5 Lastly, one feature (16) that captures the diversity of 
actions performed by different applications. 

Figure 3 Performance according to threshold value used for 
feature selection (see online version for colours) 

6.3 Experiment 3 

After performing the feature selection step, the ML 
algorithms presented previously (in Section 3.2) were 
evaluated in the training and testing datasets. A total of 
eight algorithms was used, those being: Scikitlearn’s CART, 

a kind of decision tree; GBM; k-NN; MLP; NB; RF; SVM; 
and XGBoost. The algorithm implementations from the 
scikit-learn library (Pedregosa et al., 2011) were used, 
except for the XGBoost algorithm. For that, the library 
developed by Chen and Guestrin (2016) was used. 

Grid search was used to optimise k-NN and CART due 
to their low amount of hyperparameters. For NB, the default 
hyperparameters were used. For the other algorithms, a 
random search was employed. Bergstra and Bengio (2012) 
provided a theoretical and empirical result that random 
search performs the same or outperforms grid or manual 
search taking less time to run than both the other strategies. 
Note that the algorithms were tuned by performing a ten-
fold cross validation considering only the training dataset 
focusing on maximising AUC. In this sense, the training 
dataset is divided into ten parts. At the first iteration, the 
parts from 1 to 9 are used for training, while part 10 is used 
to evaluate the model. Then, at the second iteration, parts 1 
to 8 and 10 are used for training, and the model is evaluated 
on part 9. This process is repeated until all parts were used 
for testing. The hyperparameters selected are the ones that 
resulted in the highest mean AUC value after the ten-fold 
cross validation. Table 11 shows the hyperparameters 
optimised for each algorithm. 

Table 11 Hyperparameters optimised for each ML algorithm 

Algorithm Hyperparameters Optimisation 
strategy 

CART Split criterion (Gini or IG); 
max depth 

Grid search 

GBM Max depth; max features when 
search for the best split; 

learning rate 

Random search 

k-NN Number of neighbours Grid search 
MLP Number layers and neurons per 

layer 
Random search 

NB No hyperparameters Nothing 
RF Max depth; max features when 

search for the best split; split 
criterion 

Random search 

SVM Kernel (linear or rbf); C 
(penalty parameter); class 

weight (adjust C according to 
class distribution); g (kernel 

coefficient for RBF) 

Random search 

XGBoost Max depth; learning rate Random search 

Table 12 contains the performance metrics (ACC, PREC, 
REC, SPEC, AUC and FPR) obtained by the tuned 
algorithms when trained on the training dataset and 
evaluated on the testing dataset. Considering PREC and 
SPEC, the best values were obtained by the RF algorithm. 
For REC, the SVM outperforms the other algorithms, 
followed close by the XGBoost. AUC values are the highest 
for GBM, SVM and XGBoost. In general, ensemble 
algorithms (GBM, RF and XGBoost) and SVM outperforms 
the other algorithms across different metrics. 
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Table 12 Performance metrics for each ML algorithm 

Algorithm ACC PREC REC SPEC AUC FPR 

CART 0.945 0.927 0.696 0.990 0.843 0.009 
GBM 0.959 0.927 0.793 0.988 0.891 0.012 
k-NN 0.948 0.919 0.722 0.988 0.855 0.012 
MLP 0.945 0.916 0.708 0.988 0.848 0.012 
NB 0.795 0.369 0.481 0.851 0.666 0.149 
RF 0.959 0.964 0.760 0.994 0.877 0.006 
SVM 0.927 0.733 0.821 0.946 0.883 0.054 
XGBoost 0.961 0.938 0.801 0.990 0.896 0.010 

Lastly, the algorithms provide the probability of each 
instance being legitimate or botnet. However, by default, 
algorithms consider a 0.5 threshold, meaning that, when an 
instance has more than 0.5 of probability of being botnet it 
is classified as such. Since the class distributions are 
imbalanced for the dataset used, the threshold applied to the 
probabilities was also tuned for each algorithm using a 
random search with the same ten-fold cross validation 
strategy considering only the training dataset and striking 
for a balance between precision and recall. 

Table 13 presents the performance metrics for the 
algorithms after tuning the probability threshold. Although 
the ACC values for the algorithms decreased, PREC and 
REC are more balanced. In this sense, although the majority 
algorithms classify more legitimate instances as being 
botnet (i.e., higher FPR), more botnet instances are being 
detected, which is highly desired. Generaly, algorithms 
traded a similar amount of PREC for an increase in REC. 
However, considering that high values for both metrics are 
desirable, the trade-off is beneficial. 

Table 13 Performance metrics for each ML algorithm after 
tuning the probability threshold 

Algorithm ACC PREC REC SPEC AUC FPR 

CART 0.936 0.795 0.782 0.963 0.873 0.037 
GBM 0.958 0.880 0.842 0.979 0.910 0.020 
k-NN 0.946 0.850 0.791 0.974 0.883 0.026 
MLP 0.943 0.831 0.789 0.971 0.880 0.029 
NB 0.775 0.339 0.497 0.825 0.661 0.175 
RF 0.960 0.889 0.842 0.981 0.911 0.019 
SVM 0.945 0.869 0.752 0.979 0.866 0.021 
XGBoost 0.958 0.877 0.849 0.978 0.913 0.022 

7 Features by botnet family 
Our original problem was to detect whether an instance was 
legitimate or botnet. However, to perform a deeper feature 
analysis of which features are more important to identify an 
specific botnet family, we changed our classification 
problem. For each botnet family, a dataset was created, 
where the label of instances belonging to that botnet family 
is 1 and all the other instances (legitimate instances or from 
a different botnet) have a label 0. 

For each dataset, we calculated the χ2 and IG of all 
features. After that, two heat maps were generated using the 
importance factor metric. The y-axis of the heat map 
represents the botnet families, and the x-axis represents the 
features that have higher importance value than the 
threshold. The colour of each block is related to the 
importance of the feature and botnet family, where darker 
colours represent higher importance values, in contrast to 
brighter colours, which represent less important features. 

Two heatmaps were created, one for IG (Figure 5) and 
another for χ2 (Figure 4) considering the 19 features selected 
by the 0.5 threshold. The y-axis corresponds to the botnet 
family while the x-axis to the feature (ranked by worst to 
best when trying to identify whether or not an application is 
a botnet). First, let us consider only χ2. When trying to 
identify botnet applications from an specific family, the 
importance of the features gettimeofday, getpid, getuid32, 
epoll_wait, read, total_syscalls, clock_gettime, total_read 
and read_bytes is very high and the same. Read_bytes_sd 
and read_bytes_avg are more important when trying to 
identify some botnet families, e.g., Anserver, Bmaster, 
Geinimi, Sandroid and Tigerbot. However, both features as 
well as open have low importance factor. This means that, 
when trying to classify an application as legitimate or 
botnet, these features are important, but when trying to 
identify a specific type of botnet, they do not help since they 
reflect a behaviour shared by all botnets. To some scale, this 
also happens for the remaining features, since they were 
selected when the classification problem was to detect 
botnet applications, but had importance values around 0.2–
0.4 when identifying a specific botnet family. Considering 
IG, the patterns in the importance factors are very similar, 
with the only difference being that IG assigns features with 
lower importance values. 

Figure 4 Heatmap of importance factor using χ2 of the features 
selected using a threshold of 
0.5 by botnet family 

8 General discussion 

This work focused on addressing the main weak points of 
the host-based approaches in Burguera et al. (2011), Geiri 
and Shah (2016), Ariyapala et al. (2016) and Karim et al. 
(2016), while also proposing the use of byte-based features, 
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similarly to network-based approaches. Burguera et al. 
(2011) used the same count-based features as ours, but they 
were used in conjunction with an unsupervised ML 
approach and their work needed a post analysis by a 
specialist. Both Geiri and Shah (2016) and Ariyapala et al. 
(2016) suggested a modelling approach, leaving the 
detection of mobile botnets for future work. Karim et al. 
(2016) did not include any legitimate applications in their 
tests. Thus their solution was not evaluated in a close-to-
reality scenario. We addressed this by creating a dataset 
composed of multiple botnet and legitimate applications. 

This work showed that the RF algorithm had the best 
performance among eight algorithms, even considering the 
presence of newer algorithms, such as GBM and XGBoost. 
It also reported for the first time a set of 19 features 
extracted from system calls that when used could keep a 
close performance to the original set with 133 features. It is 
noteworthy that this analysis took into account algorithms 
with optimised hyperparameters. Furthermore the decision 
threshold was also tuned to strive for a balance between 
high precision and high recall, i.e., detecting most botnet 
applications without a high FP value. 

Figure 5 Heatmap of importance factor using IG of the features 
selected using a threshold of 
0.5 by botnet family 

The proposed approach is robust to different types of botnet 
families, but to maintain performance in the real world, the 
classifier will need to be rebuilt when a significant decrease 
in performance is noted. This may occur with the creation of 
very different botnets, which, for example, might use new 
network protocols for communication or exploit new 
services. To remove this need, it is also possible to use an 
algorithm capable of being updated incrementally. 

Finally, the used features have a very low abstraction 
level and can capture core behaviours shared by all different 
kinds of botnets, having a high generalisation capability. 
These behaviours include: gathering data about the device 
and its owner, sending data, receiving commands from the 
C&C infrastructure, and monitoring time to decide when to 
perform malicious actions without the owner of the device 
noticing. 

9 Conclusions and future work 

In this work, a host-based approach to detect mobile botnets 
was presented. By analysing the system calls the mobile 
applications invoked during a 1s time-window and using 
induced ML models, the approach achieved high 
performance across different metrics. Another important 
point to highlight is that reducing the dimensionality of the 
problem, from 133 to 19 features, did not have a significant 
negative impact on performance. Also, this granted greater 
interpretability of the problem and higher abstraction. 
Lastly, an insight of the best performing features was given 
in detail, which can be used by future mobile botnet 
detection works. 

As future work, we will apply data stream mining 
techniques, in which there are new challenges, e.g., memory 
and computational time limitations, concept drifts, and 
novel situations, to identify mobile botnets in real-time. 
Also, in short to medium term, we intend to generate an 
even more diverse scenario, containing more legitimate and 
mobile botnet applications and using multiple mobile 
devices. 
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