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Abstract. We prove quasi-polynomiality for monotone and strictly
monotone orbifold Hurwitz numbers. The second enumerative prob-
lem is also known as enumeration of a special kind of Grothendieck’s
dessins d’enfants or r-hypermaps. These statements answer positively
two conjectures proposed by Do-Karev and Do-Manescu. We also ap-
ply the same method to the usual orbifold Hurwitz numbers and ob-
tain a new proof of the quasi-polynomiality in this case. In the second
part of the paper we show that the property of quasi-polynomiality
is equivalent in all these three cases to the property that the n-point
generating function has a natural representation on the n-th carte-
sian powers of a certain algebraic curve. These representations are
necessary conditions for the Chekhov-Eynard-Orantin topological re-
cursion.
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1 Introduction

This paper is devoted to a combinatorial and analytic study of several kinds of
orbifold Hurwitz numbers. The three kinds of orbifold Hurwitz numbers that we
consider in this paper are the monotone, the strictly monotone, and the usual
ones. Note that the theory of the strictly monotone orbifold Hurwitz numbers
is equivalent to the enumeration of hypermaps on two-dimensional surfaces,
or, in other words, to the enumeration of some special type of Grothendieck’s
dessins d’enfants.
This type of combinatorial objects is important both for purely combinatorial
reasons and also because of the numerous relations that these numbers and
their generating functions have to the intersection theory of the moduli spaces
of curves, matrix models and topological recursion, integrable systems, and
low-dimensional topology. We will not make any attempt to survey this very
rich theory, and we refer the interested reader to [ALS16, BHLM14, BMS00,
DDM17, DK17, DLN16, DM14, DM15, DLPS15, GW14, GGPN11, GGPN13,
GGPN14, Har15, HO15, KZ16, KZ15, MSS13, ZJ02, Zog15] and references
therein.
The Hurwitz numbers of these three types can be efficiently realized as the
vacuum expectations in the semi-infinite wedge formalism. These formulae
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Polynomiality of Monotone Orbifold Hurwitz Numbers 859

will be the starting point for our paper, and we use them as the definitions of
the corresponding Hurwitz numbers. The equivalence with the usual definitions
is established via the character formula, and we refer to [ALS16] for that.
Recall that the Hurwitz numbers that we consider, h◦,r,≤

g;!µ , h◦,r,<
g;!µ , and h◦,r

g;!µ,
depend on a genus parameter g ≥ 0, and a tuple of n ≥ 1 positive integers !µ =
(µ1, . . . , µn). It is a natural combinatorial question how these numbers depend
on the parameters µ1, . . . , µn. We prove in this paper that for 2g − 2 + n > 0
the dependence on the parameters can be described in a very explicit way.
Namely, let us represent any integer a as r[a] + 〈a〉, 0 ≤ 〈a〉 ≤ r − 1, and let
〈!µ〉 := (〈µ1〉, . . . , 〈µn〉). We will use this notation throughout the article. We
prove that there exist polynomials P η

≤, P
η
<, and P η of degree 3g − 3 + n in n

variables, whose coefficients depend on η and also on g and r, such that

h◦,r,≤
g;!µ = P 〈!µ〉

≤ (µ1, . . . , µn) ·
n
∏

i=1

(

µi + [µi]

µi

)

;

h◦,r,<
g;!µ = P 〈!µ〉

< (µ1, . . . , µn) ·
n
∏

i=1

(

µi − 1

[µi]

)

;

h◦,r
g;!µ = P 〈!µ〉(µ1, . . . , µn) ·

n
∏

i=1

µ[µi]
i

[µi]!
.

We call this property quasi-polynomiality. The proof is purely combinatorial
and uses some properties of the analogues of the A-operators of Okounkov and
Panharipande [OP06] in the semi-infinite wedge formalism. This statement was
known for the usual orbifold Hurwitz numbers [BHLM14, DLPS15, DLN16]. In
this case we give a new proof. In the cases of monotone and strictly monotone
orbifold Hurwitz numbers, this property was conjectured by Do and Karev
in [DK17] and Do and Manescu in [DM14], respectively, and no proof was
known.

1.1 Quasi-polynomiality

Let us explain why the property of being quasi-polynomial is of crucial impor-
tance for these Hurwitz numbers, as well as some further results of this paper.
For that, we recall several connections of the Hurwitz theory to other areas of
mathematics.
First of all, there is a connection to the spectral curve topological recursion
in the sense of Chekhov-Eynard-Orantin (CEO). This means that the corre-
sponding Hurwitz numbers can be obtained as the coefficients of some particu-
lar expansion of the correlation differentials defined on the Cartesian products
of some fixed Riemann surface called the spectral curve. These differentials
are produced by the CEO topological recursion procedure from a fairly small
input data. The input data consists of a curve Σ, a symmetric bi-differential
B defined on Σ × Σ with a double pole on the diagonal with biresidue 1, and
two meromorphic functions, x and y, defined on Σ. This allows us to compute
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recursively the correlation differentials. We need one more piece of data — the
variable in which we want to expand the correlation differentials in order to
obtain as coefficients the solutions of the combinatorial problem.
In our cases, the data is the following. The curve Σ is always CP1 in all three
cases. We denote by z a global coordinate on CP1. In the case of CP1 the
bi-differential B(z1, z2) is uniquely determined by its properties and is equal to
dz1dz2/(z1 − z2)2. The functions x and y are the following:

x = z(1− zr), y = zr−1/(zr − 1) in the monotone case;

x = zr−1 + z−1, y = z in the strictly monotone case;

x = log z − zr, y = zr in the usual case.

The correlation differentials obtained by the CEO recursion in these cases
should be expanded

in the variable x near x = 0 in the monotone case;

in the variable x−1 near x = ∞ in the strictly monotone case;

in the variable ex near ex = 0 in the usual case.

The topological recursion is proved in the case of the usual orbifold Hurwitz
numbers in [BHLM14, DLN16], in the case of strictly monotone Hurwitz num-
bers it was conjectured in [DM14] and combinatorially proved in [DOPS18],
based on the original derivation of topological recursion in [CEO06] in the case
of the two-matrix model. In the case of monotone orbifold Hurwitz numbers
only the case r = 1 has been proved in [DDM17], and a general conjecture was
made in [DK17].
The relation between quasi-polynomiality and the topological recursion is the
following. We prove in this paper that a sequence of numbers depending on a tu-
ple (µ1, . . . , µn) can be represented as a polynomial in µ1, . . . , µn times the non-

polynomial factor
∏n

i=1

(

µi+[µi]
µi

)

(respectively,
∏n

i=1

(

µi−1
[µi]

)

,
∏n

i=1 µ
[µi]
i /[µi]!) if

and only if it can be represented as an expansion of a special kind of sym-
metric n-differential on the curve x = z(1 − zr) (respectively, x = zr + z−1,
x = log z − zr) in the variable x (respectively, x−1, ex).
In the case of the usual orbifold Hurwitz numbers it was already known and used
in [DLN16, BHLM14, DLPS15], and, in a slightly different situation, in [SSZ15].
In the case of monotone and strictly monotone orbifold Hurwitz numbers this
equivalence was neither explicitly stated nor proved, though it is implicitly
suggested in a conjectural form in [DK17] for the monotone and in [DM14] for
the strictly monotone cases. Note that since the topological recursion is proved
for the strictly monotone Hurwitz numbers independently [CEO06, DOPS18],
this equivalence implies the quasi-polynomiality as well.
There are also two unstable cases that have to be studied separately: (g, n) =
(0, 1) and (0, 2). In the case (g, n) = (0, 1) (respectively, (g, n) = (0, 2))
the topological recursion requires that the generating function of the corre-
sponding Hurwitz numbers is given by the expansion of ydx (respectively,
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Polynomiality of Monotone Orbifold Hurwitz Numbers 861

B(z1, z2) − B(x1, x2)). For (g, n) = (0, 1) this property has been proved in
all three cases, in [DK17] for the monotone, in [DM14] for the strictly mono-
tone and in [DLN16, BHLM14] for the usual orbifold Hurwitz numbers. Basi-
cally, such a representation for the (g, n) = (0, 1) generating function is a way
to guess a spectral curve for the corresponding combinatorial problem. For
(g, n) = (0, 2) this property has been proved for strictly monotone and usual
orbifold Hurwitz numbers (indeed, the topological recursion is proved in both
cases), but it was not known for the monotone case. We prove this in appendix
A.
Let us remark that this set of properties (namely, representation of the (0, 1)
generating function as an expansion of ydx, the (0, 2) generating function as
an expansion of B(z1, z2) − B(x1, x2), and the quasi-polynomiality property
for 2g − 2 + n > 0) is required for the approach to the topological recursion
in [DMSS13]. Once these properties are established, the topological recursion
appears to be a Laplace transform of some much easier recursion property of
the corresponding combinatorial problem.
The other important connection for all three Hurwitz theories that we consider
here is their relations to the intersection theory of the moduli spaces of curves.
It appears that the coefficients of the polynomials in the quasi-polynomial rep-
resentation of the n-point functions can be represented in terms of some inter-
section numbers on the moduli spaces of curves. This statement is proved for
usual Hurwitz numbers for r = 1 in [ELSV01] and for any r in [JPT11].
In general, assume we know that being quasi-polynomial is equivalent to being
an expansion of a symmetric differential of certain type. Then in this situation
there is an equivalence between the topological recursion and representation in
terms of the intersection theory of the moduli spaces of curves. The intersection
numbers in this case appear to be the correlators of a certain cohomological
field theory, possibly with a non-flat unit. This point of view on topological
recursion was first suggested by Eynard in [Eyn14] and worked out in detail in
many examples, see e. g. [DOSS14, DKOSS15, SSZ15, LPSZ16].
In particular, the cohomological field theory for the case of the strictly mono-
tone orbifold Hurwitz numbers is described in [DNOPS17]. For the monotone
orbifold Hurwitz numbers the intersection number formula was derived so far
only the case r = 1, see [ALS16, DK17], and it is based on the proof of the
topological recursion in [DDM17].

1.2 Organization of the paper

In section 2 we briefly recall the necessary background on semi-infinite wedge
formalism. In section 3 we review the interplay between symmetric polynomi-
als and Stirling numbers, together with their generating function. In section 4
we define the A-operators and we express the generating series for monotone
and strictly monotone Hurwitz numbers in terms of A-operators acting on the
Fock space. The main result of the paper is stated and proved in section 5.
In section 6 the polynomiality properties are proved to be equivalent to the
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862 R. Kramer, D. Lewański, S. Shadrin

analytic properties that are necessary for the Chekhov-Eynard-Orantin topo-
logical recursion. Finally, in appendix A we perform the computations for the
unstable (0, 1), as an example of the usage of the A-operators, and we prove a
formula relating the (0, 2)-generating function for the monotone orbifold Hur-
witz numbers to the expansion of the Bergman kernel.

1.3 Acknowledgments

We would like to thank A. Alexandrov, N. Do, P. Dunin-Barkowski, J. Harnad,
M. Karev, and A. Popolitov for interesting discussions and very useful remarks.
We also thank the anonymous referee for useful remarks. The authors are
supported by the Netherlands Organization for Scientific Research under grant
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2 Semi-infinite wedge formalism

In this section we briefly recall the semi-infinite wedge formalism. It is nowa-
days a standard tool in Hurwitz theory, with many good introductions to it.
We refer the reader, for instance, to [Joh15] and [ALS16] and references therein
for a more complete exposition.
Let V be an infinite-dimensional complex vector space with a basis labeled
by half-integers. Denote the basis vector labeled by m/2 by m/2, so V =
⊕

i∈Z+ 1
2
Ci.

Definition 2.1. The semi-infinite wedge space
∧∞

2 (V ) = V is defined to be
the span of all of the semi-infinite wedge products of the form

i1 ∧ i2 ∧ · · ·

for any decreasing sequence of half-integers (ik) such that there is an integer c
with ik + k− 1

2 = c for k sufficiently large. The constant c is called the charge.
We give V an inner product (·, ·) declaring its basis elements to be orthonormal.

Remark 2.2. By definition 2.1 the charge-zero subspace V0 of V is spanned by
semi-infinite wedge products of the form

λ1 −
1

2
∧ λ2 −

3

2
∧ · · ·

for some integer partition λ. Hence we can identify integer partitions with the
basis of this space:

V0 =
⊕

n∈N

⊕

λ'n

Cvλ

The empty partition ∅ plays a special role. We call

v∅ = −
1

2
∧ −

3

2
∧ · · ·

Documenta Mathematica 24 (2019) 857–898



Polynomiality of Monotone Orbifold Hurwitz Numbers 863

the vacuum vector and we denote it by |0〉. Similarly we call the covacuum
vector its dual with respect to the scalar product (·, ·) and we denote it by 〈0|.

Definition 2.3. The vacuum expectation value or disconnected correlator 〈P〉•

of an operator P acting on V0 is defined to be:

〈P〉• := (|0〉,P|0〉) =: 〈0|P|0〉

We also define the functions

ζ(z) = ez/2 − e−z/2 = 2 sinh(z/2)

and

S(z) =
ζ(z)

z
=

sinh(z/2)

z/2
.

Definition 2.4. This is the list of operators we will use:

i) For k half-integer the operator ψk : (i1 ∧ i2 ∧ · · · ) *→ (k ∧ i1 ∧ i2 ∧ · · · )
increases the charge by 1. Its adjoint operator ψ∗

k with respect to (·, ·)
decreases the charge by 1.

ii) The normally ordered products of ψ-operators

Ei,j :=

{

ψiψ∗
j , if j > 0

−ψ∗
jψi if j < 0 .

preserve the charge and hence can be restricted to V0 with the following
action. For i ,= j, Ei,j checks if vλ contains j as a wedge factor and if so
replaces it by i. Otherwise it yields 0. In the case i = j > 0, we have
Ei,j(vλ) = vλ if vλ contains j and 0 if it does not; in the case i = j < 0,
we have Ei,j(vλ) = −vλ if vλ does not contain j and 0 if it does. This
gives a projective representation of A∞, the Lie algebra of complex Z×Z

matrices with only finitely many non-zero diagonals [Joh15].

iii) The diagonal operators are assembled into the operators

Fn :=
∑

k∈Z+ 1
2

kn

n!
Ek,k

The operator C := F0 is called charge operator, while the operator E :=
F1 is called energy operator. Note that F0 vanishes identically on V0. We
say that an operator P on V0 is of energy c ∈ Z if

[P , E] = cP

The operator Ei,j has energy j − i, hence all the Fn’s have zero energy.
Operators with positive energy annihilate the vacuum while negative en-
ergy operators are annihilated by the covacuum.

Documenta Mathematica 24 (2019) 857–898
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iv) For n any integer and z a formal variable one has the energy n operators:

En(z) =
∑

k∈Z+ 1
2

ez(k−
n
2 )Ek−n,k +

δn,0
ζ(z)

.

v) For n any nonzero integer one has the energy n operators:

αn = En(0) =
∑

k∈Z+ 1
2

Ek−n,k

The commutation formula for E operators reads:

[Ea(z), Eb(w)] = ζ

(

det

[

a z
b w

])

Ea+b(z + w) (1)

and in particular [αk,αl] = kδk+l,0.

Note that Ek(z)
∣

∣0
〉

= 0 if k > 0, while E0(z)
∣

∣0
〉

= ζ(z)−1∣
∣0
〉

. We will also use
the E operator without the correction in energy zero, i.e.

Ẽ0(z) =
∑

k∈Z+ 1
2

ezkEk,k =
∞
∑

n=0

Fnz
n = C + Ez + F2z

2 + . . .

which annihilates the vacuum and obeys the same commutation rule as E0.

3 Symmetric polynomials and Stirling numbers

In this section we recollect some combinatorial notions used in the rest of the
paper. In particular we recall here some basic facts on homogeneous symmetric
polynomials and Stirling numbers, and their interconnection.

3.1 Symmetric polynomials

Definition 3.1. LetX = {x1, . . . , xn} be a finite set of variables. The complete
symmetric polynomials hk and the elementary symmetric polynomials σk on X
are defined as follows:

hk(X) =
∑

1≤i1≤i2≤···≤ik≤n

xi1 · · ·xik

σk(X) =
∑

1≤i1<i2<···<ik≤n

xi1 · · ·xik

The properties of these functions are well-documented, see e.g. [Mac98]. We
will list some useful properties.
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Lemma 3.2. The generating functions of the complete and elementary symmet-
ric polynomials are as follows:

∞
∑

k=0

hk(x1, . . . , xn)u
k =

n
∏

i=1

1

1− uxi

∞
∑

k=0

σk(x1, . . . , xn)u
k =

n
∏

i=1

(1 + uxi)

Corollary 3.3. For any finite set of variables X,

∞
∑

k=0

hk(X)uk
∞
∑

l=0

σl(X)(−u)l = 1 (2)

The following lemma is an easy consequence of the definitions, and can be
proved by induction on the number of arguments.

Lemma 3.4. If the variables in a symmetric polynomial are all offset by the
same amount, they can be re-expressed as a linear combination of non-offset
symmetric polynomials as follows:

hk(x1 +A, . . . , xn +A) =
k
∑

i=0

(

k + n− 1

i

)

hk−i(x1, . . . , xn)A
i (3)

σk(x1 +A, . . . , xn +A) =
k
∑

i=0

(

n+ i− k

i

)

σk−i(x1, . . . , xn)A
i

3.2 Stirling numbers

We now recall some notions on Stirling numbers. A complete treatment of the
subject can be found in [Cha02].

Definition 3.5. The (unsigned) Stirling numbers of the first kind
[

i
t

]

are de-
fined as coefficients of the following expansion in the formal variable T

(T )i =
i
∑

t=0

[

i

t

]

T t

where i, t are nonnegative integers and the subscript indicates the Pochhammer
symbol:

(x+ 1)n =
Γ(x+ n+ 1)

Γ(x+ 1)
=

{

(x+ 1)(x+ 2) · · · (x + n) n ≥ 0

(x(x − 1) · · · (x+ n+ 1))−1 n ≤ 0

From the definition, (x + 1)n vanishes for integers x satisfying −n ≤ x ≤ −1,
and 1/(x+ 1)n vanishes for integers x satisfying 0 ≤ x ≤ −(n+ 1).
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The Stirling numbers of the second kind
{i
t

}

are defined as coefficients of the
following expansion in the formal variable T

T i =
i
∑

t=0

{

i

t

}

(T − t+ 1)t

where i, t are nonnegative integers. Note that for t > i we have
[

i
t

]

=
{

i
t

}

= 0.

The complete and elementary polynomials evaluated at integers are linked to
the Stirling numbers by the following relation.

σv(1, 2, . . . , t− 1) =

[

t

t− v

]

hv(1, 2, . . . , t) =

{

t+v

t

}

(4)

The expressions in terms of generating series read

Lemma 3.6. We have:
[

j

t

]

= [yj−t].
(j − 1)!

(t− 1)!
S(y)−jeyj/2;

{

j

t

}

= [yj−t].
j!

t!
S(y)teyt/2.

4 A-operators for monotone orbifold Hurwitz numbers

In this section we express the generating series for monotone and strictly mono-
tone orbifold Hurwitz numbers in terms of correlators of certain A-operators
acting on the Fock space.

4.1 Generating series for monotone orbifold Hurwitz numbers

Let us define the genus-generating series for disconnected monotone and strictly
monotone orbifold Hurwitz numbers as

H•,r,≤(u, !µ) :=
∞
∑

g=0

(

hr,≤
g;!µ

)

ub, H•,r,<(u, !µ) :=
∞
∑

g=0

(

hr,<
g;!µ

)

ub (5)

where, by Riemann-Hurwitz, b is the number of simple ramifications

b = 2g − 2 + l(µ) + |µ|/r.

We want to express the generating series through the semi-infinite wedge for-
malism. In [ALS16] it was proved that the eigenvalue of the operator

D(h)(u) := exp

([

Ẽ0
(

u2 d
du

)

ζ
(

u2 d
du

) − E

]

. log u

)
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acting on the basis of the charge zero sector of the Fock space is the generating
series for the complete symmetric polynomials, in the sense that

D(h)(u).vλ =
∞
∑

k=0

hk(cr
λ)ukvλ,

where the set of variables crλ is the content of Young tableau λ. Similarly, the
operator

D(σ)(u) := exp

(

−

[

Ẽ0
(

−u2 d
du

)

ζ
(

−u2 d
du

) − E

]

. log u

)

produces as eigenvalue the generating series for elementary symmetric polyno-
mials:

D(σ)(u).vλ =
∞
∑

k=0

σk(cr
λ)ukvλ.

The generating series in equation (5) therefore read respectively

H•,r,≤(u, !µ) =

〈

e
αr
r D(h)(u)

n
∏

i=1

α−µi

µi

〉•

(6)

and

H•,r,<(u, !µ) =

〈

e
αr
r D(σ)(u)

n
∏

i=1

α−µi

µi

〉•

(7)

4.2 Conjugations of operators

In this section we prove several lemmata that we will use later.

Lemma 4.1. We have:

Oh
µ(u) :=D(h)(u)α−µD

(h)(u)−1

=
∑

k∈Z+ 1
2

∞
∑

v=0

hv(1 + k − 1/2, . . . , µ+ k − 1/2)uvEk+µ,k;

Oσ
µ(u) :=D(σ)(u)α−µD

(σ)(u)−1

=
∑

k∈Z+ 1
2

∞
∑

v=0

σv(1 + k − 1/2, . . . , µ+ k − 1/2)uvEk+µ,k.

Proof. We prove only the first equation, since the proof for the second is com-
pletely analogous. Applying the change of variable u(z) = −z−1, we have

D(h)(u(z)) = exp

(

−
Ẽ0
(

d
dz

)

ζ
(

d
dz

) . log(−z)

)

(−z)E =: eB(z)(−z)E
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Observe that the operator B(z) has zero energy and hence commutes with
(−z)E . On the other hand, the operator α−µ has energy−µ, hence the conjuga-
tion by the operator (−z)E produces the extra factor (−z)µ. By the Hadamard
lemma we can expand the conjugation as

D(h)(u)α−µD
(h)(u)−1 = (−z)µ

∞
∑

s=0

1

s!
adsB(z)(α−µ)

It is enough to show that

adsB(z)(α−µ) =
∑

k∈Z+ 1
2

log

(

µ−1
∏

l=0

1

(−z − l− k − 1/2)

)s

Ek+µ,k (8)

Indeed this would imply

D(h)(u)α−µD
(h)(u)−1 =

∑

k∈Z+ 1
2

(

µ−1
∏

l=0

1

1− (l + k + 1/2)(−z−1)

)

Ek+µ,k

which proves the lemma by substituting back u = −z−1 and expanding in the
generating series for complete symmetric polynomials. Let C(s) be the left
hand side of equation (8). We compute:

C(s) =



−
Ẽ0
(

d
dzs

)

ζ
(

d
dzs

) , . . .



−
Ẽ0
(

d
dz1

)

ζ
(

d
dz1

) , E−µ(0)



 . . .



 .
s
∏

i=1

log(−zi)
∣

∣

∣

zi=z

= (−1)s
s
∏

i=1

ζ
(

µ d
dzi

)

ζ
(

d
dzi

) E−µ

(

s
∑

i=1

d

dzi

)

.
s
∏

i=1

log(−zi)
∣

∣

∣

zi=z

=
∑

k∈Z+1/2

s
∏

i=1

∞
∑

l=0

−
(

e
d

dzi
(µ+k−l−1/2) − e

d
dzi

(k−l−1/2)
)

. log(−zi)Ek+µ,k

∣

∣

∣

zi=z

Observe that the summation over l is the result of the expansion in geometric
formal power series of 1/(1 − e−d/dzi). The expression in the last line equals
the right hand side of equation (8) since the s operators act independently, and

using ea
d
dz f(z) = f(z + a). The lemma is proved.

Definition 4.2. Let us define the following operators:

Oh
µ(u)

†
= D(h)(u)αµ D

(h)(u)−1 Oσ
µ(u)

† = D(σ)(u)αµ D
(σ)(u)−1.

Remark 4.3. Observe that Oh
µ(u) is defined as the conjugation of α−µ by

D(h)(u). The operator Oh
µ(u)

† is instead defined as the conjugation by the

same operator D(h)(u) of αµ = α†
−µ (for α operators the † symbol stands for

the actual adjoint operator with respect to the semi-infinite wedge inner prod-
uct, in general we will use it for the conjugation of the adjoint). The same
holds for Oσ

µ(u).
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Lemma 4.4.

Oh
µ(u)

†
=

∑

k∈Z+ 1
2

∞
∑

v=0

σv(1 + k − 1/2, . . . , µ+ k − 1/2)(−u)vEk,k−µ

Oσ
µ(u)

† =
∑

k∈Z+ 1
2

∞
∑

v=0

hv(1 + k − 1/2, . . . , µ+ k − 1/2)(−u)vEk,k−µ

Proof. This follows from the duality between generating series of complete and
elementary symmetric polynomials expressed in equation (2), and the form of
the O-operators in lemma 4.1.

Corollary 4.5. The different kinds of O-operators can also be written as
follows:

Oh
µ(u) =

∞
∑

v=0

(v+µ−1)!

(µ−1)!
[zv]S(uz)µ−1E−µ(uz)

Oh
µ(u)

†
=

µ
∑

v=0

µ!

(µ−v)!
[zv]S(uz)−µ−1Eµ(−uz)

Oσ
µ(u) =

µ
∑

v=0

µ!

(µ−v)!
[zv]S(uz)−µ−1E−µ(uz)

Oσ
µ(u)

† =
∞
∑

v=0

(v+µ−1)!

(µ−1)!
[zv]S(uz)µ−1Eµ(−uz)

Proof. We will first derive the first equation, starting from lemma 4.1. First
we use equation (3):

Oh
µ(u) =

∑

k∈Z+ 1
2

∞
∑

v=0

hv(1 + k − 1/2, . . . , µ+ k − 1/2)uvEk+µ,k

=
∑

k∈Z+ 1
2

∞
∑

v=0

v
∑

i=0

(

v+µ−1

i

)

hv−i(0, . . . , µ− 1)
(

k +
1

2

)i
uvEk+µ,k

By equation 4 and lemma 3.6, we then get:

Oh
µ(u)

=
∑

k∈Z+ 1
2

∞
∑

v=0

v
∑

i=0

(

v+µ−1

i

)

[yv−i]
(v+µ−i−1)!

(µ−1)!
S(y)µ−1ey

µ−1
2

[zi]i!ez(k+
1
2 )uvEk+µ,k

=
∞
∑

v=0

(v+µ−1)!

(µ−1)!
[zv]S(uz)µ−1E−µ(uz)
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For the other equations, the calculation is similar, replacing the equations for
the complete symmetric polynomials with their counterparts for the elementary
symmetric polynomials where necessary.

Lemma 4.6. After conjugation, the O-operators become

e
αr
r Oh

µ(u)e
−αr

r =
∞
∑

t=0

∞
∑

v=t−1

(v + µ− 1)!

t! (µ− 1)!
ut[zv−t]S(uz)µ−1S(ruz)tEtr−µ(uz) (9)

e
αr
r Oh

µ(u)
†
e−

αr
r =

µ
∑

t=0

µ
∑

v=t−1

µ!

t!(µ−v)!
(−u)t[zv−t]S(uz)−µ−1S(ruz)tEtr+µ(−uz)

(10)

e
αr
r Oσ

µ(u)e
−αr

r =
µ
∑

t=0

µ
∑

v=t−1

µ!

t!(µ−v)!
ut[zv−t]S(uz)−µ−1S(ruz)tEtr−µ(uz) (11)

e
αr
r Oσ

µ(u)
†e−

αr
r =

∞
∑

t=0

∞
∑

v=t−1

(v + µ− 1)!

t! (µ− 1)!
(−u)t[zv−t]S(uz)µ−1S(ruz)tEtr+µ(−uz)

(12)

Proof. Let us prove equation (9). Applying the Hadamard lemma as in
lemma 4.1 we find

e
αr
r Oµ(u)e

−αr
r =

∞
∑

t=0

1

t!rt
adtαr

(

∞
∑

v=0

(v + µ− 1)!

(µ− 1)!
[zv]S(uz)µ−1E−µ(uz)

)

=
∞
∑

t=0

∞
∑

v=0

(v + µ− 1)!

t! (µ− 1)!rt
[zv]S(uz)µ−1 adtαr

E−µ(uz)

By equation (1), we know

adαr E−µ(uz) = ζ(ruz)Er−µ(uz)

Using this t times, we get that

e
αr
r Oµ(u)e

−αr
r =

∞
∑

t=0

∞
∑

v=0

(v + µ− 1)!

t! (µ− 1)!rt
[zv]S(uz)µ−1ζ(ruz)tEtr−µ(uz)

=
∞
∑

t=0

∞
∑

v=0

(v + µ− 1)!

t! (µ− 1)!
ut[zv−t]S(uz)µ−1S(ruz)tEtr−µ(uz)

We can change the summation in v to start at t − 1 instead of at t (this will
be useful later on), as there are no non-zero coefficients of zk for k < −1 (and
this can occur only if tr = µ).
For the other equations, the calculation is completely analogous, using that S
is an even function. This finishes the proof of the lemma.
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4.3 A-operators

Let us now define the A-operators for the r-orbifold monotone Hurwitz numbers
as

Ah
〈µ〉(u, µ) (13)

=
∑

t∈Z

∞
∑

v=t−1

([µ]+µ+1)v−1

([µ] + 1)t
[zv−t]S(uz)µ−1S(ruz)t+[µ]Etr−〈µ〉(uz)

Aσ
〈µ〉(u, µ) (14)

=

µ−[µ]
∑

t=−∞

µ−[µ]
∑

v=t−1

(µ−[µ]−v+1)v−1

([µ] + 1)t
[zv−t]S(uz)−µ−1S(ruz)t+[µ]Etr−〈µ〉(uz)

where [µ] and 〈µ〉 denote quotient and remainder of the euclidean division of
µ by r, respectively (i.e. µ = r[µ] + 〈µ〉 with 0 ≤ 〈µ〉 ≤ r − 1).

Proposition 4.7.

H•,r,≤(u, !µ) = u
d
r

l(!µ)
∏

i=1

(

µi + [µi]

µi

)〈 l(!µ)
∏

i=1

Ah
〈µi〉(u, µi)

〉•

(15)

H•,r,<(u, !µ) = u
d
r

l(!µ)
∏

i=1

(

µi − 1

[µi]

)〈 l(!µ)
∏

i=1

Aσ
〈µi〉(u, µi)

〉•

(16)

where µ = r[µ] + 〈µ〉 denotes the euclidean division by r.

Proof. Let us prove equation (15). Observe that both the operators Ẽ and αr

annihilate the vacuum. Hence inserting the operators D(h) and eαr acting on
the vacuum does not change the expression in equation (6):

H•,r,≤(u, !µ) =

〈 n
∏

i=1

1

µi
e

αr
r D(h)(u)α−µi(D

(h)(u))−1e
−αr

r

〉•

The operators in the correlator are given by formula (9), divided by µ. For
every i = 1, . . . , n, rescale the t-sum in formula (9) by tnew := t − [µi] and
the v-sum by vnew := v − [µi], and conjugate by the operator uF1/r. The
latter operation has the effect of annihilating the factor ut and of creating a
factor uµi/r that can be written outside the sum. Extracting the binomial
coefficient in equation (15) and extending the t-sum over all integers (since
the Pochhammer symbol in the denominator is infinite for t < −[µi]) proves
equation (15).
The proof for equation (16) is analogous, starting from the operator given by
formula (11). After rescaling the t- and v-sums and conjugating with uF1/r,
we extract from the correlator the factor

(µ− 1)!

[µ]!(µ− [µ]− 1)!
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Here, we can also extend the sum to +∞, because the Pochhammer symbol in
the numerator is zero for the added terms. Proposition 4.7 is proved.

Definition 4.8. We define the A†-operators for the r-orbifold monotone Hur-
witz numbers as

Ah
〈µ〉(u, µ)

† = uµ/rµ

(

µ+ [µ]

µ

)

uF1/re
αr
r Dh(u)αµD

h(u)−1e−
αr
r u−F1/r,

Aσ
〈µ〉(u, µ)

† = uµ/rµ

(

µ− 1

[µ]

)

uF1/re
αr
r Dσ(u)αµD

σ(u)−1e−
αr
r u−F1/r.

Observe thatAh(u, µ) is defined as the conjugation of α−µ by uF1/re
αr
r D(h)(u),

times a combinatorial prefactor. The operator Ah(u, µ)† is instead defined as
the conjugation of αµ = α†

−µ by the same operator uF1/re
αr
r D(h)(u), times the

inverse of the combinatorial prefactor in Ah(u, µ). The same holds for Aσ(u, µ).

Proposition 4.9. The operators Ah(u, µ)† and Aσ(u, µ)† can be expressed as
follows:

Ah
〈µ〉(u, µ)

† =
µ
∑

t=0

µ
∑

v=t−1

(−1)t(µ+[µ])!µ

t!(µ−v)![µ]!
[zv−t]S(uz)−µ−1S(ruz)tEtr+µ(−uz)(17)

Aσ
〈µ〉(u, µ)

† =
∞
∑

t=0

∞
∑

v=t−1

(−1)t(v+[µ]− 1)!µ

t!(µ−[µ]− 1)![µ]!
[zv−t]S(uz)µ−1S(ruz)tEtr+µ(−uz)

(18)

Proof. Let us prove equation (17). By lemma 4.6 and proposition 4.7 we get

Ah
〈µ〉(u, µ)

† = uµ/rµ

(

µ+ [µ]

µ

)

uF1/re
αr
r Oµ(u)

−1e−
αr
r u−F1/r.

The conjugation of O by the operator eαr/r is given by formula (10). The
conjugation with uF1/r annihilates the factor ut and produces a factor u−µ/r,
which simplifies with uµ/r. This proves equation (17). Equation (18) is proved
in the same way using the conjugation given by formula (12). The proposition
is proved.

5 Quasi-polynomiality results

In this section we state and prove the quasi-polynomiality property for mono-
tone and strictly monotone orbifold Hurwitz numbers.

Definition 5.1. We define the connected operators 〈
∏n

i=1 Aηi(u, µi)〉
◦

in
terms of the disconnected correlator 〈

∏n
i=1 Aηi(u, µi)〉

•
by means of the

inclusion-exclusion formula, see, e. g., [DKOSS15, DLPS15].
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The monotone Hurwitz numbers are expressed in terms of connected correlators
as

h◦,r,≤
g;!µ = [u2g−2+l(!µ)].

l(!µ)
∏

i=1

(

µi + [µi]

µi

)〈 l(!µ)
∏

i=1

Ah
〈µi〉(u, µi)

〉◦

h◦,r,<
g;!µ = [u2g−2+l(!µ)].

l(!µ)
∏

i=1

(

µi − 1

[µi]

)〈 l(!µ)
∏

i=1

Aσ
〈µi〉(u, µi)

〉◦

We are now ready to state and prove the main result of the paper.

Theorem 5.2 (Quasi-polynomiality for monotone and strictly monotone or-
bifold Hurwitz numbers). For 2g − 2 + l(!µ) > 0, the monotone and strictly
monotone orbifold Hurwitz numbers can be expressed as follows:

h◦,r,≤
g;!µ =

l(!µ)
∏

i=1

(

µi + [µi]

µi

)

P 〈!µ〉
≤ (µ1, . . . , µl(!µ)),

h◦,r,<
g;!µ =

l(!µ)
∏

i=1

(

µi − 1

[µi]

)

P 〈!µ〉
< (µ1, . . . , µl(!µ)),

where P 〈!µ〉
< and P 〈!µ〉

≤ are polynomials of degree 3g − 3 + l(!µ) depending on the
parameters 〈µ1〉, . . . 〈µl(!µ)〉 and µ = r[µ]+ 〈µ〉 denotes the euclidean division by
r.

Remark 5.3. The two statements of theorem 5.2 confirm respectively conjecture
23 in [DK17] and conjecture 12 in [DM14]. Note that the small difference in
the conjecture 23 does not affect quasi-polynomiality since the polynomials P≤

depend on the parameters 〈µ〉. Conjecture 12 is stated for Grothendieck dessin
d’enfants, which indeed correspond to strictly monotone Hurwitz numbers by
the Jucys correspondence (see for example [ALS16] for details).

Remark 5.4. Note that since we allow the coefficients of the polynomials P 〈!µ〉
≤

and P 〈!µ〉
< to depend on 〈!µ〉, we can equivalently consider them as polynomials

in [µ1], . . . , [µn], n := l(!µ). The latter way is more convenient in the proof.

Proof. We will show that, for fixed ηi, the connected correlator
〈
∏n

i=1 Aηi(u, µi)〉
◦
is a power series in u with polynomial coefficients in all µi,

for both the operators Ah and Aσ. As these are symmetric functions in the µi

(by permuting the ηi together with the µi), it is sufficient to prove polynomiality
in µ1. Indeed, if a symmetric function P (µ1, . . . , µn) is polynomial in the first

variable, it can be written in the form P (µ1, . . . , µn) =
∑d

k=0 ak(µ2, . . . , µn)µk
1 .

To check that each coefficient of P is also polynomial in µ2, we can compute
the values of P at the points µ1 = 1, . . . , d + 1 and show that these values
are polynomial in µ2. But the values of P at these particular values of µ1

can be computed using the symmetry of P as P (µ2, . . . , µn, µ1), so they are
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polynomial in µ2. Proceeding this way, we establish polynomiality of P in all
arguments.
We will first consider the disconnected correlator 〈

∏n
i=1 Aηi(u, µi)〉

•
where,

setting µi = νir+ηi to stress the independence of the parameters νi = [µi] and
ηi = 〈µi〉 here, the operator A is either

Ah
ηi
(u, µi)

=
∑

ti∈Z

∞
∑

vi=ti−1

(νi+µi+1)vi−1

(νi + 1)ti
[zvi−ti ]S(uz)µi−1S(ruz)ti+νiEtir−ηi(uz)

in the monotone case or

Aσ
ηi
(u, µi)

=
µi
∑

ti=−∞

µi
∑

vi=ti−1

(µi−νi −(vi − 1))vi−1

(νi + 1)ti
[zvi−ti ]S(uz)−µi−1S(ruz)ti+νiEtir−ηi(uz)

in the strictly monotone case. In both cases, if we expand the product of all the
t-sums in the disconnected correlator, we get the condition

∑l(µ)
i=1 (tir − ηi) =

0, as the total energy of the operators in a given monomial must be zero.
Furthermore, t1r − η1 ≥ 0, since the first E would get annihilated by the
covacuum otherwise, and ti ≥ −νi (otherwise the symbol 1/(νi+1)ti vanishes),
so if we fix η1, ν2, η2, . . . , νn, ηn, the t1-sum becomes finite. Since the power of
u is fixed, it also gives a bound on the degree in ν1. So the coefficient of
a particular power of u in the disconnected correlator 〈

∏n
i=1 Aηi(u, µi)〉

•
is a

rational function in ν1.
Because the coefficients are rational functions, we can extend them to the
complex plane, and it makes sense to talk about their poles. The only possible
poles must come either from 1

(ν1+1)t
, or from (ν1 + µ1 + 1)v−1, or from (µ1−

ν1 −(v1 − 1))v1−1. The first Pochhammer symbol can give rise to poles at any
negative integer, whereas (ν1 + µ1 +1)v−1 and (µ1−ν1 −(v1 − 1))v1−1 can give
rise to two poles each (one of the two being at zero). All of these poles are
simple. Let us calculate first the residue at ν1 = −l, for l = 1, 2, . . ..

Lemma 5.5. The residue of an A-operators is, up to a linear multiplicative con-
stant, equal to the corresponding A†-operator, with modified argument. More
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precisely, for any positive integer l we have:

Res
ν=−l

Ah
η(u, νr + η) =

1

lr − η
Ah

−η(u, lr − η)† if η ,= 0, (19)

Res
ν=−l

Ah
0 (u, νr) =

1

lr(r + 1)
Ah

0 (u, lr)
† if η = 0, (20)

Res
ν=−l

Aσ
η (u, νr + η) =

1

lr − η
Aσ

−η(u, lr − η)† if η ,= 0, (21)

Res
ν=−l

Aσ
0 (u, νr) =

1

lr(r − 1)
Aσ

0 (u, lr)
† if η = 0. (22)

Proof. Let us prove equations (19) and (20) together. The only contributing
terms have t ≥ l, so we calculate

Res
ν=−l

Ah
η(u, µ)

=
∞
∑

t=l

∞
∑

v=t−1

(ν+µ+1)v−1(ν+l)

(ν+1)t
[xv−t]S(xu)µ−1S(rxu)t+νEtr−η(xu)

∣

∣

∣

∣

ν=−l

=
∞
∑

t=l

∞
∑

v=t−1

(µ−l+1)v−1

(1−l)l−1(t−l)!
(−1)v−t[xv−t]S(−xu)µ−1S(−rxu)t−lEtr−η(−xu)

=
∞
∑

t=0

∞
∑

v=t−1

(−1)l+v−t−1(µ−l+1)v+l−1

(l−1)!t!
[xv−t]S(xu)µ−1S(rxu)tEtr−µ(−xu)

where we kept writing µ for −lr + η. As this is negative, however, it makes
sense to rename it µ = −λ. Substituting and collecting the minus signs from
the Pochhammer symbol, we get

Res
ν=−l

Ah
η(u, µ)

=
λ
∑

t=0

λ
∑

v=t−1

(−1)t(λ+1−v)v+l−1

(l−1)!t!
[xv−t]S(ux)−λ−1S(rux)tEtr+λ(−ux)

=
λ
∑

t=0

λ
∑

v=t−1

(−1)t(λ+l−1)!

(l−1)!t!(λ−v)!
[xv−t]S(ux)−λ−1S(rux)tEtr+λ(−ux)

Because λ = lr− η, we have l = [λ]+1− δη0 and η = −〈λ〉. Recalling equation
(17), we obtain the result. Equations (21) and (22) follow from the analogous
computation of the residue and the comparison with equation (18).

Possible poles at negative integers.

In the following we will use the notation A and D without specifying the
symmetric polynomial chosen, since the argument is valid for both the choices
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of (Ah,D(h)) and of (Aσ,D(σ)). Lemma 5.5 implies that we can express the
residues in µ1 at negative integers of the disconnected correlator as follows:

Res
ν1=−l

〈 n
∏

i=1

Aηi(u, µi)

〉•

= c(l, η1)

〈

A−η1(u, lr − η1)
†

n
∏

i=2

Aηi(u, µi)

〉•

.

where c(l, η1) is the coefficient in lemma 5.5. Recalling equations (6) and (15)
for the monotone case and equations (7) and (16) for the strictly monotone
case and realising that the A†-operator is given by the same conjugations as
the normal A-operator, but starting from αµ instead of α−µ, we can see that
this reduces to

Res
ν1=−l

〈 n
∏

i=1

Aηi(u, µi)

〉•

= C

〈

e
αr
r D(u)αlr−η1

n
∏

i=2

α−µi

〉•

(23)

for some specific coefficient C that depends only on l and η1.
Because [αk,αl] = kδk+l,0, and αlr−η1 annihilates the vacuum, this residue is
zero unless one of the µi equals lr − η1 for i ≥ 2.
Now return to the connected correlator. It can be calculated from the discon-
nected one by the inclusion-exclusion principle, so in particular it is a finite
sum of products of disconnected correlators. Hence the connected correlator is
also a rational function in ν1, and all possible poles must be inherited from the
disconnected correlators. Let us therefore assume µi = lr − η1 for some i ≥ 2.
We separate two cases: the case n ≥ 3 and the case n = 2 (indeed, if n = 1
only poles at zero can possibly occur).
If n ≥ 3, we get a non-trivial contribution from (23), but this is canceled exactly
by the term coming from

Res
ν1=−l

〈

Aη1(u, µ1)A−η1(u, lr − η1)

〉•〈
∏

2≤j≤n
j +=i

Aηj (u, µj)

〉•

= C

〈

e
αr
r D(u)αlr−η1α−(lr−η1)

〉•〈

e
αr
r D(u)

∏

2≤j≤n
j +=i

α−µj

〉•

If n = 2, these are not two separate terms, so they do not cancel. However, in
this case we have

Res
ν1=−l

〈

Aη1(u, µ1)A−η1(u, lr − η1)

〉•

= C

〈

e
αr
r D(u)αlr−η1α−(lr−η1)

〉•

= C

〈

e
αr
r D(u)[αlr−η1 ,α−(lr−η1)]

〉•

= C (lr − η1)u
0.

Note that the two α’s together only give a factor lr−η1, and so the D(u) acts on
the vacuum, on which it acts trivially. Hence this correlator does gives a trivial
residue for positive powers of u (whereas it gives a non-trivial contribution in
the (g, n) = (0, 2) unstable case).
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Possible poles from (ν1 + µ1 + 1)v1−1 or (µ1−ν1 −(v1 − 1))v1−1.

Let us now deal with the possible poles coming from the remaining Pochhammer
symbols. These symbols can give rise to poles only if v1 = 0 or if v1 = −1.
If v1 = 0, we cannot have a non-trivial coefficient of z−t1 unless t1 = 1 and
therefore we must collect the coefficient of z−1. However, for t1 = 1 the operator
Et1r−η1(uz) has strictly positive energy and therefore trivial coefficient of z−1.
Hence we must have v1 = −1, and consequently t1 = η1 = 0. Let us again
distinguish two cases: the case n ≥ 2 and the case n = 1.
If n ≥ 2, the term coming from

〈

A0(u, µ1)
n
∏

i=2

Aηi(u, µi)

〉•

cancels exactly against the term coming from

〈

A0(u, µ1)

〉•〈 n
∏

i=2

Aηi(u, µi)

〉•

.

If n = 1, such term for the h-case and for the σ-case respectively reads

(ν1 + µ1 + 1)−2[z
−1]S(uz)µ1−1S(ruz)ν1

〈

E0(uz)

〉•

=
u−1

(ν1(r + 1))(ν1(r + 1)− 1)
,

(µ1 − ν1 + 2)−2[z
−1]S(uz)−µ1−1S(ruz)ν1

〈

E0(uz)

〉•

=
u−1

(ν1(r − 1) + 1)(ν1(r − 1))
.

Note that the power of u is negative (in particular, these terms correspond to
the (g, n) = (0, 1) unstable case), so they fall outside the scope of the theorem.
Therefore, each stable connected correlator has no residues at all, which proves
it is polynomial in ν1, so it is also a polynomial in µ1, see remark 5.4. This
completes the proof of the polynomiality.

Computation of the polynomial degree.

Once we know that the coefficient of u2g−2+n, 2g − 2 + n ≥ 0, of a connected
correlator 〈

∏n
i=1 Aηi(u, µi)〉

◦
is a polynomial in µ1, . . . , µn, or, equivalently,

in ν1, . . . , νn, we can compute its degree. The argument is the same in both
cases, monotone and strictly monotone, so let us use the formulas for the Ah-
operators. We can compute the degree of the connected correlator considered as
a rational function. Once we know that it is a polynomial, we obtain the degree
of the polynomial. For the computation of the degree in ν1, . . . , νn it is sufficient
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to observe that
∑n

i=1(vi−ti) = 2g−2+n, therefore
∏n

i=1(νi+µi+1)vi−1/(νi+1)ti
has degree 2g−2. Moreover, the leading term in 〈

∏n
i=1 Etir−ηi(uz)〉

◦
has degree

n− 2 in uz and n− 1 in ν1, . . . , νn, and the coefficient of (uz)2g in the product
of S ·

∏n
i=1 S(uz)

µi−1S(ruz)ti+νi , where S without an argument denotes the
S-functions coming from the connected correlator 〈

∏n
i=1 Etir−ηi(uz)〉

◦
divided

by its leading term, is a polynomial of degree 2g/2 = g in ν1, . . . , νn. So, the
total degree in ν1, . . . , νn is equal to 2g − 2 + n − 1 + g = 3g − 3 + n. This
completes the proof of the theorem.

5.1 Quasi-polynomiality for the usual orbifold Hurwitz numbers

In the case of the usual orbifold Hurwitz numbers, quasi-polynomiality was
already known, see [BHLM14, DLN16, DLPS15]. However, all known proofs
use either the Johnson-Pandharipande-Tseng formula [JPT11] (the ELSV for-
mula [ELSV01] for r = 1) or very subtle analytic tools due to Johnson [Joh09]
(Okounkov-Pandharipande [OP06] for r = 1). In the second approach, pre-
sented in [DKOSS15, DLPS15], the analytic continuation to the integral points
outside the area of convergence requires an extra discussion, which is so far
omitted. So, it would be good to have a more direct combinatorial proof of
quasi-polynomiality for usual orbifold Hurwitz numbers, and we will reprove it
here using the same technique as for the (strictly) monotone orbifold Hurwitz
numbers.

Definition 5.6. The usual orbifold A-operators are given by

A〈µ〉(u, µ) := r−
〈µ〉
r S(ruµ)[µ]

∑

t∈Z

S(ruµ)tµt−1

([µ] + 1)t
Etr−〈µ〉(uµ)

Remark 5.7. Up to slightly different notation and a shift by one in the exponent
of µ, these are the A-operators of [DLPS15].

The importance of these operators is given in the following proposition:

Proposition 5.8. [DLPS15, proposition 3.1] The generating function for dis-
connected orbifold Hurwitz can be expressed in terms of the A-operators by:

H•(u, !µ) =
∞
∑

g=0

h◦
g;!µu

b = r
∑l("µ)

i=1
〈µi〉
r

l(!µ)
∏

i=1

u
µi
r µ[µi]

i

[µi]!

〈 l(!µ)
∏

i=1

A〈µi〉(u, µi)

〉•

(24)

The proof of this proposition amounts to the calculation

r
〈µ〉
r
u

µ
r µ[µ]

[µ]!
A〈µ〉(u, µ) = u

F1
r e

αr
r euF2α−µe

−uF2e−
αr
r u−F1

r .

With these data, we can start our scheme of proof.
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Lemma 5.9. The operator A〈µ〉(u, µ)
† defined as

A〈µ〉(u, µ)
† := r

〈µ〉
r
u

µ
r µ[µ]

[µ]!
u

F1
r e

αr
r euF2αµe

−uF2e−
αr
r u−

F1
r

is given by

A〈µ〉(u, µ)
† =

r
〈µ〉
r

[µ]!

∑

t≥0

(−1)t
S(ruµ)tµt+[µ]

t!
Etr+µ(−uµ).

Proof. The proof is completely analogous to the proof of [DLPS15, proposition
3.1].
We perform the same commutation as for the A-operators, but starting from
αµ. First recall [OP06, equation (2.14)] that

euF2αµe
−uF2 = Eµ(−uµ).

The second conjugation gives

e
αr
r euF2αµe

−uF2e−
αr
r = e

αr
r Eµ(−uµ)e−

αr
r

=
∞
∑

t=0

(ζ(−ruµ)

r

)t 1

t!
Etr+µ(−uµ)

=
∞
∑

t=0

(−uµ)tS(−ruµ)t

t!
Etr+µ(−uµ),

whereas the third conjugation shifts the exponent of u:

u
F1
r e

αr
r euF2αµe

−uF2e−
αr
r u−F1

r = u−µ
r

∞
∑

t=0

(−µ)tS(−ruµ)t

t!
Etr+µ(−uµ).

Multiplying by the prefactor concludes the proof.

Theorem 5.10 (Quasi-polynomiality for usual orbifold Hurwitz numbers). For
2g−2+l(µ) > 0, the usual orbifold Hurwitz numbers can be expressed as follows:

h◦,r
g;!µ = r

∑l("µ)
i−1

〈µi〉
r

l(!µ)
∏

i=1

u
µi
r µ[µi]

i

[µi]!
P 〈!µ〉(µ1, . . . , µl(!µ))

where P 〈µ〉 are polynomials of degree 3g− 3+ l(!µ) whose coefficients depend on
the parameters 〈µ1〉, . . . 〈µl(µ)〉 and µ = r[µ]+〈µ〉 denotes the euclidean division
by r.

Remark 5.11. As stated before, this result is not new. It has been proved
in several ways in [BHLM14, DLN16, DLPS15]. We add this new proof for
completeness.
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Proof. We will show that, for fixed ηi, the connected correlator
〈
∏n

i=1 Aηi(u, µi)〉
◦
, n = l(!µ), is a power series in u with polynomial coef-

ficients in all µi for the operators A. As these are symmetric functions in
the µi, it is again sufficient to prove polynomiality in µ1, or, equivalently (see
remark 5.4) in ν1 := [µ1].
We will first consider the disconnected correlator 〈

∏n
i=1 Aηi(u, µi)〉

•
where,

setting µi = νir + ηi, the operator A is

Aηi(u, µi) := r−
ηi
r S(ruµi)

νi
∑

ti∈Z

S(ruµi)tiµ
ti−1
i

(νi + 1)ti
Etir−ηi(uµi)

If we expand all of the t-sums in the disconnected correlator, we get the condi-
tion

∑l(µ)
i=1 (tir−ηi) = 0, as the total energy of the operators in a given monomial

must be zero. Furthermore, t1r−η1 ≥ 0, since the first E would get annihilated
by the covacuum otherwise, and ti ≥ −νi (otherwise the symbol 1/(νi + 1)t1
vanishes), so if we fix η1, ν2, η2, . . . , νn, ηn, the t1-sum becomes finite. Since the
power of u is fixed, it also gives a bound on the degree in ν1. So the coefficient
of a particular power of u in the disconnected correlator 〈

∏n
i=1 Aηi(u, µi)〉

•
is

a rational function in ν1.
Again, because the coefficients are rational functions, we can extend them to
the complex plane, and it makes sense to talk about poles. The only possible
poles are at negative integers and at µ1 = 0. The former poles must come from

1
(ν1+1)t

and they are all at most simple. The latter can instead be double but
not simple. Let us first calculate the residue at ν1 = −l, for l = 1, 2, . . ..

Lemma 5.12. The residue of an A-operators is, up to a linear multiplica-
tive constant, equal to the corresponding A†-operator, with modified argument.
More precisely, for any positive integer l we have:

Res
ν=−l

Aη(u, νr + η) = A−η(u, lr − η)† if η ,= 0,

Res
ν=−l

A0(u, νr) =
1

r
A0(u, lr)

† if η = 0.

Proof. Let us prove both equations together. The only contributing terms have
t ≥ l, so we calculate

Res
ν=−l

Aη(u, µ) = r−
η
r S(ruµ)ν

∑

t≥l

S(ruµ)tµt−1(ν + l)

(ν + 1)t
Etr−η(uµ)

∣

∣

∣

∣

ν=−l

= r−
η
r S(ruµ)−l

∑

t≥l

S(ruµ)tµt−1

(1− l)l−1(t− l)!
Etr−η(uµ)

where we kept writing µ for −lr + η. As this is negative, however, it makes
sense to rename it µ = −λ. Substituting and collecting the minus signs from
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the Pochhammer symbol, we get

Res
ν=−l

Aη(u, µ) =
(−1)l−1r−

η
r

(l − 1)!
S(ruλ)−l

∑

t≥l

(−1)t−1S(ruλ)
tλt−1

(t− l)!
Etr−η(−uλ)

=
r−

η
r

(l − 1)!

∑

t≥0

(−1)t
S(ruλ)tλt+l−1

(t− l)!
Etr+λ(−uλ)

Because λ = lr− η, we have l = [λ]+1− δη0 and η = −〈λ〉. Recalling equation
(17), we obtain the result.

Possible poles at negative integers.

Because of lemma 5.12, we can express the residues in µ1 of the disconnected
correlator as follows:

Res
ν1=−l

〈 n
∏

i=1

Aηi(u, µi)

〉•

= c(η1)

〈

A−η1(u, lr − η1)
†

n
∏

i=2

Aηi(u, µi)

〉•

where c(η1) is the coefficient in lemma 5.12. Recalling equation (24) and re-
alising that the A†-operator is given by the same conjugations as the normal
A-operator, but starting from αµ instead of α−µ, we can see that this reduces
to

Res
ν1=−l

〈 n
∏

i=1

Aηi(u, µi)

〉•

= C

〈

e
αr
r euF2αlr−η1

n
∏

i=2

α−µi

〉•

for some specific coefficient C that depends only on η1 and l. The rest of the
proof for this case is completely parallel to that of theorem 5.2. Namely, we
distinguish the case n ≥ 3 and the case n = 2: if n ≥ 3 the residue gets canceled
out by the corresponding term coming from the inclusion-exclusion formula, if
n = 2 we instead compute

Res
ν1=−l

〈

Aη1(u, µ1)A−η1(u, lr − η1)

〉•

= C

〈

e
αr
r euF2αlr−η1α−(lr−η1)

〉•

= C

〈

e
αr
r euF2 [αlr−η1 ,α−(lr−η1)]

〉•

= C (lr − η1)u
0,

which contributes non-trivially only to the unstable (g, n) = (0, 2) correlator.

Possible pole at zero.

For the pole at zero, the only contributing terms must have t1 ≤ 0, but we also
need t1r − η1 ≥ 0, in order for the E not to get annihilated by the covacuum.
Therefore, we need only to consider the case η1 = 0 and the term t1 = 0. If
n ≥ 2, this term in

〈

n
∏

i=1

Aηi(u, µi)
〉•
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cancels against the term coming from
〈

Aη1(u, µ1)

〉•〈 n
∏

i=2

Aηi(u, µi)

〉•

,

as that has exactly the same conditions η = t = 0 in order for the first correlator
not to vanish.
If n = 1, the double pole at ν1 = 0 is

Res
ν1=0

ν1
〈

A0(u, µ1)
〉

= lim
ν1→0

ν21S(ruµ1)
ν1 1

rν1

1

urν1
=

1

r2
u−1

which contributes non-trivially only to the unstable (g, n) = (0, 1) correlator.
Therefore, each stable connected correlator has no residues at all, which proves
it is polynomial in ν1, so it is also a polynomial in µ1, see remark 5.4. This
completes the proof of the polynomiality.

Computation of the polynomial degree.

The degree of the coefficient of u2g−2+n, 2g − 2 + n ≥ 0, of a connected cor-
relator 〈

∏n
i=1 Aηi(u, µi)〉

◦
can be computed in the following way. The coef-

ficient
∏n

i=1 µ
ti−1
i /(νi + 1)ti has degree −n in ν1, . . . , νn and degree 0 in u.

The leading term of the connected correlator 〈
∏n

i=1 Etir−ηi(uµi)〉
◦
has degree

n− 1 + n − 2 = 2n− 3 in ν1, . . . , νn and degree n− 2 in u. The coefficient of
u2g in the series S ·

∏n
i=1 S(ruµi)νi+ti , where S without argument denotes the

S-functions coming from the connected correlator 〈
∏n

i=1 Etir−ηi(uµi)〉
◦
divided

by its leading term, is a polynomial of degree (3/2) · 2g = 3g in ν1, . . . , νn. So,
the total degree in ν1, . . . , νn is equal to −n+ 2n− 3 + 3g = 3g − 3 + n. This
completes the proof of the theorem.

6 Correlation functions on spectral curves

In this section we explain the relation of the polynomiality statements with the
fact that the n-point generation functions can be represented via correlation
functions defined on the n-th cartesian power of a spectral curve. The results
concerning the monotone and strictly monotone Hurwitz numbers in this sec-
tion are new, while in the case of usual Hurwitz numbers it is well-known and
we recall it here for completeness.
The set-up for the problems considered in this paper is the following: We
consider a spectral curve CP1 with a global coordinate z, with a function
x = x(z) on it. Let {p0, . . . , pr−1} be the set of the z-coordinates of the critical
points of x. We consider the n-point generating function of a particular Hurwitz
problem, for a fixed genus g, and we want it to be an expansion of a symmetric

function on
(

CP1
)×n

of a particular type:

∑

0≤α1,...,αn≤r−1

P!α

(

d

dx1
, . . . ,

d

dxn

) n
∏

i=1

ξαi(xi) (25)
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Here the P!α are polynomials in n variables of degree 3g−3+n, and the functions
ξα(x) are defined as (the expansions of) some functions that form a convenient
basis in the space spanned by 1/(pα − z), α = 0, . . . , r − 1.
The reason we are interested in the particular degree 3g− 3+n, is in short due
to this being the dimension of the moduli space of curves Mg,n. Somewhat
more explicitly, we expect an ELSV-type formula to hold, as it does in the usual
orbifold case—the ELSV-formula itself for r = 1 [ELSV01] and the Johnson-
Pandharipande-Tseng formula for general r [JPT11], for more explanations
and examples we refer to [Eyn14, DOSS14, LPSZ16, DLPS15, ALS16]. The
topological recursion implies [Eyn14] that the correlation differentials are given
by the differentials of

∑

0≤α1,...,αn≤r−1





∫

Mg,n

C!α
∏n

i=1

(

1− ψi
d

dxi

)





n
∏

i=1

ξαi(xi),

where C!α is some class in the cohomology of Mg,n. Because the complex coho-
mological degree of the ψ-classes is one, this implies that we have a polynomial
in the derivatives of degree dimMg,n = 3g − 3 + n.

6.1 Monotone orbifold Hurwitz numbers

In the case of the monotone orbifold Hurwitz numbers the conjectural spec-
tral curve is given by x = z(1 − zr) [DK17]. The conjecture on the topo-
logical recursion assumes the expansion of equation (25) in x1, . . . , xn near
x1 = · · · = xn = 0, so we have the following expected property of orbifold
Hurwitz numbers:

∑

!µ∈(N×)n

h◦,r,≤
g;!µ

n
∏

i=1

xµi

i =
∑

0≤α1,...,αn≤r−1

P!α

(

d

dx1
, . . . ,

d

dxn

) n
∏

i=1

ξαi(xi). (26)

In this case the critical points are given by pi = ζi(r+1)−1/r, i = 0, . . . , r− 1,
where ζ is a primitive r-th root of 1. This means that up to some non-zero
constant factors that are not important, we have the space of functions spanned
by:

ξ′′i =
1

1− ζ−i(r + 1)1/rz
, i = 0, 1, . . . , r − 1

Consider a non-degenerate change of basis ξ′k =
∑r−1

i=0 ζ
ki/r · ξ′′i . We have:

ξ′k =

(

(r + 1)1/rz
)k

1− (r + 1)zr
, k = 0, 1, . . . , r − 1

Observe that x = z(1− zr) implies

d

dx
=

1

1− (r + 1)zr
d

dz
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Therefore, the functions ξ′k are given up to non-zero constant factors C′
k by

ξ′k = C′
k
d

dx

zk+1

k + 1
, k = 0, 1, . . . , r − 1

Thus, the suitable set of basis functions for the representation of the n-point
function in the form of equation (26) is given by

ξi :=
d

dx

(

zi+1

i+ 1

)

, i = 0, . . . , r − 1

Lemma 6.1. For i = 0, . . . , r − 1, we have:

ξi(x) =
∞
∑

µ=0
r|µ−i

(

µ+ [µ]

µ

)

xµ (27)

Proof. In order to compute the expansion of zi+1 in x, we compute the residue:

∮

zi+1 dx

xn+1
=

∮

1− (r + 1)zr

(1 − zr)n+1

zi+1dz

zn+1

=

∮

dz

zn−i
(1 − (r + 1)zr)

∞
∑

j=0

(

n+ j

j

)

zrj

This residue is nontrivial only for n = kr + i + 1, k ≥ 0, and in this case it is
equal to the coefficient of zkr, that is,

(

kr + k + i+ 1

k

)

− (r + 1)

(

kr + k + i

k − 1

)

=
(i+ 1) · (kr + k + i)!

k!(kr + i+ 1)!

Thus
zi+1

i+ 1
=

∞
∑

k=0

(

kr + k + i

k

)

xkr+i+1

kr + i+ 1

which implies the formula for ξi = (d/dx)
(

zi+1/(i+ 1)
)

, i = 0, . . . , r− 1, if we
set µ = kr + i.

The explicit formulae for the expansions of functions ξi in the variable x given
by equation (27) imply a particular structure for the coefficients of the expan-
sion given by equation (25), that is, for monotone orbifold Hurwitz numbers.
In fact we have:

Proposition 6.2. The coefficient of xµ1
1 · · ·xµn

n of the expansion in x1, . . . , xn

near zero of an expression of the form

∑

0≤k1,...,kn≤r−1

Pk1,...,kn

(

d

dx1
, . . . ,

d

dxn

) n
∏

i=1

ξki (28)
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where Pk1,...,kn are polynomials of degree 3g− 3 + n and ξk is equal to d
dx

zk+1

k+1 ,
is represented as

n
∏

i=1

(

µi + [µi]

µi

)

·Q〈µ1〉,...,〈µn〉([µ1], . . . , [µn])

where µi = r[µi]+〈µi〉, is the euclidean division, and Qη1,...,ηn are some polyno-
mials of degree 3g−3+n whose coefficients depend on η1, . . . , ηn ∈ {0, . . . , r−1}.

Proof. The coefficient of xµ in (d/dx)pξq is non-trivial if and only if 〈µ〉+p ≡ q
mod r. In this case, the coefficient of xµ is equal to

(

[µ+ p] + µ+ p

[µ+ p]

)

(µ+ 1)p =

(

µ+ [µ]

µ

)

·
([µ+ p] + µ+ p)![µ]!

(µ+ [µ])![µ+ p]!
(29)

Represent p as p = −〈µ〉 + sr + + ≥ 0, 0 ≤ + ≤ r − 1. Then the second factor
on the right hand side of equation (29) can be rewritten as

(([µ] + s)(r + 1) + +)!

([µ](r + 1) + 〈µ〉)!([µ] + 1)s

Observe that we can cancel the factors ([µ] + 1), ([µ] + 2), . . . , ([µ] + s) in the
denominator with the factors ([µ]+1)(r+1), ([µ]+2)(r+1), . . . , ([µ]+s)(r+1) in
the numerator. Since ([µ]+1)(r+1) > [µ](r+1)+〈µ〉, after this cancellation the
numerator is still divisible by ([µ](r+1)+ 〈µ〉)!. So, this factor is a polynomial
of degree p in [µ], with the leading coefficient (r + 1)p+s[µ]p.
Since the only possible nontrivial coefficient of xµ in (d/dx)pξq is a common

factor
(µ+[µ]

µ

)

multiplied by a polynomial of degree p in [µ], the coefficient

of
∏n

i=1 x
µi

i in the whole expression (28) is also given by a common factor
∏n

i=1

(µi+[µi]
µi

)

multiplied by a polynomial in [µ1], . . . , [µn] of the same degree
as Pk1,...,kn .

Thus the quasi-polynomiality property of monotone orbifold Hurwitz numbers
is equivalent to the property that the n-point functions can be represented in a
very particular way (given by equation (26)) on the corresponding conjectural
spectral curve, cf. [DK17, conjecture 23].

6.2 Strictly monotone orbifold Hurwitz numbers

In this case the spectral curve topological recursion follows from the two-matrix
model consideration [CEO06], and it was combinatorially proved in [DOPS18],
see also [DM14]. From these papers it does follow that the n-point function is
represented as an expansion of the following form:

∑

!µ∈(N×)n

h◦,r,<
g;!µ

n
∏

i=1

x−µi

i =
∑

0≤α1,...,αn≤r−1

P!α

(

d

dx1
, . . . ,

d

dxn

) n
∏

i=1

ξαi(xi) (30)
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for the curve x = zr−1+z−1. The goal of this section is to show the equivalence
of this representation to the quasi-polynomiality property of strictly monotone
orbifold Hurwitz numbers.
The critical points of x are given by pi = ζi(r − 1)−1/r, i = 0, . . . , r − 1, so,
repeating the argument for the previous section and using that in this case

−
1

z2
d

dx
=

1

1− (r − 1)zr
d

dz

we see that a good basis of functions ξi can be chosen as

ξi =
1

z2
d

dx

(

zi+1

i+ 1

)

, i = 0, . . . , r − 1

The expansion of these function in x−1 near x = ∞ is given by the following
lemma:

Lemma 6.3. For i = 0, . . . , r − 1, we have:

ξi(x) =
∞
∑

µ=1
r|µ−i

(

µ− 1

[µ]

)

x−µ

Proof. We compute the coefficient of x−µ as the residue

∮

1

z2
d

dx

(

zi+1

i+ 1

)

xµ−1dx =

∮

−
zi+1

i+ 1
d

(

(1 + zr)µ−1

zµ+1

)

We see that his residue can be non-trivial only if µ+ 1 ≡ i+ 1 mod r, and in
this case it is equal to

(µ−1
[µ]

)

.

The proof of the following statement repeats the proof of proposition 6.2.

Proposition 6.4. The coefficient of x−µ1
1 · · ·x−µn

n of the expansion in
x−1
1 , . . . , x−1

n near infinity of an expression of the form

∑

0≤k1,...,kn≤r−1

Pk1,...,kn

(

d

dx1
, . . . ,

d

dxn

) n
∏

i=1

ξki

where Pk1,...,kn are polynomials of degree 3g − 3 + n and ξk is equal to
1
z2

d
dx

(

zk+1

k+1

)

, is represented as

n
∏

i=1

(

µi − 1

[µi]

)

·Q〈µ1〉,...,〈µn〉([µ1], . . . , [µn])

where µi = r[µi]+ 〈µi〉 and Qη1,...,ηn are some polynomials of degree 3g− 3+n
whose coefficients depend on η1, . . . , ηn ∈ {0, . . . , r − 1}.
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Thus the polynomiality property of strictly monotone orbifold Hurwitz numbers
is also equivalent to the property that the n-point functions can be represented
in a very particular way (given by equation (30)) on the corresponding spectral
curve, cf. [DM14, conjecture 12].
Note that [DM14] has a binomial

(

µi−1
[µi−1]

)

, which is equal to ours unless 〈µi〉 = 0.
In that case it differs by a factor r−1, which can be absorbed in the polynomial.

6.3 Usual orbifold Hurwitz numbers

The spectral curve topological recursion for the usual orbifold Hurwitz numbers
is proved in [DLN16, BHLM14], see also [DLPS15, LPSZ16]. The correspond-
ing spectral curve is given by the formula x = log z− zr, and the computations
for this curves are also performed in [SSZ15] in relation to a different combi-
natorial problem. From these papers it does follow that the n-point function
is represented as an expansion of the following form:

∑

!µ∈(N×)n

h◦,r
g;!µ

n
∏

i=1

eµix
i

=
∑

0≤α1,...,αn≤r−1

P!α

(

d

dx1
, . . . ,

d

dxn

) n
∏

i=1

ξαi(xi) (31)

It also follows from these papers that the good basis of functions ξi is given by

ξi =
d

dx

(

zi+1

i+ 1

)

=
zi

1− rzr
, i = 0, . . . , r − 1

and the expansions of these functions in ex near ex = 0 is given by

ξi(x) =
∞
∑

µ=0
r|µ−i

µ[µ]

[µ]!
eµx, i = 0, . . . , r − 1

For these functions the differentiation with respect to x is the same as the
multiplication by the corresponding degree of ex, so the following statement is
obvious:

Proposition 6.5. The coefficient of eµ1x1 · · · eµnxn of the expansion in
ex1 , . . . , exn near zero of an expression of the form

∑

0≤k1,...,kn≤r−1

Pk1,...,kn

(

d

dx1
, . . . ,

d

dxn

) n
∏

i=1

ξki

where Pk1,...,kn are polynomials of degree 3g−3+n and ξk is equal to d
dx

(

zk+1

k+1

)

,

is represented as

n
∏

i=1

µ[µi]
i

[µi]!
·Q〈µi〉,...,〈µn〉([µ1], . . . , [µn])

where µi = r[µi]+ 〈µi〉 and Qη1,...,ηn are some polynomials of degree 3g− 3+n
whose coefficients depend on η1, . . . , ηn ∈ {0, . . . , r − 1}.

Documenta Mathematica 24 (2019) 857–898



888 R. Kramer, D. Lewański, S. Shadrin

Thus the polynomiality property of usual orbifold Hurwitz numbers is also
equivalent to the property that the n-point functions can be represented in
a very particular way (given by equation (31)) on the corresponding spectral
curve.

A Computations for unstable correlation functions

In this section we prove that the unstable correlation differentials for the con-
jectural (or proved) CEO topological recursion spectral curve coincide with the
expression derived from the A-operators. These computations are performed
in the case of monotone orbifold Hurwitz numbers for the cases (g, n) = (0, 1)
and (g, n) = (0, 2), and for strictly monotone orbifold Hurwitz numbers for the
case (g, n) = (0, 1).
Note that in both cases the computation of the (0, 1)-numbers was done before,
see [DK17, DM14, CEO06, DOPS18]. The (0, 2)-calculation for the monotone
Hurwitz numbers is a new result, but we learned after completing our calcula-
tion that Karev obtained the same formula independently [Kar].
We show these computations here to test the A-operator formula and to demon-
strate its power. The computation of the generating function for the (0, 2)
monotone orbifold Hurwitz numbers is necessary for the conjecture on topo-
logical recursion in [DK17].

A.1 The case (g, n) = (0, 1)

In this section we check that the spectral curve reproduces the correlation
differential for (g, n) = (0, 1) obtained from the A-operators of section 4.

A.1.1 The monotone case

Since in the case of n = 1 there is no difference between connected and discon-
nected Hurwitz numbers, the (0, 1)-free energy for monotone Hurwitz numbers
reads:

F≤
0,1(x) :=

∞
∑

µ=1

[u−1+d/r]H•,r,≤(u, µ)xµ

Of course, in this formula only µ = [µ]r, [µ] ≥ 0, can contribute non-trivially.
Let us compute what we get. We have:

[u−1+d/r]H•,r,≤(u, µ) =
(µ+ [µ])!

µ![µ]!
[u−1]

〈

Ah
〈µ〉(u, µ)

〉

=
(µ+ [µ])!

µ![µ]!
·
(µ+ [µ] + 1)−2

([µ] + 1)0
· [z−1]S(z)µ−1S(rz)0+[µ] 〈E0(z)〉

=
(µ+ [µ])!

µ![µ]!

1

(µ+ [µ])(µ+ [µ]− 1)
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(here we used in the second line equation (13), where t and v deliberately must
be equal to 0 and −1 respectively).
Thus we have (replacing µ by r[µ] everywhere):

F≤
0,1 =

∞
∑

[µ]=1

(r[µ] + [µ]− 2)!

(r[µ])![µ]!
xr[µ]

Theorem A.1. We have: ω≤
0,1 := dF≤

0,1 = −ydx.

Proof. The spectral curve gives y = −zr/x. In lemma 6.1 we have shown that

zi =
∞
∑

k=0

(kr + k + i− 1)!

k!(kr + i)!
ixkr+i =

∞
∑

k=0

(kr + k + i− 1)!

(k + 1)!(kr + i− 1)!

(ki+ i)

(kr + i)
xkr+i

(32)
So,

− ydx =
∞
∑

j=0

(kr + k + r − 1)!

(k + 1)!(kr + r − 1)!
xkr+r−1dx

=
∞
∑

k+1=1

((k + 1)r + (k + 1)− 2)!

(k + 1)!((k + 1)r − 1)!
x(k+1)r−1dx = dF≤

0,1

(for the last equality we just identify [µ] with k + 1).

A.1.2 The strictly monotone case

Similarly, for strictly monotone Hurwitz numbers the (0, 1)-free energy reads:

F<
0,1(x) :=

∞
∑

µ=1

[u−1+d/r]H•,r,≤(u, µ)x−µ − log(x)

Again, only µ = [µ]r, [µ] ≥ 0 can contribute non-trivially. We have:

[u−1+d/r]H•,r,≤(u, µ) =
(µ− 1)!

(µ− [µ]− 1)![µ]!
[u−1]

〈

A〈µ〉(u, µ)
〉

=
(µ− 1)!

(µ− [µ]− 1)![µ]!
(µ− [µ] + 2)−2

=
(µ− 1)!

(µ− [µ] + 1)![µ]!

(here we used in the second line equation (14), where t and v deliberately
must be equal to 0 and −1 respectively). Thus we have (replacing µ by r[µ]
everywhere):

dF<
0,1 = −

1

x

∞
∑

[µ]=1

(r[µ])!

([µ]r − [µ] + 1)![µ]!
x−r[µ]dx−

dx

x
(33)

Documenta Mathematica 24 (2019) 857–898



890 R. Kramer, D. Lewański, S. Shadrin

Theorem A.2. We have: ω<
0,1 := dF<

0,1 = ydx.

Proof. The spectral curve reads x = zr−1 + z−1 and y = z. Let us expand
z =

∑∞
n=0 anx

n and compute the coefficients by

an =

∮

z
dx

xn+1
= −

∮

[1− (r − 1)zr]zn
∑

j=0

(

n+ j

j

)

(−zr)jdz

This residue is nontrivial only for n = −rj − 1, j ≤ 0, hence we should extract
in the two summands the j-th and the (j − 1)-st term respectively. Therefore,
the residue reads

(−1)j−1

[(

−rj − 1 + j

j

)

+ (r − 1)

(

−rj − 1 + j − 1

j − 1

)]

=(−1)j
(

−rj − 1 + j

j

)

1

(−rj + j − 1)

Hence

ydx = zdx =
∞
∑

j=0

(−1)j
(

−rj − 1 + j

j

)

1

(−rj + j − 1)
x−jr−1dx

= −
1

x

∞
∑

j=0

(−1)j
(−rj)j

j!(rj − j + 1)
x−jrdx

= −
1

x

∞
∑

j=0

(rj)!

j!(rj − j + 1)!
x−jrdx = dF<

0,1

where, in order to obtain the last line, we collected the minus signs from the
Pochhammer symbol. For the last equality we identify [µ] with j and incorpo-
rate the term [µ] = 0 inside the sum in formula (33).

A.2 The case (g, n) = (0, 2)

In this section we use equation (15) in order to check whether the holomor-
phic part of the expansion of the unique genus zero Bergman kernel gives the
differential d1d2F

≤
0,2. More precisely, we prove the following theorem:

Theorem A.3. We have:

dz1dz2
(z1 − z2)2

=
dx1dx2

(x1 − x2)2
+ d1d2F

≤
0,2(x1, x2)

Proof. It is sufficient to prove that

log(z1 − z2) = log(x1 − x2) + F0,2(x1, x2) + C1(x1) + C2(x2) (34)

where C1, C2 are some functions of one variable.
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We apply the Euler operator

E := x1
∂

∂x1
+ x2

∂

∂x2

to both sides of this formula. Using that ∂x = (1− (r + 1)zr)−1∂z, we observe
that in the coordinates z1, z2 the Euler operator has the form

E :=
1− zr1

1− (r + 1)zr1
· z1

∂

∂z1
+

1− zr2
1− (r + 1)zr2

· z2
∂

∂z2

We have:

E log(z1 − z2) = 1 + r ·
zr1 + zr−1

1 z2 + · · ·+ zr2(r + 1)zr1z
r
2

(1− (r + 1)zr1)(1− (r + 1)zr2)

= 1 + r
∂2

∂x1∂x2

(

zr+1
1 z2

(r + 1) · 1
+

zr1z
2
2

r · 2
+ · · ·+

z1z
r+1
2

1 · (r + 1)
−

zr+1
1 zr+1

2

r + 1

)

= 1 +
r

r + 1

∂2

∂x1∂x2
(z1z2 − x1x2) + r

∂2

∂x1∂x2

(zr1z
2
2

r · 2
+ · · ·+

z21z
r
2

2 · r

)

Using equation (32), we finally obtain the following formula for E log(z1 − z2):

r ·
r−1
∑

i1,i2=1
i1+i2=r

∞
∑

k1,k2=0

(k1r + k1 + i1)!

k1!(k1r + i1)!

(k2r + k2 + i2)!

k2!(k2r + i2)!
xk1r+i1
1 xk2r+i2

2 (35)

for the degrees of x1, x2 not divisible by r (Case I), and

1

r + 1
+

r

r + 1

∞
∑

k1,k1=0

(

k1r + k1
k1

)(

k2r + k2
k2

)

xk1r
1 xk2r

2

= 1 +
r

r + 1

∞
∑

k1,k1=0
(k1,k2) +=(0,0)

(

k1r + k1
k1

)(

k2r + k2
k2

)

xk1r
1 xk2r

2 (36)

if one of the exponents, and, therefore, both of them, are divisible by r (Case
II).
Now we apply the Euler operator E to the right hand side of equation (34).
We obtain the following expression:

1 + C̃1(x1) + C̃2(x2) +
∑

µ1,µ2≥1
r|(µ1+µ2)

h◦,r,≤
0;(µ1,µ2)

xµ1
1 xµ2

2 (µ1 + µ2)

We have to prove that the sum of equations (35) and (36) is equal to this
expression.
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Let us compute h◦,r,≤
0;(µ1,µ2)

. Equation (15) implies that

h◦,r,≤
0;(µ1,µ2)

=

(

µ1 + [µ1]

µ1

)(

µ2 + [µ2]

µ2

)

·
〈

A〈µ1〉(u, µ1)A〈µ2〉(u, µ2)
〉◦

Since we have to use connected correlators, it implies that in the A〈µ1〉-operator
we have to take only the operators E with the positive indices, and in the
A〈µ2〉-operator we have to take only the operators E with the negative indices.
Specializing the formula further, and using that [ζ01ζ

0
2 ] 〈Ev(ζ1)E−v(ζ2)〉

◦ = v,
we have:

h◦,r,≤
0;(µ1,µ2)

=

[µ2]+1
∑

t=1

(µ1 + [µ1] + t− 1)!

µ1!([µ1] + t)!
(tr − 〈µ1〉)

(µ2 + [µ2]− t)!

µ2!([µ2] + 1− t)!

in Case I, and

h◦,r,≤
0;(µ1,µ2)

=

[µ2]
∑

t=1

(µ1 + [µ1] + t− 1)!

µ1!([µ1] + t)!
· tr ·

(µ2 + [µ2]− t− 1)!

µ2!([µ2]− t)!

in Case II. Note that in Case II, we omit the contributions from the t = 0
part, as it cancels the strictly diconnected correlator in the inclusion-exclusion
formula.
So, in order to complete the proof of the theorem we have to show that

(µ1 + µ2)

[µ2]+1
∑

t=1

(µ1 + [µ1] + t− 1)!

µ1!([µ1] + t)!
(tr − 〈µ1〉)

(µ2 + [µ2]− t)!

µ2!([µ2] + 1− t)!
(37)

= r ·

(

µ1 + [µ1]

µ1

)(

µ2 + [µ2]

µ2

)

in Case I (cf. equation (35)) and

(µ1 + µ2)
[µ2]
∑

t=1

(µ1 + [µ1] + t− 1)!

µ1!([µ1] + t)!
· t ·

(µ2 + [µ2]− t− 1)!

µ2!([µ2]− t)!
(38)

=
1

r + 1
·

(

µ1 + [µ1]

µ1

)(

µ2 + [µ2]

µ2

)

in Case II.
Let us show this for Case I first. Observe that tr− 〈µ1〉 = ([µ1] + t)r− µ1 and
µ1+µ2 = ([µ1]+[µ2]+1)r, so we can rewrite the left hand side of equation (37)
as

r · (µ1 + µ2) ·
[µ2]+1
∑

t=1

(µ1 + [µ1] + t− 1)!

µ1!([µ1] + t− 1)!

(µ2 + [µ2]− t)!

µ2!([µ2] + 1− t)!

− r · ([µ1] + [µ2] + 1) ·
[µ2]+1
∑

t=1

(µ1 + [µ1] + t− 1)!

(µ1 − 1)!([µ1] + t)!

(µ2 + [µ2]− t)!

µ2!([µ2] + 1− t)!
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Let us omit the factor r since we have it in the right hand side of equation (37).
Let us multiply the first summand by µ1 and the second summand by ([µ1]+t).
We get identical sums with the opposite signs. So, this expression divided by
r is equal to

[µ2]+1
∑

t=1

(µ1 + [µ1] + t− 1)!

µ1!([µ1] + t− 1)!

(µ2 + [µ2]− t)!

(µ2 − 1)!([µ2] + 1− t)!

−
[µ2]
∑

t=1

(µ1 + [µ1] + t− 1)!

(µ1 − 1)!([µ1] + t)!

(µ2 + [µ2]− t)!

µ2!([µ2]− t)!

=:

[µ2]+1
∑

t=1

At −
[µ2]
∑

t=1

Bt

We can reshuffle the summands in this expression in the following way:

A[µ2]+1 −B[µ2] +A[µ2] −B[µ2]−1 + · · ·+A2 −B1 +A1

Now we add up term by term, starting at the left. First we get

A[µ2]+1 −B[µ2] =

(

µ1 + [µ1] + [µ2]

µ1

)(

µ2

µ2

)

−

(

µ1 + [µ1] + [µ2]− 1

µ1 − 1

)(

µ2

µ2

)

=

(

µ1 + [µ1] + [µ2]− 1

µ1

)(

µ2

µ2

)

Iterating this, get get the following sequence of expressions:

A[µ2]+1 −B[µ2] +A[µ2]

=

(

µ1 + [µ1] + [µ2]− 1

µ1

)(

µ2

µ2

)

+

(

µ1 + [µ1] + [µ2]− 1

µ1

)(

µ2

µ2 − 1

)

=

(

µ1 + [µ1] + [µ2]− 1

µ1

)(

µ2 + 1

µ2

)

A[µ2]+1 −B[µ2] +A[µ2] −B[µ2]−1

=

(

µ1 + [µ1] + [µ2]− 1

µ1

)(

µ2 + 1

µ2

)

−

(

µ1 + [µ1] + [µ2]− 2

µ1 − 1

)(

µ2 + 1

µ2

)

=

(

µ1 + [µ1] + [µ2]− 2

µ1

)(

µ2 + 1

µ2

)

eventually ending up at

A[µ2]+1 −B[µ2] + · · ·+A1 =

(

µ1 + [µ1]

µ1

)(

µ2 + [µ2]

µ2

)

which gives us equation (37).
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In Case II, the computation is similar. Observe that t = ([µ1] + t)− µ1/r and
(µ1 + µ2)/r = [µ1] + [µ2], so we can rewrite the left hand side of equation (38)
in the following way:

(µ1 + µ2) ·
[µ2]
∑

t=1

(µ1 + [µ1] + t− 1)!

µ1!([µ1] + t− 1)!

(µ2 + [µ2]− t− 1)!

µ2!([µ2]− t)!

− ([µ1] + [µ2]) ·
[µ2]
∑

t=1

(µ1 + [µ1] + t− 1)!

(µ1 − 1)!([µ1] + t)!

(µ2 + [µ2]− t− 1)!

µ2!([µ2]− t)!

Again, if we multiply the first summand by µ1 and the second summand by
([µ1]+t), this yields identical sums with opposite signs. Cancelling these terms,
we get that this expression is equal to

[µ2]
∑

t=1

(

µ1 + [µ1] + t− 1

µ1

)(

µ2 + [µ2]− t− 1

µ2 − 1

)

−
[µ2]−1
∑

t=1

(

µ1 + [µ1] + t− 1

µ1 − 1

)(

µ2 + [µ2]− t− 1

µ2

)

=:

[µ2]
∑

t=1

A′
t −

[µ2]−1
∑

t=1

B′
t

Reshuffling the summands in this expression in the same way as for Case I, we
would now get

A′
[µ2] −B′

[µ2]−1 +A′
[µ2]−1 −B′

[µ2]−2 + · · ·+A′
2 −B′

1 +A′
1

We will calculate this in the same way as before: we start at the right and at
the next term one at a time. First we get

A′
[µ2] −B′

[µ2]−1 =

(

µ1 + [µ1] + [µ2]− 1

µ1

)(

µ2

µ2

)

−

(

µ1 + [µ1] + [µ2]− 2

µ1 − 1

)(

µ2

µ2

)

=

(

µ1 + [µ1] + [µ2]− 2

µ1

)(

µ2

µ2

)
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Iterating this, the next few calculations give us the following result:

A′
[µ2] −B′

[µ2]−1 +A′
[µ2]−1

=

(

µ1 + [µ1] + [µ2]− 2

µ1

)(

µ2

µ2

)

+

(

µ1 + [µ1] + [µ2]− 2

µ1

)(

µ2

µ2 − 1

)

=

(

µ1 + [µ1] + [µ2]− 2

µ1

)(

µ2 + 1

µ2

)

A′
[µ2] −B′

[µ2]−1 +A′
[µ2]−1 −B′

[µ2]−2

=

(

µ1 + [µ1] + [µ2]− 2

µ1

)(

µ2 + 1

µ2

)

−

(

µ1 + [µ1] + [µ2]− 3

µ1 − 1

)(

µ2 + 1

µ2

)

=

(

µ1 + [µ1] + [µ2]− 3

µ1

)(

µ2 + 1

µ2

)

And finally we get the following result:

A′
[µ2] −B′

[µ2]−1 + · · ·+A′
1 =

(

µ1 + [µ1]

µ1

)(

µ2 + [µ2]− 1

µ2

)

=
1

r + 1

(

µ1 + [µ1]

µ1

)(

µ2 + [µ2]

µ2

)

which gives us equation (38).
This way we prove equation (34) is satisfied up to the kernel of the Euler oper-
ator. Since neither the left hand side nor the right hand side of equation (34)
contain the terms in the kernel of the Euler operator, we see that equation (34)
is satisfied, and this completes the proof of the theorem.
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