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Abstract: The latest progress in deep learning approaches has garnered significant attention across 
a variety of research fields. These techniques have revolutionized the way marine parameters are 
measured, enabling automated and remote data collection. This work centers on employing a deep 
learning model for the automated evaluation of tide and surge, aiming to deliver accurate results 
through the analysis of surveillance camera images. A mode of deep learning based on the Inception 
v3 structure was applied to predict tide and storm surges from surveillance cameras located in two 
different coastal areas of Italy. This approach is particularly advantageous in situations where tra-
ditional tide sensors are inaccessible or distant from the measurement point, especially during ex-
treme events that require accurate surge measurements. The conducted experiments illustrate that 
the algorithm efficiently measures tide and surge remotely, achieving an accuracy surpassing 90% 
and maintaining a loss value below 1, evaluated through Categorical Cross-Entropy Loss functions. 
The findings highlight its potential to bridge the gap in data collection in challenging coastal envi-
ronments, providing valuable insights for coastal management and hazard assessments. This re-
search contributes to the emerging field of remote sensing and machine learning applications in 
environmental monitoring, paving the way for enhanced understanding and decision-making in 
coastal regions. 
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1. Introduction 
The rise in global mean sea level, attributed to human-induced climate change [1], is 

resulting in a global escalation in the frequency of coastal flooding, with a multitude of 
negative impacts for coastal communities, public safety, and economies [2]. 

The components of flooding include astronomical and meteorological water levels. 
The astronomical water level is determined by the tidal cycle, which is primarily caused 
by the gravitational attraction between the Moon and the Earth. Tides follow a regular 
pattern and can cause a periodic rise and fall in the water level along coastlines. On the 
other hand, meteorological water levels are influenced by weather events such as storms, 
heavy rainfall, or strong winds. These factors can lead to a temporary increase in water 
level in coastal areas, known as “storm surge”. Storm surge can significantly contribute 
to coastal flooding during extreme weather events. Both of these components can result 
in an elevation of the water level and contribute to flooding in coastal areas. It is important 
to consider both factors when evaluating and managing the risk of flooding [3]. 
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Tidal patterns have significant impacts on various aspects of human life and the eco-
system [4]. The positive outcomes of tides include preserving the marine ecosystem, facil-
itating fishing and harvesting [5], controlling pollution, generating power, and influenc-
ing weather circulation [6]. Tides play a vital role in many coastal ecosystems: they influ-
ence the habitats, aid in reproductive activities, and support the food chain [7]. In fishing, 
tides are used to catch fish and harvest seafood, optimizing economic returns [8]. Addi-
tionally, they contribute to the generation of renewable energy through tidal energy, har-
nessing hydraulic forces [9]. Tidal currents impact the circulation of weather, leading to 
the creation of more favorable climate conditions and contributing to the balance of global 
temperatures. [10]. They also play a vital role in the movement of sediment along the 
beach. Phases of high and low tide influence the deposition of sand, gravel, and other 
particles on the beach [11]. Understanding tides offers opportunities for their optimal uti-
lization in modern society [12]. 

Significant emphasis must be placed on coastal protection measures in response to 
storms and the ensuing storm surge. 

A storm surge is an anomalous increase in water levels caused by a storm that ex-
ceeds the expected astronomical tide. It represents the fluctuation in water level directly 
influenced by the storm�s presence [13]. 

The primary driver behind storm surges comes from the powerful winds associated 
with cyclones [14]. The wind patterns surrounding the cloud-free area of a cyclone�s �eye� 
are determined by a cyclonic circulation through diabatically produced potential vorticity 
(PV) anomalies in the lower–mid troposphere [15,16]. In offshore areas, this circulation 
remains largely undisturbed, resulting in minimal signs of storm surge [17]. When the 
hurricane approaches nearshore areas, the cyclonic circulation is influenced by seabed 
friction [18], determining the water flow inland [19]. Regarding coastal protection and 
emergency management, it is important to emphasize that the storm surge can penetrate 
far inland from the coastline [20,21]. 

To capture the characteristics of forcing during extreme events and the resulting im-
pacts on the coastal environment, a combination of direct methods (e.g., wave buoys, tide 
gauges, LiDAR surveys) and indirect methods (e.g., webcam or satellite images) have long 
been utilized. In recent times, the popularity of indirect methods has increased signifi-
cantly due to their ability to analyze large volumes of data using artificial intelligence 
techniques. 

Machine learning and deep learning [22], two branches of artificial intelligence [23], 
are proving to be versatile tools in the examination of coastal environments [24]. This, in 
turn, can facilitate the informed and sustainable planning and management of coastal re-
gions [25]. Such efforts contribute to safeguarding marine ecosystems and enhancing the 
tourism appeal of beaches [26]. Machine and deep learning enable the analysis of beach 
areas through the processing of satellite imagery [27] or footage from surveillance cameras 
[28]. For instance, machine learning algorithms can be employed to recognize and catego-
rize various aspects of coastal landscapes, such as beach morphology, that are influenced 
by tides and currents [29]. Additionally, deep learning facilitates the creation of special-
ized algorithms tailored to the detection of specific coastal features, enhancing the preci-
sion and efficiency of monitoring and analysis systems [30]. This, in turn, positively influ-
ences beach management by enabling a more precise evaluation of a beach�s condition 
and a more timely response to potential emergencies [31]. 

In this study, we present the results of experiments conducted using an algorithm for 
automated tide and surge measurement from images captured by a surveillance camera 
system. Once an image is acquired and submitted to the system, the algorithm is capable 
of providing the corresponding tidal height and, consequently, the surge [28]. These re-
sults are highly useful in areas where the tide sensor is remotely located, necessitating 
time corrections [32], and in situations of extreme events, such as Mediterranean Hurri-
canes, where surge measurement becomes valuable. 
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The tool presented in this paper represents an upgrade of the Convolutional Neural 
Network (CNN) for Tide Assessment developed in LEUCOTEA [28]. The forecasts pro-
duced by neural networks were compared to the observational data derived from tide 
gauge records. The previous code was written in MATLAB and used the GoogLeNet 
model [33]. This latest update is translated into Python [34] and is based on the Inception 
V3 model developed by Google [35]. 

The employment of a comprehensive observational system spanning multiple plat-
forms provides the opportunity for real-time feedback on the occurrence of oceanic and 
atmospheric events. Moreover, this approach would enable the execution of analyses that 
are typically reliant on in situ sensors [36], thereby circumventing logistical challenges 
and facilitating the seamless creation of information databases [37]. 

The paper was organized as follows: 
• Section 2 contains the methodology section, where the study areas, datasets, and 

deep learning models are reported; 
• Section 3 presents the results and discussion, including predictions and hyperparam-

eters; 
• Section 4 contains the conclusions. 

2. Methodology 
In this section, we present a detailed overview of the methodologies and techniques 

employed in this study. We outline the specific approaches adopted for the remote meas-
urement of tides and surges, as well as details of the deep learning system utilized for 
analysis. Additionally, we discuss the preprocessing steps applied to the surveillance cam-
era images and the training procedures undertaken to optimize the performance of the 
model. The following subsections provide a comprehensive overview of the methodolo-
gies used in this research endeavor. 

2.1. Data Acquisition and Territorial Framework 
In the preliminary step, the process begins by choosing a coastal region for investi-

gation and assembling a pertinent set of images to effectively portray the entire spectrum 
of potential tidal values. A substantial quantity of images is essential for conducting a 
thorough analysis. In our case, we chose two locations in Italy, and the model was trained 
and tested using images from surveillance cameras. 

2.1.1. Site 1: Santa Lucia 
The first site is Santa Lucia, located on the Maddalena peninsula in the municipality 

of Siracusa (SR), southeastern Sicily (Figure 1a). It features numerous distinct characteris-
tics, various residential settlements, several commercial activities, as well as areas of nat-
ural and archaeological interest. In 2004, the Plemmirio Marine Protected Area was estab-
lished to safeguard the surrounding marine environment and its abundant marine fauna. 
The management of the Marine Area provided the images from the surveillance camera. 

The coastal region of south-eastern Sicily extends over approximately 300 km and is 
experiencing significant erosion, with the shoreline retreating at a rate of about 5 m/year 
[38]. This region has faced severe storms over the past few decades, experiencing waves 
that have reached approximately 6 m in height and storm surges surpassing 1 m [39]. The 
examined coastal region displays a mix of small rocky headlands and low-lying beach 
systems, often adjacent to coastal lagoons. The impacts of numerous tsunamis have been 
recorded by studying accumulations of boulders [40,41], high-energy deposits [42], and 
the stratigraphy of the lagoon areas [43,44]. Furthermore, the region has also been im-
pacted by severe storms, resulting in the displacement of boulders and cobbles along the 
coastline [40]. Similar to other Mediterranean coastal areas, these storm occurrences have 
undergone impacts similar to those witnessed in past extreme marine events, such as tsu-
namis. 
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Figure 1. Study areas with surveillance camera locations: (a) site 1—Santa Lucia; (b) site—2 
Lignano. 

We also conducted an analysis using data recorded by the Catania wave buoy from 
the National Wave Network (Rete Ondametrica Nazionale (RON)). The most powerful 
storm in southeastern Sicily since 1990 was identified, characterized by a substantial wave 
height (Hs) of around 6.2 m and a peak period (Tp) of 11.3 s. Several medicanes, or 
Mediterranean hurricanes, have affected the coasts of south-eastern Sicily, and in recent 
decades, these events have had a greater impact compared to typical seasonal storms. 
Between 2014 and 2023, ten cyclones passed in the Ionian Sea, with four of them—
Qendresa in 2014, Zorbas in 2018, Apollo in 2021, and Helios in 2023 [45]—strongly 
impacting the coast of south-eastern Sicily. While the Ionian Sea is not typically prone to 
the formation of tropical cyclones, medicanes result from a process known as Tropical 
Transition (TT), where an extratropical system transforms into a tropical system or 
induces a hybrid cyclone [46,47]. However, some studies suggest that climate change may 
alter medicanes in the future, potentially reducing their frequency but intensifying their 
impact [48]. Nevertheless, in the Ionian basin, except for 2019, a medicane has crossed the 
region each year since 2014. 

2.1.2. Site 2: Lignano Sabbiadoro 
The second site is Lignano Sabbiadoro, a municipality located in the Friuli Venezia 

Giulia region (Figure 1b). Here, the images, acquired from a webcam placed on the roof 
of a restaurant overlooking the sea, were provided by the Panomax portal 
(https://lignano.panomax.com/ (accessed on 4 May 2023)) for tourism in the Friuli Venezia 
Giulia Region. Despite only having around 7000 inhabitants, it is one of the most 
important seaside resorts in the Northern Adriatic Sea, with around 3.5 million visitors 
(ISTAT, 2019). Lignano is located on the peninsula made up of the eastern lobe of the 
Tagliamento river delta and separates the Adriatic Sea from the Marano and Grado 
lagoon. The coast, conventionally divided from the Tagliamento river mouth (to the south) 
to the Lignano inlet (to the north) into the three sectors of Riviera, Pineta and Sabbiadoro, 
is made up of a single sandy beach approximately 8 km long. The beach has a curvilinear 
shape: from south to north, the direction rotates progressively clockwise from around 10° 
N to 45° N at the locality of Sabbiadoro, where the webcam is located, and then rotates in 
the opposite direction near the tidal inlet. The width of the beach varies from 23 m to 181 
m. The seabed facing Sabbiadoro beaches is characterized by the presence of the ebb tidal 
delta of the Lignano inlet, whose morphological high is evident up to 1600 m from the 
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shoreline, beyond which the depth progressively increases from 2 to 10 m in 1500 m, 
resulting in an average slope of 3.2‰ [49]. 

The sediment budget of the shoreface in Sabbiadoro has been positive over the last 
20 years [49], although the beach has shown an erosive trend partly compensated by 
nourishments and partly by the attempt to protect the beach using seasonal barriers made 
up of plastic bags filled with sand taken in situ. 

The tides in the Northern Adriatic Sea are semi-diurnal, with average mean spring 
tide and mean neap tide ranges of 78 cm, 105 cm [50], and 22 cm [51], respectively. 

The local wind climate is affected by two main winds, “Bora” and “Sirocco”. 
Although the Bora wind (from ENE) is predominant in terms of frequency and strength 
[52,53], the Sirocco wind (coming from the SSE) is statistically significant, although it holds 
a subordinate position in terms of strength. 

The wave regime tends to exhibit a bimodal pattern due to the prevailing wind 
conditions. As per data collected from the wave buoy OGS DWRG1 (positioned offshore 
at coordinates 13.24 E, 45.56 N; 16 m depth), the average significant wave height (Hs) 
remains below 0.5 m. Instances of Hs exceeding 0.5 m make up 25% of the entire dataset, 
with prevailing waves originating from the SE (10.7%) and ENE (10.5%). The Sirocco wind 
contributes to the highest recorded waves, reaching an Hs of 4.4 m [53]. The simultaneous 
influence of spring tides, seiches, winds, and low atmospheric pressure has the potential 
to cause a significant elevation in sea level, resulting in a locally recognized surge referred 
to as “acqua alta”. 

The storm surges in the Northern Adriatic Sea are mainly related to the Sirocco and 
secondly to the Bora due to their different fetches. Considering the beach of Lignano, the 
fetch of the Bora is around 50 km while the Sirocco acts along the entire Adriatic basin for 
around 800 km, being able to produce greater and more persistent storm surges at the end 
of the basin [54]. 

Extreme storm events in the northern Adriatic have been the subject of multiple 
studies, most of which are associated with the city of Venice due to its important artistic 
and cultural heritage. The major extreme events were recorded between late October and 
December (1966, 1979, 2018, and 2019), while the 1986 event occurred in February [55]. 
Cavaleri et al. [56] studied the event of 29 October 2018, identifying extreme storm surge 
values above 150 cm, limited by the out-of-phase astronomical tide, and assuming that 
much more catastrophic consequences would occur in the case of concomitant in-phase 
factors. Moreover, the authors observed a significant increase in the nearshore sea level 
associated with the wave set-up and surface wind stress, caused by the progressive 
decrease in depth shoreward. Ferrarin et al. [57] analyzed the meteorological 
characteristics of the November 2019 event, comparing it with previous extreme events in 
1966, 1979, and 2018. Unlike previous events, characterized by high storm surges 
associated with a low astronomical tidal range, the 2019 event showed how the in-phase 
concomitance of even non-extreme factors can lead to an exceptional rise in sea level. Mel 
et al. [58] analyzed the event at the end of November 2022, associated with a persistent 
low pressure over central Italy which generated both Sirocco winds along the Adriatic and 
Bora winds over the northern Adriatic, causing storm surges of 173 cm (refer to the Punta 
della Salute gauge datum, ZMPS) and wave heights of up to 4.5 m at the CNR platform, 
located 12 m offshore from the Venice lagoon. 

The barrier islands of the adjacent Marano and Grado lagoon were also affected by 
such extreme events, and were frequently overwashed and breached with the formation 
of multiple washover fans [59]. 
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2.2. Creation of the Dataset 
The dataset creation constitutes the initial step and is essential for training the Con-

volutional Neural Network (CNN). This task is typically performed manually by the re-
search team. In our case, we tested the system using two different datasets of images dur-
ing significant meteorological events. In each frame, a value was assigned based on the 
real data recorded during the event from the tide gauge sensors. Starting from the histor-
ical data that were acquired, the overall range of tidal values in the considered area is 
divided into intervals, with each representing a membership class. The amplitude value 
must be as representative as possible of the event type to consider the excursion values of 
the site. For site 1, a minimum value of −81.4 cm and a maximum value of 89.9 cm were 
considered, while for site 2, a minimum value of −20 cm and a maximum value of 145 cm 
were considered. The image datasets were split into groups based on the membership 
class of the corresponding tidal value. To address class imbalances (Figure 2), a function 
was implemented to calculate the respective weights for each class. These weights were 
then converted into a dictionary where the keys represent the unique classes in the train-
ing data and the values correspond to the class weights. This approach helps prevent the 
model from being overly influenced by more represented classes at the expense of less 
represented ones. The characteristics of each dataset are listed in Table 1. 

Table 1. Dataset and site information. 

Name Dataset Basement N° Imgs Train Test N° Classes Site 
Coordinates 
UTM Wgs84 

Santa Lucia Rock 3.266 2.605 661 32 Santa Lucia (SR), Italy 
37°02′03.19″ N 
15°18′54.41″ E 

Lignano Sand 430 248 101 34 
Lignano Sabbiadoro 

(UD), Italy 
45°41′18.36″ N 
13°08′51.08″ E 

 
Figure 2. Dataset class distribution: (a) Santa Lucia; (b) Lignano Sabbiadoro. 

Since there were no sensors at the specific sites, the nearest ones were used, and all 
corrections for tidal lag were applied: in the case of Santa Lucia, Capo Passero�s (SR) tide 
gauge was used, while Trieste�s tide gauge was used for Lignano. For Santa Lucia, the 
images of the impact of the cyclone Helios (8–11 February 2023) were analyzed (Figure 
3a). In the case of Lignano, a severe storm surge that occurred between 21 November and 
23 November 2022 was analyzed (Figure 3b). 
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Figure 3. Images extracted from the surveillance cameras in the following areas: (a) Santa Lucia; (b) 
Lignano Sabbiadoro. 

2.3. Installation and Requirements 

It is necessary to set up the entire script by creating an environment with the neces-
sary and suitable requirements for its proper functioning. The open-source TensorFlow 2 
library was used for model training [60]. For convenience and to ensure a better perfor-
mance, we proceeded to install the system on the Google Collaboratory platform, which 
temporarily provides high-performance workstations [61]. 

In our case, the features provided by the Google Colab workstation were as follows: 
• CPU: Intel Xeon 2.00 GHz (×2) 
• GPU: NVIDIA Tesla T4 16 GB 
• Driver Version: 525.85.12 
• CUDA Version: 12.0 
• RAM: 12.7 GB 

2.4. Training Model Process and Testing 
We opted for the Inception v3 model as our foundation, a convolutional neural net-

work specifically designed for image analysis and object detection [35]. Originally devel-
oped as a module for GoogLeNet, it is the third iteration of Google�s Inception Convolu-
tional Neural Network. Similar to how ImageNet serves as a classified visual object data-
base [62], Inception assists in object classification within the realm of computer vision. The 
Inception v3 architecture has found widespread use across various applications [63], and 
is frequently employed in a “pre-trained” state from ImageNet. One notable application 
lies within the life sciences field, where it contributes to leukemia research [64–66]. 

The next step involves training our dataset to enable the system to recognize high 
tides based on previously organized classes. The images were automatically resized to a 
dimension of 224 × 224 pixels, and augmentation techniques, including rescale, horizontal 
and vertical flip, width and height shift, and zoom, were applied. The duration of the 
computational processes relies on several factors, chiefly the computational capacity. 
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Given that the training of models encompasses CNN and image processing procedures, 
substantial resource utilization is expected, particularly involving the CPU, GPU, and 
RAM. We delegated the training to the GPU instead of the CPU, which has specialized 
functional units such as the �tensor core� and parallel computing, thereby speeding up 
processing times [67]. The configuration of hyperparameters represents the second factor 
affecting both the time required and the accuracy achieved by the trained model [68]. Hy-
perparameters in a deep learning model are not learned directly through the training pro-
cess; instead, they are selected manually by the user or through automated hyperparam-
eter search techniques. These parameters play a pivotal role in controlling the model�s 
behavior during training and influencing its generalization capabilities. Examples of hy-
perparameters include the learning rate, the number of epochs, and the batch size. 

Optimal hyperparameter selection is essential to ensure a deep learning model 
achieves strong generalization capabilities without succumbing to issues like overfitting 
or underfitting [69]. The hyperparameters used were chosen after repeated fine-tuning 
and they are as follows: batch Size = 8, Starting LR = 0.003, Epochs = 35. 

Image analysis follows a step-by-step procedure incorporating three layers: convolu-
tional layers, pooling layers, and fully connected layers. Two-dimensional convolutional 
layers are employed to process two-dimensional signals, like images. These layers apply 
a convolution kernel to the image, executing convolutions at each position between the 
kernel and the corresponding image segment. The kernel then shifts by a set number of 
pixels, referred to as the stride. It is important to consider the stride value, as a small stride 
can lead to redundant information. To control the output size, zero padding is introduced, 
which adds a border of zeros (of size l) around the image. The convolutional operations 
are complemented by an activation function known as the Rectified Linear Unit (ReLU), 
which is typically applied as an activation layer. This is a common activation function in 
deep learning neural networks that introduces non-linearity, facilitating the learning of 
complex models. The advantages of ReLU include its simplicity and computational effi-
ciency, its ability to mitigate the vanishing gradient problem in deep neural networks, and 
the promotion of sparsity in the representation of outputs, which can be beneficial in cer-
tain contexts [70]. 

Moreover, to normalize each activation across different channels, a cross-channel 
normalization operation was employed. It improves model performance by ensuring a 
consistent scale of features, expediting convergence during training, enhancing stability, 
and acting as an implicit regularization. This process contributes to more efficient and 
robust model learning [71]. The CNN architecture also incorporates pooling layers, which 
serve to reduce the dimensionality of the input by subsampling, either through mean-
pooling or max-pooling applied to patches of the image. Much like convolutional layers 
and pooling layers, these work on different parts of the image and incorporate a stride 
parameter. In the context of this specific deep learning network, 2D max-pooling layers 
were employed, extracting the maximum values from within the patches [72]. To handle 
inputs with the same height and width, depth concatenation layers were employed, which 
concatenate the inputs along the third dimension, representing the channels. The CNN 
concludes with a fully connected layer, establishing connections between each element of 
the preceding layer and every element within the softmax layer. The softmax layer, which 
estimates relative probabilities, is instrumental in determining the ultimate and most 
probable value. The structural framework of the deep neural network is crafted around 
Inception modules [33]. 

The Inception V3 model was trained using a deep learning technique called “transfer 
learning” [73]. This involves using a pre-trained deep learning model on a large dataset 
and updating the last layers of the model on a specific dataset of interest [74]. This ap-
proach allows the knowledge gained during the pre-training of the model to improve the 
model�s ability to generalize to new data [75]. These modules enable the network to select 
from various convolutional filter sizes within each block, enhancing its flexibility and 
adaptability. 
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The original architecture of Inception v3 was modified to tailor it to this application; 
the last layer was removed, and a Global Average 2D pooling layer was implemented to 
allow the CNN to better adapt to the specific case study. This is a special layer employed 
in Convolutional Neural Networks to compress the input tensor space. Unlike traditional 
pooling layers with fixed-size windows, Global Average Pooling calculates the average of 
all values in the feature map, generating a single mean value for each channel. This pro-
cess reduces the spatial dimensions of the feature map while preserving crucial infor-
mation about the features. The use of this layer is often considered to reduce the number 
of parameters in the model, prevent overfitting, and improve generalization. Additionally, 
it makes the network less sensitive to variations in the position and size of objects in im-
ages. Our modified architecture has 313 layers, of which 184 are trainable. 

During the training process, the CNN was trained using 70% of the available images 
for training purposes and the remaining 30% for validation, which is considered by the 
literature as the optimal partition of the dataset for training these types of CNNs [35,76]. 

Figure 4 shows the training curves for the model in both case studies. 

 
Figure 4. Training curves produced by machine learning model: (a) loss values for Santa Lucia; (b) 
accuracy values for Santa Lucia; (c) loss values for Lignano Sabbiadoro; (d) accuracy values for 
Lignano Sabbiadoro. 

3. Results and Discussion 
The CNN outputs deliver the probabilities corresponding to tide classes linked to a 

specific video frame captured by the webcams. In Figure 5a,b, the probabilities of tide 
classes related to a given image are illustrated. To depict tide phases across a continuous 
temporal spectrum, various snapshots were automatically extracted from the video re-
cordings, with tide classes assigned to each image. The CNN achieved an accuracy ex-
ceeding 90%, and the Categorical Cross-Entropy Loss function yielded a value below 1 at 
the conclusion of the iterations. Detailed results can be found in Table 2. The evaluation of 
the CNN output metrics involved the examination of the confusion matrix (depicted in 
Figure 6a,b), which illustrates the relationship between predicted classes (CNN output) 
and true classes (spatial reference from field surveys). The confusion matrix stands as a 
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commonly employed metric in the domain of classification problem-solving. Its versatility 
extends to both binary and multiclass classification scenarios. This matrix furnishes a tab-
ulated representation of counts stemming from predicted and actual values [77]. 

Table 2. Results from training. 

Location Accuracy Loss 
Santa Lucia 99.55% 0.25 

Lignano 94.06% 0.88 

 

 
Figure 5. Comparison between the true class and the predicted class for (a) Santa Lucia and (b) 
Lignano Sabbiadoro. 

As tide classes are mutually exclusive and encompass all potential tide phases, the 
most probable predicted class was chosen as a dependable representation of tide values. 
It is worth noting that during storms and medicanes, exceptional values may arise, 
wherein predicted classes may be linked to higher values than those typically associated 
with common tide phases. 

In addition to considering the accuracy and loss metrics mentioned above, F1 scores 
in the various classes are presented below for a deeper understanding of the performance 
of the CNN model. The F1 score combines accuracy and recall through its harmonic mean 
and offers insight into the model�s effectiveness in handling class imbalances [78]. 
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Figure 6. Confusion matrix derived from test datasets for (a) Santa Lucia and (b) Lignano 
Sabbiadoro. 

In both cases, the obtained weighted average is significantly higher, over 90%, indi-
cating a good overall performance for all classes. 

In particular, for the Santa Lucia site, the F1 scores show a weighted average of 0.9955. 
Most of the classes in this series achieve perfect scores (1.0). There is a slight decrease in 
the F1 score for class 2 (0.9709) and class 20 (0.9286). Although these scores are slightly 
lower than the results obtained by the other classes, they are still considered good and 
indicate the substantial ability of the model to correctly classify images belonging to the 
respective classes. 

For the Lignano site, the weighted average is 0.9339. Specifically, classes 0 and 9 show 
lower F1 scores (0.5), suggesting difficulty in accurately predicting these particular tidal 
classes. This could be attributed to their limited representation in the training data. In 
contrast, many other classes, such as 2, 4, 5, and 6, achieve perfect scores (1.0), highlighting 
the excellent performance of the model within these tidal classes. Other classes, such as 1, 
3, 24, 25, and 27, show moderate F1 scores ranging from (0.8 to 0.8571), indicating areas 
where improvements can be made. 

Overall, the F1 scores for both sites demonstrate the effectiveness of the model in 
accurately classifying tidal heights into different categories, revealing areas of strength 
and scope for additional improvement. 

The widespread use of deep learning models integrated with monitoring sensors, 
and they are becoming a low-cost tool for engineering and oceanographic studies [4,79–
81]. On the other hand, using surveillance cameras allows for an increase in the density of 
data in coastal areas without monitoring stations. Remote sensing data combined with 
machine learning models have usually been applied to obtain physical features of the 
coastal areas, like water depth [82,83], storm surge [10,11,84], and hydrological parameters 
[85]. To date, few studies have focused on the assessment of meteo-marine parameters 
through deep learning and video monitoring [86–88]. Here, classification techniques using 
the Inception V3 model allowed us to obtain new observations of tide phases characteriz-
ing sandy and rocky coasts. 

In summary, the outcomes of the study are influenced by factors such as image qual-
ity and landscape complexity. Convolutional neural networks (CNNs) have shown im-
pressive effectiveness in classifying data across diverse applications, but it is important to 



Water 2024, 16, 1365 12 of 18 
 

 

note that using CNNs requires substantial computational resources. However, the ad-
vantages include the high precision in image classification, demonstrated by the elevated 
F1 scores at specific sites. The efficiency of CNNs is notable due to their parallel pro-
cessing, making them suitable for large datasets. Additionally, CNNs automate image 
identification and classification, reducing the need for human intervention, and their cus-
tomization feature allows for adaptation to specific application requirements through 
fine-tuning with representative image data. 

However, from the evidence, it can be concluded that training the model is sufficient 
to implement and correlate it to the new environment. Training is necessary only once, 
after which it will be possible to perform classification of all the images that are inserted 
to recognize the tide height. 

Using a temporal denomination for the images, it is possible to recreate the time-
sheet of the extreme event to provide a better understanding of its temporal progression 
(Figure 7) and also for potential comparison with real data. Regarding Lignano, the im-
ages do not cover the entire 24 h period as the camera does not record during the night. 
One of the benefits of using systems like this is that they can reduce the workload of the 
operator, who has to manually analyze and view the images, and obtain almost instanta-
neous results. This approach could be relevant for the study of extreme events and for 
measuring hydrodynamic parameters in order to model the high frequency in the coastal 
dynamic. Similar approaches to the high-frequency dynamic are also applied to predict 
coastal changes, like shoreline movements [89], sea surface temperature changes [90], and 
tropical cyclone forecasting [91,92]. 

 
Figure 7. Comparison of tide values between extracted from different locations: (a) tide-gauge lo-
cated in Capo Passero; (b) CNN time-series for Santa Lucia; (c) tide-gauge located in Lignano coast; 
(d) CNN time-series for Lignano Sabbiadoro. 

The field of application is diverse and could be of interest for those institutions that 
deal with the research and monitoring of beaches. Classification techniques could be 
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integrated with segmentation techniques for beach monitoring [93–95] in order to obtain 
a reliable assessment of sedimentary balance. 

4. Conclusions 
In this study, we introduced a deep learning-based system for the automatic meas-

urement and classification of tides in surveillance camera images. Deep learning tech-
niques offer a cost-effective solution for coastal monitoring by increasing the availability 
of data that are sparsely distributed along coastlines. Furthermore, video footage serves 
as a valuable resource for gaining insights into high-energy occurrences, exemplified by 
the impact of Helios in southeastern Sicily in February 2023. Leveraging convolutional 
neural networks (CNN) in these scenarios enables the evaluation of hydrodynamic char-
acteristics such as storm surge, which are challenging to assess in the field during actual 
events. 

Accumulating a significant volume of data is essential for the development of pre-
diction models that forecast the intensity of future extreme marine events. The application 
of deep learning in coastal monitoring facilitates the expansion of available datasets, thus 
proving valuable in this context. 

The findings suggest that, even with a limited test dataset, the algorithm is capable 
of accurately recognizing the value of the tide or the relative surge during extreme events. 
The trained models achieved accuracy values exceeding 90% and a loss below 1. The gen-
erated confusion matrices also exhibited excellent results, with predicted values rarely 
deviating from the reference diagonal. Furthermore, by comparing the time-series of ac-
tual values with those predicted by the CNN for the two intense weather events, it is evi-
dent that the curves follow very similar patterns. 

The precision of the outcomes relies on multiple factors, encompassing image quality 
and the intricacy of objects within the images. Overall, convolutional neural networks 
have proven highly effective in tasks involving classification and measurement across di-
verse applications. The incorporation of deep learning technology could yield even more 
advantages. Introducing such a system would offer the chance to receive instantaneous 
feedback on the consequences of atmospheric events in real-time. In addition, it would 
empower remote analysis, eliminating the necessity of in-person visits. This not only ad-
dresses logistical challenges but also facilitates the establishment of comprehensive data-
bases of information. Utilizing systems like this could also alleviate the workload of oper-
ators who would otherwise need to manually analyze and review images, enabling almost 
instantaneous results. 
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